| 1 | // Copyright 2009-2021 Intel Corporation |
| 2 | // SPDX-License-Identifier: Apache-2.0 |
| 3 | |
| 4 | #pragma once |
| 5 | |
| 6 | #include "bvh.h" |
| 7 | #include "node_intersector1.h" |
| 8 | #include "../common/stack_item.h" |
| 9 | |
| 10 | #define NEW_SORTING_CODE 1 |
| 11 | |
| 12 | namespace embree |
| 13 | { |
| 14 | namespace isa |
| 15 | { |
| 16 | /*! BVH regular node traversal for single rays. */ |
| 17 | template<int N, int types> |
| 18 | class BVHNNodeTraverser1Hit; |
| 19 | |
| 20 | #if defined(__AVX512VL__) // SKX |
| 21 | |
| 22 | template<int N> |
| 23 | __forceinline void isort_update(vint<N> &dist, const vint<N> &d) |
| 24 | { |
| 25 | const vint<N> dist_shift = align_shift_right<N-1>(dist,dist); |
| 26 | const vboolf<N> m_geq = d >= dist; |
| 27 | const vboolf<N> m_geq_shift = m_geq << 1; |
| 28 | dist = select(m_geq,d,dist); |
| 29 | dist = select(m_geq_shift,dist_shift,dist); |
| 30 | } |
| 31 | |
| 32 | template<int N> |
| 33 | __forceinline void isort_quick_update(vint<N> &dist, const vint<N> &d) { |
| 34 | dist = align_shift_right<N-1>(dist,permute(d,vint<N>(zero))); |
| 35 | } |
| 36 | |
| 37 | __forceinline size_t permuteExtract(const vint8& index, const vllong4& n0, const vllong4& n1) { |
| 38 | return toScalar(permutex2var((__m256i)index,n0,n1)); |
| 39 | } |
| 40 | |
| 41 | __forceinline float permuteExtract(const vint8& index, const vfloat8& n) { |
| 42 | return toScalar(permute(n,index)); |
| 43 | } |
| 44 | |
| 45 | #endif |
| 46 | |
| 47 | /* Specialization for BVH4. */ |
| 48 | template<int types> |
| 49 | class BVHNNodeTraverser1Hit<4, types> |
| 50 | { |
| 51 | typedef BVH4 BVH; |
| 52 | typedef BVH4::NodeRef NodeRef; |
| 53 | typedef BVH4::BaseNode BaseNode; |
| 54 | |
| 55 | |
| 56 | public: |
| 57 | /* Traverses a node with at least one hit child. Optimized for finding the closest hit (intersection). */ |
| 58 | static __forceinline void traverseClosestHit(NodeRef& cur, |
| 59 | size_t mask, |
| 60 | const vfloat4& tNear, |
| 61 | StackItemT<NodeRef>*& stackPtr, |
| 62 | StackItemT<NodeRef>* stackEnd) |
| 63 | { |
| 64 | assert(mask != 0); |
| 65 | const BaseNode* node = cur.baseNode(); |
| 66 | |
| 67 | /*! one child is hit, continue with that child */ |
| 68 | size_t r = bscf(mask); |
| 69 | cur = node->child(r); |
| 70 | BVH::prefetch(cur,types); |
| 71 | if (likely(mask == 0)) { |
| 72 | assert(cur != BVH::emptyNode); |
| 73 | return; |
| 74 | } |
| 75 | |
| 76 | /*! two children are hit, push far child, and continue with closer child */ |
| 77 | NodeRef c0 = cur; |
| 78 | const unsigned int d0 = ((unsigned int*)&tNear)[r]; |
| 79 | r = bscf(mask); |
| 80 | NodeRef c1 = node->child(r); |
| 81 | BVH::prefetch(c1,types); |
| 82 | const unsigned int d1 = ((unsigned int*)&tNear)[r]; |
| 83 | assert(c0 != BVH::emptyNode); |
| 84 | assert(c1 != BVH::emptyNode); |
| 85 | if (likely(mask == 0)) { |
| 86 | assert(stackPtr < stackEnd); |
| 87 | if (d0 < d1) { stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++; cur = c0; return; } |
| 88 | else { stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++; cur = c1; return; } |
| 89 | } |
| 90 | |
| 91 | #if NEW_SORTING_CODE == 1 |
| 92 | vint4 s0((size_t)c0,(size_t)d0); |
| 93 | vint4 s1((size_t)c1,(size_t)d1); |
| 94 | r = bscf(mask); |
| 95 | NodeRef c2 = node->child(r); BVH::prefetch(c2,types); unsigned int d2 = ((unsigned int*)&tNear)[r]; |
| 96 | vint4 s2((size_t)c2,(size_t)d2); |
| 97 | /* 3 hits */ |
| 98 | if (likely(mask == 0)) { |
| 99 | StackItemT<NodeRef>::sort3(s0,s1,s2); |
| 100 | *(vint4*)&stackPtr[0] = s0; *(vint4*)&stackPtr[1] = s1; |
| 101 | cur = toSizeT(s2); |
| 102 | stackPtr+=2; |
| 103 | return; |
| 104 | } |
| 105 | r = bscf(mask); |
| 106 | NodeRef c3 = node->child(r); BVH::prefetch(c3,types); unsigned int d3 = ((unsigned int*)&tNear)[r]; |
| 107 | vint4 s3((size_t)c3,(size_t)d3); |
| 108 | /* 4 hits */ |
| 109 | StackItemT<NodeRef>::sort4(s0,s1,s2,s3); |
| 110 | *(vint4*)&stackPtr[0] = s0; *(vint4*)&stackPtr[1] = s1; *(vint4*)&stackPtr[2] = s2; |
| 111 | cur = toSizeT(s3); |
| 112 | stackPtr+=3; |
| 113 | #else |
| 114 | /*! Here starts the slow path for 3 or 4 hit children. We push |
| 115 | * all nodes onto the stack to sort them there. */ |
| 116 | assert(stackPtr < stackEnd); |
| 117 | stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++; |
| 118 | assert(stackPtr < stackEnd); |
| 119 | stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++; |
| 120 | |
| 121 | /*! three children are hit, push all onto stack and sort 3 stack items, continue with closest child */ |
| 122 | assert(stackPtr < stackEnd); |
| 123 | r = bscf(mask); |
| 124 | NodeRef c = node->child(r); BVH::prefetch(c,types); unsigned int d = ((unsigned int*)&tNear)[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++; |
| 125 | assert(c != BVH::emptyNode); |
| 126 | if (likely(mask == 0)) { |
| 127 | sort(stackPtr[-1],stackPtr[-2],stackPtr[-3]); |
| 128 | cur = (NodeRef) stackPtr[-1].ptr; stackPtr--; |
| 129 | return; |
| 130 | } |
| 131 | |
| 132 | /*! four children are hit, push all onto stack and sort 4 stack items, continue with closest child */ |
| 133 | assert(stackPtr < stackEnd); |
| 134 | r = bscf(mask); |
| 135 | c = node->child(r); BVH::prefetch(c,types); d = *(unsigned int*)&tNear[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++; |
| 136 | assert(c != BVH::emptyNode); |
| 137 | sort(stackPtr[-1],stackPtr[-2],stackPtr[-3],stackPtr[-4]); |
| 138 | cur = (NodeRef) stackPtr[-1].ptr; stackPtr--; |
| 139 | #endif |
| 140 | } |
| 141 | |
| 142 | /* Traverses a node with at least one hit child. Optimized for finding any hit (occlusion). */ |
| 143 | static __forceinline void traverseAnyHit(NodeRef& cur, |
| 144 | size_t mask, |
| 145 | const vfloat4& tNear, |
| 146 | NodeRef*& stackPtr, |
| 147 | NodeRef* stackEnd) |
| 148 | { |
| 149 | const BaseNode* node = cur.baseNode(); |
| 150 | |
| 151 | /*! one child is hit, continue with that child */ |
| 152 | size_t r = bscf(mask); |
| 153 | cur = node->child(r); |
| 154 | BVH::prefetch(cur,types); |
| 155 | |
| 156 | /* simpler in sequence traversal order */ |
| 157 | assert(cur != BVH::emptyNode); |
| 158 | if (likely(mask == 0)) return; |
| 159 | assert(stackPtr < stackEnd); |
| 160 | *stackPtr = cur; stackPtr++; |
| 161 | |
| 162 | for (; ;) |
| 163 | { |
| 164 | r = bscf(mask); |
| 165 | cur = node->child(r); BVH::prefetch(cur,types); |
| 166 | assert(cur != BVH::emptyNode); |
| 167 | if (likely(mask == 0)) return; |
| 168 | assert(stackPtr < stackEnd); |
| 169 | *stackPtr = cur; stackPtr++; |
| 170 | } |
| 171 | } |
| 172 | }; |
| 173 | |
| 174 | /* Specialization for BVH8. */ |
| 175 | template<int types> |
| 176 | class BVHNNodeTraverser1Hit<8, types> |
| 177 | { |
| 178 | typedef BVH8 BVH; |
| 179 | typedef BVH8::NodeRef NodeRef; |
| 180 | typedef BVH8::BaseNode BaseNode; |
| 181 | |
| 182 | #if defined(__AVX512VL__) |
| 183 | template<class NodeRef, class BaseNode> |
| 184 | static __forceinline void traverseClosestHitAVX512VL8(NodeRef& cur, |
| 185 | size_t mask, |
| 186 | const vfloat8& tNear, |
| 187 | StackItemT<NodeRef>*& stackPtr, |
| 188 | StackItemT<NodeRef>* stackEnd) |
| 189 | { |
| 190 | assert(mask != 0); |
| 191 | const BaseNode* node = cur.baseNode(); |
| 192 | const vllong4 n0 = vllong4::loadu((vllong4*)&node->children[0]); |
| 193 | const vllong4 n1 = vllong4::loadu((vllong4*)&node->children[4]); |
| 194 | vint8 distance_i = (asInt(tNear) & 0xfffffff8) | vint8(step); |
| 195 | distance_i = vint8::compact((int)mask,distance_i,distance_i); |
| 196 | cur = permuteExtract(distance_i,n0,n1); |
| 197 | BVH::prefetch(cur,types); |
| 198 | |
| 199 | mask &= mask-1; |
| 200 | if (likely(mask == 0)) return; |
| 201 | |
| 202 | /* 2 hits: order A0 B0 */ |
| 203 | const vint8 d0(distance_i); |
| 204 | const vint8 d1(shuffle<1>(distance_i)); |
| 205 | cur = permuteExtract(d1,n0,n1); |
| 206 | BVH::prefetch(cur,types); |
| 207 | |
| 208 | const vint8 dist_A0 = min(d0, d1); |
| 209 | const vint8 dist_B0 = max(d0, d1); |
| 210 | assert(dist_A0[0] < dist_B0[0]); |
| 211 | |
| 212 | mask &= mask-1; |
| 213 | if (likely(mask == 0)) { |
| 214 | cur = permuteExtract(dist_A0,n0,n1); |
| 215 | stackPtr[0].ptr = permuteExtract(dist_B0,n0,n1); |
| 216 | *(float*)&stackPtr[0].dist = permuteExtract(dist_B0,tNear); |
| 217 | stackPtr++; |
| 218 | return; |
| 219 | } |
| 220 | |
| 221 | /* 3 hits: order A1 B1 C1 */ |
| 222 | |
| 223 | const vint8 d2(shuffle<2>(distance_i)); |
| 224 | cur = permuteExtract(d2,n0,n1); |
| 225 | BVH::prefetch(cur,types); |
| 226 | |
| 227 | const vint8 dist_A1 = min(dist_A0,d2); |
| 228 | const vint8 dist_tmp_B1 = max(dist_A0,d2); |
| 229 | const vint8 dist_B1 = min(dist_B0,dist_tmp_B1); |
| 230 | const vint8 dist_C1 = max(dist_B0,dist_tmp_B1); |
| 231 | assert(dist_A1[0] < dist_B1[0]); |
| 232 | assert(dist_B1[0] < dist_C1[0]); |
| 233 | |
| 234 | mask &= mask-1; |
| 235 | if (likely(mask == 0)) { |
| 236 | cur = permuteExtract(dist_A1,n0,n1); |
| 237 | stackPtr[0].ptr = permuteExtract(dist_C1,n0,n1); |
| 238 | *(float*)&stackPtr[0].dist = permuteExtract(dist_C1,tNear); |
| 239 | stackPtr[1].ptr = permuteExtract(dist_B1,n0,n1); |
| 240 | *(float*)&stackPtr[1].dist = permuteExtract(dist_B1,tNear); |
| 241 | stackPtr+=2; |
| 242 | return; |
| 243 | } |
| 244 | |
| 245 | /* 4 hits: order A2 B2 C2 D2 */ |
| 246 | |
| 247 | const vint8 d3(shuffle<3>(distance_i)); |
| 248 | cur = permuteExtract(d3,n0,n1); |
| 249 | BVH::prefetch(cur,types); |
| 250 | |
| 251 | const vint8 dist_A2 = min(dist_A1,d3); |
| 252 | const vint8 dist_tmp_B2 = max(dist_A1,d3); |
| 253 | const vint8 dist_B2 = min(dist_B1,dist_tmp_B2); |
| 254 | const vint8 dist_tmp_C2 = max(dist_B1,dist_tmp_B2); |
| 255 | const vint8 dist_C2 = min(dist_C1,dist_tmp_C2); |
| 256 | const vint8 dist_D2 = max(dist_C1,dist_tmp_C2); |
| 257 | assert(dist_A2[0] < dist_B2[0]); |
| 258 | assert(dist_B2[0] < dist_C2[0]); |
| 259 | assert(dist_C2[0] < dist_D2[0]); |
| 260 | |
| 261 | mask &= mask-1; |
| 262 | if (likely(mask == 0)) { |
| 263 | cur = permuteExtract(dist_A2,n0,n1); |
| 264 | stackPtr[0].ptr = permuteExtract(dist_D2,n0,n1); |
| 265 | *(float*)&stackPtr[0].dist = permuteExtract(dist_D2,tNear); |
| 266 | stackPtr[1].ptr = permuteExtract(dist_C2,n0,n1); |
| 267 | *(float*)&stackPtr[1].dist = permuteExtract(dist_C2,tNear); |
| 268 | stackPtr[2].ptr = permuteExtract(dist_B2,n0,n1); |
| 269 | *(float*)&stackPtr[2].dist = permuteExtract(dist_B2,tNear); |
| 270 | stackPtr+=3; |
| 271 | return; |
| 272 | } |
| 273 | |
| 274 | /* >=5 hits: reverse to descending order for writing to stack */ |
| 275 | |
| 276 | distance_i = align_shift_right<3>(distance_i,distance_i); |
| 277 | const size_t hits = 4 + popcnt(mask); |
| 278 | vint8 dist(INT_MIN); // this will work with -0.0f (0x80000000) as distance, isort_update uses >= to insert |
| 279 | |
| 280 | isort_quick_update<8>(dist,dist_A2); |
| 281 | isort_quick_update<8>(dist,dist_B2); |
| 282 | isort_quick_update<8>(dist,dist_C2); |
| 283 | isort_quick_update<8>(dist,dist_D2); |
| 284 | |
| 285 | do { |
| 286 | |
| 287 | distance_i = align_shift_right<1>(distance_i,distance_i); |
| 288 | cur = permuteExtract(distance_i,n0,n1); |
| 289 | BVH::prefetch(cur,types); |
| 290 | const vint8 new_dist(permute(distance_i,vint8(zero))); |
| 291 | mask &= mask-1; |
| 292 | isort_update<8>(dist,new_dist); |
| 293 | |
| 294 | } while(mask); |
| 295 | |
| 296 | for (size_t i=0; i<7; i++) |
| 297 | assert(dist[i+0]>=dist[i+1]); |
| 298 | |
| 299 | for (size_t i=0;i<hits-1;i++) |
| 300 | { |
| 301 | stackPtr->ptr = permuteExtract(dist,n0,n1); |
| 302 | *(float*)&stackPtr->dist = permuteExtract(dist,tNear); |
| 303 | dist = align_shift_right<1>(dist,dist); |
| 304 | stackPtr++; |
| 305 | } |
| 306 | cur = permuteExtract(dist,n0,n1); |
| 307 | } |
| 308 | #endif |
| 309 | |
| 310 | public: |
| 311 | static __forceinline void traverseClosestHit(NodeRef& cur, |
| 312 | size_t mask, |
| 313 | const vfloat8& tNear, |
| 314 | StackItemT<NodeRef>*& stackPtr, |
| 315 | StackItemT<NodeRef>* stackEnd) |
| 316 | { |
| 317 | assert(mask != 0); |
| 318 | #if defined(__AVX512VL__) |
| 319 | traverseClosestHitAVX512VL8<NodeRef,BaseNode>(cur,mask,tNear,stackPtr,stackEnd); |
| 320 | #else |
| 321 | |
| 322 | const BaseNode* node = cur.baseNode(); |
| 323 | |
| 324 | /*! one child is hit, continue with that child */ |
| 325 | size_t r = bscf(mask); |
| 326 | cur = node->child(r); |
| 327 | BVH::prefetch(cur,types); |
| 328 | if (likely(mask == 0)) { |
| 329 | assert(cur != BVH::emptyNode); |
| 330 | return; |
| 331 | } |
| 332 | |
| 333 | /*! two children are hit, push far child, and continue with closer child */ |
| 334 | NodeRef c0 = cur; |
| 335 | const unsigned int d0 = ((unsigned int*)&tNear)[r]; |
| 336 | r = bscf(mask); |
| 337 | NodeRef c1 = node->child(r); |
| 338 | BVH::prefetch(c1,types); |
| 339 | const unsigned int d1 = ((unsigned int*)&tNear)[r]; |
| 340 | |
| 341 | assert(c0 != BVH::emptyNode); |
| 342 | assert(c1 != BVH::emptyNode); |
| 343 | if (likely(mask == 0)) { |
| 344 | assert(stackPtr < stackEnd); |
| 345 | if (d0 < d1) { stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++; cur = c0; return; } |
| 346 | else { stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++; cur = c1; return; } |
| 347 | } |
| 348 | #if NEW_SORTING_CODE == 1 |
| 349 | vint4 s0((size_t)c0,(size_t)d0); |
| 350 | vint4 s1((size_t)c1,(size_t)d1); |
| 351 | |
| 352 | r = bscf(mask); |
| 353 | NodeRef c2 = node->child(r); BVH::prefetch(c2,types); unsigned int d2 = ((unsigned int*)&tNear)[r]; |
| 354 | vint4 s2((size_t)c2,(size_t)d2); |
| 355 | /* 3 hits */ |
| 356 | if (likely(mask == 0)) { |
| 357 | StackItemT<NodeRef>::sort3(s0,s1,s2); |
| 358 | *(vint4*)&stackPtr[0] = s0; *(vint4*)&stackPtr[1] = s1; |
| 359 | cur = toSizeT(s2); |
| 360 | stackPtr+=2; |
| 361 | return; |
| 362 | } |
| 363 | r = bscf(mask); |
| 364 | NodeRef c3 = node->child(r); BVH::prefetch(c3,types); unsigned int d3 = ((unsigned int*)&tNear)[r]; |
| 365 | vint4 s3((size_t)c3,(size_t)d3); |
| 366 | /* 4 hits */ |
| 367 | if (likely(mask == 0)) { |
| 368 | StackItemT<NodeRef>::sort4(s0,s1,s2,s3); |
| 369 | *(vint4*)&stackPtr[0] = s0; *(vint4*)&stackPtr[1] = s1; *(vint4*)&stackPtr[2] = s2; |
| 370 | cur = toSizeT(s3); |
| 371 | stackPtr+=3; |
| 372 | return; |
| 373 | } |
| 374 | *(vint4*)&stackPtr[0] = s0; *(vint4*)&stackPtr[1] = s1; *(vint4*)&stackPtr[2] = s2; *(vint4*)&stackPtr[3] = s3; |
| 375 | /*! fallback case if more than 4 children are hit */ |
| 376 | StackItemT<NodeRef>* stackFirst = stackPtr; |
| 377 | stackPtr+=4; |
| 378 | while (1) |
| 379 | { |
| 380 | assert(stackPtr < stackEnd); |
| 381 | r = bscf(mask); |
| 382 | NodeRef c = node->child(r); BVH::prefetch(c,types); unsigned int d = *(unsigned int*)&tNear[r]; |
| 383 | const vint4 s((size_t)c,(size_t)d); |
| 384 | *(vint4*)stackPtr++ = s; |
| 385 | assert(c != BVH::emptyNode); |
| 386 | if (unlikely(mask == 0)) break; |
| 387 | } |
| 388 | sort(stackFirst,stackPtr); |
| 389 | cur = (NodeRef) stackPtr[-1].ptr; stackPtr--; |
| 390 | #else |
| 391 | /*! Here starts the slow path for 3 or 4 hit children. We push |
| 392 | * all nodes onto the stack to sort them there. */ |
| 393 | assert(stackPtr < stackEnd); |
| 394 | stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++; |
| 395 | assert(stackPtr < stackEnd); |
| 396 | stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++; |
| 397 | |
| 398 | /*! three children are hit, push all onto stack and sort 3 stack items, continue with closest child */ |
| 399 | assert(stackPtr < stackEnd); |
| 400 | r = bscf(mask); |
| 401 | NodeRef c = node->child(r); BVH::prefetch(c,types); unsigned int d = ((unsigned int*)&tNear)[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++; |
| 402 | assert(c != BVH::emptyNode); |
| 403 | if (likely(mask == 0)) { |
| 404 | sort(stackPtr[-1],stackPtr[-2],stackPtr[-3]); |
| 405 | cur = (NodeRef) stackPtr[-1].ptr; stackPtr--; |
| 406 | return; |
| 407 | } |
| 408 | |
| 409 | /*! four children are hit, push all onto stack and sort 4 stack items, continue with closest child */ |
| 410 | assert(stackPtr < stackEnd); |
| 411 | r = bscf(mask); |
| 412 | c = node->child(r); BVH::prefetch(c,types); d = *(unsigned int*)&tNear[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++; |
| 413 | assert(c != BVH::emptyNode); |
| 414 | if (likely(mask == 0)) { |
| 415 | sort(stackPtr[-1],stackPtr[-2],stackPtr[-3],stackPtr[-4]); |
| 416 | cur = (NodeRef) stackPtr[-1].ptr; stackPtr--; |
| 417 | return; |
| 418 | } |
| 419 | /*! fallback case if more than 4 children are hit */ |
| 420 | StackItemT<NodeRef>* stackFirst = stackPtr-4; |
| 421 | while (1) |
| 422 | { |
| 423 | assert(stackPtr < stackEnd); |
| 424 | r = bscf(mask); |
| 425 | c = node->child(r); BVH::prefetch(c,types); d = *(unsigned int*)&tNear[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++; |
| 426 | assert(c != BVH::emptyNode); |
| 427 | if (unlikely(mask == 0)) break; |
| 428 | } |
| 429 | sort(stackFirst,stackPtr); |
| 430 | cur = (NodeRef) stackPtr[-1].ptr; stackPtr--; |
| 431 | #endif |
| 432 | #endif |
| 433 | } |
| 434 | |
| 435 | static __forceinline void traverseAnyHit(NodeRef& cur, |
| 436 | size_t mask, |
| 437 | const vfloat8& tNear, |
| 438 | NodeRef*& stackPtr, |
| 439 | NodeRef* stackEnd) |
| 440 | { |
| 441 | const BaseNode* node = cur.baseNode(); |
| 442 | |
| 443 | /*! one child is hit, continue with that child */ |
| 444 | size_t r = bscf(mask); |
| 445 | cur = node->child(r); |
| 446 | BVH::prefetch(cur,types); |
| 447 | |
| 448 | /* simpler in sequence traversal order */ |
| 449 | assert(cur != BVH::emptyNode); |
| 450 | if (likely(mask == 0)) return; |
| 451 | assert(stackPtr < stackEnd); |
| 452 | *stackPtr = cur; stackPtr++; |
| 453 | |
| 454 | for (; ;) |
| 455 | { |
| 456 | r = bscf(mask); |
| 457 | cur = node->child(r); BVH::prefetch(cur,types); |
| 458 | assert(cur != BVH::emptyNode); |
| 459 | if (likely(mask == 0)) return; |
| 460 | assert(stackPtr < stackEnd); |
| 461 | *stackPtr = cur; stackPtr++; |
| 462 | } |
| 463 | } |
| 464 | }; |
| 465 | } |
| 466 | } |
| 467 | |