| 1 | // Copyright 2009-2021 Intel Corporation |
| 2 | // SPDX-License-Identifier: Apache-2.0 |
| 3 | |
| 4 | #pragma once |
| 5 | |
| 6 | #include "../common/default.h" |
| 7 | #include "bezier_curve.h" |
| 8 | |
| 9 | namespace embree |
| 10 | { |
| 11 | class BSplineBasis |
| 12 | { |
| 13 | public: |
| 14 | |
| 15 | template<typename T> |
| 16 | static __forceinline Vec4<T> eval(const T& u) |
| 17 | { |
| 18 | const T t = u; |
| 19 | const T s = T(1.0f) - u; |
| 20 | const T n0 = s*s*s; |
| 21 | const T n1 = (4.0f*(s*s*s)+(t*t*t)) + (12.0f*((s*t)*s) + 6.0f*((t*s)*t)); |
| 22 | const T n2 = (4.0f*(t*t*t)+(s*s*s)) + (12.0f*((t*s)*t) + 6.0f*((s*t)*s)); |
| 23 | const T n3 = t*t*t; |
| 24 | return T(1.0f/6.0f)*Vec4<T>(n0,n1,n2,n3); |
| 25 | } |
| 26 | |
| 27 | template<typename T> |
| 28 | static __forceinline Vec4<T> derivative(const T& u) |
| 29 | { |
| 30 | const T t = u; |
| 31 | const T s = 1.0f - u; |
| 32 | const T n0 = -s*s; |
| 33 | const T n1 = -t*t - 4.0f*(t*s); |
| 34 | const T n2 = s*s + 4.0f*(s*t); |
| 35 | const T n3 = t*t; |
| 36 | return T(0.5f)*Vec4<T>(n0,n1,n2,n3); |
| 37 | } |
| 38 | |
| 39 | template<typename T> |
| 40 | static __forceinline Vec4<T> derivative2(const T& u) |
| 41 | { |
| 42 | const T t = u; |
| 43 | const T s = 1.0f - u; |
| 44 | const T n0 = s; |
| 45 | const T n1 = t - 2.0f*s; |
| 46 | const T n2 = s - 2.0f*t; |
| 47 | const T n3 = t; |
| 48 | return Vec4<T>(n0,n1,n2,n3); |
| 49 | } |
| 50 | }; |
| 51 | |
| 52 | struct PrecomputedBSplineBasis |
| 53 | { |
| 54 | enum { N = 16 }; |
| 55 | public: |
| 56 | PrecomputedBSplineBasis() {} |
| 57 | PrecomputedBSplineBasis(int shift); |
| 58 | |
| 59 | /* basis for bspline evaluation */ |
| 60 | public: |
| 61 | float c0[N+1][N+1]; |
| 62 | float c1[N+1][N+1]; |
| 63 | float c2[N+1][N+1]; |
| 64 | float c3[N+1][N+1]; |
| 65 | |
| 66 | /* basis for bspline derivative evaluation */ |
| 67 | public: |
| 68 | float d0[N+1][N+1]; |
| 69 | float d1[N+1][N+1]; |
| 70 | float d2[N+1][N+1]; |
| 71 | float d3[N+1][N+1]; |
| 72 | }; |
| 73 | extern PrecomputedBSplineBasis bspline_basis0; |
| 74 | extern PrecomputedBSplineBasis bspline_basis1; |
| 75 | |
| 76 | template<typename Vertex> |
| 77 | struct BSplineCurveT |
| 78 | { |
| 79 | Vertex v0,v1,v2,v3; |
| 80 | |
| 81 | __forceinline BSplineCurveT() {} |
| 82 | |
| 83 | __forceinline BSplineCurveT(const Vertex& v0, const Vertex& v1, const Vertex& v2, const Vertex& v3) |
| 84 | : v0(v0), v1(v1), v2(v2), v3(v3) {} |
| 85 | |
| 86 | __forceinline Vertex begin() const { |
| 87 | return madd(1.0f/6.0f,v0,madd(2.0f/3.0f,v1,1.0f/6.0f*v2)); |
| 88 | } |
| 89 | |
| 90 | __forceinline Vertex end() const { |
| 91 | return madd(1.0f/6.0f,v1,madd(2.0f/3.0f,v2,1.0f/6.0f*v3)); |
| 92 | } |
| 93 | |
| 94 | __forceinline Vertex center() const { |
| 95 | return 0.25f*(v0+v1+v2+v3); |
| 96 | } |
| 97 | |
| 98 | __forceinline BBox<Vertex> bounds() const { |
| 99 | return merge(BBox<Vertex>(v0),BBox<Vertex>(v1),BBox<Vertex>(v2),BBox<Vertex>(v3)); |
| 100 | } |
| 101 | |
| 102 | __forceinline friend BSplineCurveT operator -( const BSplineCurveT& a, const Vertex& b ) { |
| 103 | return BSplineCurveT(a.v0-b,a.v1-b,a.v2-b,a.v3-b); |
| 104 | } |
| 105 | |
| 106 | __forceinline BSplineCurveT<Vec3ff> xfm_pr(const LinearSpace3fa& space, const Vec3fa& p) const |
| 107 | { |
| 108 | const Vec3ff q0(xfmVector(space,(Vec3fa)v0-p), v0.w); |
| 109 | const Vec3ff q1(xfmVector(space,(Vec3fa)v1-p), v1.w); |
| 110 | const Vec3ff q2(xfmVector(space,(Vec3fa)v2-p), v2.w); |
| 111 | const Vec3ff q3(xfmVector(space,(Vec3fa)v3-p), v3.w); |
| 112 | return BSplineCurveT<Vec3ff>(q0,q1,q2,q3); |
| 113 | } |
| 114 | |
| 115 | __forceinline Vertex eval(const float t) const |
| 116 | { |
| 117 | const Vec4<float> b = BSplineBasis::eval(t); |
| 118 | return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); |
| 119 | } |
| 120 | |
| 121 | __forceinline Vertex eval_du(const float t) const |
| 122 | { |
| 123 | const Vec4<float> b = BSplineBasis::derivative(t); |
| 124 | return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); |
| 125 | } |
| 126 | |
| 127 | __forceinline Vertex eval_dudu(const float t) const |
| 128 | { |
| 129 | const Vec4<float> b = BSplineBasis::derivative2(t); |
| 130 | return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); |
| 131 | } |
| 132 | |
| 133 | __forceinline void eval(const float t, Vertex& p, Vertex& dp, Vertex& ddp) const |
| 134 | { |
| 135 | p = eval(t); |
| 136 | dp = eval_du(t); |
| 137 | ddp = eval_dudu(t); |
| 138 | } |
| 139 | |
| 140 | template<int M> |
| 141 | __forceinline Vec4vf<M> veval(const vfloat<M>& t) const |
| 142 | { |
| 143 | const Vec4vf<M> b = BSplineBasis::eval(t); |
| 144 | return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3)))); |
| 145 | } |
| 146 | |
| 147 | template<int M> |
| 148 | __forceinline Vec4vf<M> veval_du(const vfloat<M>& t) const |
| 149 | { |
| 150 | const Vec4vf<M> b = BSplineBasis::derivative(t); |
| 151 | return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3)))); |
| 152 | } |
| 153 | |
| 154 | template<int M> |
| 155 | __forceinline Vec4vf<M> veval_dudu(const vfloat<M>& t) const |
| 156 | { |
| 157 | const Vec4vf<M> b = BSplineBasis::derivative2(t); |
| 158 | return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3)))); |
| 159 | } |
| 160 | |
| 161 | template<int M> |
| 162 | __forceinline void veval(const vfloat<M>& t, Vec4vf<M>& p, Vec4vf<M>& dp) const |
| 163 | { |
| 164 | p = veval<M>(t); |
| 165 | dp = veval_du<M>(t); |
| 166 | } |
| 167 | |
| 168 | template<int M> |
| 169 | __forceinline Vec4vf<M> eval0(const int ofs, const int size) const |
| 170 | { |
| 171 | assert(size <= PrecomputedBSplineBasis::N); |
| 172 | assert(ofs <= size); |
| 173 | return madd(vfloat<M>::loadu(&bspline_basis0.c0[size][ofs]), Vec4vf<M>(v0), |
| 174 | madd(vfloat<M>::loadu(&bspline_basis0.c1[size][ofs]), Vec4vf<M>(v1), |
| 175 | madd(vfloat<M>::loadu(&bspline_basis0.c2[size][ofs]), Vec4vf<M>(v2), |
| 176 | vfloat<M>::loadu(&bspline_basis0.c3[size][ofs]) * Vec4vf<M>(v3)))); |
| 177 | } |
| 178 | |
| 179 | template<int M> |
| 180 | __forceinline Vec4vf<M> eval1(const int ofs, const int size) const |
| 181 | { |
| 182 | assert(size <= PrecomputedBSplineBasis::N); |
| 183 | assert(ofs <= size); |
| 184 | return madd(vfloat<M>::loadu(&bspline_basis1.c0[size][ofs]), Vec4vf<M>(v0), |
| 185 | madd(vfloat<M>::loadu(&bspline_basis1.c1[size][ofs]), Vec4vf<M>(v1), |
| 186 | madd(vfloat<M>::loadu(&bspline_basis1.c2[size][ofs]), Vec4vf<M>(v2), |
| 187 | vfloat<M>::loadu(&bspline_basis1.c3[size][ofs]) * Vec4vf<M>(v3)))); |
| 188 | } |
| 189 | |
| 190 | template<int M> |
| 191 | __forceinline Vec4vf<M> derivative0(const int ofs, const int size) const |
| 192 | { |
| 193 | assert(size <= PrecomputedBSplineBasis::N); |
| 194 | assert(ofs <= size); |
| 195 | return madd(vfloat<M>::loadu(&bspline_basis0.d0[size][ofs]), Vec4vf<M>(v0), |
| 196 | madd(vfloat<M>::loadu(&bspline_basis0.d1[size][ofs]), Vec4vf<M>(v1), |
| 197 | madd(vfloat<M>::loadu(&bspline_basis0.d2[size][ofs]), Vec4vf<M>(v2), |
| 198 | vfloat<M>::loadu(&bspline_basis0.d3[size][ofs]) * Vec4vf<M>(v3)))); |
| 199 | } |
| 200 | |
| 201 | template<int M> |
| 202 | __forceinline Vec4vf<M> derivative1(const int ofs, const int size) const |
| 203 | { |
| 204 | assert(size <= PrecomputedBSplineBasis::N); |
| 205 | assert(ofs <= size); |
| 206 | return madd(vfloat<M>::loadu(&bspline_basis1.d0[size][ofs]), Vec4vf<M>(v0), |
| 207 | madd(vfloat<M>::loadu(&bspline_basis1.d1[size][ofs]), Vec4vf<M>(v1), |
| 208 | madd(vfloat<M>::loadu(&bspline_basis1.d2[size][ofs]), Vec4vf<M>(v2), |
| 209 | vfloat<M>::loadu(&bspline_basis1.d3[size][ofs]) * Vec4vf<M>(v3)))); |
| 210 | } |
| 211 | |
| 212 | /* calculates bounds of bspline curve geometry */ |
| 213 | __forceinline BBox3fa accurateRoundBounds() const |
| 214 | { |
| 215 | const int N = 7; |
| 216 | const float scale = 1.0f/(3.0f*(N-1)); |
| 217 | Vec4vfx pl(pos_inf), pu(neg_inf); |
| 218 | for (int i=0; i<=N; i+=VSIZEX) |
| 219 | { |
| 220 | vintx vi = vintx(i)+vintx(step); |
| 221 | vboolx valid = vi <= vintx(N); |
| 222 | const Vec4vfx p = eval0<VSIZEX>(i,N); |
| 223 | const Vec4vfx dp = derivative0<VSIZEX>(i,N); |
| 224 | const Vec4vfx pm = p-Vec4vfx(scale)*select(vi!=vintx(0),dp,Vec4vfx(zero)); |
| 225 | const Vec4vfx pp = p+Vec4vfx(scale)*select(vi!=vintx(N),dp,Vec4vfx(zero)); |
| 226 | pl = select(valid,min(pl,p,pm,pp),pl); // FIXME: use masked min |
| 227 | pu = select(valid,max(pu,p,pm,pp),pu); // FIXME: use masked min |
| 228 | } |
| 229 | const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z)); |
| 230 | const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z)); |
| 231 | const float r_min = reduce_min(pl.w); |
| 232 | const float r_max = reduce_max(pu.w); |
| 233 | const Vec3fa upper_r = Vec3fa(max(abs(r_min),abs(r_max))); |
| 234 | return enlarge(BBox3fa(lower,upper),upper_r); |
| 235 | } |
| 236 | |
| 237 | /* calculates bounds when tessellated into N line segments */ |
| 238 | __forceinline BBox3fa accurateFlatBounds(int N) const |
| 239 | { |
| 240 | if (likely(N == 4)) |
| 241 | { |
| 242 | const Vec4vf4 pi = eval0<4>(0,4); |
| 243 | const Vec3fa lower(reduce_min(pi.x),reduce_min(pi.y),reduce_min(pi.z)); |
| 244 | const Vec3fa upper(reduce_max(pi.x),reduce_max(pi.y),reduce_max(pi.z)); |
| 245 | const Vec3fa upper_r = Vec3fa(reduce_max(abs(pi.w))); |
| 246 | const Vec3ff pe = end(); |
| 247 | return enlarge(BBox3fa(min(lower,pe),max(upper,pe)),max(upper_r,Vec3fa(abs(pe.w)))); |
| 248 | } |
| 249 | else |
| 250 | { |
| 251 | Vec3vfx pl(pos_inf), pu(neg_inf); vfloatx ru(0.0f); |
| 252 | for (int i=0; i<=N; i+=VSIZEX) |
| 253 | { |
| 254 | vboolx valid = vintx(i)+vintx(step) <= vintx(N); |
| 255 | const Vec4vfx pi = eval0<VSIZEX>(i,N); |
| 256 | |
| 257 | pl.x = select(valid,min(pl.x,pi.x),pl.x); // FIXME: use masked min |
| 258 | pl.y = select(valid,min(pl.y,pi.y),pl.y); |
| 259 | pl.z = select(valid,min(pl.z,pi.z),pl.z); |
| 260 | |
| 261 | pu.x = select(valid,max(pu.x,pi.x),pu.x); // FIXME: use masked min |
| 262 | pu.y = select(valid,max(pu.y,pi.y),pu.y); |
| 263 | pu.z = select(valid,max(pu.z,pi.z),pu.z); |
| 264 | |
| 265 | ru = select(valid,max(ru,abs(pi.w)),ru); |
| 266 | } |
| 267 | const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z)); |
| 268 | const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z)); |
| 269 | const Vec3fa upper_r(reduce_max(ru)); |
| 270 | return enlarge(BBox3fa(lower,upper),upper_r); |
| 271 | } |
| 272 | } |
| 273 | |
| 274 | friend __forceinline embree_ostream operator<<(embree_ostream cout, const BSplineCurveT& curve) { |
| 275 | return cout << "BSplineCurve { v0 = " << curve.v0 << ", v1 = " << curve.v1 << ", v2 = " << curve.v2 << ", v3 = " << curve.v3 << " }" ; |
| 276 | } |
| 277 | }; |
| 278 | |
| 279 | template<typename Vertex> |
| 280 | __forceinline void convert(const BezierCurveT<Vertex>& icurve, BezierCurveT<Vertex>& ocurve) { |
| 281 | ocurve = icurve; |
| 282 | } |
| 283 | |
| 284 | template<typename Vertex> |
| 285 | __forceinline void convert(const BSplineCurveT<Vertex>& icurve, BSplineCurveT<Vertex>& ocurve) { |
| 286 | ocurve = icurve; |
| 287 | } |
| 288 | |
| 289 | template<typename Vertex> |
| 290 | __forceinline void convert(const BezierCurveT<Vertex>& icurve, BSplineCurveT<Vertex>& ocurve) |
| 291 | { |
| 292 | const Vertex v0 = madd(6.0f,icurve.v0,madd(-7.0f,icurve.v1,2.0f*icurve.v2)); |
| 293 | const Vertex v1 = msub(2.0f,icurve.v1,icurve.v2); |
| 294 | const Vertex v2 = msub(2.0f,icurve.v2,icurve.v1); |
| 295 | const Vertex v3 = madd(2.0f,icurve.v1,madd(-7.0f,icurve.v2,6.0f*icurve.v3)); |
| 296 | ocurve = BSplineCurveT<Vertex>(v0,v1,v2,v3); |
| 297 | } |
| 298 | |
| 299 | template<typename Vertex> |
| 300 | __forceinline void convert(const BSplineCurveT<Vertex>& icurve, BezierCurveT<Vertex>& ocurve) |
| 301 | { |
| 302 | const Vertex v0 = madd(1.0f/6.0f,icurve.v0,madd(2.0f/3.0f,icurve.v1,1.0f/6.0f*icurve.v2)); |
| 303 | const Vertex v1 = madd(2.0f/3.0f,icurve.v1,1.0f/3.0f*icurve.v2); |
| 304 | const Vertex v2 = madd(1.0f/3.0f,icurve.v1,2.0f/3.0f*icurve.v2); |
| 305 | const Vertex v3 = madd(1.0f/6.0f,icurve.v1,madd(2.0f/3.0f,icurve.v2,1.0f/6.0f*icurve.v3)); |
| 306 | ocurve = BezierCurveT<Vertex>(v0,v1,v2,v3); |
| 307 | } |
| 308 | |
| 309 | template<typename CurveGeometry> |
| 310 | __forceinline BSplineCurveT<Vec3ff> enlargeRadiusToMinWidth(const IntersectContext* context, const CurveGeometry* geom, const Vec3fa& ray_org, const BSplineCurveT<Vec3ff>& curve) |
| 311 | { |
| 312 | return BSplineCurveT<Vec3ff>(enlargeRadiusToMinWidth(context,geom,ray_org,curve.v0), |
| 313 | enlargeRadiusToMinWidth(context,geom,ray_org,curve.v1), |
| 314 | enlargeRadiusToMinWidth(context,geom,ray_org,curve.v2), |
| 315 | enlargeRadiusToMinWidth(context,geom,ray_org,curve.v3)); |
| 316 | } |
| 317 | |
| 318 | typedef BSplineCurveT<Vec3fa> BSplineCurve3fa; |
| 319 | } |
| 320 | |
| 321 | |