1 | // basisu_gpu_texture.cpp |
2 | // Copyright (C) 2019-2021 Binomial LLC. All Rights Reserved. |
3 | // |
4 | // Licensed under the Apache License, Version 2.0 (the "License"); |
5 | // you may not use this file except in compliance with the License. |
6 | // You may obtain a copy of the License at |
7 | // |
8 | // http://www.apache.org/licenses/LICENSE-2.0 |
9 | // |
10 | // Unless required by applicable law or agreed to in writing, software |
11 | // distributed under the License is distributed on an "AS IS" BASIS, |
12 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13 | // See the License for the specific language governing permissions and |
14 | // limitations under the License. |
15 | #include "basisu_gpu_texture.h" |
16 | #include "basisu_enc.h" |
17 | #include "basisu_pvrtc1_4.h" |
18 | #if BASISU_USE_ASTC_DECOMPRESS |
19 | #include "basisu_astc_decomp.h" |
20 | #endif |
21 | #include "basisu_bc7enc.h" |
22 | |
23 | namespace basisu |
24 | { |
25 | void unpack_etc2_eac(const void *pBlock_bits, color_rgba *pPixels) |
26 | { |
27 | static_assert(sizeof(eac_a8_block) == 8, "sizeof(eac_a8_block) == 8" ); |
28 | |
29 | const eac_a8_block *pBlock = static_cast<const eac_a8_block *>(pBlock_bits); |
30 | |
31 | const int8_t *pTable = g_etc2_eac_tables[pBlock->m_table]; |
32 | |
33 | const uint64_t selector_bits = pBlock->get_selector_bits(); |
34 | |
35 | const int32_t base = pBlock->m_base; |
36 | const int32_t mul = pBlock->m_multiplier; |
37 | |
38 | pPixels[0].a = clamp255(base + pTable[pBlock->get_selector(0, 0, selector_bits)] * mul); |
39 | pPixels[1].a = clamp255(base + pTable[pBlock->get_selector(1, 0, selector_bits)] * mul); |
40 | pPixels[2].a = clamp255(base + pTable[pBlock->get_selector(2, 0, selector_bits)] * mul); |
41 | pPixels[3].a = clamp255(base + pTable[pBlock->get_selector(3, 0, selector_bits)] * mul); |
42 | |
43 | pPixels[4].a = clamp255(base + pTable[pBlock->get_selector(0, 1, selector_bits)] * mul); |
44 | pPixels[5].a = clamp255(base + pTable[pBlock->get_selector(1, 1, selector_bits)] * mul); |
45 | pPixels[6].a = clamp255(base + pTable[pBlock->get_selector(2, 1, selector_bits)] * mul); |
46 | pPixels[7].a = clamp255(base + pTable[pBlock->get_selector(3, 1, selector_bits)] * mul); |
47 | |
48 | pPixels[8].a = clamp255(base + pTable[pBlock->get_selector(0, 2, selector_bits)] * mul); |
49 | pPixels[9].a = clamp255(base + pTable[pBlock->get_selector(1, 2, selector_bits)] * mul); |
50 | pPixels[10].a = clamp255(base + pTable[pBlock->get_selector(2, 2, selector_bits)] * mul); |
51 | pPixels[11].a = clamp255(base + pTable[pBlock->get_selector(3, 2, selector_bits)] * mul); |
52 | |
53 | pPixels[12].a = clamp255(base + pTable[pBlock->get_selector(0, 3, selector_bits)] * mul); |
54 | pPixels[13].a = clamp255(base + pTable[pBlock->get_selector(1, 3, selector_bits)] * mul); |
55 | pPixels[14].a = clamp255(base + pTable[pBlock->get_selector(2, 3, selector_bits)] * mul); |
56 | pPixels[15].a = clamp255(base + pTable[pBlock->get_selector(3, 3, selector_bits)] * mul); |
57 | } |
58 | |
59 | struct bc1_block |
60 | { |
61 | enum { cTotalEndpointBytes = 2, cTotalSelectorBytes = 4 }; |
62 | |
63 | uint8_t m_low_color[cTotalEndpointBytes]; |
64 | uint8_t m_high_color[cTotalEndpointBytes]; |
65 | uint8_t m_selectors[cTotalSelectorBytes]; |
66 | |
67 | inline uint32_t get_high_color() const { return m_high_color[0] | (m_high_color[1] << 8U); } |
68 | inline uint32_t get_low_color() const { return m_low_color[0] | (m_low_color[1] << 8U); } |
69 | |
70 | static void unpack_color(uint32_t c, uint32_t &r, uint32_t &g, uint32_t &b) |
71 | { |
72 | r = (c >> 11) & 31; |
73 | g = (c >> 5) & 63; |
74 | b = c & 31; |
75 | |
76 | r = (r << 3) | (r >> 2); |
77 | g = (g << 2) | (g >> 4); |
78 | b = (b << 3) | (b >> 2); |
79 | } |
80 | |
81 | inline uint32_t get_selector(uint32_t x, uint32_t y) const { assert((x < 4U) && (y < 4U)); return (m_selectors[y] >> (x * 2)) & 3; } |
82 | }; |
83 | |
84 | // Returns true if the block uses 3 color punchthrough alpha mode. |
85 | bool unpack_bc1(const void *pBlock_bits, color_rgba *pPixels, bool set_alpha) |
86 | { |
87 | static_assert(sizeof(bc1_block) == 8, "sizeof(bc1_block) == 8" ); |
88 | |
89 | const bc1_block *pBlock = static_cast<const bc1_block *>(pBlock_bits); |
90 | |
91 | const uint32_t l = pBlock->get_low_color(); |
92 | const uint32_t h = pBlock->get_high_color(); |
93 | |
94 | color_rgba c[4]; |
95 | |
96 | uint32_t r0, g0, b0, r1, g1, b1; |
97 | bc1_block::unpack_color(l, r0, g0, b0); |
98 | bc1_block::unpack_color(h, r1, g1, b1); |
99 | |
100 | c[0].set_noclamp_rgba(r0, g0, b0, 255); |
101 | c[1].set_noclamp_rgba(r1, g1, b1, 255); |
102 | |
103 | bool used_punchthrough = false; |
104 | |
105 | if (l > h) |
106 | { |
107 | c[2].set_noclamp_rgba((r0 * 2 + r1) / 3, (g0 * 2 + g1) / 3, (b0 * 2 + b1) / 3, 255); |
108 | c[3].set_noclamp_rgba((r1 * 2 + r0) / 3, (g1 * 2 + g0) / 3, (b1 * 2 + b0) / 3, 255); |
109 | } |
110 | else |
111 | { |
112 | c[2].set_noclamp_rgba((r0 + r1) / 2, (g0 + g1) / 2, (b0 + b1) / 2, 255); |
113 | c[3].set_noclamp_rgba(0, 0, 0, 0); |
114 | used_punchthrough = true; |
115 | } |
116 | |
117 | if (set_alpha) |
118 | { |
119 | for (uint32_t y = 0; y < 4; y++, pPixels += 4) |
120 | { |
121 | pPixels[0] = c[pBlock->get_selector(0, y)]; |
122 | pPixels[1] = c[pBlock->get_selector(1, y)]; |
123 | pPixels[2] = c[pBlock->get_selector(2, y)]; |
124 | pPixels[3] = c[pBlock->get_selector(3, y)]; |
125 | } |
126 | } |
127 | else |
128 | { |
129 | for (uint32_t y = 0; y < 4; y++, pPixels += 4) |
130 | { |
131 | pPixels[0].set_rgb(c[pBlock->get_selector(0, y)]); |
132 | pPixels[1].set_rgb(c[pBlock->get_selector(1, y)]); |
133 | pPixels[2].set_rgb(c[pBlock->get_selector(2, y)]); |
134 | pPixels[3].set_rgb(c[pBlock->get_selector(3, y)]); |
135 | } |
136 | } |
137 | |
138 | return used_punchthrough; |
139 | } |
140 | |
141 | bool unpack_bc1_nv(const void *pBlock_bits, color_rgba *pPixels, bool set_alpha) |
142 | { |
143 | static_assert(sizeof(bc1_block) == 8, "sizeof(bc1_block) == 8" ); |
144 | |
145 | const bc1_block *pBlock = static_cast<const bc1_block *>(pBlock_bits); |
146 | |
147 | const uint32_t l = pBlock->get_low_color(); |
148 | const uint32_t h = pBlock->get_high_color(); |
149 | |
150 | color_rgba c[4]; |
151 | |
152 | int r0 = (l >> 11) & 31; |
153 | int g0 = (l >> 5) & 63; |
154 | int b0 = l & 31; |
155 | int r1 = (h >> 11) & 31; |
156 | int g1 = (h >> 5) & 63; |
157 | int b1 = h & 31; |
158 | |
159 | c[0].b = (uint8_t)((3 * b0 * 22) / 8); |
160 | c[0].g = (uint8_t)((g0 << 2) | (g0 >> 4)); |
161 | c[0].r = (uint8_t)((3 * r0 * 22) / 8); |
162 | c[0].a = 0xFF; |
163 | |
164 | c[1].r = (uint8_t)((3 * r1 * 22) / 8); |
165 | c[1].g = (uint8_t)((g1 << 2) | (g1 >> 4)); |
166 | c[1].b = (uint8_t)((3 * b1 * 22) / 8); |
167 | c[1].a = 0xFF; |
168 | |
169 | int gdiff = c[1].g - c[0].g; |
170 | |
171 | bool used_punchthrough = false; |
172 | |
173 | if (l > h) |
174 | { |
175 | c[2].r = (uint8_t)(((2 * r0 + r1) * 22) / 8); |
176 | c[2].g = (uint8_t)(((256 * c[0].g + gdiff/4 + 128 + gdiff * 80) / 256)); |
177 | c[2].b = (uint8_t)(((2 * b0 + b1) * 22) / 8); |
178 | c[2].a = 0xFF; |
179 | |
180 | c[3].r = (uint8_t)(((2 * r1 + r0) * 22) / 8); |
181 | c[3].g = (uint8_t)((256 * c[1].g - gdiff/4 + 128 - gdiff * 80) / 256); |
182 | c[3].b = (uint8_t)(((2 * b1 + b0) * 22) / 8); |
183 | c[3].a = 0xFF; |
184 | } |
185 | else |
186 | { |
187 | c[2].r = (uint8_t)(((r0 + r1) * 33) / 8); |
188 | c[2].g = (uint8_t)((256 * c[0].g + gdiff/4 + 128 + gdiff * 128) / 256); |
189 | c[2].b = (uint8_t)(((b0 + b1) * 33) / 8); |
190 | c[2].a = 0xFF; |
191 | |
192 | c[3].set_noclamp_rgba(0, 0, 0, 0); |
193 | used_punchthrough = true; |
194 | } |
195 | |
196 | if (set_alpha) |
197 | { |
198 | for (uint32_t y = 0; y < 4; y++, pPixels += 4) |
199 | { |
200 | pPixels[0] = c[pBlock->get_selector(0, y)]; |
201 | pPixels[1] = c[pBlock->get_selector(1, y)]; |
202 | pPixels[2] = c[pBlock->get_selector(2, y)]; |
203 | pPixels[3] = c[pBlock->get_selector(3, y)]; |
204 | } |
205 | } |
206 | else |
207 | { |
208 | for (uint32_t y = 0; y < 4; y++, pPixels += 4) |
209 | { |
210 | pPixels[0].set_rgb(c[pBlock->get_selector(0, y)]); |
211 | pPixels[1].set_rgb(c[pBlock->get_selector(1, y)]); |
212 | pPixels[2].set_rgb(c[pBlock->get_selector(2, y)]); |
213 | pPixels[3].set_rgb(c[pBlock->get_selector(3, y)]); |
214 | } |
215 | } |
216 | |
217 | return used_punchthrough; |
218 | } |
219 | |
220 | static inline int interp_5_6_amd(int c0, int c1) { assert(c0 < 256 && c1 < 256); return (c0 * 43 + c1 * 21 + 32) >> 6; } |
221 | static inline int interp_half_5_6_amd(int c0, int c1) { assert(c0 < 256 && c1 < 256); return (c0 + c1 + 1) >> 1; } |
222 | |
223 | bool unpack_bc1_amd(const void *pBlock_bits, color_rgba *pPixels, bool set_alpha) |
224 | { |
225 | const bc1_block *pBlock = static_cast<const bc1_block *>(pBlock_bits); |
226 | |
227 | const uint32_t l = pBlock->get_low_color(); |
228 | const uint32_t h = pBlock->get_high_color(); |
229 | |
230 | color_rgba c[4]; |
231 | |
232 | uint32_t r0, g0, b0, r1, g1, b1; |
233 | bc1_block::unpack_color(l, r0, g0, b0); |
234 | bc1_block::unpack_color(h, r1, g1, b1); |
235 | |
236 | c[0].set_noclamp_rgba(r0, g0, b0, 255); |
237 | c[1].set_noclamp_rgba(r1, g1, b1, 255); |
238 | |
239 | bool used_punchthrough = false; |
240 | |
241 | if (l > h) |
242 | { |
243 | c[2].set_noclamp_rgba(interp_5_6_amd(r0, r1), interp_5_6_amd(g0, g1), interp_5_6_amd(b0, b1), 255); |
244 | c[3].set_noclamp_rgba(interp_5_6_amd(r1, r0), interp_5_6_amd(g1, g0), interp_5_6_amd(b1, b0), 255); |
245 | } |
246 | else |
247 | { |
248 | c[2].set_noclamp_rgba(interp_half_5_6_amd(r0, r1), interp_half_5_6_amd(g0, g1), interp_half_5_6_amd(b0, b1), 255); |
249 | c[3].set_noclamp_rgba(0, 0, 0, 0); |
250 | used_punchthrough = true; |
251 | } |
252 | |
253 | if (set_alpha) |
254 | { |
255 | for (uint32_t y = 0; y < 4; y++, pPixels += 4) |
256 | { |
257 | pPixels[0] = c[pBlock->get_selector(0, y)]; |
258 | pPixels[1] = c[pBlock->get_selector(1, y)]; |
259 | pPixels[2] = c[pBlock->get_selector(2, y)]; |
260 | pPixels[3] = c[pBlock->get_selector(3, y)]; |
261 | } |
262 | } |
263 | else |
264 | { |
265 | for (uint32_t y = 0; y < 4; y++, pPixels += 4) |
266 | { |
267 | pPixels[0].set_rgb(c[pBlock->get_selector(0, y)]); |
268 | pPixels[1].set_rgb(c[pBlock->get_selector(1, y)]); |
269 | pPixels[2].set_rgb(c[pBlock->get_selector(2, y)]); |
270 | pPixels[3].set_rgb(c[pBlock->get_selector(3, y)]); |
271 | } |
272 | } |
273 | |
274 | return used_punchthrough; |
275 | } |
276 | |
277 | struct bc4_block |
278 | { |
279 | enum { cBC4SelectorBits = 3, cTotalSelectorBytes = 6, cMaxSelectorValues = 8 }; |
280 | uint8_t m_endpoints[2]; |
281 | |
282 | uint8_t m_selectors[cTotalSelectorBytes]; |
283 | |
284 | inline uint32_t get_low_alpha() const { return m_endpoints[0]; } |
285 | inline uint32_t get_high_alpha() const { return m_endpoints[1]; } |
286 | inline bool is_alpha6_block() const { return get_low_alpha() <= get_high_alpha(); } |
287 | |
288 | inline uint64_t get_selector_bits() const |
289 | { |
290 | return ((uint64_t)((uint32_t)m_selectors[0] | ((uint32_t)m_selectors[1] << 8U) | ((uint32_t)m_selectors[2] << 16U) | ((uint32_t)m_selectors[3] << 24U))) | |
291 | (((uint64_t)m_selectors[4]) << 32U) | |
292 | (((uint64_t)m_selectors[5]) << 40U); |
293 | } |
294 | |
295 | inline uint32_t get_selector(uint32_t x, uint32_t y, uint64_t selector_bits) const |
296 | { |
297 | assert((x < 4U) && (y < 4U)); |
298 | return (selector_bits >> (((y * 4) + x) * cBC4SelectorBits)) & (cMaxSelectorValues - 1); |
299 | } |
300 | |
301 | static inline uint32_t get_block_values6(uint8_t *pDst, uint32_t l, uint32_t h) |
302 | { |
303 | pDst[0] = static_cast<uint8_t>(l); |
304 | pDst[1] = static_cast<uint8_t>(h); |
305 | pDst[2] = static_cast<uint8_t>((l * 4 + h) / 5); |
306 | pDst[3] = static_cast<uint8_t>((l * 3 + h * 2) / 5); |
307 | pDst[4] = static_cast<uint8_t>((l * 2 + h * 3) / 5); |
308 | pDst[5] = static_cast<uint8_t>((l + h * 4) / 5); |
309 | pDst[6] = 0; |
310 | pDst[7] = 255; |
311 | return 6; |
312 | } |
313 | |
314 | static inline uint32_t get_block_values8(uint8_t *pDst, uint32_t l, uint32_t h) |
315 | { |
316 | pDst[0] = static_cast<uint8_t>(l); |
317 | pDst[1] = static_cast<uint8_t>(h); |
318 | pDst[2] = static_cast<uint8_t>((l * 6 + h) / 7); |
319 | pDst[3] = static_cast<uint8_t>((l * 5 + h * 2) / 7); |
320 | pDst[4] = static_cast<uint8_t>((l * 4 + h * 3) / 7); |
321 | pDst[5] = static_cast<uint8_t>((l * 3 + h * 4) / 7); |
322 | pDst[6] = static_cast<uint8_t>((l * 2 + h * 5) / 7); |
323 | pDst[7] = static_cast<uint8_t>((l + h * 6) / 7); |
324 | return 8; |
325 | } |
326 | |
327 | static inline uint32_t get_block_values(uint8_t *pDst, uint32_t l, uint32_t h) |
328 | { |
329 | if (l > h) |
330 | return get_block_values8(pDst, l, h); |
331 | else |
332 | return get_block_values6(pDst, l, h); |
333 | } |
334 | }; |
335 | |
336 | void unpack_bc4(const void *pBlock_bits, uint8_t *pPixels, uint32_t stride) |
337 | { |
338 | static_assert(sizeof(bc4_block) == 8, "sizeof(bc4_block) == 8" ); |
339 | |
340 | const bc4_block *pBlock = static_cast<const bc4_block *>(pBlock_bits); |
341 | |
342 | uint8_t sel_values[8]; |
343 | bc4_block::get_block_values(sel_values, pBlock->get_low_alpha(), pBlock->get_high_alpha()); |
344 | |
345 | const uint64_t selector_bits = pBlock->get_selector_bits(); |
346 | |
347 | for (uint32_t y = 0; y < 4; y++, pPixels += (stride * 4U)) |
348 | { |
349 | pPixels[0] = sel_values[pBlock->get_selector(0, y, selector_bits)]; |
350 | pPixels[stride * 1] = sel_values[pBlock->get_selector(1, y, selector_bits)]; |
351 | pPixels[stride * 2] = sel_values[pBlock->get_selector(2, y, selector_bits)]; |
352 | pPixels[stride * 3] = sel_values[pBlock->get_selector(3, y, selector_bits)]; |
353 | } |
354 | } |
355 | |
356 | // Returns false if the block uses 3-color punchthrough alpha mode, which isn't supported on some GPU's for BC3. |
357 | bool unpack_bc3(const void *pBlock_bits, color_rgba *pPixels) |
358 | { |
359 | bool success = true; |
360 | |
361 | if (unpack_bc1((const uint8_t *)pBlock_bits + sizeof(bc4_block), pPixels, true)) |
362 | success = false; |
363 | |
364 | unpack_bc4(pBlock_bits, &pPixels[0].a, sizeof(color_rgba)); |
365 | |
366 | return success; |
367 | } |
368 | |
369 | // writes RG |
370 | void unpack_bc5(const void *pBlock_bits, color_rgba *pPixels) |
371 | { |
372 | unpack_bc4(pBlock_bits, &pPixels[0].r, sizeof(color_rgba)); |
373 | unpack_bc4((const uint8_t *)pBlock_bits + sizeof(bc4_block), &pPixels[0].g, sizeof(color_rgba)); |
374 | } |
375 | |
376 | // ATC isn't officially documented, so I'm assuming these references: |
377 | // http://www.guildsoftware.com/papers/2012.Converting.DXTC.to.ATC.pdf |
378 | // https://github.com/Triang3l/S3TConv/blob/master/s3tconv_atitc.c |
379 | // The paper incorrectly says the ATC lerp factors are 1/3 and 2/3, but they are actually 3/8 and 5/8. |
380 | void unpack_atc(const void* pBlock_bits, color_rgba* pPixels) |
381 | { |
382 | const uint8_t* pBytes = static_cast<const uint8_t*>(pBlock_bits); |
383 | |
384 | const uint16_t color0 = pBytes[0] | (pBytes[1] << 8U); |
385 | const uint16_t color1 = pBytes[2] | (pBytes[3] << 8U); |
386 | uint32_t sels = pBytes[4] | (pBytes[5] << 8U) | (pBytes[6] << 16U) | (pBytes[7] << 24U); |
387 | |
388 | const bool mode = (color0 & 0x8000) != 0; |
389 | |
390 | color_rgba c[4]; |
391 | |
392 | c[0].set((color0 >> 10) & 31, (color0 >> 5) & 31, color0 & 31, 255); |
393 | c[0].r = (c[0].r << 3) | (c[0].r >> 2); |
394 | c[0].g = (c[0].g << 3) | (c[0].g >> 2); |
395 | c[0].b = (c[0].b << 3) | (c[0].b >> 2); |
396 | |
397 | c[3].set((color1 >> 11) & 31, (color1 >> 5) & 63, color1 & 31, 255); |
398 | c[3].r = (c[3].r << 3) | (c[3].r >> 2); |
399 | c[3].g = (c[3].g << 2) | (c[3].g >> 4); |
400 | c[3].b = (c[3].b << 3) | (c[3].b >> 2); |
401 | |
402 | if (mode) |
403 | { |
404 | c[1].set(basisu::maximum(0, c[0].r - (c[3].r >> 2)), basisu::maximum(0, c[0].g - (c[3].g >> 2)), basisu::maximum(0, c[0].b - (c[3].b >> 2)), 255); |
405 | c[2] = c[0]; |
406 | c[0].set(0, 0, 0, 255); |
407 | } |
408 | else |
409 | { |
410 | c[1].r = (c[0].r * 5 + c[3].r * 3) >> 3; |
411 | c[1].g = (c[0].g * 5 + c[3].g * 3) >> 3; |
412 | c[1].b = (c[0].b * 5 + c[3].b * 3) >> 3; |
413 | |
414 | c[2].r = (c[0].r * 3 + c[3].r * 5) >> 3; |
415 | c[2].g = (c[0].g * 3 + c[3].g * 5) >> 3; |
416 | c[2].b = (c[0].b * 3 + c[3].b * 5) >> 3; |
417 | } |
418 | |
419 | for (uint32_t i = 0; i < 16; i++) |
420 | { |
421 | const uint32_t s = sels & 3; |
422 | |
423 | pPixels[i] = c[s]; |
424 | |
425 | sels >>= 2; |
426 | } |
427 | } |
428 | |
429 | // BC7 mode 0-7 decompression. |
430 | // Instead of one monster routine to unpack all the BC7 modes, we're lumping the 3 subset, 2 subset, 1 subset, and dual plane modes together into simple shared routines. |
431 | |
432 | static inline uint32_t bc7_dequant(uint32_t val, uint32_t pbit, uint32_t val_bits) { assert(val < (1U << val_bits)); assert(pbit < 2); assert(val_bits >= 4 && val_bits <= 8); const uint32_t total_bits = val_bits + 1; val = (val << 1) | pbit; val <<= (8 - total_bits); val |= (val >> total_bits); assert(val <= 255); return val; } |
433 | static inline uint32_t bc7_dequant(uint32_t val, uint32_t val_bits) { assert(val < (1U << val_bits)); assert(val_bits >= 4 && val_bits <= 8); val <<= (8 - val_bits); val |= (val >> val_bits); assert(val <= 255); return val; } |
434 | |
435 | static inline uint32_t bc7_interp2(uint32_t l, uint32_t h, uint32_t w) { assert(w < 4); return (l * (64 - basist::g_bc7_weights2[w]) + h * basist::g_bc7_weights2[w] + 32) >> 6; } |
436 | static inline uint32_t bc7_interp3(uint32_t l, uint32_t h, uint32_t w) { assert(w < 8); return (l * (64 - basist::g_bc7_weights3[w]) + h * basist::g_bc7_weights3[w] + 32) >> 6; } |
437 | static inline uint32_t bc7_interp4(uint32_t l, uint32_t h, uint32_t w) { assert(w < 16); return (l * (64 - basist::g_bc7_weights4[w]) + h * basist::g_bc7_weights4[w] + 32) >> 6; } |
438 | static inline uint32_t bc7_interp(uint32_t l, uint32_t h, uint32_t w, uint32_t bits) |
439 | { |
440 | assert(l <= 255 && h <= 255); |
441 | switch (bits) |
442 | { |
443 | case 2: return bc7_interp2(l, h, w); |
444 | case 3: return bc7_interp3(l, h, w); |
445 | case 4: return bc7_interp4(l, h, w); |
446 | default: |
447 | break; |
448 | } |
449 | return 0; |
450 | } |
451 | |
452 | bool unpack_bc7_mode0_2(uint32_t mode, const void* pBlock_bits, color_rgba* pPixels) |
453 | { |
454 | //const uint32_t SUBSETS = 3; |
455 | const uint32_t ENDPOINTS = 6; |
456 | const uint32_t COMPS = 3; |
457 | const uint32_t WEIGHT_BITS = (mode == 0) ? 3 : 2; |
458 | const uint32_t ENDPOINT_BITS = (mode == 0) ? 4 : 5; |
459 | const uint32_t PBITS = (mode == 0) ? 6 : 0; |
460 | const uint32_t WEIGHT_VALS = 1 << WEIGHT_BITS; |
461 | |
462 | uint32_t bit_offset = 0; |
463 | const uint8_t* pBuf = static_cast<const uint8_t*>(pBlock_bits); |
464 | |
465 | if (read_bits32(pBuf, bit_offset, mode + 1) != (1U << mode)) return false; |
466 | |
467 | const uint32_t part = read_bits32(pBuf, bit_offset, (mode == 0) ? 4 : 6); |
468 | |
469 | color_rgba endpoints[ENDPOINTS]; |
470 | for (uint32_t c = 0; c < COMPS; c++) |
471 | for (uint32_t e = 0; e < ENDPOINTS; e++) |
472 | endpoints[e][c] = (uint8_t)read_bits32(pBuf, bit_offset, ENDPOINT_BITS); |
473 | |
474 | uint32_t pbits[6]; |
475 | for (uint32_t p = 0; p < PBITS; p++) |
476 | pbits[p] = read_bits32(pBuf, bit_offset, 1); |
477 | |
478 | uint32_t weights[16]; |
479 | for (uint32_t i = 0; i < 16; i++) |
480 | weights[i] = read_bits32(pBuf, bit_offset, ((!i) || (i == basist::g_bc7_table_anchor_index_third_subset_1[part]) || (i == basist::g_bc7_table_anchor_index_third_subset_2[part])) ? (WEIGHT_BITS - 1) : WEIGHT_BITS); |
481 | |
482 | assert(bit_offset == 128); |
483 | |
484 | for (uint32_t e = 0; e < ENDPOINTS; e++) |
485 | for (uint32_t c = 0; c < 4; c++) |
486 | endpoints[e][c] = (uint8_t)((c == 3) ? 255 : (PBITS ? bc7_dequant(endpoints[e][c], pbits[e], ENDPOINT_BITS) : bc7_dequant(endpoints[e][c], ENDPOINT_BITS))); |
487 | |
488 | color_rgba block_colors[3][8]; |
489 | for (uint32_t s = 0; s < 3; s++) |
490 | for (uint32_t i = 0; i < WEIGHT_VALS; i++) |
491 | { |
492 | for (uint32_t c = 0; c < 3; c++) |
493 | block_colors[s][i][c] = (uint8_t)bc7_interp(endpoints[s * 2 + 0][c], endpoints[s * 2 + 1][c], i, WEIGHT_BITS); |
494 | block_colors[s][i][3] = 255; |
495 | } |
496 | |
497 | for (uint32_t i = 0; i < 16; i++) |
498 | pPixels[i] = block_colors[basist::g_bc7_partition3[part * 16 + i]][weights[i]]; |
499 | |
500 | return true; |
501 | } |
502 | |
503 | bool unpack_bc7_mode1_3_7(uint32_t mode, const void* pBlock_bits, color_rgba* pPixels) |
504 | { |
505 | //const uint32_t SUBSETS = 2; |
506 | const uint32_t ENDPOINTS = 4; |
507 | const uint32_t COMPS = (mode == 7) ? 4 : 3; |
508 | const uint32_t WEIGHT_BITS = (mode == 1) ? 3 : 2; |
509 | const uint32_t ENDPOINT_BITS = (mode == 7) ? 5 : ((mode == 1) ? 6 : 7); |
510 | const uint32_t PBITS = (mode == 1) ? 2 : 4; |
511 | const uint32_t SHARED_PBITS = (mode == 1) ? true : false; |
512 | const uint32_t WEIGHT_VALS = 1 << WEIGHT_BITS; |
513 | |
514 | uint32_t bit_offset = 0; |
515 | const uint8_t* pBuf = static_cast<const uint8_t*>(pBlock_bits); |
516 | |
517 | if (read_bits32(pBuf, bit_offset, mode + 1) != (1U << mode)) return false; |
518 | |
519 | const uint32_t part = read_bits32(pBuf, bit_offset, 6); |
520 | |
521 | color_rgba endpoints[ENDPOINTS]; |
522 | for (uint32_t c = 0; c < COMPS; c++) |
523 | for (uint32_t e = 0; e < ENDPOINTS; e++) |
524 | endpoints[e][c] = (uint8_t)read_bits32(pBuf, bit_offset, ENDPOINT_BITS); |
525 | |
526 | uint32_t pbits[4]; |
527 | for (uint32_t p = 0; p < PBITS; p++) |
528 | pbits[p] = read_bits32(pBuf, bit_offset, 1); |
529 | |
530 | uint32_t weights[16]; |
531 | for (uint32_t i = 0; i < 16; i++) |
532 | weights[i] = read_bits32(pBuf, bit_offset, ((!i) || (i == basist::g_bc7_table_anchor_index_second_subset[part])) ? (WEIGHT_BITS - 1) : WEIGHT_BITS); |
533 | |
534 | assert(bit_offset == 128); |
535 | |
536 | for (uint32_t e = 0; e < ENDPOINTS; e++) |
537 | for (uint32_t c = 0; c < 4; c++) |
538 | endpoints[e][c] = (uint8_t)((c == ((mode == 7U) ? 4U : 3U)) ? 255 : bc7_dequant(endpoints[e][c], pbits[SHARED_PBITS ? (e >> 1) : e], ENDPOINT_BITS)); |
539 | |
540 | color_rgba block_colors[2][8]; |
541 | for (uint32_t s = 0; s < 2; s++) |
542 | for (uint32_t i = 0; i < WEIGHT_VALS; i++) |
543 | { |
544 | for (uint32_t c = 0; c < COMPS; c++) |
545 | block_colors[s][i][c] = (uint8_t)bc7_interp(endpoints[s * 2 + 0][c], endpoints[s * 2 + 1][c], i, WEIGHT_BITS); |
546 | block_colors[s][i][3] = (COMPS == 3) ? 255 : block_colors[s][i][3]; |
547 | } |
548 | |
549 | for (uint32_t i = 0; i < 16; i++) |
550 | pPixels[i] = block_colors[basist::g_bc7_partition2[part * 16 + i]][weights[i]]; |
551 | |
552 | return true; |
553 | } |
554 | |
555 | bool unpack_bc7_mode4_5(uint32_t mode, const void* pBlock_bits, color_rgba* pPixels) |
556 | { |
557 | const uint32_t ENDPOINTS = 2; |
558 | const uint32_t COMPS = 4; |
559 | const uint32_t WEIGHT_BITS = 2; |
560 | const uint32_t A_WEIGHT_BITS = (mode == 4) ? 3 : 2; |
561 | const uint32_t ENDPOINT_BITS = (mode == 4) ? 5 : 7; |
562 | const uint32_t A_ENDPOINT_BITS = (mode == 4) ? 6 : 8; |
563 | //const uint32_t WEIGHT_VALS = 1 << WEIGHT_BITS; |
564 | //const uint32_t A_WEIGHT_VALS = 1 << A_WEIGHT_BITS; |
565 | |
566 | uint32_t bit_offset = 0; |
567 | const uint8_t* pBuf = static_cast<const uint8_t*>(pBlock_bits); |
568 | |
569 | if (read_bits32(pBuf, bit_offset, mode + 1) != (1U << mode)) return false; |
570 | |
571 | const uint32_t comp_rot = read_bits32(pBuf, bit_offset, 2); |
572 | const uint32_t index_mode = (mode == 4) ? read_bits32(pBuf, bit_offset, 1) : 0; |
573 | |
574 | color_rgba endpoints[ENDPOINTS]; |
575 | for (uint32_t c = 0; c < COMPS; c++) |
576 | for (uint32_t e = 0; e < ENDPOINTS; e++) |
577 | endpoints[e][c] = (uint8_t)read_bits32(pBuf, bit_offset, (c == 3) ? A_ENDPOINT_BITS : ENDPOINT_BITS); |
578 | |
579 | const uint32_t weight_bits[2] = { index_mode ? A_WEIGHT_BITS : WEIGHT_BITS, index_mode ? WEIGHT_BITS : A_WEIGHT_BITS }; |
580 | |
581 | uint32_t weights[16], a_weights[16]; |
582 | |
583 | for (uint32_t i = 0; i < 16; i++) |
584 | (index_mode ? a_weights : weights)[i] = read_bits32(pBuf, bit_offset, weight_bits[index_mode] - ((!i) ? 1 : 0)); |
585 | |
586 | for (uint32_t i = 0; i < 16; i++) |
587 | (index_mode ? weights : a_weights)[i] = read_bits32(pBuf, bit_offset, weight_bits[1 - index_mode] - ((!i) ? 1 : 0)); |
588 | |
589 | assert(bit_offset == 128); |
590 | |
591 | for (uint32_t e = 0; e < ENDPOINTS; e++) |
592 | for (uint32_t c = 0; c < 4; c++) |
593 | endpoints[e][c] = (uint8_t)bc7_dequant(endpoints[e][c], (c == 3) ? A_ENDPOINT_BITS : ENDPOINT_BITS); |
594 | |
595 | color_rgba block_colors[8]; |
596 | for (uint32_t i = 0; i < (1U << weight_bits[0]); i++) |
597 | for (uint32_t c = 0; c < 3; c++) |
598 | block_colors[i][c] = (uint8_t)bc7_interp(endpoints[0][c], endpoints[1][c], i, weight_bits[0]); |
599 | |
600 | for (uint32_t i = 0; i < (1U << weight_bits[1]); i++) |
601 | block_colors[i][3] = (uint8_t)bc7_interp(endpoints[0][3], endpoints[1][3], i, weight_bits[1]); |
602 | |
603 | for (uint32_t i = 0; i < 16; i++) |
604 | { |
605 | pPixels[i] = block_colors[weights[i]]; |
606 | pPixels[i].a = block_colors[a_weights[i]].a; |
607 | if (comp_rot >= 1) |
608 | std::swap(pPixels[i].a, pPixels[i].m_comps[comp_rot - 1]); |
609 | } |
610 | |
611 | return true; |
612 | } |
613 | |
614 | struct bc7_mode_6 |
615 | { |
616 | struct |
617 | { |
618 | uint64_t m_mode : 7; |
619 | uint64_t m_r0 : 7; |
620 | uint64_t m_r1 : 7; |
621 | uint64_t m_g0 : 7; |
622 | uint64_t m_g1 : 7; |
623 | uint64_t m_b0 : 7; |
624 | uint64_t m_b1 : 7; |
625 | uint64_t m_a0 : 7; |
626 | uint64_t m_a1 : 7; |
627 | uint64_t m_p0 : 1; |
628 | } m_lo; |
629 | |
630 | union |
631 | { |
632 | struct |
633 | { |
634 | uint64_t m_p1 : 1; |
635 | uint64_t m_s00 : 3; |
636 | uint64_t m_s10 : 4; |
637 | uint64_t m_s20 : 4; |
638 | uint64_t m_s30 : 4; |
639 | |
640 | uint64_t m_s01 : 4; |
641 | uint64_t m_s11 : 4; |
642 | uint64_t m_s21 : 4; |
643 | uint64_t m_s31 : 4; |
644 | |
645 | uint64_t m_s02 : 4; |
646 | uint64_t m_s12 : 4; |
647 | uint64_t m_s22 : 4; |
648 | uint64_t m_s32 : 4; |
649 | |
650 | uint64_t m_s03 : 4; |
651 | uint64_t m_s13 : 4; |
652 | uint64_t m_s23 : 4; |
653 | uint64_t m_s33 : 4; |
654 | |
655 | } m_hi; |
656 | |
657 | uint64_t m_hi_bits; |
658 | }; |
659 | }; |
660 | |
661 | bool unpack_bc7_mode6(const void *pBlock_bits, color_rgba *pPixels) |
662 | { |
663 | static_assert(sizeof(bc7_mode_6) == 16, "sizeof(bc7_mode_6) == 16" ); |
664 | |
665 | const bc7_mode_6 &block = *static_cast<const bc7_mode_6 *>(pBlock_bits); |
666 | |
667 | if (block.m_lo.m_mode != (1 << 6)) |
668 | return false; |
669 | |
670 | const uint32_t r0 = (uint32_t)((block.m_lo.m_r0 << 1) | block.m_lo.m_p0); |
671 | const uint32_t g0 = (uint32_t)((block.m_lo.m_g0 << 1) | block.m_lo.m_p0); |
672 | const uint32_t b0 = (uint32_t)((block.m_lo.m_b0 << 1) | block.m_lo.m_p0); |
673 | const uint32_t a0 = (uint32_t)((block.m_lo.m_a0 << 1) | block.m_lo.m_p0); |
674 | const uint32_t r1 = (uint32_t)((block.m_lo.m_r1 << 1) | block.m_hi.m_p1); |
675 | const uint32_t g1 = (uint32_t)((block.m_lo.m_g1 << 1) | block.m_hi.m_p1); |
676 | const uint32_t b1 = (uint32_t)((block.m_lo.m_b1 << 1) | block.m_hi.m_p1); |
677 | const uint32_t a1 = (uint32_t)((block.m_lo.m_a1 << 1) | block.m_hi.m_p1); |
678 | |
679 | color_rgba vals[16]; |
680 | for (uint32_t i = 0; i < 16; i++) |
681 | { |
682 | const uint32_t w = basist::g_bc7_weights4[i]; |
683 | const uint32_t iw = 64 - w; |
684 | vals[i].set_noclamp_rgba( |
685 | (r0 * iw + r1 * w + 32) >> 6, |
686 | (g0 * iw + g1 * w + 32) >> 6, |
687 | (b0 * iw + b1 * w + 32) >> 6, |
688 | (a0 * iw + a1 * w + 32) >> 6); |
689 | } |
690 | |
691 | pPixels[0] = vals[block.m_hi.m_s00]; |
692 | pPixels[1] = vals[block.m_hi.m_s10]; |
693 | pPixels[2] = vals[block.m_hi.m_s20]; |
694 | pPixels[3] = vals[block.m_hi.m_s30]; |
695 | |
696 | pPixels[4] = vals[block.m_hi.m_s01]; |
697 | pPixels[5] = vals[block.m_hi.m_s11]; |
698 | pPixels[6] = vals[block.m_hi.m_s21]; |
699 | pPixels[7] = vals[block.m_hi.m_s31]; |
700 | |
701 | pPixels[8] = vals[block.m_hi.m_s02]; |
702 | pPixels[9] = vals[block.m_hi.m_s12]; |
703 | pPixels[10] = vals[block.m_hi.m_s22]; |
704 | pPixels[11] = vals[block.m_hi.m_s32]; |
705 | |
706 | pPixels[12] = vals[block.m_hi.m_s03]; |
707 | pPixels[13] = vals[block.m_hi.m_s13]; |
708 | pPixels[14] = vals[block.m_hi.m_s23]; |
709 | pPixels[15] = vals[block.m_hi.m_s33]; |
710 | |
711 | return true; |
712 | } |
713 | |
714 | bool unpack_bc7(const void *pBlock, color_rgba *pPixels) |
715 | { |
716 | const uint32_t first_byte = static_cast<const uint8_t*>(pBlock)[0]; |
717 | |
718 | for (uint32_t mode = 0; mode <= 7; mode++) |
719 | { |
720 | if (first_byte & (1U << mode)) |
721 | { |
722 | switch (mode) |
723 | { |
724 | case 0: |
725 | case 2: |
726 | return unpack_bc7_mode0_2(mode, pBlock, pPixels); |
727 | case 1: |
728 | case 3: |
729 | case 7: |
730 | return unpack_bc7_mode1_3_7(mode, pBlock, pPixels); |
731 | case 4: |
732 | case 5: |
733 | return unpack_bc7_mode4_5(mode, pBlock, pPixels); |
734 | case 6: |
735 | return unpack_bc7_mode6(pBlock, pPixels); |
736 | default: |
737 | break; |
738 | } |
739 | } |
740 | } |
741 | |
742 | return false; |
743 | } |
744 | |
745 | struct fxt1_block |
746 | { |
747 | union |
748 | { |
749 | struct |
750 | { |
751 | uint64_t m_t00 : 2; |
752 | uint64_t m_t01 : 2; |
753 | uint64_t m_t02 : 2; |
754 | uint64_t m_t03 : 2; |
755 | uint64_t m_t04 : 2; |
756 | uint64_t m_t05 : 2; |
757 | uint64_t m_t06 : 2; |
758 | uint64_t m_t07 : 2; |
759 | uint64_t m_t08 : 2; |
760 | uint64_t m_t09 : 2; |
761 | uint64_t m_t10 : 2; |
762 | uint64_t m_t11 : 2; |
763 | uint64_t m_t12 : 2; |
764 | uint64_t m_t13 : 2; |
765 | uint64_t m_t14 : 2; |
766 | uint64_t m_t15 : 2; |
767 | uint64_t m_t16 : 2; |
768 | uint64_t m_t17 : 2; |
769 | uint64_t m_t18 : 2; |
770 | uint64_t m_t19 : 2; |
771 | uint64_t m_t20 : 2; |
772 | uint64_t m_t21 : 2; |
773 | uint64_t m_t22 : 2; |
774 | uint64_t m_t23 : 2; |
775 | uint64_t m_t24 : 2; |
776 | uint64_t m_t25 : 2; |
777 | uint64_t m_t26 : 2; |
778 | uint64_t m_t27 : 2; |
779 | uint64_t m_t28 : 2; |
780 | uint64_t m_t29 : 2; |
781 | uint64_t m_t30 : 2; |
782 | uint64_t m_t31 : 2; |
783 | } m_lo; |
784 | uint64_t m_lo_bits; |
785 | uint8_t m_sels[8]; |
786 | }; |
787 | |
788 | union |
789 | { |
790 | struct |
791 | { |
792 | #ifdef BASISU_USE_ORIGINAL_3DFX_FXT1_ENCODING |
793 | // This is the format that 3DFX's DECOMP.EXE tool expects, which I'm assuming is what the actual 3DFX hardware wanted. |
794 | // Unfortunately, color0/color1 and color2/color3 are flipped relative to the official OpenGL extension and Intel's documentation! |
795 | uint64_t m_b1 : 5; |
796 | uint64_t m_g1 : 5; |
797 | uint64_t m_r1 : 5; |
798 | uint64_t m_b0 : 5; |
799 | uint64_t m_g0 : 5; |
800 | uint64_t m_r0 : 5; |
801 | uint64_t m_b3 : 5; |
802 | uint64_t m_g3 : 5; |
803 | uint64_t m_r3 : 5; |
804 | uint64_t m_b2 : 5; |
805 | uint64_t m_g2 : 5; |
806 | uint64_t m_r2 : 5; |
807 | #else |
808 | // Intel's encoding, and the encoding in the OpenGL FXT1 spec. |
809 | uint64_t m_b0 : 5; |
810 | uint64_t m_g0 : 5; |
811 | uint64_t m_r0 : 5; |
812 | uint64_t m_b1 : 5; |
813 | uint64_t m_g1 : 5; |
814 | uint64_t m_r1 : 5; |
815 | uint64_t m_b2 : 5; |
816 | uint64_t m_g2 : 5; |
817 | uint64_t m_r2 : 5; |
818 | uint64_t m_b3 : 5; |
819 | uint64_t m_g3 : 5; |
820 | uint64_t m_r3 : 5; |
821 | #endif |
822 | uint64_t m_alpha : 1; |
823 | uint64_t m_glsb : 2; |
824 | uint64_t m_mode : 1; |
825 | } m_hi; |
826 | |
827 | uint64_t m_hi_bits; |
828 | }; |
829 | }; |
830 | |
831 | static color_rgba expand_565(const color_rgba& c) |
832 | { |
833 | return color_rgba((c.r << 3) | (c.r >> 2), (c.g << 2) | (c.g >> 4), (c.b << 3) | (c.b >> 2), 255); |
834 | } |
835 | |
836 | // We only support CC_MIXED non-alpha blocks here because that's the only mode the transcoder uses at the moment. |
837 | bool unpack_fxt1(const void *p, color_rgba *pPixels) |
838 | { |
839 | const fxt1_block* pBlock = static_cast<const fxt1_block*>(p); |
840 | |
841 | if (pBlock->m_hi.m_mode == 0) |
842 | return false; |
843 | if (pBlock->m_hi.m_alpha == 1) |
844 | return false; |
845 | |
846 | color_rgba colors[4]; |
847 | |
848 | colors[0].r = pBlock->m_hi.m_r0; |
849 | colors[0].g = (uint8_t)((pBlock->m_hi.m_g0 << 1) | ((pBlock->m_lo.m_t00 >> 1) ^ (pBlock->m_hi.m_glsb & 1))); |
850 | colors[0].b = pBlock->m_hi.m_b0; |
851 | colors[0].a = 255; |
852 | |
853 | colors[1].r = pBlock->m_hi.m_r1; |
854 | colors[1].g = (uint8_t)((pBlock->m_hi.m_g1 << 1) | (pBlock->m_hi.m_glsb & 1)); |
855 | colors[1].b = pBlock->m_hi.m_b1; |
856 | colors[1].a = 255; |
857 | |
858 | colors[2].r = pBlock->m_hi.m_r2; |
859 | colors[2].g = (uint8_t)((pBlock->m_hi.m_g2 << 1) | ((pBlock->m_lo.m_t16 >> 1) ^ (pBlock->m_hi.m_glsb >> 1))); |
860 | colors[2].b = pBlock->m_hi.m_b2; |
861 | colors[2].a = 255; |
862 | |
863 | colors[3].r = pBlock->m_hi.m_r3; |
864 | colors[3].g = (uint8_t)((pBlock->m_hi.m_g3 << 1) | (pBlock->m_hi.m_glsb >> 1)); |
865 | colors[3].b = pBlock->m_hi.m_b3; |
866 | colors[3].a = 255; |
867 | |
868 | for (uint32_t i = 0; i < 4; i++) |
869 | colors[i] = expand_565(colors[i]); |
870 | |
871 | color_rgba block0_colors[4]; |
872 | block0_colors[0] = colors[0]; |
873 | block0_colors[1] = color_rgba((colors[0].r * 2 + colors[1].r + 1) / 3, (colors[0].g * 2 + colors[1].g + 1) / 3, (colors[0].b * 2 + colors[1].b + 1) / 3, 255); |
874 | block0_colors[2] = color_rgba((colors[1].r * 2 + colors[0].r + 1) / 3, (colors[1].g * 2 + colors[0].g + 1) / 3, (colors[1].b * 2 + colors[0].b + 1) / 3, 255); |
875 | block0_colors[3] = colors[1]; |
876 | |
877 | for (uint32_t i = 0; i < 16; i++) |
878 | { |
879 | const uint32_t sel = (pBlock->m_sels[i >> 2] >> ((i & 3) * 2)) & 3; |
880 | |
881 | const uint32_t x = i & 3; |
882 | const uint32_t y = i >> 2; |
883 | pPixels[x + y * 8] = block0_colors[sel]; |
884 | } |
885 | |
886 | color_rgba block1_colors[4]; |
887 | block1_colors[0] = colors[2]; |
888 | block1_colors[1] = color_rgba((colors[2].r * 2 + colors[3].r + 1) / 3, (colors[2].g * 2 + colors[3].g + 1) / 3, (colors[2].b * 2 + colors[3].b + 1) / 3, 255); |
889 | block1_colors[2] = color_rgba((colors[3].r * 2 + colors[2].r + 1) / 3, (colors[3].g * 2 + colors[2].g + 1) / 3, (colors[3].b * 2 + colors[2].b + 1) / 3, 255); |
890 | block1_colors[3] = colors[3]; |
891 | |
892 | for (uint32_t i = 0; i < 16; i++) |
893 | { |
894 | const uint32_t sel = (pBlock->m_sels[4 + (i >> 2)] >> ((i & 3) * 2)) & 3; |
895 | |
896 | const uint32_t x = i & 3; |
897 | const uint32_t y = i >> 2; |
898 | pPixels[4 + x + y * 8] = block1_colors[sel]; |
899 | } |
900 | |
901 | return true; |
902 | } |
903 | |
904 | struct pvrtc2_block |
905 | { |
906 | uint8_t m_modulation[4]; |
907 | |
908 | union |
909 | { |
910 | union |
911 | { |
912 | // Opaque mode: RGB colora=554 and colorb=555 |
913 | struct |
914 | { |
915 | uint32_t m_mod_flag : 1; |
916 | uint32_t m_blue_a : 4; |
917 | uint32_t m_green_a : 5; |
918 | uint32_t m_red_a : 5; |
919 | uint32_t m_hard_flag : 1; |
920 | uint32_t m_blue_b : 5; |
921 | uint32_t m_green_b : 5; |
922 | uint32_t m_red_b : 5; |
923 | uint32_t m_opaque_flag : 1; |
924 | |
925 | } m_opaque_color_data; |
926 | |
927 | // Transparent mode: RGBA colora=4433 and colorb=4443 |
928 | struct |
929 | { |
930 | uint32_t m_mod_flag : 1; |
931 | uint32_t m_blue_a : 3; |
932 | uint32_t m_green_a : 4; |
933 | uint32_t m_red_a : 4; |
934 | uint32_t m_alpha_a : 3; |
935 | uint32_t m_hard_flag : 1; |
936 | uint32_t m_blue_b : 4; |
937 | uint32_t m_green_b : 4; |
938 | uint32_t m_red_b : 4; |
939 | uint32_t m_alpha_b : 3; |
940 | uint32_t m_opaque_flag : 1; |
941 | |
942 | } m_trans_color_data; |
943 | }; |
944 | |
945 | uint32_t m_color_data_bits; |
946 | }; |
947 | }; |
948 | |
949 | static color_rgba convert_rgb_555_to_888(const color_rgba& col) |
950 | { |
951 | return color_rgba((col[0] << 3) | (col[0] >> 2), (col[1] << 3) | (col[1] >> 2), (col[2] << 3) | (col[2] >> 2), 255); |
952 | } |
953 | |
954 | static color_rgba convert_rgba_5554_to_8888(const color_rgba& col) |
955 | { |
956 | return color_rgba((col[0] << 3) | (col[0] >> 2), (col[1] << 3) | (col[1] >> 2), (col[2] << 3) | (col[2] >> 2), (col[3] << 4) | col[3]); |
957 | } |
958 | |
959 | // PVRTC2 is currently limited to only what our transcoder outputs (non-interpolated, hard_flag=1 modulation=0). In this mode, PVRTC2 looks much like BC1/ATC. |
960 | bool unpack_pvrtc2(const void *p, color_rgba *pPixels) |
961 | { |
962 | const pvrtc2_block* pBlock = static_cast<const pvrtc2_block*>(p); |
963 | |
964 | if ((!pBlock->m_opaque_color_data.m_hard_flag) || (pBlock->m_opaque_color_data.m_mod_flag)) |
965 | { |
966 | // This mode isn't supported by the transcoder, so we aren't bothering with it here. |
967 | return false; |
968 | } |
969 | |
970 | color_rgba colors[4]; |
971 | |
972 | if (pBlock->m_opaque_color_data.m_opaque_flag) |
973 | { |
974 | // colora=554 |
975 | color_rgba color_a(pBlock->m_opaque_color_data.m_red_a, pBlock->m_opaque_color_data.m_green_a, (pBlock->m_opaque_color_data.m_blue_a << 1) | (pBlock->m_opaque_color_data.m_blue_a >> 3), 255); |
976 | |
977 | // colora=555 |
978 | color_rgba color_b(pBlock->m_opaque_color_data.m_red_b, pBlock->m_opaque_color_data.m_green_b, pBlock->m_opaque_color_data.m_blue_b, 255); |
979 | |
980 | colors[0] = convert_rgb_555_to_888(color_a); |
981 | colors[3] = convert_rgb_555_to_888(color_b); |
982 | |
983 | colors[1].set((colors[0].r * 5 + colors[3].r * 3) / 8, (colors[0].g * 5 + colors[3].g * 3) / 8, (colors[0].b * 5 + colors[3].b * 3) / 8, 255); |
984 | colors[2].set((colors[0].r * 3 + colors[3].r * 5) / 8, (colors[0].g * 3 + colors[3].g * 5) / 8, (colors[0].b * 3 + colors[3].b * 5) / 8, 255); |
985 | } |
986 | else |
987 | { |
988 | // colora=4433 |
989 | color_rgba color_a( |
990 | (pBlock->m_trans_color_data.m_red_a << 1) | (pBlock->m_trans_color_data.m_red_a >> 3), |
991 | (pBlock->m_trans_color_data.m_green_a << 1) | (pBlock->m_trans_color_data.m_green_a >> 3), |
992 | (pBlock->m_trans_color_data.m_blue_a << 2) | (pBlock->m_trans_color_data.m_blue_a >> 1), |
993 | pBlock->m_trans_color_data.m_alpha_a << 1); |
994 | |
995 | //colorb=4443 |
996 | color_rgba color_b( |
997 | (pBlock->m_trans_color_data.m_red_b << 1) | (pBlock->m_trans_color_data.m_red_b >> 3), |
998 | (pBlock->m_trans_color_data.m_green_b << 1) | (pBlock->m_trans_color_data.m_green_b >> 3), |
999 | (pBlock->m_trans_color_data.m_blue_b << 1) | (pBlock->m_trans_color_data.m_blue_b >> 3), |
1000 | (pBlock->m_trans_color_data.m_alpha_b << 1) | 1); |
1001 | |
1002 | colors[0] = convert_rgba_5554_to_8888(color_a); |
1003 | colors[3] = convert_rgba_5554_to_8888(color_b); |
1004 | } |
1005 | |
1006 | colors[1].set((colors[0].r * 5 + colors[3].r * 3) / 8, (colors[0].g * 5 + colors[3].g * 3) / 8, (colors[0].b * 5 + colors[3].b * 3) / 8, (colors[0].a * 5 + colors[3].a * 3) / 8); |
1007 | colors[2].set((colors[0].r * 3 + colors[3].r * 5) / 8, (colors[0].g * 3 + colors[3].g * 5) / 8, (colors[0].b * 3 + colors[3].b * 5) / 8, (colors[0].a * 3 + colors[3].a * 5) / 8); |
1008 | |
1009 | for (uint32_t i = 0; i < 16; i++) |
1010 | { |
1011 | const uint32_t sel = (pBlock->m_modulation[i >> 2] >> ((i & 3) * 2)) & 3; |
1012 | pPixels[i] = colors[sel]; |
1013 | } |
1014 | |
1015 | return true; |
1016 | } |
1017 | |
1018 | struct etc2_eac_r11 |
1019 | { |
1020 | uint64_t m_base : 8; |
1021 | uint64_t m_table : 4; |
1022 | uint64_t m_mul : 4; |
1023 | uint64_t m_sels_0 : 8; |
1024 | uint64_t m_sels_1 : 8; |
1025 | uint64_t m_sels_2 : 8; |
1026 | uint64_t m_sels_3 : 8; |
1027 | uint64_t m_sels_4 : 8; |
1028 | uint64_t m_sels_5 : 8; |
1029 | |
1030 | uint64_t get_sels() const |
1031 | { |
1032 | return ((uint64_t)m_sels_0 << 40U) | ((uint64_t)m_sels_1 << 32U) | ((uint64_t)m_sels_2 << 24U) | ((uint64_t)m_sels_3 << 16U) | ((uint64_t)m_sels_4 << 8U) | m_sels_5; |
1033 | } |
1034 | |
1035 | void set_sels(uint64_t v) |
1036 | { |
1037 | m_sels_0 = (v >> 40U) & 0xFF; |
1038 | m_sels_1 = (v >> 32U) & 0xFF; |
1039 | m_sels_2 = (v >> 24U) & 0xFF; |
1040 | m_sels_3 = (v >> 16U) & 0xFF; |
1041 | m_sels_4 = (v >> 8U) & 0xFF; |
1042 | m_sels_5 = v & 0xFF; |
1043 | } |
1044 | }; |
1045 | |
1046 | struct etc2_eac_rg11 |
1047 | { |
1048 | etc2_eac_r11 m_c[2]; |
1049 | }; |
1050 | |
1051 | void unpack_etc2_eac_r(const void *p, color_rgba* pPixels, uint32_t c) |
1052 | { |
1053 | const etc2_eac_r11* pBlock = static_cast<const etc2_eac_r11*>(p); |
1054 | const uint64_t sels = pBlock->get_sels(); |
1055 | |
1056 | const int base = (int)pBlock->m_base * 8 + 4; |
1057 | const int mul = pBlock->m_mul ? ((int)pBlock->m_mul * 8) : 1; |
1058 | const int table = (int)pBlock->m_table; |
1059 | |
1060 | for (uint32_t y = 0; y < 4; y++) |
1061 | { |
1062 | for (uint32_t x = 0; x < 4; x++) |
1063 | { |
1064 | const uint32_t shift = 45 - ((y + x * 4) * 3); |
1065 | |
1066 | const uint32_t sel = (uint32_t)((sels >> shift) & 7); |
1067 | |
1068 | int val = base + g_etc2_eac_tables[table][sel] * mul; |
1069 | val = clamp<int>(val, 0, 2047); |
1070 | |
1071 | // Convert to 8-bits with rounding |
1072 | //pPixels[x + y * 4].m_comps[c] = static_cast<uint8_t>((val * 255 + 1024) / 2047); |
1073 | pPixels[x + y * 4].m_comps[c] = static_cast<uint8_t>((val * 255 + 1023) / 2047); |
1074 | |
1075 | } // x |
1076 | } // y |
1077 | } |
1078 | |
1079 | void unpack_etc2_eac_rg(const void* p, color_rgba* pPixels) |
1080 | { |
1081 | for (uint32_t c = 0; c < 2; c++) |
1082 | { |
1083 | const etc2_eac_r11* pBlock = &static_cast<const etc2_eac_rg11*>(p)->m_c[c]; |
1084 | |
1085 | unpack_etc2_eac_r(pBlock, pPixels, c); |
1086 | } |
1087 | } |
1088 | |
1089 | void unpack_uastc(const void* p, color_rgba* pPixels) |
1090 | { |
1091 | basist::unpack_uastc(*static_cast<const basist::uastc_block*>(p), (basist::color32 *)pPixels, false); |
1092 | } |
1093 | |
1094 | // Unpacks to RGBA, R, RG, or A |
1095 | bool unpack_block(texture_format fmt, const void* pBlock, color_rgba* pPixels) |
1096 | { |
1097 | switch (fmt) |
1098 | { |
1099 | case texture_format::cBC1: |
1100 | { |
1101 | unpack_bc1(pBlock, pPixels, true); |
1102 | break; |
1103 | } |
1104 | case texture_format::cBC1_NV: |
1105 | { |
1106 | unpack_bc1_nv(pBlock, pPixels, true); |
1107 | break; |
1108 | } |
1109 | case texture_format::cBC1_AMD: |
1110 | { |
1111 | unpack_bc1_amd(pBlock, pPixels, true); |
1112 | break; |
1113 | } |
1114 | case texture_format::cBC3: |
1115 | { |
1116 | return unpack_bc3(pBlock, pPixels); |
1117 | } |
1118 | case texture_format::cBC4: |
1119 | { |
1120 | // Unpack to R |
1121 | unpack_bc4(pBlock, &pPixels[0].r, sizeof(color_rgba)); |
1122 | break; |
1123 | } |
1124 | case texture_format::cBC5: |
1125 | { |
1126 | unpack_bc5(pBlock, pPixels); |
1127 | break; |
1128 | } |
1129 | case texture_format::cBC7: |
1130 | { |
1131 | return unpack_bc7(pBlock, pPixels); |
1132 | } |
1133 | // Full ETC2 color blocks (planar/T/H modes) is currently unsupported in basisu, but we do support ETC2 with alpha (using ETC1 for color) |
1134 | case texture_format::cETC2_RGB: |
1135 | case texture_format::cETC1: |
1136 | case texture_format::cETC1S: |
1137 | { |
1138 | return unpack_etc1(*static_cast<const etc_block*>(pBlock), pPixels); |
1139 | } |
1140 | case texture_format::cETC2_RGBA: |
1141 | { |
1142 | if (!unpack_etc1(static_cast<const etc_block*>(pBlock)[1], pPixels)) |
1143 | return false; |
1144 | unpack_etc2_eac(pBlock, pPixels); |
1145 | break; |
1146 | } |
1147 | case texture_format::cETC2_ALPHA: |
1148 | { |
1149 | // Unpack to A |
1150 | unpack_etc2_eac(pBlock, pPixels); |
1151 | break; |
1152 | } |
1153 | case texture_format::cASTC4x4: |
1154 | { |
1155 | #if BASISU_USE_ASTC_DECOMPRESS |
1156 | const bool astc_srgb = false; |
1157 | basisu_astc::astc::decompress(reinterpret_cast<uint8_t*>(pPixels), static_cast<const uint8_t*>(pBlock), astc_srgb, 4, 4); |
1158 | #else |
1159 | memset(pPixels, 255, 16 * sizeof(color_rgba)); |
1160 | #endif |
1161 | break; |
1162 | } |
1163 | case texture_format::cATC_RGB: |
1164 | { |
1165 | unpack_atc(pBlock, pPixels); |
1166 | break; |
1167 | } |
1168 | case texture_format::cATC_RGBA_INTERPOLATED_ALPHA: |
1169 | { |
1170 | unpack_atc(static_cast<const uint8_t*>(pBlock) + 8, pPixels); |
1171 | unpack_bc4(pBlock, &pPixels[0].a, sizeof(color_rgba)); |
1172 | break; |
1173 | } |
1174 | case texture_format::cFXT1_RGB: |
1175 | { |
1176 | unpack_fxt1(pBlock, pPixels); |
1177 | break; |
1178 | } |
1179 | case texture_format::cPVRTC2_4_RGBA: |
1180 | { |
1181 | unpack_pvrtc2(pBlock, pPixels); |
1182 | break; |
1183 | } |
1184 | case texture_format::cETC2_R11_EAC: |
1185 | { |
1186 | unpack_etc2_eac_r(static_cast<const etc2_eac_r11 *>(pBlock), pPixels, 0); |
1187 | break; |
1188 | } |
1189 | case texture_format::cETC2_RG11_EAC: |
1190 | { |
1191 | unpack_etc2_eac_rg(pBlock, pPixels); |
1192 | break; |
1193 | } |
1194 | case texture_format::cUASTC4x4: |
1195 | { |
1196 | unpack_uastc(pBlock, pPixels); |
1197 | break; |
1198 | } |
1199 | default: |
1200 | { |
1201 | assert(0); |
1202 | // TODO |
1203 | return false; |
1204 | } |
1205 | } |
1206 | return true; |
1207 | } |
1208 | |
1209 | bool gpu_image::unpack(image& img) const |
1210 | { |
1211 | img.resize(get_pixel_width(), get_pixel_height()); |
1212 | img.set_all(g_black_color); |
1213 | |
1214 | if (!img.get_width() || !img.get_height()) |
1215 | return true; |
1216 | |
1217 | if ((m_fmt == texture_format::cPVRTC1_4_RGB) || (m_fmt == texture_format::cPVRTC1_4_RGBA)) |
1218 | { |
1219 | pvrtc4_image pi(m_width, m_height); |
1220 | |
1221 | if (get_total_blocks() != pi.get_total_blocks()) |
1222 | return false; |
1223 | |
1224 | memcpy(&pi.get_blocks()[0], get_ptr(), get_size_in_bytes()); |
1225 | |
1226 | pi.deswizzle(); |
1227 | |
1228 | pi.unpack_all_pixels(img); |
1229 | |
1230 | return true; |
1231 | } |
1232 | |
1233 | assert((m_block_width <= cMaxBlockSize) && (m_block_height <= cMaxBlockSize)); |
1234 | color_rgba pixels[cMaxBlockSize * cMaxBlockSize]; |
1235 | for (uint32_t i = 0; i < cMaxBlockSize * cMaxBlockSize; i++) |
1236 | pixels[i] = g_black_color; |
1237 | |
1238 | bool success = true; |
1239 | |
1240 | for (uint32_t by = 0; by < m_blocks_y; by++) |
1241 | { |
1242 | for (uint32_t bx = 0; bx < m_blocks_x; bx++) |
1243 | { |
1244 | const void* pBlock = get_block_ptr(bx, by); |
1245 | |
1246 | if (!unpack_block(m_fmt, pBlock, pixels)) |
1247 | success = false; |
1248 | |
1249 | img.set_block_clipped(pixels, bx * m_block_width, by * m_block_height, m_block_width, m_block_height); |
1250 | } // bx |
1251 | } // by |
1252 | |
1253 | return success; |
1254 | } |
1255 | |
1256 | static const uint8_t g_ktx_file_id[12] = { 0xAB, 0x4B, 0x54, 0x58, 0x20, 0x31, 0x31, 0xBB, 0x0D, 0x0A, 0x1A, 0x0A }; |
1257 | |
1258 | // KTX/GL enums |
1259 | enum |
1260 | { |
1261 | KTX_ENDIAN = 0x04030201, |
1262 | KTX_OPPOSITE_ENDIAN = 0x01020304, |
1263 | KTX_ETC1_RGB8_OES = 0x8D64, |
1264 | KTX_RED = 0x1903, |
1265 | KTX_RG = 0x8227, |
1266 | KTX_RGB = 0x1907, |
1267 | KTX_RGBA = 0x1908, |
1268 | KTX_COMPRESSED_RGB_S3TC_DXT1_EXT = 0x83F0, |
1269 | KTX_COMPRESSED_RGBA_S3TC_DXT5_EXT = 0x83F3, |
1270 | KTX_COMPRESSED_RED_RGTC1_EXT = 0x8DBB, |
1271 | KTX_COMPRESSED_RED_GREEN_RGTC2_EXT = 0x8DBD, |
1272 | KTX_COMPRESSED_RGB8_ETC2 = 0x9274, |
1273 | KTX_COMPRESSED_RGBA8_ETC2_EAC = 0x9278, |
1274 | KTX_COMPRESSED_RGBA_BPTC_UNORM = 0x8E8C, |
1275 | KTX_COMPRESSED_SRGB_ALPHA_BPTC_UNORM = 0x8E8D, |
1276 | KTX_COMPRESSED_RGB_PVRTC_4BPPV1_IMG = 0x8C00, |
1277 | KTX_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG = 0x8C02, |
1278 | KTX_COMPRESSED_RGBA_ASTC_4x4_KHR = 0x93B0, |
1279 | KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_4x4_KHR = 0x93D0, |
1280 | KTX_COMPRESSED_RGBA_UASTC_4x4_KHR = 0x94CC, // TODO - Use proper value! |
1281 | KTX_ATC_RGB_AMD = 0x8C92, |
1282 | KTX_ATC_RGBA_INTERPOLATED_ALPHA_AMD = 0x87EE, |
1283 | KTX_COMPRESSED_RGB_FXT1_3DFX = 0x86B0, |
1284 | KTX_COMPRESSED_RGBA_FXT1_3DFX = 0x86B1, |
1285 | KTX_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG = 0x9138, |
1286 | KTX_COMPRESSED_R11_EAC = 0x9270, |
1287 | KTX_COMPRESSED_RG11_EAC = 0x9272 |
1288 | }; |
1289 | |
1290 | struct |
1291 | { |
1292 | uint8_t [12]; |
1293 | packed_uint<4> ; |
1294 | packed_uint<4> ; |
1295 | packed_uint<4> ; |
1296 | packed_uint<4> ; |
1297 | packed_uint<4> ; |
1298 | packed_uint<4> ; |
1299 | packed_uint<4> ; |
1300 | packed_uint<4> ; |
1301 | packed_uint<4> ; |
1302 | packed_uint<4> ; |
1303 | packed_uint<4> ; |
1304 | packed_uint<4> ; |
1305 | packed_uint<4> ; |
1306 | |
1307 | void () { clear_obj(*this); } |
1308 | }; |
1309 | |
1310 | // Input is a texture array of mipmapped gpu_image's: gpu_images[array_index][level_index] |
1311 | bool create_ktx_texture_file(uint8_vec &ktx_data, const basisu::vector<gpu_image_vec>& gpu_images, bool cubemap_flag) |
1312 | { |
1313 | if (!gpu_images.size()) |
1314 | { |
1315 | assert(0); |
1316 | return false; |
1317 | } |
1318 | |
1319 | uint32_t width = 0, height = 0, total_levels = 0; |
1320 | basisu::texture_format fmt = texture_format::cInvalidTextureFormat; |
1321 | |
1322 | if (cubemap_flag) |
1323 | { |
1324 | if ((gpu_images.size() % 6) != 0) |
1325 | { |
1326 | assert(0); |
1327 | return false; |
1328 | } |
1329 | } |
1330 | |
1331 | for (uint32_t array_index = 0; array_index < gpu_images.size(); array_index++) |
1332 | { |
1333 | const gpu_image_vec &levels = gpu_images[array_index]; |
1334 | |
1335 | if (!levels.size()) |
1336 | { |
1337 | // Empty mip chain |
1338 | assert(0); |
1339 | return false; |
1340 | } |
1341 | |
1342 | if (!array_index) |
1343 | { |
1344 | width = levels[0].get_pixel_width(); |
1345 | height = levels[0].get_pixel_height(); |
1346 | total_levels = (uint32_t)levels.size(); |
1347 | fmt = levels[0].get_format(); |
1348 | } |
1349 | else |
1350 | { |
1351 | if ((width != levels[0].get_pixel_width()) || |
1352 | (height != levels[0].get_pixel_height()) || |
1353 | (total_levels != levels.size())) |
1354 | { |
1355 | // All cubemap/texture array faces must be the same dimension |
1356 | assert(0); |
1357 | return false; |
1358 | } |
1359 | } |
1360 | |
1361 | for (uint32_t level_index = 0; level_index < levels.size(); level_index++) |
1362 | { |
1363 | if (level_index) |
1364 | { |
1365 | if ( (levels[level_index].get_pixel_width() != maximum<uint32_t>(1, levels[0].get_pixel_width() >> level_index)) || |
1366 | (levels[level_index].get_pixel_height() != maximum<uint32_t>(1, levels[0].get_pixel_height() >> level_index)) ) |
1367 | { |
1368 | // Malformed mipmap chain |
1369 | assert(0); |
1370 | return false; |
1371 | } |
1372 | } |
1373 | |
1374 | if (fmt != levels[level_index].get_format()) |
1375 | { |
1376 | // All input textures must use the same GPU format |
1377 | assert(0); |
1378 | return false; |
1379 | } |
1380 | } |
1381 | } |
1382 | |
1383 | uint32_t internal_fmt = KTX_ETC1_RGB8_OES, base_internal_fmt = KTX_RGB; |
1384 | |
1385 | switch (fmt) |
1386 | { |
1387 | case texture_format::cBC1: |
1388 | case texture_format::cBC1_NV: |
1389 | case texture_format::cBC1_AMD: |
1390 | { |
1391 | internal_fmt = KTX_COMPRESSED_RGB_S3TC_DXT1_EXT; |
1392 | break; |
1393 | } |
1394 | case texture_format::cBC3: |
1395 | { |
1396 | internal_fmt = KTX_COMPRESSED_RGBA_S3TC_DXT5_EXT; |
1397 | base_internal_fmt = KTX_RGBA; |
1398 | break; |
1399 | } |
1400 | case texture_format::cBC4: |
1401 | { |
1402 | internal_fmt = KTX_COMPRESSED_RED_RGTC1_EXT;// KTX_COMPRESSED_LUMINANCE_LATC1_EXT; |
1403 | base_internal_fmt = KTX_RED; |
1404 | break; |
1405 | } |
1406 | case texture_format::cBC5: |
1407 | { |
1408 | internal_fmt = KTX_COMPRESSED_RED_GREEN_RGTC2_EXT; |
1409 | base_internal_fmt = KTX_RG; |
1410 | break; |
1411 | } |
1412 | case texture_format::cETC1: |
1413 | case texture_format::cETC1S: |
1414 | { |
1415 | internal_fmt = KTX_ETC1_RGB8_OES; |
1416 | break; |
1417 | } |
1418 | case texture_format::cETC2_RGB: |
1419 | { |
1420 | internal_fmt = KTX_COMPRESSED_RGB8_ETC2; |
1421 | break; |
1422 | } |
1423 | case texture_format::cETC2_RGBA: |
1424 | { |
1425 | internal_fmt = KTX_COMPRESSED_RGBA8_ETC2_EAC; |
1426 | base_internal_fmt = KTX_RGBA; |
1427 | break; |
1428 | } |
1429 | case texture_format::cBC7: |
1430 | { |
1431 | internal_fmt = KTX_COMPRESSED_RGBA_BPTC_UNORM; |
1432 | base_internal_fmt = KTX_RGBA; |
1433 | break; |
1434 | } |
1435 | case texture_format::cPVRTC1_4_RGB: |
1436 | { |
1437 | internal_fmt = KTX_COMPRESSED_RGB_PVRTC_4BPPV1_IMG; |
1438 | break; |
1439 | } |
1440 | case texture_format::cPVRTC1_4_RGBA: |
1441 | { |
1442 | internal_fmt = KTX_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; |
1443 | base_internal_fmt = KTX_RGBA; |
1444 | break; |
1445 | } |
1446 | case texture_format::cASTC4x4: |
1447 | { |
1448 | internal_fmt = KTX_COMPRESSED_RGBA_ASTC_4x4_KHR; |
1449 | base_internal_fmt = KTX_RGBA; |
1450 | break; |
1451 | } |
1452 | case texture_format::cATC_RGB: |
1453 | { |
1454 | internal_fmt = KTX_ATC_RGB_AMD; |
1455 | break; |
1456 | } |
1457 | case texture_format::cATC_RGBA_INTERPOLATED_ALPHA: |
1458 | { |
1459 | internal_fmt = KTX_ATC_RGBA_INTERPOLATED_ALPHA_AMD; |
1460 | base_internal_fmt = KTX_RGBA; |
1461 | break; |
1462 | } |
1463 | case texture_format::cETC2_R11_EAC: |
1464 | { |
1465 | internal_fmt = KTX_COMPRESSED_R11_EAC; |
1466 | base_internal_fmt = KTX_RED; |
1467 | break; |
1468 | } |
1469 | case texture_format::cETC2_RG11_EAC: |
1470 | { |
1471 | internal_fmt = KTX_COMPRESSED_RG11_EAC; |
1472 | base_internal_fmt = KTX_RG; |
1473 | break; |
1474 | } |
1475 | case texture_format::cUASTC4x4: |
1476 | { |
1477 | internal_fmt = KTX_COMPRESSED_RGBA_UASTC_4x4_KHR; |
1478 | base_internal_fmt = KTX_RGBA; |
1479 | break; |
1480 | } |
1481 | case texture_format::cFXT1_RGB: |
1482 | { |
1483 | internal_fmt = KTX_COMPRESSED_RGB_FXT1_3DFX; |
1484 | break; |
1485 | } |
1486 | case texture_format::cPVRTC2_4_RGBA: |
1487 | { |
1488 | internal_fmt = KTX_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG; |
1489 | base_internal_fmt = KTX_RGBA; |
1490 | break; |
1491 | } |
1492 | default: |
1493 | { |
1494 | // TODO |
1495 | assert(0); |
1496 | return false; |
1497 | } |
1498 | } |
1499 | |
1500 | ktx_header ; |
1501 | header.clear(); |
1502 | memcpy(&header.m_identifier, g_ktx_file_id, sizeof(g_ktx_file_id)); |
1503 | header.m_endianness = KTX_ENDIAN; |
1504 | |
1505 | header.m_pixelWidth = width; |
1506 | header.m_pixelHeight = height; |
1507 | |
1508 | header.m_glTypeSize = 1; |
1509 | |
1510 | header.m_glInternalFormat = internal_fmt; |
1511 | header.m_glBaseInternalFormat = base_internal_fmt; |
1512 | |
1513 | header.m_numberOfArrayElements = (uint32_t)(cubemap_flag ? (gpu_images.size() / 6) : gpu_images.size()); |
1514 | if (header.m_numberOfArrayElements == 1) |
1515 | header.m_numberOfArrayElements = 0; |
1516 | |
1517 | header.m_numberOfMipmapLevels = total_levels; |
1518 | header.m_numberOfFaces = cubemap_flag ? 6 : 1; |
1519 | |
1520 | append_vector(ktx_data, (uint8_t *)&header, sizeof(header)); |
1521 | |
1522 | for (uint32_t level_index = 0; level_index < total_levels; level_index++) |
1523 | { |
1524 | uint32_t img_size = gpu_images[0][level_index].get_size_in_bytes(); |
1525 | |
1526 | if ((header.m_numberOfFaces == 1) || (header.m_numberOfArrayElements > 1)) |
1527 | { |
1528 | img_size = img_size * header.m_numberOfFaces * maximum<uint32_t>(1, header.m_numberOfArrayElements); |
1529 | } |
1530 | |
1531 | assert(img_size && ((img_size & 3) == 0)); |
1532 | |
1533 | packed_uint<4> packed_img_size(img_size); |
1534 | append_vector(ktx_data, (uint8_t *)&packed_img_size, sizeof(packed_img_size)); |
1535 | |
1536 | uint32_t bytes_written = 0; |
1537 | |
1538 | for (uint32_t array_index = 0; array_index < maximum<uint32_t>(1, header.m_numberOfArrayElements); array_index++) |
1539 | { |
1540 | for (uint32_t face_index = 0; face_index < header.m_numberOfFaces; face_index++) |
1541 | { |
1542 | const gpu_image& img = gpu_images[cubemap_flag ? (array_index * 6 + face_index) : array_index][level_index]; |
1543 | |
1544 | append_vector(ktx_data, (uint8_t *)img.get_ptr(), img.get_size_in_bytes()); |
1545 | |
1546 | bytes_written += img.get_size_in_bytes(); |
1547 | } |
1548 | |
1549 | } // array_index |
1550 | |
1551 | } // level_index |
1552 | |
1553 | return true; |
1554 | } |
1555 | |
1556 | bool write_compressed_texture_file(const char* pFilename, const basisu::vector<gpu_image_vec>& g, bool cubemap_flag) |
1557 | { |
1558 | std::string extension(string_tolower(string_get_extension(pFilename))); |
1559 | |
1560 | uint8_vec filedata; |
1561 | if (extension == "ktx" ) |
1562 | { |
1563 | if (!create_ktx_texture_file(filedata, g, cubemap_flag)) |
1564 | return false; |
1565 | } |
1566 | else if (extension == "pvr" ) |
1567 | { |
1568 | // TODO |
1569 | return false; |
1570 | } |
1571 | else if (extension == "dds" ) |
1572 | { |
1573 | // TODO |
1574 | return false; |
1575 | } |
1576 | else |
1577 | { |
1578 | // unsupported texture format |
1579 | assert(0); |
1580 | return false; |
1581 | } |
1582 | |
1583 | return basisu::write_vec_to_file(pFilename, filedata); |
1584 | } |
1585 | |
1586 | bool write_compressed_texture_file(const char* pFilename, const gpu_image& g) |
1587 | { |
1588 | basisu::vector<gpu_image_vec> v; |
1589 | enlarge_vector(v, 1)->push_back(g); |
1590 | return write_compressed_texture_file(pFilename, v, false); |
1591 | } |
1592 | |
1593 | //const uint32_t OUT_FILE_MAGIC = 'TEXC'; |
1594 | struct |
1595 | { |
1596 | packed_uint<4> ; |
1597 | packed_uint<4> ; |
1598 | packed_uint<4> ; |
1599 | packed_uint<4> ; |
1600 | }; |
1601 | |
1602 | // As no modern tool supports FXT1 format .KTX files, let's write .OUT files and make sure 3DFX's original tools shipped in 1999 can decode our encoded output. |
1603 | bool write_3dfx_out_file(const char* pFilename, const gpu_image& gi) |
1604 | { |
1605 | out_file_header hdr; |
1606 | //hdr.m_magic = OUT_FILE_MAGIC; |
1607 | hdr.m_magic.m_bytes[0] = 67; |
1608 | hdr.m_magic.m_bytes[1] = 88; |
1609 | hdr.m_magic.m_bytes[2] = 69; |
1610 | hdr.m_magic.m_bytes[3] = 84; |
1611 | hdr.m_pad = 0; |
1612 | hdr.m_width = gi.get_blocks_x() * 8; |
1613 | hdr.m_height = gi.get_blocks_y() * 4; |
1614 | |
1615 | FILE* pFile = nullptr; |
1616 | #ifdef _WIN32 |
1617 | fopen_s(&pFile, pFilename, "wb" ); |
1618 | #else |
1619 | pFile = fopen(pFilename, "wb" ); |
1620 | #endif |
1621 | if (!pFile) |
1622 | return false; |
1623 | |
1624 | fwrite(&hdr, sizeof(hdr), 1, pFile); |
1625 | fwrite(gi.get_ptr(), gi.get_size_in_bytes(), 1, pFile); |
1626 | |
1627 | return fclose(pFile) != EOF; |
1628 | } |
1629 | } // basisu |
1630 | |
1631 | |