| 1 | // SPDX-License-Identifier: Apache-2.0 |
| 2 | // ---------------------------------------------------------------------------- |
| 3 | // Copyright 2011-2023 Arm Limited |
| 4 | // |
| 5 | // Licensed under the Apache License, Version 2.0 (the "License"); you may not |
| 6 | // use this file except in compliance with the License. You may obtain a copy |
| 7 | // of the License at: |
| 8 | // |
| 9 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | // |
| 11 | // Unless required by applicable law or agreed to in writing, software |
| 12 | // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| 13 | // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the |
| 14 | // License for the specific language governing permissions and limitations |
| 15 | // under the License. |
| 16 | // ---------------------------------------------------------------------------- |
| 17 | |
| 18 | #if !defined(ASTCENC_DECOMPRESS_ONLY) |
| 19 | |
| 20 | /** |
| 21 | * @brief Functions for angular-sum algorithm for weight alignment. |
| 22 | * |
| 23 | * This algorithm works as follows: |
| 24 | * - we compute a complex number P as (cos s*i, sin s*i) for each weight, |
| 25 | * where i is the input value and s is a scaling factor based on the spacing between the weights. |
| 26 | * - we then add together complex numbers for all the weights. |
| 27 | * - we then compute the length and angle of the resulting sum. |
| 28 | * |
| 29 | * This should produce the following results: |
| 30 | * - perfect alignment results in a vector whose length is equal to the sum of lengths of all inputs |
| 31 | * - even distribution results in a vector of length 0. |
| 32 | * - all samples identical results in perfect alignment for every scaling. |
| 33 | * |
| 34 | * For each scaling factor within a given set, we compute an alignment factor from 0 to 1. This |
| 35 | * should then result in some scalings standing out as having particularly good alignment factors; |
| 36 | * we can use this to produce a set of candidate scale/shift values for various quantization levels; |
| 37 | * we should then actually try them and see what happens. |
| 38 | */ |
| 39 | |
| 40 | #include "astcenc_internal.h" |
| 41 | #include "astcenc_vecmathlib.h" |
| 42 | |
| 43 | #include <stdio.h> |
| 44 | #include <cassert> |
| 45 | #include <cstring> |
| 46 | |
| 47 | static constexpr unsigned int ANGULAR_STEPS { 32 }; |
| 48 | |
| 49 | static_assert((ANGULAR_STEPS % ASTCENC_SIMD_WIDTH) == 0, |
| 50 | "ANGULAR_STEPS must be multiple of ASTCENC_SIMD_WIDTH" ); |
| 51 | |
| 52 | static_assert(ANGULAR_STEPS >= 32, |
| 53 | "ANGULAR_STEPS must be at least max(steps_for_quant_level)" ); |
| 54 | |
| 55 | // Store a reduced sin/cos table for 64 possible weight values; this causes |
| 56 | // slight quality loss compared to using sin() and cos() directly. Must be 2^N. |
| 57 | static constexpr unsigned int SINCOS_STEPS { 64 }; |
| 58 | |
| 59 | static const uint8_t steps_for_quant_level[12] { |
| 60 | 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32 |
| 61 | }; |
| 62 | |
| 63 | alignas(ASTCENC_VECALIGN) static float sin_table[SINCOS_STEPS][ANGULAR_STEPS]; |
| 64 | alignas(ASTCENC_VECALIGN) static float cos_table[SINCOS_STEPS][ANGULAR_STEPS]; |
| 65 | |
| 66 | #if defined(ASTCENC_DIAGNOSTICS) |
| 67 | static bool print_once { true }; |
| 68 | #endif |
| 69 | |
| 70 | /* See header for documentation. */ |
| 71 | void prepare_angular_tables() |
| 72 | { |
| 73 | for (unsigned int i = 0; i < ANGULAR_STEPS; i++) |
| 74 | { |
| 75 | float angle_step = static_cast<float>(i + 1); |
| 76 | |
| 77 | for (unsigned int j = 0; j < SINCOS_STEPS; j++) |
| 78 | { |
| 79 | sin_table[j][i] = static_cast<float>(sinf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angle_step * static_cast<float>(j))); |
| 80 | cos_table[j][i] = static_cast<float>(cosf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angle_step * static_cast<float>(j))); |
| 81 | } |
| 82 | } |
| 83 | } |
| 84 | |
| 85 | /** |
| 86 | * @brief Compute the angular alignment factors and offsets. |
| 87 | * |
| 88 | * @param weight_count The number of (decimated) weights. |
| 89 | * @param dec_weight_ideal_value The ideal decimated unquantized weight values. |
| 90 | * @param max_angular_steps The maximum number of steps to be tested. |
| 91 | * @param[out] offsets The output angular offsets array. |
| 92 | */ |
| 93 | static void compute_angular_offsets( |
| 94 | unsigned int weight_count, |
| 95 | const float* dec_weight_ideal_value, |
| 96 | unsigned int max_angular_steps, |
| 97 | float* offsets |
| 98 | ) { |
| 99 | promise(weight_count > 0); |
| 100 | promise(max_angular_steps > 0); |
| 101 | |
| 102 | alignas(ASTCENC_VECALIGN) int isamplev[BLOCK_MAX_WEIGHTS]; |
| 103 | |
| 104 | // Precompute isample; arrays are always allocated 64 elements long |
| 105 | for (unsigned int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH) |
| 106 | { |
| 107 | // Add 2^23 and interpreting bits extracts round-to-nearest int |
| 108 | vfloat sample = loada(dec_weight_ideal_value + i) * (SINCOS_STEPS - 1.0f) + vfloat(12582912.0f); |
| 109 | vint isample = float_as_int(sample) & vint((SINCOS_STEPS - 1)); |
| 110 | storea(isample, isamplev + i); |
| 111 | } |
| 112 | |
| 113 | // Arrays are multiple of SIMD width (ANGULAR_STEPS), safe to overshoot max |
| 114 | vfloat mult = vfloat(1.0f / (2.0f * astc::PI)); |
| 115 | |
| 116 | for (unsigned int i = 0; i < max_angular_steps; i += ASTCENC_SIMD_WIDTH) |
| 117 | { |
| 118 | vfloat anglesum_x = vfloat::zero(); |
| 119 | vfloat anglesum_y = vfloat::zero(); |
| 120 | |
| 121 | for (unsigned int j = 0; j < weight_count; j++) |
| 122 | { |
| 123 | int isample = isamplev[j]; |
| 124 | anglesum_x += loada(cos_table[isample] + i); |
| 125 | anglesum_y += loada(sin_table[isample] + i); |
| 126 | } |
| 127 | |
| 128 | vfloat angle = atan2(anglesum_y, anglesum_x); |
| 129 | vfloat ofs = angle * mult; |
| 130 | storea(ofs, offsets + i); |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | /** |
| 135 | * @brief For a given step size compute the lowest and highest weight. |
| 136 | * |
| 137 | * Compute the lowest and highest weight that results from quantizing using the given stepsize and |
| 138 | * offset, and then compute the resulting error. The cut errors indicate the error that results from |
| 139 | * forcing samples that should have had one weight value one step up or down. |
| 140 | * |
| 141 | * @param weight_count The number of (decimated) weights. |
| 142 | * @param dec_weight_ideal_value The ideal decimated unquantized weight values. |
| 143 | * @param max_angular_steps The maximum number of steps to be tested. |
| 144 | * @param max_quant_steps The maximum quantization level to be tested. |
| 145 | * @param offsets The angular offsets array. |
| 146 | * @param[out] lowest_weight Per angular step, the lowest weight. |
| 147 | * @param[out] weight_span Per angular step, the span between lowest and highest weight. |
| 148 | * @param[out] error Per angular step, the error. |
| 149 | * @param[out] cut_low_weight_error Per angular step, the low weight cut error. |
| 150 | * @param[out] cut_high_weight_error Per angular step, the high weight cut error. |
| 151 | */ |
| 152 | static void compute_lowest_and_highest_weight( |
| 153 | unsigned int weight_count, |
| 154 | const float* dec_weight_ideal_value, |
| 155 | unsigned int max_angular_steps, |
| 156 | unsigned int max_quant_steps, |
| 157 | const float* offsets, |
| 158 | float* lowest_weight, |
| 159 | int* weight_span, |
| 160 | float* error, |
| 161 | float* cut_low_weight_error, |
| 162 | float* cut_high_weight_error |
| 163 | ) { |
| 164 | promise(weight_count > 0); |
| 165 | promise(max_angular_steps > 0); |
| 166 | |
| 167 | vfloat rcp_stepsize = vfloat::lane_id() + vfloat(1.0f); |
| 168 | |
| 169 | // Arrays are ANGULAR_STEPS long, so always safe to run full vectors |
| 170 | for (unsigned int sp = 0; sp < max_angular_steps; sp += ASTCENC_SIMD_WIDTH) |
| 171 | { |
| 172 | vfloat minidx(128.0f); |
| 173 | vfloat maxidx(-128.0f); |
| 174 | vfloat errval = vfloat::zero(); |
| 175 | vfloat cut_low_weight_err = vfloat::zero(); |
| 176 | vfloat cut_high_weight_err = vfloat::zero(); |
| 177 | vfloat offset = loada(offsets + sp); |
| 178 | |
| 179 | for (unsigned int j = 0; j < weight_count; j++) |
| 180 | { |
| 181 | vfloat sval = load1(dec_weight_ideal_value + j) * rcp_stepsize - offset; |
| 182 | vfloat svalrte = round(sval); |
| 183 | vfloat diff = sval - svalrte; |
| 184 | errval += diff * diff; |
| 185 | |
| 186 | // Reset tracker on min hit |
| 187 | vmask mask = svalrte < minidx; |
| 188 | minidx = select(minidx, svalrte, mask); |
| 189 | cut_low_weight_err = select(cut_low_weight_err, vfloat::zero(), mask); |
| 190 | |
| 191 | // Accumulate on min hit |
| 192 | mask = svalrte == minidx; |
| 193 | vfloat accum = cut_low_weight_err + vfloat(1.0f) - vfloat(2.0f) * diff; |
| 194 | cut_low_weight_err = select(cut_low_weight_err, accum, mask); |
| 195 | |
| 196 | // Reset tracker on max hit |
| 197 | mask = svalrte > maxidx; |
| 198 | maxidx = select(maxidx, svalrte, mask); |
| 199 | cut_high_weight_err = select(cut_high_weight_err, vfloat::zero(), mask); |
| 200 | |
| 201 | // Accumulate on max hit |
| 202 | mask = svalrte == maxidx; |
| 203 | accum = cut_high_weight_err + vfloat(1.0f) + vfloat(2.0f) * diff; |
| 204 | cut_high_weight_err = select(cut_high_weight_err, accum, mask); |
| 205 | } |
| 206 | |
| 207 | // Write out min weight and weight span; clamp span to a usable range |
| 208 | vint span = float_to_int(maxidx - minidx + vfloat(1)); |
| 209 | span = min(span, vint(max_quant_steps + 3)); |
| 210 | span = max(span, vint(2)); |
| 211 | storea(minidx, lowest_weight + sp); |
| 212 | storea(span, weight_span + sp); |
| 213 | |
| 214 | // The cut_(lowest/highest)_weight_error indicate the error that results from forcing |
| 215 | // samples that should have had the weight value one step (up/down). |
| 216 | vfloat ssize = 1.0f / rcp_stepsize; |
| 217 | vfloat errscale = ssize * ssize; |
| 218 | storea(errval * errscale, error + sp); |
| 219 | storea(cut_low_weight_err * errscale, cut_low_weight_error + sp); |
| 220 | storea(cut_high_weight_err * errscale, cut_high_weight_error + sp); |
| 221 | |
| 222 | rcp_stepsize = rcp_stepsize + vfloat(ASTCENC_SIMD_WIDTH); |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | /** |
| 227 | * @brief The main function for the angular algorithm. |
| 228 | * |
| 229 | * @param weight_count The number of (decimated) weights. |
| 230 | * @param dec_weight_ideal_value The ideal decimated unquantized weight values. |
| 231 | * @param max_quant_level The maximum quantization level to be tested. |
| 232 | * @param[out] low_value Per angular step, the lowest weight value. |
| 233 | * @param[out] high_value Per angular step, the highest weight value. |
| 234 | */ |
| 235 | static void compute_angular_endpoints_for_quant_levels( |
| 236 | unsigned int weight_count, |
| 237 | const float* dec_weight_ideal_value, |
| 238 | unsigned int max_quant_level, |
| 239 | float low_value[TUNE_MAX_ANGULAR_QUANT + 1], |
| 240 | float high_value[TUNE_MAX_ANGULAR_QUANT + 1] |
| 241 | ) { |
| 242 | unsigned int max_quant_steps = steps_for_quant_level[max_quant_level]; |
| 243 | unsigned int max_angular_steps = steps_for_quant_level[max_quant_level]; |
| 244 | |
| 245 | alignas(ASTCENC_VECALIGN) float angular_offsets[ANGULAR_STEPS]; |
| 246 | |
| 247 | compute_angular_offsets(weight_count, dec_weight_ideal_value, |
| 248 | max_angular_steps, angular_offsets); |
| 249 | |
| 250 | alignas(ASTCENC_VECALIGN) float lowest_weight[ANGULAR_STEPS]; |
| 251 | alignas(ASTCENC_VECALIGN) int32_t weight_span[ANGULAR_STEPS]; |
| 252 | alignas(ASTCENC_VECALIGN) float error[ANGULAR_STEPS]; |
| 253 | alignas(ASTCENC_VECALIGN) float cut_low_weight_error[ANGULAR_STEPS]; |
| 254 | alignas(ASTCENC_VECALIGN) float cut_high_weight_error[ANGULAR_STEPS]; |
| 255 | |
| 256 | compute_lowest_and_highest_weight(weight_count, dec_weight_ideal_value, |
| 257 | max_angular_steps, max_quant_steps, |
| 258 | angular_offsets, lowest_weight, weight_span, error, |
| 259 | cut_low_weight_error, cut_high_weight_error); |
| 260 | |
| 261 | // For each quantization level, find the best error terms. Use packed vectors so data-dependent |
| 262 | // branches can become selects. This involves some integer to float casts, but the values are |
| 263 | // small enough so they never round the wrong way. |
| 264 | vfloat4 best_results[36]; |
| 265 | |
| 266 | // Initialize the array to some safe defaults |
| 267 | promise(max_quant_steps > 0); |
| 268 | for (unsigned int i = 0; i < (max_quant_steps + 4); i++) |
| 269 | { |
| 270 | // Lane<0> = Best error |
| 271 | // Lane<1> = Best scale; -1 indicates no solution found |
| 272 | // Lane<2> = Cut low weight |
| 273 | best_results[i] = vfloat4(ERROR_CALC_DEFAULT, -1.0f, 0.0f, 0.0f); |
| 274 | } |
| 275 | |
| 276 | promise(max_angular_steps > 0); |
| 277 | for (unsigned int i = 0; i < max_angular_steps; i++) |
| 278 | { |
| 279 | float i_flt = static_cast<float>(i); |
| 280 | |
| 281 | int idx_span = weight_span[i]; |
| 282 | |
| 283 | float error_cut_low = error[i] + cut_low_weight_error[i]; |
| 284 | float error_cut_high = error[i] + cut_high_weight_error[i]; |
| 285 | float error_cut_low_high = error[i] + cut_low_weight_error[i] + cut_high_weight_error[i]; |
| 286 | |
| 287 | // Check best error against record N |
| 288 | vfloat4 best_result = best_results[idx_span]; |
| 289 | vfloat4 new_result = vfloat4(error[i], i_flt, 0.0f, 0.0f); |
| 290 | vmask4 mask = vfloat4(best_result.lane<0>()) > vfloat4(error[i]); |
| 291 | best_results[idx_span] = select(best_result, new_result, mask); |
| 292 | |
| 293 | // Check best error against record N-1 with either cut low or cut high |
| 294 | best_result = best_results[idx_span - 1]; |
| 295 | |
| 296 | new_result = vfloat4(error_cut_low, i_flt, 1.0f, 0.0f); |
| 297 | mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_low); |
| 298 | best_result = select(best_result, new_result, mask); |
| 299 | |
| 300 | new_result = vfloat4(error_cut_high, i_flt, 0.0f, 0.0f); |
| 301 | mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_high); |
| 302 | best_results[idx_span - 1] = select(best_result, new_result, mask); |
| 303 | |
| 304 | // Check best error against record N-2 with both cut low and high |
| 305 | best_result = best_results[idx_span - 2]; |
| 306 | new_result = vfloat4(error_cut_low_high, i_flt, 1.0f, 0.0f); |
| 307 | mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_low_high); |
| 308 | best_results[idx_span - 2] = select(best_result, new_result, mask); |
| 309 | } |
| 310 | |
| 311 | for (unsigned int i = 0; i <= max_quant_level; i++) |
| 312 | { |
| 313 | unsigned int q = steps_for_quant_level[i]; |
| 314 | int bsi = static_cast<int>(best_results[q].lane<1>()); |
| 315 | |
| 316 | // Did we find anything? |
| 317 | #if defined(ASTCENC_DIAGNOSTICS) |
| 318 | if ((bsi < 0) && print_once) |
| 319 | { |
| 320 | print_once = false; |
| 321 | printf("INFO: Unable to find full encoding within search error limit.\n\n" ); |
| 322 | } |
| 323 | #endif |
| 324 | |
| 325 | bsi = astc::max(0, bsi); |
| 326 | |
| 327 | float lwi = lowest_weight[bsi] + best_results[q].lane<2>(); |
| 328 | float hwi = lwi + static_cast<float>(q) - 1.0f; |
| 329 | |
| 330 | float stepsize = 1.0f / (1.0f + static_cast<float>(bsi)); |
| 331 | low_value[i] = (angular_offsets[bsi] + lwi) * stepsize; |
| 332 | high_value[i] = (angular_offsets[bsi] + hwi) * stepsize; |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | /* See header for documentation. */ |
| 337 | void compute_angular_endpoints_1plane( |
| 338 | bool only_always, |
| 339 | const block_size_descriptor& bsd, |
| 340 | const float* dec_weight_ideal_value, |
| 341 | unsigned int max_weight_quant, |
| 342 | compression_working_buffers& tmpbuf |
| 343 | ) { |
| 344 | float (&low_value)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value1; |
| 345 | float (&high_value)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value1; |
| 346 | |
| 347 | float (&low_values)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values1; |
| 348 | float (&high_values)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values1; |
| 349 | |
| 350 | unsigned int max_decimation_modes = only_always ? bsd.decimation_mode_count_always |
| 351 | : bsd.decimation_mode_count_selected; |
| 352 | promise(max_decimation_modes > 0); |
| 353 | for (unsigned int i = 0; i < max_decimation_modes; i++) |
| 354 | { |
| 355 | const decimation_mode& dm = bsd.decimation_modes[i]; |
| 356 | if (!dm.is_ref_1plane(static_cast<quant_method>(max_weight_quant))) |
| 357 | { |
| 358 | continue; |
| 359 | } |
| 360 | |
| 361 | unsigned int weight_count = bsd.get_decimation_info(i).weight_count; |
| 362 | |
| 363 | unsigned int max_precision = dm.maxprec_1plane; |
| 364 | if (max_precision > TUNE_MAX_ANGULAR_QUANT) |
| 365 | { |
| 366 | max_precision = TUNE_MAX_ANGULAR_QUANT; |
| 367 | } |
| 368 | |
| 369 | if (max_precision > max_weight_quant) |
| 370 | { |
| 371 | max_precision = max_weight_quant; |
| 372 | } |
| 373 | |
| 374 | compute_angular_endpoints_for_quant_levels( |
| 375 | weight_count, |
| 376 | dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS, |
| 377 | max_precision, low_values[i], high_values[i]); |
| 378 | } |
| 379 | |
| 380 | unsigned int max_block_modes = only_always ? bsd.block_mode_count_1plane_always |
| 381 | : bsd.block_mode_count_1plane_selected; |
| 382 | promise(max_block_modes > 0); |
| 383 | for (unsigned int i = 0; i < max_block_modes; i++) |
| 384 | { |
| 385 | const block_mode& bm = bsd.block_modes[i]; |
| 386 | assert(!bm.is_dual_plane); |
| 387 | |
| 388 | unsigned int quant_mode = bm.quant_mode; |
| 389 | unsigned int decim_mode = bm.decimation_mode; |
| 390 | |
| 391 | if (quant_mode <= TUNE_MAX_ANGULAR_QUANT) |
| 392 | { |
| 393 | low_value[i] = low_values[decim_mode][quant_mode]; |
| 394 | high_value[i] = high_values[decim_mode][quant_mode]; |
| 395 | } |
| 396 | else |
| 397 | { |
| 398 | low_value[i] = 0.0f; |
| 399 | high_value[i] = 1.0f; |
| 400 | } |
| 401 | } |
| 402 | } |
| 403 | |
| 404 | /* See header for documentation. */ |
| 405 | void compute_angular_endpoints_2planes( |
| 406 | const block_size_descriptor& bsd, |
| 407 | const float* dec_weight_ideal_value, |
| 408 | unsigned int max_weight_quant, |
| 409 | compression_working_buffers& tmpbuf |
| 410 | ) { |
| 411 | float (&low_value1)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value1; |
| 412 | float (&high_value1)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value1; |
| 413 | float (&low_value2)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value2; |
| 414 | float (&high_value2)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value2; |
| 415 | |
| 416 | float (&low_values1)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values1; |
| 417 | float (&high_values1)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values1; |
| 418 | float (&low_values2)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values2; |
| 419 | float (&high_values2)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values2; |
| 420 | |
| 421 | promise(bsd.decimation_mode_count_selected > 0); |
| 422 | for (unsigned int i = 0; i < bsd.decimation_mode_count_selected; i++) |
| 423 | { |
| 424 | const decimation_mode& dm = bsd.decimation_modes[i]; |
| 425 | if (!dm.is_ref_2plane(static_cast<quant_method>(max_weight_quant))) |
| 426 | { |
| 427 | continue; |
| 428 | } |
| 429 | |
| 430 | unsigned int weight_count = bsd.get_decimation_info(i).weight_count; |
| 431 | |
| 432 | unsigned int max_precision = dm.maxprec_2planes; |
| 433 | if (max_precision > TUNE_MAX_ANGULAR_QUANT) |
| 434 | { |
| 435 | max_precision = TUNE_MAX_ANGULAR_QUANT; |
| 436 | } |
| 437 | |
| 438 | if (max_precision > max_weight_quant) |
| 439 | { |
| 440 | max_precision = max_weight_quant; |
| 441 | } |
| 442 | |
| 443 | compute_angular_endpoints_for_quant_levels( |
| 444 | weight_count, |
| 445 | dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS, |
| 446 | max_precision, low_values1[i], high_values1[i]); |
| 447 | |
| 448 | compute_angular_endpoints_for_quant_levels( |
| 449 | weight_count, |
| 450 | dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS + WEIGHTS_PLANE2_OFFSET, |
| 451 | max_precision, low_values2[i], high_values2[i]); |
| 452 | } |
| 453 | |
| 454 | unsigned int start = bsd.block_mode_count_1plane_selected; |
| 455 | unsigned int end = bsd.block_mode_count_1plane_2plane_selected; |
| 456 | for (unsigned int i = start; i < end; i++) |
| 457 | { |
| 458 | const block_mode& bm = bsd.block_modes[i]; |
| 459 | unsigned int quant_mode = bm.quant_mode; |
| 460 | unsigned int decim_mode = bm.decimation_mode; |
| 461 | |
| 462 | if (quant_mode <= TUNE_MAX_ANGULAR_QUANT) |
| 463 | { |
| 464 | low_value1[i] = low_values1[decim_mode][quant_mode]; |
| 465 | high_value1[i] = high_values1[decim_mode][quant_mode]; |
| 466 | low_value2[i] = low_values2[decim_mode][quant_mode]; |
| 467 | high_value2[i] = high_values2[decim_mode][quant_mode]; |
| 468 | } |
| 469 | else |
| 470 | { |
| 471 | low_value1[i] = 0.0f; |
| 472 | high_value1[i] = 1.0f; |
| 473 | low_value2[i] = 0.0f; |
| 474 | high_value2[i] = 1.0f; |
| 475 | } |
| 476 | } |
| 477 | } |
| 478 | |
| 479 | #endif |
| 480 | |