| 1 | // Copyright 2009-2021 Intel Corporation |
| 2 | // SPDX-License-Identifier: Apache-2.0 |
| 3 | |
| 4 | #pragma once |
| 5 | |
| 6 | #include "catmullclark_patch.h" |
| 7 | #include "bspline_curve.h" |
| 8 | |
| 9 | namespace embree |
| 10 | { |
| 11 | template<typename Vertex, typename Vertex_t = Vertex> |
| 12 | class __aligned(64) BSplinePatchT |
| 13 | { |
| 14 | typedef CatmullClark1RingT<Vertex,Vertex_t> CatmullClarkRing; |
| 15 | typedef CatmullClarkPatchT<Vertex,Vertex_t> CatmullClarkPatch; |
| 16 | |
| 17 | public: |
| 18 | |
| 19 | __forceinline BSplinePatchT () {} |
| 20 | |
| 21 | __forceinline BSplinePatchT (const CatmullClarkPatch& patch) { |
| 22 | init(patch); |
| 23 | } |
| 24 | |
| 25 | __forceinline BSplinePatchT(const CatmullClarkPatch& patch, |
| 26 | const BezierCurveT<Vertex>* border0, |
| 27 | const BezierCurveT<Vertex>* border1, |
| 28 | const BezierCurveT<Vertex>* border2, |
| 29 | const BezierCurveT<Vertex>* border3) |
| 30 | { |
| 31 | init(patch); |
| 32 | } |
| 33 | |
| 34 | __forceinline BSplinePatchT (const HalfEdge* edge, const char* vertices, size_t stride) { |
| 35 | init(edge,vertices,stride); |
| 36 | } |
| 37 | |
| 38 | __forceinline Vertex hard_corner(const Vertex& v01, const Vertex& v02, |
| 39 | const Vertex& v10, const Vertex& v11, const Vertex& v12, |
| 40 | const Vertex& v20, const Vertex& v21, const Vertex& v22) |
| 41 | { |
| 42 | return 4.0f*v11 - 2.0f*(v12+v21) + v22; |
| 43 | } |
| 44 | |
| 45 | __forceinline Vertex soft_convex_corner( const Vertex& v01, const Vertex& v02, |
| 46 | const Vertex& v10, const Vertex& v11, const Vertex& v12, |
| 47 | const Vertex& v20, const Vertex& v21, const Vertex& v22) |
| 48 | { |
| 49 | return -8.0f*v11 + 4.0f*(v12+v21) + v22; |
| 50 | } |
| 51 | |
| 52 | __forceinline Vertex convex_corner(const float vertex_crease_weight, |
| 53 | const Vertex& v01, const Vertex& v02, |
| 54 | const Vertex& v10, const Vertex& v11, const Vertex& v12, |
| 55 | const Vertex& v20, const Vertex& v21, const Vertex& v22) |
| 56 | { |
| 57 | if (std::isinf(vertex_crease_weight)) return hard_corner(v01,v02,v10,v11,v12,v20,v21,v22); |
| 58 | else return soft_convex_corner(v01,v02,v10,v11,v12,v20,v21,v22); |
| 59 | } |
| 60 | |
| 61 | __forceinline Vertex load(const HalfEdge* edge, const char* vertices, size_t stride) { |
| 62 | return Vertex_t::loadu(vertices+edge->getStartVertexIndex()*stride); |
| 63 | } |
| 64 | |
| 65 | __forceinline void init_border(const CatmullClarkRing& edge0, |
| 66 | Vertex& v01, Vertex& v02, |
| 67 | const Vertex& v11, const Vertex& v12, |
| 68 | const Vertex& v21, const Vertex& v22) |
| 69 | { |
| 70 | if (likely(edge0.has_opposite_back(0))) |
| 71 | { |
| 72 | v01 = edge0.back(2); |
| 73 | v02 = edge0.back(1); |
| 74 | } else { |
| 75 | v01 = 2.0f*v11-v21; |
| 76 | v02 = 2.0f*v12-v22; |
| 77 | } |
| 78 | } |
| 79 | |
| 80 | __forceinline void init_corner(const CatmullClarkRing& edge0, |
| 81 | Vertex& v00, const Vertex& v01, const Vertex& v02, |
| 82 | const Vertex& v10, const Vertex& v11, const Vertex& v12, |
| 83 | const Vertex& v20, const Vertex& v21, const Vertex& v22) |
| 84 | { |
| 85 | const bool MAYBE_UNUSED has_back1 = edge0.has_opposite_back(1); |
| 86 | const bool has_back0 = edge0.has_opposite_back(0); |
| 87 | const bool has_front1 = edge0.has_opposite_front(1); |
| 88 | const bool MAYBE_UNUSED has_front2 = edge0.has_opposite_front(2); |
| 89 | |
| 90 | if (likely(has_back0)) { |
| 91 | if (likely(has_front1)) { assert(has_back1 && has_front2); v00 = edge0.back(3); } |
| 92 | else { assert(!has_back1); v00 = 2.0f*v01-v02; } |
| 93 | } |
| 94 | else { |
| 95 | if (likely(has_front1)) { assert(!has_front2); v00 = 2.0f*v10-v20; } |
| 96 | else v00 = convex_corner(edge0.vertex_crease_weight,v01,v02,v10,v11,v12,v20,v21,v22); |
| 97 | } |
| 98 | } |
| 99 | |
| 100 | void init(const CatmullClarkPatch& patch) |
| 101 | { |
| 102 | /* fill inner vertices */ |
| 103 | const Vertex v11 = v[1][1] = patch.ring[0].vtx; |
| 104 | const Vertex v12 = v[1][2] = patch.ring[1].vtx; |
| 105 | const Vertex v22 = v[2][2] = patch.ring[2].vtx; |
| 106 | const Vertex v21 = v[2][1] = patch.ring[3].vtx; |
| 107 | |
| 108 | /* fill border vertices */ |
| 109 | init_border(patch.ring[0],v[0][1],v[0][2],v11,v12,v21,v22); |
| 110 | init_border(patch.ring[1],v[1][3],v[2][3],v12,v22,v11,v21); |
| 111 | init_border(patch.ring[2],v[3][2],v[3][1],v22,v21,v12,v11); |
| 112 | init_border(patch.ring[3],v[2][0],v[1][0],v21,v11,v22,v12); |
| 113 | |
| 114 | /* fill corner vertices */ |
| 115 | init_corner(patch.ring[0],v[0][0],v[0][1],v[0][2],v[1][0],v11,v12,v[2][0],v21,v22); |
| 116 | init_corner(patch.ring[1],v[0][3],v[1][3],v[2][3],v[0][2],v12,v22,v[0][1],v11,v21); |
| 117 | init_corner(patch.ring[2],v[3][3],v[3][2],v[3][1],v[2][3],v22,v21,v[1][3],v12,v11); |
| 118 | init_corner(patch.ring[3],v[3][0],v[2][0],v[1][0],v[3][1],v21,v11,v[3][2],v22,v12); |
| 119 | } |
| 120 | |
| 121 | void init_border(const HalfEdge* edge0, const char* vertices, size_t stride, |
| 122 | Vertex& v01, Vertex& v02, |
| 123 | const Vertex& v11, const Vertex& v12, |
| 124 | const Vertex& v21, const Vertex& v22) |
| 125 | { |
| 126 | if (likely(edge0->hasOpposite())) |
| 127 | { |
| 128 | const HalfEdge* e = edge0->opposite()->next()->next(); |
| 129 | v01 = load(e,vertices,stride); |
| 130 | v02 = load(e->next(),vertices,stride); |
| 131 | } else { |
| 132 | v01 = 2.0f*v11-v21; |
| 133 | v02 = 2.0f*v12-v22; |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | void init_corner(const HalfEdge* edge0, const char* vertices, size_t stride, |
| 138 | Vertex& v00, const Vertex& v01, const Vertex& v02, |
| 139 | const Vertex& v10, const Vertex& v11, const Vertex& v12, |
| 140 | const Vertex& v20, const Vertex& v21, const Vertex& v22) |
| 141 | { |
| 142 | const bool has_back0 = edge0->hasOpposite(); |
| 143 | const bool has_front1 = edge0->prev()->hasOpposite(); |
| 144 | |
| 145 | if (likely(has_back0)) |
| 146 | { |
| 147 | const HalfEdge* e = edge0->opposite()->next(); |
| 148 | if (likely(has_front1)) |
| 149 | { |
| 150 | assert(e->hasOpposite()); |
| 151 | assert(edge0->prev()->opposite()->prev()->hasOpposite()); |
| 152 | v00 = load(e->opposite()->prev(),vertices,stride); |
| 153 | } |
| 154 | else { |
| 155 | assert(!e->hasOpposite()); |
| 156 | v00 = 2.0f*v01-v02; |
| 157 | } |
| 158 | } |
| 159 | else |
| 160 | { |
| 161 | if (likely(has_front1)) { |
| 162 | assert(!edge0->prev()->opposite()->prev()->hasOpposite()); |
| 163 | v00 = 2.0f*v10-v20; |
| 164 | } |
| 165 | else { |
| 166 | assert(edge0->vertex_crease_weight == 0.0f || std::isinf(edge0->vertex_crease_weight)); |
| 167 | v00 = convex_corner(edge0->vertex_crease_weight,v01,v02,v10,v11,v12,v20,v21,v22); |
| 168 | } |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | void init(const HalfEdge* edge0, const char* vertices, size_t stride) |
| 173 | { |
| 174 | assert( edge0->isRegularFace() ); |
| 175 | |
| 176 | /* fill inner vertices */ |
| 177 | const Vertex v11 = v[1][1] = load(edge0,vertices,stride); const HalfEdge* edge1 = edge0->next(); |
| 178 | const Vertex v12 = v[1][2] = load(edge1,vertices,stride); const HalfEdge* edge2 = edge1->next(); |
| 179 | const Vertex v22 = v[2][2] = load(edge2,vertices,stride); const HalfEdge* edge3 = edge2->next(); |
| 180 | const Vertex v21 = v[2][1] = load(edge3,vertices,stride); assert(edge0 == edge3->next()); |
| 181 | |
| 182 | /* fill border vertices */ |
| 183 | init_border(edge0,vertices,stride,v[0][1],v[0][2],v11,v12,v21,v22); |
| 184 | init_border(edge1,vertices,stride,v[1][3],v[2][3],v12,v22,v11,v21); |
| 185 | init_border(edge2,vertices,stride,v[3][2],v[3][1],v22,v21,v12,v11); |
| 186 | init_border(edge3,vertices,stride,v[2][0],v[1][0],v21,v11,v22,v12); |
| 187 | |
| 188 | /* fill corner vertices */ |
| 189 | init_corner(edge0,vertices,stride,v[0][0],v[0][1],v[0][2],v[1][0],v11,v12,v[2][0],v21,v22); |
| 190 | init_corner(edge1,vertices,stride,v[0][3],v[1][3],v[2][3],v[0][2],v12,v22,v[0][1],v11,v21); |
| 191 | init_corner(edge2,vertices,stride,v[3][3],v[3][2],v[3][1],v[2][3],v22,v21,v[1][3],v12,v11); |
| 192 | init_corner(edge3,vertices,stride,v[3][0],v[2][0],v[1][0],v[3][1],v21,v11,v[3][2],v22,v12); |
| 193 | } |
| 194 | |
| 195 | __forceinline BBox<Vertex> bounds() const |
| 196 | { |
| 197 | const Vertex* const cv = &v[0][0]; |
| 198 | BBox<Vertex> bounds (cv[0]); |
| 199 | for (size_t i=1; i<16 ; i++) |
| 200 | bounds.extend( cv[i] ); |
| 201 | return bounds; |
| 202 | } |
| 203 | |
| 204 | __forceinline Vertex eval(const float uu, const float vv) const |
| 205 | { |
| 206 | const Vec4f v_n = BSplineBasis::eval(vv); |
| 207 | const Vertex_t curve0 = madd(v_n[0],v[0][0],madd(v_n[1],v[1][0],madd(v_n[2],v[2][0],v_n[3] * v[3][0]))); |
| 208 | const Vertex_t curve1 = madd(v_n[0],v[0][1],madd(v_n[1],v[1][1],madd(v_n[2],v[2][1],v_n[3] * v[3][1]))); |
| 209 | const Vertex_t curve2 = madd(v_n[0],v[0][2],madd(v_n[1],v[1][2],madd(v_n[2],v[2][2],v_n[3] * v[3][2]))); |
| 210 | const Vertex_t curve3 = madd(v_n[0],v[0][3],madd(v_n[1],v[1][3],madd(v_n[2],v[2][3],v_n[3] * v[3][3]))); |
| 211 | |
| 212 | const Vec4f u_n = BSplineBasis::eval(uu); |
| 213 | return madd(u_n[0],curve0,madd(u_n[1],curve1,madd(u_n[2],curve2,u_n[3] * curve3))); |
| 214 | } |
| 215 | |
| 216 | __forceinline Vertex eval_du(const float uu, const float vv) const |
| 217 | { |
| 218 | const Vec4f v_n = BSplineBasis::eval(vv); |
| 219 | const Vertex_t curve0 = madd(v_n[0],v[0][0],madd(v_n[1],v[1][0],madd(v_n[2],v[2][0],v_n[3] * v[3][0]))); |
| 220 | const Vertex_t curve1 = madd(v_n[0],v[0][1],madd(v_n[1],v[1][1],madd(v_n[2],v[2][1],v_n[3] * v[3][1]))); |
| 221 | const Vertex_t curve2 = madd(v_n[0],v[0][2],madd(v_n[1],v[1][2],madd(v_n[2],v[2][2],v_n[3] * v[3][2]))); |
| 222 | const Vertex_t curve3 = madd(v_n[0],v[0][3],madd(v_n[1],v[1][3],madd(v_n[2],v[2][3],v_n[3] * v[3][3]))); |
| 223 | |
| 224 | const Vec4f u_n = BSplineBasis::derivative(uu); |
| 225 | return madd(u_n[0],curve0,madd(u_n[1],curve1,madd(u_n[2],curve2,u_n[3] * curve3))); |
| 226 | } |
| 227 | |
| 228 | __forceinline Vertex eval_dv(const float uu, const float vv) const |
| 229 | { |
| 230 | const Vec4f v_n = BSplineBasis::derivative(vv); |
| 231 | const Vertex_t curve0 = madd(v_n[0],v[0][0],madd(v_n[1],v[1][0],madd(v_n[2],v[2][0],v_n[3] * v[3][0]))); |
| 232 | const Vertex_t curve1 = madd(v_n[0],v[0][1],madd(v_n[1],v[1][1],madd(v_n[2],v[2][1],v_n[3] * v[3][1]))); |
| 233 | const Vertex_t curve2 = madd(v_n[0],v[0][2],madd(v_n[1],v[1][2],madd(v_n[2],v[2][2],v_n[3] * v[3][2]))); |
| 234 | const Vertex_t curve3 = madd(v_n[0],v[0][3],madd(v_n[1],v[1][3],madd(v_n[2],v[2][3],v_n[3] * v[3][3]))); |
| 235 | |
| 236 | const Vec4f u_n = BSplineBasis::eval(uu); |
| 237 | return madd(u_n[0],curve0,madd(u_n[1],curve1,madd(u_n[2],curve2,u_n[3] * curve3))); |
| 238 | } |
| 239 | |
| 240 | __forceinline Vertex eval_dudu(const float uu, const float vv) const |
| 241 | { |
| 242 | const Vec4f v_n = BSplineBasis::eval(vv); |
| 243 | const Vertex_t curve0 = madd(v_n[0],v[0][0],madd(v_n[1],v[1][0],madd(v_n[2],v[2][0],v_n[3] * v[3][0]))); |
| 244 | const Vertex_t curve1 = madd(v_n[0],v[0][1],madd(v_n[1],v[1][1],madd(v_n[2],v[2][1],v_n[3] * v[3][1]))); |
| 245 | const Vertex_t curve2 = madd(v_n[0],v[0][2],madd(v_n[1],v[1][2],madd(v_n[2],v[2][2],v_n[3] * v[3][2]))); |
| 246 | const Vertex_t curve3 = madd(v_n[0],v[0][3],madd(v_n[1],v[1][3],madd(v_n[2],v[2][3],v_n[3] * v[3][3]))); |
| 247 | |
| 248 | const Vec4f u_n = BSplineBasis::derivative2(uu); |
| 249 | return madd(u_n[0],curve0,madd(u_n[1],curve1,madd(u_n[2],curve2,u_n[3] * curve3))); |
| 250 | } |
| 251 | |
| 252 | __forceinline Vertex eval_dvdv(const float uu, const float vv) const |
| 253 | { |
| 254 | const Vec4f v_n = BSplineBasis::derivative2(vv); |
| 255 | const Vertex_t curve0 = madd(v_n[0],v[0][0],madd(v_n[1],v[1][0],madd(v_n[2],v[2][0],v_n[3] * v[3][0]))); |
| 256 | const Vertex_t curve1 = madd(v_n[0],v[0][1],madd(v_n[1],v[1][1],madd(v_n[2],v[2][1],v_n[3] * v[3][1]))); |
| 257 | const Vertex_t curve2 = madd(v_n[0],v[0][2],madd(v_n[1],v[1][2],madd(v_n[2],v[2][2],v_n[3] * v[3][2]))); |
| 258 | const Vertex_t curve3 = madd(v_n[0],v[0][3],madd(v_n[1],v[1][3],madd(v_n[2],v[2][3],v_n[3] * v[3][3]))); |
| 259 | |
| 260 | const Vec4f u_n = BSplineBasis::eval(uu); |
| 261 | return madd(u_n[0],curve0,madd(u_n[1],curve1,madd(u_n[2],curve2,u_n[3] * curve3))); |
| 262 | } |
| 263 | |
| 264 | __forceinline Vertex eval_dudv(const float uu, const float vv) const |
| 265 | { |
| 266 | const Vec4f v_n = BSplineBasis::derivative(vv); |
| 267 | const Vertex_t curve0 = madd(v_n[0],v[0][0],madd(v_n[1],v[1][0],madd(v_n[2],v[2][0],v_n[3] * v[3][0]))); |
| 268 | const Vertex_t curve1 = madd(v_n[0],v[0][1],madd(v_n[1],v[1][1],madd(v_n[2],v[2][1],v_n[3] * v[3][1]))); |
| 269 | const Vertex_t curve2 = madd(v_n[0],v[0][2],madd(v_n[1],v[1][2],madd(v_n[2],v[2][2],v_n[3] * v[3][2]))); |
| 270 | const Vertex_t curve3 = madd(v_n[0],v[0][3],madd(v_n[1],v[1][3],madd(v_n[2],v[2][3],v_n[3] * v[3][3]))); |
| 271 | |
| 272 | const Vec4f u_n = BSplineBasis::derivative(uu); |
| 273 | return madd(u_n[0],curve0,madd(u_n[1],curve1,madd(u_n[2],curve2,u_n[3] * curve3))); |
| 274 | } |
| 275 | |
| 276 | __forceinline Vertex normal(const float uu, const float vv) const |
| 277 | { |
| 278 | const Vertex tu = eval_du(uu,vv); |
| 279 | const Vertex tv = eval_dv(uu,vv); |
| 280 | return cross(tu,tv); |
| 281 | } |
| 282 | |
| 283 | template<typename T> |
| 284 | __forceinline Vec3<T> eval(const T& uu, const T& vv, const Vec4<T>& u_n, const Vec4<T>& v_n) const |
| 285 | { |
| 286 | const T curve0_x = madd(v_n[0],T(v[0][0].x),madd(v_n[1],T(v[1][0].x),madd(v_n[2],T(v[2][0].x),v_n[3] * T(v[3][0].x)))); |
| 287 | const T curve1_x = madd(v_n[0],T(v[0][1].x),madd(v_n[1],T(v[1][1].x),madd(v_n[2],T(v[2][1].x),v_n[3] * T(v[3][1].x)))); |
| 288 | const T curve2_x = madd(v_n[0],T(v[0][2].x),madd(v_n[1],T(v[1][2].x),madd(v_n[2],T(v[2][2].x),v_n[3] * T(v[3][2].x)))); |
| 289 | const T curve3_x = madd(v_n[0],T(v[0][3].x),madd(v_n[1],T(v[1][3].x),madd(v_n[2],T(v[2][3].x),v_n[3] * T(v[3][3].x)))); |
| 290 | const T x = madd(u_n[0],curve0_x,madd(u_n[1],curve1_x,madd(u_n[2],curve2_x,u_n[3] * curve3_x))); |
| 291 | |
| 292 | const T curve0_y = madd(v_n[0],T(v[0][0].y),madd(v_n[1],T(v[1][0].y),madd(v_n[2],T(v[2][0].y),v_n[3] * T(v[3][0].y)))); |
| 293 | const T curve1_y = madd(v_n[0],T(v[0][1].y),madd(v_n[1],T(v[1][1].y),madd(v_n[2],T(v[2][1].y),v_n[3] * T(v[3][1].y)))); |
| 294 | const T curve2_y = madd(v_n[0],T(v[0][2].y),madd(v_n[1],T(v[1][2].y),madd(v_n[2],T(v[2][2].y),v_n[3] * T(v[3][2].y)))); |
| 295 | const T curve3_y = madd(v_n[0],T(v[0][3].y),madd(v_n[1],T(v[1][3].y),madd(v_n[2],T(v[2][3].y),v_n[3] * T(v[3][3].y)))); |
| 296 | const T y = madd(u_n[0],curve0_y,madd(u_n[1],curve1_y,madd(u_n[2],curve2_y,u_n[3] * curve3_y))); |
| 297 | |
| 298 | const T curve0_z = madd(v_n[0],T(v[0][0].z),madd(v_n[1],T(v[1][0].z),madd(v_n[2],T(v[2][0].z),v_n[3] * T(v[3][0].z)))); |
| 299 | const T curve1_z = madd(v_n[0],T(v[0][1].z),madd(v_n[1],T(v[1][1].z),madd(v_n[2],T(v[2][1].z),v_n[3] * T(v[3][1].z)))); |
| 300 | const T curve2_z = madd(v_n[0],T(v[0][2].z),madd(v_n[1],T(v[1][2].z),madd(v_n[2],T(v[2][2].z),v_n[3] * T(v[3][2].z)))); |
| 301 | const T curve3_z = madd(v_n[0],T(v[0][3].z),madd(v_n[1],T(v[1][3].z),madd(v_n[2],T(v[2][3].z),v_n[3] * T(v[3][3].z)))); |
| 302 | const T z = madd(u_n[0],curve0_z,madd(u_n[1],curve1_z,madd(u_n[2],curve2_z,u_n[3] * curve3_z))); |
| 303 | |
| 304 | return Vec3<T>(x,y,z); |
| 305 | } |
| 306 | |
| 307 | template<typename T> |
| 308 | __forceinline Vec3<T> eval(const T& uu, const T& vv) const |
| 309 | { |
| 310 | const Vec4<T> u_n = BSplineBasis::eval(uu); |
| 311 | const Vec4<T> v_n = BSplineBasis::eval(vv); |
| 312 | return eval(uu,vv,u_n,v_n); |
| 313 | } |
| 314 | |
| 315 | template<typename T> |
| 316 | __forceinline Vec3<T> eval_du(const T& uu, const T& vv) const |
| 317 | { |
| 318 | const Vec4<T> u_n = BSplineBasis::derivative(uu); |
| 319 | const Vec4<T> v_n = BSplineBasis::eval(vv); |
| 320 | return eval(uu,vv,u_n,v_n); |
| 321 | } |
| 322 | |
| 323 | template<typename T> |
| 324 | __forceinline Vec3<T> eval_dv(const T& uu, const T& vv) const |
| 325 | { |
| 326 | const Vec4<T> u_n = BSplineBasis::eval(uu); |
| 327 | const Vec4<T> v_n = BSplineBasis::derivative(vv); |
| 328 | return eval(uu,vv,u_n,v_n); |
| 329 | } |
| 330 | |
| 331 | template<typename T> |
| 332 | __forceinline Vec3<T> eval_dudu(const T& uu, const T& vv) const |
| 333 | { |
| 334 | const Vec4<T> u_n = BSplineBasis::derivative2(uu); |
| 335 | const Vec4<T> v_n = BSplineBasis::eval(vv); |
| 336 | return eval(uu,vv,u_n,v_n); |
| 337 | } |
| 338 | |
| 339 | template<typename T> |
| 340 | __forceinline Vec3<T> eval_dvdv(const T& uu, const T& vv) const |
| 341 | { |
| 342 | const Vec4<T> u_n = BSplineBasis::eval(uu); |
| 343 | const Vec4<T> v_n = BSplineBasis::derivative2(vv); |
| 344 | return eval(uu,vv,u_n,v_n); |
| 345 | } |
| 346 | |
| 347 | template<typename T> |
| 348 | __forceinline Vec3<T> eval_dudv(const T& uu, const T& vv) const |
| 349 | { |
| 350 | const Vec4<T> u_n = BSplineBasis::derivative(uu); |
| 351 | const Vec4<T> v_n = BSplineBasis::derivative(vv); |
| 352 | return eval(uu,vv,u_n,v_n); |
| 353 | } |
| 354 | |
| 355 | template<typename T> |
| 356 | __forceinline Vec3<T> normal(const T& uu, const T& vv) const { |
| 357 | return cross(eval_du(uu,vv),eval_dv(uu,vv)); |
| 358 | } |
| 359 | |
| 360 | void eval(const float u, const float v, |
| 361 | Vertex* P, Vertex* dPdu, Vertex* dPdv, Vertex* ddPdudu, Vertex* ddPdvdv, Vertex* ddPdudv, |
| 362 | const float dscale = 1.0f) const |
| 363 | { |
| 364 | if (P) { |
| 365 | *P = eval(u,v); |
| 366 | } |
| 367 | if (dPdu) { |
| 368 | assert(dPdu); *dPdu = eval_du(u,v)*dscale; |
| 369 | assert(dPdv); *dPdv = eval_dv(u,v)*dscale; |
| 370 | } |
| 371 | if (ddPdudu) { |
| 372 | assert(ddPdudu); *ddPdudu = eval_dudu(u,v)*sqr(dscale); |
| 373 | assert(ddPdvdv); *ddPdvdv = eval_dvdv(u,v)*sqr(dscale); |
| 374 | assert(ddPdudv); *ddPdudv = eval_dudv(u,v)*sqr(dscale); |
| 375 | } |
| 376 | } |
| 377 | |
| 378 | template<class vfloat> |
| 379 | __forceinline vfloat eval(const size_t i, const vfloat& uu, const vfloat& vv, const Vec4<vfloat>& u_n, const Vec4<vfloat>& v_n) const |
| 380 | { |
| 381 | const vfloat curve0_x = madd(v_n[0],vfloat(v[0][0][i]),madd(v_n[1],vfloat(v[1][0][i]),madd(v_n[2],vfloat(v[2][0][i]),v_n[3] * vfloat(v[3][0][i])))); |
| 382 | const vfloat curve1_x = madd(v_n[0],vfloat(v[0][1][i]),madd(v_n[1],vfloat(v[1][1][i]),madd(v_n[2],vfloat(v[2][1][i]),v_n[3] * vfloat(v[3][1][i])))); |
| 383 | const vfloat curve2_x = madd(v_n[0],vfloat(v[0][2][i]),madd(v_n[1],vfloat(v[1][2][i]),madd(v_n[2],vfloat(v[2][2][i]),v_n[3] * vfloat(v[3][2][i])))); |
| 384 | const vfloat curve3_x = madd(v_n[0],vfloat(v[0][3][i]),madd(v_n[1],vfloat(v[1][3][i]),madd(v_n[2],vfloat(v[2][3][i]),v_n[3] * vfloat(v[3][3][i])))); |
| 385 | return madd(u_n[0],curve0_x,madd(u_n[1],curve1_x,madd(u_n[2],curve2_x,u_n[3] * curve3_x))); |
| 386 | } |
| 387 | |
| 388 | template<typename vbool, typename vfloat> |
| 389 | void eval(const vbool& valid, const vfloat& uu, const vfloat& vv, |
| 390 | float* P, float* dPdu, float* dPdv, float* ddPdudu, float* ddPdvdv, float* ddPdudv, |
| 391 | const float dscale, const size_t dstride, const size_t N) const |
| 392 | { |
| 393 | if (P) { |
| 394 | const Vec4<vfloat> u_n = BSplineBasis::eval(uu); |
| 395 | const Vec4<vfloat> v_n = BSplineBasis::eval(vv); |
| 396 | for (size_t i=0; i<N; i++) vfloat::store(valid,P+i*dstride,eval(i,uu,vv,u_n,v_n)); |
| 397 | } |
| 398 | if (dPdu) |
| 399 | { |
| 400 | { |
| 401 | assert(dPdu); |
| 402 | const Vec4<vfloat> u_n = BSplineBasis::derivative(uu); |
| 403 | const Vec4<vfloat> v_n = BSplineBasis::eval(vv); |
| 404 | for (size_t i=0; i<N; i++) vfloat::store(valid,dPdu+i*dstride,eval(i,uu,vv,u_n,v_n)*dscale); |
| 405 | } |
| 406 | { |
| 407 | assert(dPdv); |
| 408 | const Vec4<vfloat> u_n = BSplineBasis::eval(uu); |
| 409 | const Vec4<vfloat> v_n = BSplineBasis::derivative(vv); |
| 410 | for (size_t i=0; i<N; i++) vfloat::store(valid,dPdv+i*dstride,eval(i,uu,vv,u_n,v_n)*dscale); |
| 411 | } |
| 412 | } |
| 413 | if (ddPdudu) |
| 414 | { |
| 415 | { |
| 416 | assert(ddPdudu); |
| 417 | const Vec4<vfloat> u_n = BSplineBasis::derivative2(uu); |
| 418 | const Vec4<vfloat> v_n = BSplineBasis::eval(vv); |
| 419 | for (size_t i=0; i<N; i++) vfloat::store(valid,ddPdudu+i*dstride,eval(i,uu,vv,u_n,v_n)*sqr(dscale)); |
| 420 | } |
| 421 | { |
| 422 | assert(ddPdvdv); |
| 423 | const Vec4<vfloat> u_n = BSplineBasis::eval(uu); |
| 424 | const Vec4<vfloat> v_n = BSplineBasis::derivative2(vv); |
| 425 | for (size_t i=0; i<N; i++) vfloat::store(valid,ddPdvdv+i*dstride,eval(i,uu,vv,u_n,v_n)*sqr(dscale)); |
| 426 | } |
| 427 | { |
| 428 | assert(ddPdudv); |
| 429 | const Vec4<vfloat> u_n = BSplineBasis::derivative(uu); |
| 430 | const Vec4<vfloat> v_n = BSplineBasis::derivative(vv); |
| 431 | for (size_t i=0; i<N; i++) vfloat::store(valid,ddPdudv+i*dstride,eval(i,uu,vv,u_n,v_n)*sqr(dscale)); |
| 432 | } |
| 433 | } |
| 434 | } |
| 435 | |
| 436 | friend __forceinline embree_ostream operator<<(embree_ostream o, const BSplinePatchT& p) |
| 437 | { |
| 438 | for (size_t y=0; y<4; y++) |
| 439 | for (size_t x=0; x<4; x++) |
| 440 | o << "[" << y << "][" << x << "] " << p.v[y][x] << embree_endl; |
| 441 | return o; |
| 442 | } |
| 443 | |
| 444 | public: |
| 445 | Vertex v[4][4]; |
| 446 | }; |
| 447 | |
| 448 | typedef BSplinePatchT<Vec3fa,Vec3fa_t> BSplinePatch3fa; |
| 449 | } |
| 450 | |