| 1 | // Copyright 2009-2021 Intel Corporation |
| 2 | // SPDX-License-Identifier: Apache-2.0 |
| 3 | |
| 4 | #pragma once |
| 5 | |
| 6 | #define MBLUR_NUM_TEMPORAL_BINS 2 |
| 7 | #define MBLUR_NUM_OBJECT_BINS 32 |
| 8 | |
| 9 | #include "../bvh/bvh.h" |
| 10 | #include "../common/primref_mb.h" |
| 11 | #include "heuristic_binning_array_aligned.h" |
| 12 | #include "heuristic_timesplit_array.h" |
| 13 | |
| 14 | namespace embree |
| 15 | { |
| 16 | namespace isa |
| 17 | { |
| 18 | template<typename T> |
| 19 | struct SharedVector |
| 20 | { |
| 21 | __forceinline SharedVector() {} |
| 22 | |
| 23 | __forceinline SharedVector(T* ptr, size_t refCount = 1) |
| 24 | : prims(ptr), refCount(refCount) {} |
| 25 | |
| 26 | __forceinline void incRef() { |
| 27 | refCount++; |
| 28 | } |
| 29 | |
| 30 | __forceinline void decRef() |
| 31 | { |
| 32 | if (--refCount == 0) |
| 33 | delete prims; |
| 34 | } |
| 35 | |
| 36 | T* prims; |
| 37 | size_t refCount; |
| 38 | }; |
| 39 | |
| 40 | template<typename BuildRecord, int MAX_BRANCHING_FACTOR> |
| 41 | struct LocalChildListT |
| 42 | { |
| 43 | typedef SharedVector<mvector<PrimRefMB>> SharedPrimRefVector; |
| 44 | |
| 45 | __forceinline LocalChildListT (const BuildRecord& record) |
| 46 | : numChildren(1), numSharedPrimVecs(1) |
| 47 | { |
| 48 | /* the local root will be freed in the ancestor where it was created (thus refCount is 2) */ |
| 49 | children[0] = record; |
| 50 | primvecs[0] = new (&sharedPrimVecs[0]) SharedPrimRefVector(record.prims.prims, 2); |
| 51 | } |
| 52 | |
| 53 | __forceinline ~LocalChildListT() |
| 54 | { |
| 55 | for (size_t i = 0; i < numChildren; i++) |
| 56 | primvecs[i]->decRef(); |
| 57 | } |
| 58 | |
| 59 | __forceinline BuildRecord& operator[] ( const size_t i ) { |
| 60 | return children[i]; |
| 61 | } |
| 62 | |
| 63 | __forceinline size_t size() const { |
| 64 | return numChildren; |
| 65 | } |
| 66 | |
| 67 | __forceinline void split(ssize_t bestChild, const BuildRecord& lrecord, const BuildRecord& rrecord, std::unique_ptr<mvector<PrimRefMB>> new_vector) |
| 68 | { |
| 69 | SharedPrimRefVector* bsharedPrimVec = primvecs[bestChild]; |
| 70 | if (lrecord.prims.prims == bsharedPrimVec->prims) { |
| 71 | primvecs[bestChild] = bsharedPrimVec; |
| 72 | bsharedPrimVec->incRef(); |
| 73 | } |
| 74 | else { |
| 75 | primvecs[bestChild] = new (&sharedPrimVecs[numSharedPrimVecs++]) SharedPrimRefVector(lrecord.prims.prims); |
| 76 | } |
| 77 | |
| 78 | if (rrecord.prims.prims == bsharedPrimVec->prims) { |
| 79 | primvecs[numChildren] = bsharedPrimVec; |
| 80 | bsharedPrimVec->incRef(); |
| 81 | } |
| 82 | else { |
| 83 | primvecs[numChildren] = new (&sharedPrimVecs[numSharedPrimVecs++]) SharedPrimRefVector(rrecord.prims.prims); |
| 84 | } |
| 85 | bsharedPrimVec->decRef(); |
| 86 | new_vector.release(); |
| 87 | |
| 88 | children[bestChild] = lrecord; |
| 89 | children[numChildren] = rrecord; |
| 90 | numChildren++; |
| 91 | } |
| 92 | |
| 93 | public: |
| 94 | array_t<BuildRecord,MAX_BRANCHING_FACTOR> children; |
| 95 | array_t<SharedPrimRefVector*,MAX_BRANCHING_FACTOR> primvecs; |
| 96 | size_t numChildren; |
| 97 | |
| 98 | array_t<SharedPrimRefVector,2*MAX_BRANCHING_FACTOR> sharedPrimVecs; |
| 99 | size_t numSharedPrimVecs; |
| 100 | }; |
| 101 | |
| 102 | template<typename Mesh> |
| 103 | struct RecalculatePrimRef |
| 104 | { |
| 105 | Scene* scene; |
| 106 | |
| 107 | __forceinline RecalculatePrimRef (Scene* scene) |
| 108 | : scene(scene) {} |
| 109 | |
| 110 | __forceinline PrimRefMB operator() (const PrimRefMB& prim, const BBox1f time_range) const |
| 111 | { |
| 112 | const unsigned geomID = prim.geomID(); |
| 113 | const unsigned primID = prim.primID(); |
| 114 | const Mesh* mesh = scene->get<Mesh>(geomID); |
| 115 | const LBBox3fa lbounds = mesh->linearBounds(primID, time_range); |
| 116 | const range<int> tbounds = mesh->timeSegmentRange(time_range); |
| 117 | return PrimRefMB (lbounds, tbounds.size(), mesh->time_range, mesh->numTimeSegments(), geomID, primID); |
| 118 | } |
| 119 | |
| 120 | // __noinline is workaround for ICC16 bug under MacOSX |
| 121 | __noinline PrimRefMB operator() (const PrimRefMB& prim, const BBox1f time_range, const LinearSpace3fa& space) const |
| 122 | { |
| 123 | const unsigned geomID = prim.geomID(); |
| 124 | const unsigned primID = prim.primID(); |
| 125 | const Mesh* mesh = scene->get<Mesh>(geomID); |
| 126 | const LBBox3fa lbounds = mesh->linearBounds(space, primID, time_range); |
| 127 | const range<int> tbounds = mesh->timeSegmentRange(time_range); |
| 128 | return PrimRefMB (lbounds, tbounds.size(), mesh->time_range, mesh->numTimeSegments(), geomID, primID); |
| 129 | } |
| 130 | |
| 131 | __forceinline LBBox3fa linearBounds(const PrimRefMB& prim, const BBox1f time_range) const { |
| 132 | return scene->get<Mesh>(prim.geomID())->linearBounds(prim.primID(), time_range); |
| 133 | } |
| 134 | |
| 135 | // __noinline is workaround for ICC16 bug under MacOSX |
| 136 | __noinline LBBox3fa linearBounds(const PrimRefMB& prim, const BBox1f time_range, const LinearSpace3fa& space) const { |
| 137 | return scene->get<Mesh>(prim.geomID())->linearBounds(space, prim.primID(), time_range); |
| 138 | } |
| 139 | }; |
| 140 | |
| 141 | struct VirtualRecalculatePrimRef |
| 142 | { |
| 143 | Scene* scene; |
| 144 | |
| 145 | __forceinline VirtualRecalculatePrimRef (Scene* scene) |
| 146 | : scene(scene) {} |
| 147 | |
| 148 | __forceinline PrimRefMB operator() (const PrimRefMB& prim, const BBox1f time_range) const |
| 149 | { |
| 150 | const unsigned geomID = prim.geomID(); |
| 151 | const unsigned primID = prim.primID(); |
| 152 | const Geometry* mesh = scene->get(geomID); |
| 153 | const LBBox3fa lbounds = mesh->vlinearBounds(primID, time_range); |
| 154 | const range<int> tbounds = mesh->timeSegmentRange(time_range); |
| 155 | return PrimRefMB (lbounds, tbounds.size(), mesh->time_range, mesh->numTimeSegments(), geomID, primID); |
| 156 | } |
| 157 | |
| 158 | __forceinline PrimRefMB operator() (const PrimRefMB& prim, const BBox1f time_range, const LinearSpace3fa& space) const |
| 159 | { |
| 160 | const unsigned geomID = prim.geomID(); |
| 161 | const unsigned primID = prim.primID(); |
| 162 | const Geometry* mesh = scene->get(geomID); |
| 163 | const LBBox3fa lbounds = mesh->vlinearBounds(space, primID, time_range); |
| 164 | const range<int> tbounds = mesh->timeSegmentRange(time_range); |
| 165 | return PrimRefMB (lbounds, tbounds.size(), mesh->time_range, mesh->numTimeSegments(), geomID, primID); |
| 166 | } |
| 167 | |
| 168 | __forceinline LBBox3fa linearBounds(const PrimRefMB& prim, const BBox1f time_range) const { |
| 169 | return scene->get(prim.geomID())->vlinearBounds(prim.primID(), time_range); |
| 170 | } |
| 171 | |
| 172 | __forceinline LBBox3fa linearBounds(const PrimRefMB& prim, const BBox1f time_range, const LinearSpace3fa& space) const { |
| 173 | return scene->get(prim.geomID())->vlinearBounds(space, prim.primID(), time_range); |
| 174 | } |
| 175 | }; |
| 176 | |
| 177 | struct BVHBuilderMSMBlur |
| 178 | { |
| 179 | /*! settings for msmblur builder */ |
| 180 | struct Settings |
| 181 | { |
| 182 | /*! default settings */ |
| 183 | Settings () |
| 184 | : branchingFactor(2), maxDepth(32), logBlockSize(0), minLeafSize(1), maxLeafSize(8), |
| 185 | travCost(1.0f), intCost(1.0f), singleLeafTimeSegment(false), |
| 186 | singleThreadThreshold(1024) {} |
| 187 | |
| 188 | |
| 189 | Settings (size_t sahBlockSize, size_t minLeafSize, size_t maxLeafSize, float travCost, float intCost, size_t singleThreadThreshold) |
| 190 | : branchingFactor(2), maxDepth(32), logBlockSize(bsr(sahBlockSize)), minLeafSize(minLeafSize), maxLeafSize(maxLeafSize), |
| 191 | travCost(travCost), intCost(intCost), singleThreadThreshold(singleThreadThreshold) |
| 192 | { |
| 193 | minLeafSize = min(minLeafSize,maxLeafSize); |
| 194 | } |
| 195 | |
| 196 | public: |
| 197 | size_t branchingFactor; //!< branching factor of BVH to build |
| 198 | size_t maxDepth; //!< maximum depth of BVH to build |
| 199 | size_t logBlockSize; //!< log2 of blocksize for SAH heuristic |
| 200 | size_t minLeafSize; //!< minimum size of a leaf |
| 201 | size_t maxLeafSize; //!< maximum size of a leaf |
| 202 | float travCost; //!< estimated cost of one traversal step |
| 203 | float intCost; //!< estimated cost of one primitive intersection |
| 204 | bool singleLeafTimeSegment; //!< split time to single time range |
| 205 | size_t singleThreadThreshold; //!< threshold when we switch to single threaded build |
| 206 | }; |
| 207 | |
| 208 | struct BuildRecord |
| 209 | { |
| 210 | public: |
| 211 | __forceinline BuildRecord () {} |
| 212 | |
| 213 | __forceinline BuildRecord (size_t depth) |
| 214 | : depth(depth) {} |
| 215 | |
| 216 | __forceinline BuildRecord (const SetMB& prims, size_t depth) |
| 217 | : depth(depth), prims(prims) {} |
| 218 | |
| 219 | __forceinline friend bool operator< (const BuildRecord& a, const BuildRecord& b) { |
| 220 | return a.prims.size() < b.prims.size(); |
| 221 | } |
| 222 | |
| 223 | __forceinline size_t size() const { |
| 224 | return prims.size(); |
| 225 | } |
| 226 | |
| 227 | public: |
| 228 | size_t depth; //!< Depth of the root of this subtree. |
| 229 | SetMB prims; //!< The list of primitives. |
| 230 | }; |
| 231 | |
| 232 | struct BuildRecordSplit : public BuildRecord |
| 233 | { |
| 234 | __forceinline BuildRecordSplit () {} |
| 235 | |
| 236 | __forceinline BuildRecordSplit (size_t depth) |
| 237 | : BuildRecord(depth) {} |
| 238 | |
| 239 | __forceinline BuildRecordSplit (const BuildRecord& record, const BinSplit<MBLUR_NUM_OBJECT_BINS>& split) |
| 240 | : BuildRecord(record), split(split) {} |
| 241 | |
| 242 | BinSplit<MBLUR_NUM_OBJECT_BINS> split; |
| 243 | }; |
| 244 | |
| 245 | template< |
| 246 | typename NodeRef, |
| 247 | typename RecalculatePrimRef, |
| 248 | typename Allocator, |
| 249 | typename CreateAllocFunc, |
| 250 | typename CreateNodeFunc, |
| 251 | typename SetNodeFunc, |
| 252 | typename CreateLeafFunc, |
| 253 | typename ProgressMonitor> |
| 254 | |
| 255 | class BuilderT |
| 256 | { |
| 257 | ALIGNED_CLASS_(16); |
| 258 | static const size_t MAX_BRANCHING_FACTOR = 16; //!< maximum supported BVH branching factor |
| 259 | static const size_t MIN_LARGE_LEAF_LEVELS = 8; //!< create balanced tree if we are that many levels before the maximum tree depth |
| 260 | |
| 261 | typedef BVHNodeRecordMB4D<NodeRef> NodeRecordMB4D; |
| 262 | typedef BinSplit<MBLUR_NUM_OBJECT_BINS> Split; |
| 263 | typedef mvector<PrimRefMB>* PrimRefVector; |
| 264 | typedef SharedVector<mvector<PrimRefMB>> SharedPrimRefVector; |
| 265 | typedef LocalChildListT<BuildRecord,MAX_BRANCHING_FACTOR> LocalChildList; |
| 266 | typedef LocalChildListT<BuildRecordSplit,MAX_BRANCHING_FACTOR> LocalChildListSplit; |
| 267 | |
| 268 | public: |
| 269 | |
| 270 | BuilderT (MemoryMonitorInterface* device, |
| 271 | const RecalculatePrimRef recalculatePrimRef, |
| 272 | const CreateAllocFunc createAlloc, |
| 273 | const CreateNodeFunc createNode, |
| 274 | const SetNodeFunc setNode, |
| 275 | const CreateLeafFunc createLeaf, |
| 276 | const ProgressMonitor progressMonitor, |
| 277 | const Settings& settings) |
| 278 | : cfg(settings), |
| 279 | heuristicObjectSplit(), |
| 280 | heuristicTemporalSplit(device, recalculatePrimRef), |
| 281 | recalculatePrimRef(recalculatePrimRef), createAlloc(createAlloc), createNode(createNode), setNode(setNode), createLeaf(createLeaf), |
| 282 | progressMonitor(progressMonitor) |
| 283 | { |
| 284 | if (cfg.branchingFactor > MAX_BRANCHING_FACTOR) |
| 285 | throw_RTCError(RTC_ERROR_UNKNOWN,"bvh_builder: branching factor too large" ); |
| 286 | } |
| 287 | |
| 288 | /*! finds the best split */ |
| 289 | const Split find(const SetMB& set) |
| 290 | { |
| 291 | /* first try standard object split */ |
| 292 | const Split object_split = heuristicObjectSplit.find(set,cfg.logBlockSize); |
| 293 | const float object_split_sah = object_split.splitSAH(); |
| 294 | |
| 295 | /* test temporal splits only when object split was bad */ |
| 296 | const float leaf_sah = set.leafSAH(cfg.logBlockSize); |
| 297 | if (object_split_sah < 0.50f*leaf_sah) |
| 298 | return object_split; |
| 299 | |
| 300 | /* do temporal splits only if the time range is big enough */ |
| 301 | if (set.time_range.size() > 1.01f/float(set.max_num_time_segments)) |
| 302 | { |
| 303 | const Split temporal_split = heuristicTemporalSplit.find(set,cfg.logBlockSize); |
| 304 | const float temporal_split_sah = temporal_split.splitSAH(); |
| 305 | |
| 306 | /* take temporal split if it improved SAH */ |
| 307 | if (temporal_split_sah < object_split_sah) |
| 308 | return temporal_split; |
| 309 | } |
| 310 | |
| 311 | return object_split; |
| 312 | } |
| 313 | |
| 314 | /*! array partitioning */ |
| 315 | __forceinline std::unique_ptr<mvector<PrimRefMB>> split(const Split& split, const SetMB& set, SetMB& lset, SetMB& rset) |
| 316 | { |
| 317 | /* perform object split */ |
| 318 | if (likely(split.data == Split::SPLIT_OBJECT)) { |
| 319 | heuristicObjectSplit.split(split,set,lset,rset); |
| 320 | } |
| 321 | /* perform temporal split */ |
| 322 | else if (likely(split.data == Split::SPLIT_TEMPORAL)) { |
| 323 | return heuristicTemporalSplit.split(split,set,lset,rset); |
| 324 | } |
| 325 | /* perform fallback split */ |
| 326 | else if (unlikely(split.data == Split::SPLIT_FALLBACK)) { |
| 327 | set.deterministic_order(); |
| 328 | splitFallback(set,lset,rset); |
| 329 | } |
| 330 | /* split by geometry */ |
| 331 | else if (unlikely(split.data == Split::SPLIT_GEOMID)) { |
| 332 | set.deterministic_order(); |
| 333 | splitByGeometry(set,lset,rset); |
| 334 | } |
| 335 | else |
| 336 | assert(false); |
| 337 | |
| 338 | return std::unique_ptr<mvector<PrimRefMB>>(); |
| 339 | } |
| 340 | |
| 341 | /*! finds the best fallback split */ |
| 342 | __noinline Split findFallback(const SetMB& set) |
| 343 | { |
| 344 | /* split if primitives are not from same geometry */ |
| 345 | if (!sameGeometry(set)) |
| 346 | return Split(0.0f,Split::SPLIT_GEOMID); |
| 347 | |
| 348 | /* if a leaf can only hold a single time-segment, we might have to do additional temporal splits */ |
| 349 | if (cfg.singleLeafTimeSegment) |
| 350 | { |
| 351 | /* test if one primitive has more than one time segment in time range, if so split time */ |
| 352 | for (size_t i=set.begin(); i<set.end(); i++) |
| 353 | { |
| 354 | const PrimRefMB& prim = (*set.prims)[i]; |
| 355 | const range<int> itime_range = prim.timeSegmentRange(set.time_range); |
| 356 | const int localTimeSegments = itime_range.size(); |
| 357 | assert(localTimeSegments > 0); |
| 358 | if (localTimeSegments > 1) { |
| 359 | const int icenter = (itime_range.begin() + itime_range.end())/2; |
| 360 | const float splitTime = prim.timeStep(icenter); |
| 361 | return Split(0.0f,(unsigned)Split::SPLIT_TEMPORAL,0,splitTime); |
| 362 | } |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | /* otherwise return fallback split */ |
| 367 | return Split(0.0f,Split::SPLIT_FALLBACK); |
| 368 | } |
| 369 | |
| 370 | /*! performs fallback split */ |
| 371 | void splitFallback(const SetMB& set, SetMB& lset, SetMB& rset) |
| 372 | { |
| 373 | mvector<PrimRefMB>& prims = *set.prims; |
| 374 | |
| 375 | const size_t begin = set.begin(); |
| 376 | const size_t end = set.end(); |
| 377 | const size_t center = (begin + end + 1) / 2; |
| 378 | |
| 379 | PrimInfoMB linfo = empty; |
| 380 | for (size_t i=begin; i<center; i++) |
| 381 | linfo.add_primref(prims[i]); |
| 382 | |
| 383 | PrimInfoMB rinfo = empty; |
| 384 | for (size_t i=center; i<end; i++) |
| 385 | rinfo.add_primref(prims[i]); |
| 386 | |
| 387 | new (&lset) SetMB(linfo,set.prims,range<size_t>(begin,center),set.time_range); |
| 388 | new (&rset) SetMB(rinfo,set.prims,range<size_t>(center,end ),set.time_range); |
| 389 | } |
| 390 | |
| 391 | /*! checks if all primitives are from the same geometry */ |
| 392 | __forceinline bool sameGeometry(const SetMB& set) |
| 393 | { |
| 394 | if (set.size() == 0) return true; |
| 395 | mvector<PrimRefMB>& prims = *set.prims; |
| 396 | const size_t begin = set.begin(); |
| 397 | const size_t end = set.end(); |
| 398 | unsigned int firstGeomID = prims[begin].geomID(); |
| 399 | for (size_t i=begin+1; i<end; i++) { |
| 400 | if (prims[i].geomID() != firstGeomID){ |
| 401 | return false; |
| 402 | } |
| 403 | } |
| 404 | return true; |
| 405 | } |
| 406 | |
| 407 | /* split by geometry ID */ |
| 408 | void splitByGeometry(const SetMB& set, SetMB& lset, SetMB& rset) |
| 409 | { |
| 410 | assert(set.size() > 1); |
| 411 | |
| 412 | mvector<PrimRefMB>& prims = *set.prims; |
| 413 | const size_t begin = set.begin(); |
| 414 | const size_t end = set.end(); |
| 415 | |
| 416 | PrimInfoMB left(empty); |
| 417 | PrimInfoMB right(empty); |
| 418 | unsigned int geomID = prims[begin].geomID(); |
| 419 | size_t center = serial_partitioning(prims.data(),begin,end,left,right, |
| 420 | [&] ( const PrimRefMB& prim ) { return prim.geomID() == geomID; }, |
| 421 | [ ] ( PrimInfoMB& dst, const PrimRefMB& prim ) { dst.add_primref(prim); }); |
| 422 | |
| 423 | new (&lset) SetMB(left, set.prims,range<size_t>(begin,center),set.time_range); |
| 424 | new (&rset) SetMB(right,set.prims,range<size_t>(center,end ),set.time_range); |
| 425 | } |
| 426 | |
| 427 | const NodeRecordMB4D createLargeLeaf(const BuildRecord& in, Allocator alloc) |
| 428 | { |
| 429 | /* this should never occur but is a fatal error */ |
| 430 | if (in.depth > cfg.maxDepth) |
| 431 | throw_RTCError(RTC_ERROR_UNKNOWN,"depth limit reached" ); |
| 432 | |
| 433 | /* replace already found split by fallback split */ |
| 434 | const BuildRecordSplit current(BuildRecord(in.prims,in.depth),findFallback(in.prims)); |
| 435 | |
| 436 | /* special case when directly creating leaf without any splits that could shrink time_range */ |
| 437 | bool force_split = false; |
| 438 | if (current.depth == 1 && current.size() > 0) |
| 439 | { |
| 440 | BBox1f c = empty; |
| 441 | BBox1f p = current.prims.time_range; |
| 442 | for (size_t i=current.prims.begin(); i<current.prims.end(); i++) { |
| 443 | mvector<PrimRefMB>& prims = *current.prims.prims; |
| 444 | c.extend(prims[i].time_range); |
| 445 | } |
| 446 | |
| 447 | force_split = c.lower > p.lower || c.upper < p.upper; |
| 448 | } |
| 449 | |
| 450 | /* create leaf for few primitives */ |
| 451 | if (current.size() <= cfg.maxLeafSize && current.split.data < Split::SPLIT_ENFORCE && !force_split) |
| 452 | return createLeaf(current,alloc); |
| 453 | |
| 454 | /* fill all children by always splitting the largest one */ |
| 455 | bool hasTimeSplits = false; |
| 456 | NodeRecordMB4D values[MAX_BRANCHING_FACTOR]; |
| 457 | LocalChildListSplit children(current); |
| 458 | |
| 459 | do { |
| 460 | /* find best child with largest bounding box area */ |
| 461 | size_t bestChild = -1; |
| 462 | size_t bestSize = 0; |
| 463 | for (size_t i=0; i<children.size(); i++) |
| 464 | { |
| 465 | /* ignore leaves as they cannot get split */ |
| 466 | if (children[i].size() <= cfg.maxLeafSize && children[i].split.data < Split::SPLIT_ENFORCE && !force_split) |
| 467 | continue; |
| 468 | |
| 469 | force_split = false; |
| 470 | |
| 471 | /* remember child with largest size */ |
| 472 | if (children[i].size() > bestSize) { |
| 473 | bestSize = children[i].size(); |
| 474 | bestChild = i; |
| 475 | } |
| 476 | } |
| 477 | if (bestChild == -1) break; |
| 478 | |
| 479 | /* perform best found split */ |
| 480 | BuildRecordSplit& brecord = children[bestChild]; |
| 481 | BuildRecordSplit lrecord(current.depth+1); |
| 482 | BuildRecordSplit rrecord(current.depth+1); |
| 483 | std::unique_ptr<mvector<PrimRefMB>> new_vector = split(brecord.split,brecord.prims,lrecord.prims,rrecord.prims); |
| 484 | hasTimeSplits |= new_vector != nullptr; |
| 485 | |
| 486 | /* find new splits */ |
| 487 | lrecord.split = findFallback(lrecord.prims); |
| 488 | rrecord.split = findFallback(rrecord.prims); |
| 489 | children.split(bestChild,lrecord,rrecord,std::move(new_vector)); |
| 490 | |
| 491 | } while (children.size() < cfg.branchingFactor); |
| 492 | |
| 493 | /* detect time_ranges that have shrunken */ |
| 494 | for (size_t i=0; i<children.size(); i++) { |
| 495 | const BBox1f c = children[i].prims.time_range; |
| 496 | const BBox1f p = in.prims.time_range; |
| 497 | hasTimeSplits |= c.lower > p.lower || c.upper < p.upper; |
| 498 | } |
| 499 | |
| 500 | /* create node */ |
| 501 | auto node = createNode(children.children.data(),children.numChildren,alloc,hasTimeSplits); |
| 502 | |
| 503 | /* recurse into each child and perform reduction */ |
| 504 | LBBox3fa gbounds = empty; |
| 505 | for (size_t i=0; i<children.size(); i++) { |
| 506 | values[i] = createLargeLeaf(children[i],alloc); |
| 507 | gbounds.extend(values[i].lbounds); |
| 508 | } |
| 509 | |
| 510 | setNode(current,children.children.data(),node,values,children.numChildren); |
| 511 | |
| 512 | /* calculate geometry bounds of this node */ |
| 513 | if (hasTimeSplits) |
| 514 | return NodeRecordMB4D(node,current.prims.linearBounds(recalculatePrimRef),current.prims.time_range); |
| 515 | else |
| 516 | return NodeRecordMB4D(node,gbounds,current.prims.time_range); |
| 517 | } |
| 518 | |
| 519 | const NodeRecordMB4D recurse(const BuildRecord& current, Allocator alloc, bool toplevel) |
| 520 | { |
| 521 | /* get thread local allocator */ |
| 522 | if (!alloc) |
| 523 | alloc = createAlloc(); |
| 524 | |
| 525 | /* call memory monitor function to signal progress */ |
| 526 | if (toplevel && current.size() <= cfg.singleThreadThreshold) |
| 527 | progressMonitor(current.size()); |
| 528 | |
| 529 | /*! find best split */ |
| 530 | const Split csplit = find(current.prims); |
| 531 | |
| 532 | /*! compute leaf and split cost */ |
| 533 | const float leafSAH = cfg.intCost*current.prims.leafSAH(cfg.logBlockSize); |
| 534 | const float splitSAH = cfg.travCost*current.prims.halfArea()+cfg.intCost*csplit.splitSAH(); |
| 535 | assert((current.size() == 0) || ((leafSAH >= 0) && (splitSAH >= 0))); |
| 536 | |
| 537 | /*! create a leaf node when threshold reached or SAH tells us to stop */ |
| 538 | if (current.size() <= cfg.minLeafSize || current.depth+MIN_LARGE_LEAF_LEVELS >= cfg.maxDepth || (current.size() <= cfg.maxLeafSize && leafSAH <= splitSAH)) { |
| 539 | current.prims.deterministic_order(); |
| 540 | return createLargeLeaf(current,alloc); |
| 541 | } |
| 542 | |
| 543 | /*! perform initial split */ |
| 544 | SetMB lprims,rprims; |
| 545 | std::unique_ptr<mvector<PrimRefMB>> new_vector = split(csplit,current.prims,lprims,rprims); |
| 546 | bool hasTimeSplits = new_vector != nullptr; |
| 547 | NodeRecordMB4D values[MAX_BRANCHING_FACTOR]; |
| 548 | LocalChildList children(current); |
| 549 | { |
| 550 | BuildRecord lrecord(lprims,current.depth+1); |
| 551 | BuildRecord rrecord(rprims,current.depth+1); |
| 552 | children.split(0,lrecord,rrecord,std::move(new_vector)); |
| 553 | } |
| 554 | |
| 555 | /*! split until node is full or SAH tells us to stop */ |
| 556 | while (children.size() < cfg.branchingFactor) |
| 557 | { |
| 558 | /*! find best child to split */ |
| 559 | float bestArea = neg_inf; |
| 560 | ssize_t bestChild = -1; |
| 561 | for (size_t i=0; i<children.size(); i++) |
| 562 | { |
| 563 | if (children[i].size() <= cfg.minLeafSize) continue; |
| 564 | if (expectedApproxHalfArea(children[i].prims.geomBounds) > bestArea) { |
| 565 | bestChild = i; bestArea = expectedApproxHalfArea(children[i].prims.geomBounds); |
| 566 | } |
| 567 | } |
| 568 | if (bestChild == -1) break; |
| 569 | |
| 570 | /* perform split */ |
| 571 | BuildRecord& brecord = children[bestChild]; |
| 572 | BuildRecord lrecord(current.depth+1); |
| 573 | BuildRecord rrecord(current.depth+1); |
| 574 | Split csplit = find(brecord.prims); |
| 575 | std::unique_ptr<mvector<PrimRefMB>> new_vector = split(csplit,brecord.prims,lrecord.prims,rrecord.prims); |
| 576 | hasTimeSplits |= new_vector != nullptr; |
| 577 | children.split(bestChild,lrecord,rrecord,std::move(new_vector)); |
| 578 | } |
| 579 | |
| 580 | /* detect time_ranges that have shrunken */ |
| 581 | for (size_t i=0; i<children.size(); i++) { |
| 582 | const BBox1f c = children[i].prims.time_range; |
| 583 | const BBox1f p = current.prims.time_range; |
| 584 | hasTimeSplits |= c.lower > p.lower || c.upper < p.upper; |
| 585 | } |
| 586 | |
| 587 | /* sort buildrecords for simpler shadow ray traversal */ |
| 588 | //std::sort(&children[0],&children[children.size()],std::greater<BuildRecord>()); // FIXME: reduces traversal performance of bvh8.triangle4 (need to verified) !! |
| 589 | |
| 590 | /*! create an inner node */ |
| 591 | auto node = createNode(children.children.data(), children.numChildren, alloc, hasTimeSplits); |
| 592 | LBBox3fa gbounds = empty; |
| 593 | |
| 594 | /* spawn tasks */ |
| 595 | if (unlikely(current.size() > cfg.singleThreadThreshold)) |
| 596 | { |
| 597 | /*! parallel_for is faster than spawning sub-tasks */ |
| 598 | parallel_for(size_t(0), children.size(), [&] (const range<size_t>& r) { |
| 599 | for (size_t i=r.begin(); i<r.end(); i++) { |
| 600 | values[i] = recurse(children[i],nullptr,true); |
| 601 | _mm_mfence(); // to allow non-temporal stores during build |
| 602 | } |
| 603 | }); |
| 604 | |
| 605 | /*! merge bounding boxes */ |
| 606 | for (size_t i=0; i<children.size(); i++) |
| 607 | gbounds.extend(values[i].lbounds); |
| 608 | } |
| 609 | /* recurse into each child */ |
| 610 | else |
| 611 | { |
| 612 | //for (size_t i=0; i<children.size(); i++) |
| 613 | for (ssize_t i=children.size()-1; i>=0; i--) { |
| 614 | values[i] = recurse(children[i],alloc,false); |
| 615 | gbounds.extend(values[i].lbounds); |
| 616 | } |
| 617 | } |
| 618 | |
| 619 | setNode(current,children.children.data(),node,values,children.numChildren); |
| 620 | |
| 621 | /* calculate geometry bounds of this node */ |
| 622 | if (unlikely(hasTimeSplits)) |
| 623 | return NodeRecordMB4D(node,current.prims.linearBounds(recalculatePrimRef),current.prims.time_range); |
| 624 | else |
| 625 | return NodeRecordMB4D(node,gbounds,current.prims.time_range); |
| 626 | } |
| 627 | |
| 628 | /*! builder entry function */ |
| 629 | __forceinline const NodeRecordMB4D operator() (mvector<PrimRefMB>& prims, const PrimInfoMB& pinfo) |
| 630 | { |
| 631 | const SetMB set(pinfo,&prims); |
| 632 | auto ret = recurse(BuildRecord(set,1),nullptr,true); |
| 633 | _mm_mfence(); // to allow non-temporal stores during build |
| 634 | return ret; |
| 635 | } |
| 636 | |
| 637 | private: |
| 638 | Settings cfg; |
| 639 | HeuristicArrayBinningMB<PrimRefMB,MBLUR_NUM_OBJECT_BINS> heuristicObjectSplit; |
| 640 | HeuristicMBlurTemporalSplit<PrimRefMB,RecalculatePrimRef,MBLUR_NUM_TEMPORAL_BINS> heuristicTemporalSplit; |
| 641 | const RecalculatePrimRef recalculatePrimRef; |
| 642 | const CreateAllocFunc createAlloc; |
| 643 | const CreateNodeFunc createNode; |
| 644 | const SetNodeFunc setNode; |
| 645 | const CreateLeafFunc createLeaf; |
| 646 | const ProgressMonitor progressMonitor; |
| 647 | }; |
| 648 | |
| 649 | template<typename NodeRef, |
| 650 | typename RecalculatePrimRef, |
| 651 | typename CreateAllocFunc, |
| 652 | typename CreateNodeFunc, |
| 653 | typename SetNodeFunc, |
| 654 | typename CreateLeafFunc, |
| 655 | typename ProgressMonitorFunc> |
| 656 | |
| 657 | static const BVHNodeRecordMB4D<NodeRef> build(mvector<PrimRefMB>& prims, |
| 658 | const PrimInfoMB& pinfo, |
| 659 | MemoryMonitorInterface* device, |
| 660 | const RecalculatePrimRef recalculatePrimRef, |
| 661 | const CreateAllocFunc createAlloc, |
| 662 | const CreateNodeFunc createNode, |
| 663 | const SetNodeFunc setNode, |
| 664 | const CreateLeafFunc createLeaf, |
| 665 | const ProgressMonitorFunc progressMonitor, |
| 666 | const Settings& settings) |
| 667 | { |
| 668 | typedef BuilderT< |
| 669 | NodeRef, |
| 670 | RecalculatePrimRef, |
| 671 | decltype(createAlloc()), |
| 672 | CreateAllocFunc, |
| 673 | CreateNodeFunc, |
| 674 | SetNodeFunc, |
| 675 | CreateLeafFunc, |
| 676 | ProgressMonitorFunc> Builder; |
| 677 | |
| 678 | Builder builder(device, |
| 679 | recalculatePrimRef, |
| 680 | createAlloc, |
| 681 | createNode, |
| 682 | setNode, |
| 683 | createLeaf, |
| 684 | progressMonitor, |
| 685 | settings); |
| 686 | |
| 687 | |
| 688 | return builder(prims,pinfo); |
| 689 | } |
| 690 | }; |
| 691 | } |
| 692 | } |
| 693 | |