| 1 | // Copyright 2009-2021 Intel Corporation |
| 2 | // SPDX-License-Identifier: Apache-2.0 |
| 3 | |
| 4 | #pragma once |
| 5 | |
| 6 | #include "../common/primref_mb.h" |
| 7 | #include "../../common/algorithms/parallel_filter.h" |
| 8 | |
| 9 | #define MBLUR_TIME_SPLIT_THRESHOLD 1.25f |
| 10 | |
| 11 | namespace embree |
| 12 | { |
| 13 | namespace isa |
| 14 | { |
| 15 | /*! Performs standard object binning */ |
| 16 | template<typename PrimRefMB, typename RecalculatePrimRef, size_t BINS> |
| 17 | struct HeuristicMBlurTemporalSplit |
| 18 | { |
| 19 | typedef BinSplit<MBLUR_NUM_OBJECT_BINS> Split; |
| 20 | typedef mvector<PrimRefMB>* PrimRefVector; |
| 21 | typedef typename PrimRefMB::BBox BBox; |
| 22 | |
| 23 | static const size_t PARALLEL_THRESHOLD = 3 * 1024; |
| 24 | static const size_t PARALLEL_FIND_BLOCK_SIZE = 1024; |
| 25 | static const size_t PARALLEL_PARTITION_BLOCK_SIZE = 128; |
| 26 | |
| 27 | HeuristicMBlurTemporalSplit (MemoryMonitorInterface* device, const RecalculatePrimRef& recalculatePrimRef) |
| 28 | : device(device), recalculatePrimRef(recalculatePrimRef) {} |
| 29 | |
| 30 | struct TemporalBinInfo |
| 31 | { |
| 32 | __forceinline TemporalBinInfo () { |
| 33 | } |
| 34 | |
| 35 | __forceinline TemporalBinInfo (EmptyTy) |
| 36 | { |
| 37 | for (size_t i=0; i<BINS-1; i++) |
| 38 | { |
| 39 | count0[i] = count1[i] = 0; |
| 40 | bounds0[i] = bounds1[i] = empty; |
| 41 | } |
| 42 | } |
| 43 | |
| 44 | void bin(const PrimRefMB* prims, size_t begin, size_t end, BBox1f time_range, const SetMB& set, const RecalculatePrimRef& recalculatePrimRef) |
| 45 | { |
| 46 | for (int b=0; b<BINS-1; b++) |
| 47 | { |
| 48 | const float t = float(b+1)/float(BINS); |
| 49 | const float ct = lerp(time_range.lower,time_range.upper,t); |
| 50 | const float center_time = set.align_time(ct); |
| 51 | if (center_time <= time_range.lower) continue; |
| 52 | if (center_time >= time_range.upper) continue; |
| 53 | const BBox1f dt0(time_range.lower,center_time); |
| 54 | const BBox1f dt1(center_time,time_range.upper); |
| 55 | |
| 56 | /* find linear bounds for both time segments */ |
| 57 | for (size_t i=begin; i<end; i++) |
| 58 | { |
| 59 | if (prims[i].time_range_overlap(dt0)) |
| 60 | { |
| 61 | const LBBox3fa bn0 = recalculatePrimRef.linearBounds(prims[i],dt0); |
| 62 | #if MBLUR_BIN_LBBOX |
| 63 | bounds0[b].extend(bn0); |
| 64 | #else |
| 65 | bounds0[b].extend(bn0.interpolate(0.5f)); |
| 66 | #endif |
| 67 | count0[b] += prims[i].timeSegmentRange(dt0).size(); |
| 68 | } |
| 69 | |
| 70 | if (prims[i].time_range_overlap(dt1)) |
| 71 | { |
| 72 | const LBBox3fa bn1 = recalculatePrimRef.linearBounds(prims[i],dt1); |
| 73 | #if MBLUR_BIN_LBBOX |
| 74 | bounds1[b].extend(bn1); |
| 75 | #else |
| 76 | bounds1[b].extend(bn1.interpolate(0.5f)); |
| 77 | #endif |
| 78 | count1[b] += prims[i].timeSegmentRange(dt1).size(); |
| 79 | } |
| 80 | } |
| 81 | } |
| 82 | } |
| 83 | |
| 84 | __forceinline void bin_parallel(const PrimRefMB* prims, size_t begin, size_t end, size_t blockSize, size_t parallelThreshold, BBox1f time_range, const SetMB& set, const RecalculatePrimRef& recalculatePrimRef) |
| 85 | { |
| 86 | if (likely(end-begin < parallelThreshold)) { |
| 87 | bin(prims,begin,end,time_range,set,recalculatePrimRef); |
| 88 | } |
| 89 | else |
| 90 | { |
| 91 | auto bin = [&](const range<size_t>& r) -> TemporalBinInfo { |
| 92 | TemporalBinInfo binner(empty); binner.bin(prims, r.begin(), r.end(), time_range, set, recalculatePrimRef); return binner; |
| 93 | }; |
| 94 | *this = parallel_reduce(begin,end,blockSize,TemporalBinInfo(empty),bin,merge2); |
| 95 | } |
| 96 | } |
| 97 | |
| 98 | /*! merges in other binning information */ |
| 99 | __forceinline void merge (const TemporalBinInfo& other) |
| 100 | { |
| 101 | for (size_t i=0; i<BINS-1; i++) |
| 102 | { |
| 103 | count0[i] += other.count0[i]; |
| 104 | count1[i] += other.count1[i]; |
| 105 | bounds0[i].extend(other.bounds0[i]); |
| 106 | bounds1[i].extend(other.bounds1[i]); |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | static __forceinline const TemporalBinInfo merge2(const TemporalBinInfo& a, const TemporalBinInfo& b) { |
| 111 | TemporalBinInfo r = a; r.merge(b); return r; |
| 112 | } |
| 113 | |
| 114 | Split best(int logBlockSize, BBox1f time_range, const SetMB& set) |
| 115 | { |
| 116 | float bestSAH = inf; |
| 117 | float bestPos = 0.0f; |
| 118 | for (int b=0; b<BINS-1; b++) |
| 119 | { |
| 120 | float t = float(b+1)/float(BINS); |
| 121 | float ct = lerp(time_range.lower,time_range.upper,t); |
| 122 | const float center_time = set.align_time(ct); |
| 123 | if (center_time <= time_range.lower) continue; |
| 124 | if (center_time >= time_range.upper) continue; |
| 125 | const BBox1f dt0(time_range.lower,center_time); |
| 126 | const BBox1f dt1(center_time,time_range.upper); |
| 127 | |
| 128 | /* calculate sah */ |
| 129 | const size_t lCount = (count0[b]+(size_t(1) << logBlockSize)-1) >> int(logBlockSize); |
| 130 | const size_t rCount = (count1[b]+(size_t(1) << logBlockSize)-1) >> int(logBlockSize); |
| 131 | float sah0 = expectedApproxHalfArea(bounds0[b])*float(lCount)*dt0.size(); |
| 132 | float sah1 = expectedApproxHalfArea(bounds1[b])*float(rCount)*dt1.size(); |
| 133 | if (unlikely(lCount == 0)) sah0 = 0.0f; // happens for initial splits when objects not alive over entire shutter time |
| 134 | if (unlikely(rCount == 0)) sah1 = 0.0f; |
| 135 | const float sah = sah0+sah1; |
| 136 | if (sah < bestSAH) { |
| 137 | bestSAH = sah; |
| 138 | bestPos = center_time; |
| 139 | } |
| 140 | } |
| 141 | return Split(bestSAH*MBLUR_TIME_SPLIT_THRESHOLD,(unsigned)Split::SPLIT_TEMPORAL,0,bestPos); |
| 142 | } |
| 143 | |
| 144 | public: |
| 145 | size_t count0[BINS-1]; |
| 146 | size_t count1[BINS-1]; |
| 147 | BBox bounds0[BINS-1]; |
| 148 | BBox bounds1[BINS-1]; |
| 149 | }; |
| 150 | |
| 151 | /*! finds the best split */ |
| 152 | const Split find(const SetMB& set, const size_t logBlockSize) |
| 153 | { |
| 154 | assert(set.size() > 0); |
| 155 | TemporalBinInfo binner(empty); |
| 156 | binner.bin_parallel(set.prims->data(),set.begin(),set.end(),PARALLEL_FIND_BLOCK_SIZE,PARALLEL_THRESHOLD,set.time_range,set,recalculatePrimRef); |
| 157 | Split tsplit = binner.best((int)logBlockSize,set.time_range,set); |
| 158 | if (!tsplit.valid()) tsplit.data = Split::SPLIT_FALLBACK; // use fallback split |
| 159 | return tsplit; |
| 160 | } |
| 161 | |
| 162 | __forceinline std::unique_ptr<mvector<PrimRefMB>> split(const Split& tsplit, const SetMB& set, SetMB& lset, SetMB& rset) |
| 163 | { |
| 164 | assert(tsplit.sah != float(inf)); |
| 165 | assert(tsplit.fpos > set.time_range.lower); |
| 166 | assert(tsplit.fpos < set.time_range.upper); |
| 167 | |
| 168 | float center_time = tsplit.fpos; |
| 169 | const BBox1f time_range0(set.time_range.lower,center_time); |
| 170 | const BBox1f time_range1(center_time,set.time_range.upper); |
| 171 | mvector<PrimRefMB>& prims = *set.prims; |
| 172 | |
| 173 | /* calculate primrefs for first time range */ |
| 174 | std::unique_ptr<mvector<PrimRefMB>> new_vector(new mvector<PrimRefMB>(device, set.size())); |
| 175 | PrimRefVector lprims = new_vector.get(); |
| 176 | |
| 177 | auto reduction_func0 = [&] (const range<size_t>& r) { |
| 178 | PrimInfoMB pinfo = empty; |
| 179 | for (size_t i=r.begin(); i<r.end(); i++) |
| 180 | { |
| 181 | if (likely(prims[i].time_range_overlap(time_range0))) |
| 182 | { |
| 183 | const PrimRefMB& prim = recalculatePrimRef(prims[i],time_range0); |
| 184 | (*lprims)[i-set.begin()] = prim; |
| 185 | pinfo.add_primref(prim); |
| 186 | } |
| 187 | else |
| 188 | { |
| 189 | (*lprims)[i-set.begin()] = prims[i]; |
| 190 | } |
| 191 | } |
| 192 | return pinfo; |
| 193 | }; |
| 194 | PrimInfoMB linfo = parallel_reduce(set.object_range,PARALLEL_PARTITION_BLOCK_SIZE,PARALLEL_THRESHOLD,PrimInfoMB(empty),reduction_func0,PrimInfoMB::merge2); |
| 195 | |
| 196 | /* primrefs for first time range are in lprims[0 .. set.size()) */ |
| 197 | /* some primitives may need to be filtered out */ |
| 198 | if (linfo.size() != set.size()) |
| 199 | linfo.object_range._end = parallel_filter(lprims->data(), size_t(0), set.size(), size_t(1024), |
| 200 | [&](const PrimRefMB& prim) { return prim.time_range_overlap(time_range0); }); |
| 201 | |
| 202 | lset = SetMB(linfo,lprims,time_range0); |
| 203 | |
| 204 | /* calculate primrefs for second time range */ |
| 205 | auto reduction_func1 = [&] (const range<size_t>& r) { |
| 206 | PrimInfoMB pinfo = empty; |
| 207 | for (size_t i=r.begin(); i<r.end(); i++) |
| 208 | { |
| 209 | if (likely(prims[i].time_range_overlap(time_range1))) |
| 210 | { |
| 211 | const PrimRefMB& prim = recalculatePrimRef(prims[i],time_range1); |
| 212 | prims[i] = prim; |
| 213 | pinfo.add_primref(prim); |
| 214 | } |
| 215 | } |
| 216 | return pinfo; |
| 217 | }; |
| 218 | PrimInfoMB rinfo = parallel_reduce(set.object_range,PARALLEL_PARTITION_BLOCK_SIZE,PARALLEL_THRESHOLD,PrimInfoMB(empty),reduction_func1,PrimInfoMB::merge2); |
| 219 | rinfo.object_range = range<size_t>(set.begin(), set.begin() + rinfo.size()); |
| 220 | |
| 221 | /* primrefs for second time range are in prims[set.begin() .. set.end()) */ |
| 222 | /* some primitives may need to be filtered out */ |
| 223 | if (rinfo.size() != set.size()) |
| 224 | rinfo.object_range._end = parallel_filter(prims.data(), set.begin(), set.end(), size_t(1024), |
| 225 | [&](const PrimRefMB& prim) { return prim.time_range_overlap(time_range1); }); |
| 226 | |
| 227 | rset = SetMB(rinfo,&prims,time_range1); |
| 228 | |
| 229 | return new_vector; |
| 230 | } |
| 231 | |
| 232 | private: |
| 233 | MemoryMonitorInterface* device; // device to report memory usage to |
| 234 | const RecalculatePrimRef recalculatePrimRef; |
| 235 | }; |
| 236 | } |
| 237 | } |
| 238 | |