1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | /* |
4 | ***************************************************************************** |
5 | * Copyright (C) 1996-2015, International Business Machines Corporation and |
6 | * others. All Rights Reserved. |
7 | ***************************************************************************** |
8 | */ |
9 | |
10 | #include "unicode/utypes.h" |
11 | |
12 | #if !UCONFIG_NO_NORMALIZATION |
13 | |
14 | #include "unicode/caniter.h" |
15 | #include "unicode/normalizer2.h" |
16 | #include "unicode/uchar.h" |
17 | #include "unicode/uniset.h" |
18 | #include "unicode/usetiter.h" |
19 | #include "unicode/ustring.h" |
20 | #include "unicode/utf16.h" |
21 | #include "cmemory.h" |
22 | #include "hash.h" |
23 | #include "normalizer2impl.h" |
24 | |
25 | /** |
26 | * This class allows one to iterate through all the strings that are canonically equivalent to a given |
27 | * string. For example, here are some sample results: |
28 | Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} |
29 | 1: \u0041\u030A\u0064\u0307\u0327 |
30 | = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} |
31 | 2: \u0041\u030A\u0064\u0327\u0307 |
32 | = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} |
33 | 3: \u0041\u030A\u1E0B\u0327 |
34 | = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} |
35 | 4: \u0041\u030A\u1E11\u0307 |
36 | = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} |
37 | 5: \u00C5\u0064\u0307\u0327 |
38 | = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} |
39 | 6: \u00C5\u0064\u0327\u0307 |
40 | = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} |
41 | 7: \u00C5\u1E0B\u0327 |
42 | = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} |
43 | 8: \u00C5\u1E11\u0307 |
44 | = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} |
45 | 9: \u212B\u0064\u0307\u0327 |
46 | = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} |
47 | 10: \u212B\u0064\u0327\u0307 |
48 | = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} |
49 | 11: \u212B\u1E0B\u0327 |
50 | = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} |
51 | 12: \u212B\u1E11\u0307 |
52 | = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} |
53 | *<br>Note: the code is intended for use with small strings, and is not suitable for larger ones, |
54 | * since it has not been optimized for that situation. |
55 | *@author M. Davis |
56 | *@draft |
57 | */ |
58 | |
59 | // public |
60 | |
61 | U_NAMESPACE_BEGIN |
62 | |
63 | // TODO: add boilerplate methods. |
64 | |
65 | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator) |
66 | |
67 | /** |
68 | *@param source string to get results for |
69 | */ |
70 | CanonicalIterator::CanonicalIterator(const UnicodeString &sourceStr, UErrorCode &status) : |
71 | pieces(nullptr), |
72 | pieces_length(0), |
73 | pieces_lengths(nullptr), |
74 | current(nullptr), |
75 | current_length(0), |
76 | nfd(*Normalizer2::getNFDInstance(status)), |
77 | nfcImpl(*Normalizer2Factory::getNFCImpl(status)) |
78 | { |
79 | if(U_SUCCESS(status) && nfcImpl.ensureCanonIterData(status)) { |
80 | setSource(sourceStr, status); |
81 | } |
82 | } |
83 | |
84 | CanonicalIterator::~CanonicalIterator() { |
85 | cleanPieces(); |
86 | } |
87 | |
88 | void CanonicalIterator::cleanPieces() { |
89 | int32_t i = 0; |
90 | if(pieces != nullptr) { |
91 | for(i = 0; i < pieces_length; i++) { |
92 | if(pieces[i] != nullptr) { |
93 | delete[] pieces[i]; |
94 | } |
95 | } |
96 | uprv_free(pieces); |
97 | pieces = nullptr; |
98 | pieces_length = 0; |
99 | } |
100 | if(pieces_lengths != nullptr) { |
101 | uprv_free(pieces_lengths); |
102 | pieces_lengths = nullptr; |
103 | } |
104 | if(current != nullptr) { |
105 | uprv_free(current); |
106 | current = nullptr; |
107 | current_length = 0; |
108 | } |
109 | } |
110 | |
111 | /** |
112 | *@return gets the source: NOTE: it is the NFD form of source |
113 | */ |
114 | UnicodeString CanonicalIterator::getSource() { |
115 | return source; |
116 | } |
117 | |
118 | /** |
119 | * Resets the iterator so that one can start again from the beginning. |
120 | */ |
121 | void CanonicalIterator::reset() { |
122 | done = false; |
123 | for (int i = 0; i < current_length; ++i) { |
124 | current[i] = 0; |
125 | } |
126 | } |
127 | |
128 | /** |
129 | *@return the next string that is canonically equivalent. The value null is returned when |
130 | * the iteration is done. |
131 | */ |
132 | UnicodeString CanonicalIterator::next() { |
133 | int32_t i = 0; |
134 | |
135 | if (done) { |
136 | buffer.setToBogus(); |
137 | return buffer; |
138 | } |
139 | |
140 | // delete old contents |
141 | buffer.remove(); |
142 | |
143 | // construct return value |
144 | |
145 | for (i = 0; i < pieces_length; ++i) { |
146 | buffer.append(pieces[i][current[i]]); |
147 | } |
148 | //String result = buffer.toString(); // not needed |
149 | |
150 | // find next value for next time |
151 | |
152 | for (i = current_length - 1; ; --i) { |
153 | if (i < 0) { |
154 | done = true; |
155 | break; |
156 | } |
157 | current[i]++; |
158 | if (current[i] < pieces_lengths[i]) break; // got sequence |
159 | current[i] = 0; |
160 | } |
161 | return buffer; |
162 | } |
163 | |
164 | /** |
165 | *@param set the source string to iterate against. This allows the same iterator to be used |
166 | * while changing the source string, saving object creation. |
167 | */ |
168 | void CanonicalIterator::setSource(const UnicodeString &newSource, UErrorCode &status) { |
169 | int32_t list_length = 0; |
170 | UChar32 cp = 0; |
171 | int32_t start = 0; |
172 | int32_t i = 0; |
173 | UnicodeString *list = nullptr; |
174 | |
175 | nfd.normalize(newSource, source, status); |
176 | if(U_FAILURE(status)) { |
177 | return; |
178 | } |
179 | done = false; |
180 | |
181 | cleanPieces(); |
182 | |
183 | // catch degenerate case |
184 | if (newSource.length() == 0) { |
185 | pieces = (UnicodeString **)uprv_malloc(sizeof(UnicodeString *)); |
186 | pieces_lengths = (int32_t*)uprv_malloc(1 * sizeof(int32_t)); |
187 | pieces_length = 1; |
188 | current = (int32_t*)uprv_malloc(1 * sizeof(int32_t)); |
189 | current_length = 1; |
190 | if (pieces == nullptr || pieces_lengths == nullptr || current == nullptr) { |
191 | status = U_MEMORY_ALLOCATION_ERROR; |
192 | goto CleanPartialInitialization; |
193 | } |
194 | current[0] = 0; |
195 | pieces[0] = new UnicodeString[1]; |
196 | pieces_lengths[0] = 1; |
197 | if (pieces[0] == 0) { |
198 | status = U_MEMORY_ALLOCATION_ERROR; |
199 | goto CleanPartialInitialization; |
200 | } |
201 | return; |
202 | } |
203 | |
204 | |
205 | list = new UnicodeString[source.length()]; |
206 | if (list == 0) { |
207 | status = U_MEMORY_ALLOCATION_ERROR; |
208 | goto CleanPartialInitialization; |
209 | } |
210 | |
211 | // i should initially be the number of code units at the |
212 | // start of the string |
213 | i = U16_LENGTH(source.char32At(0)); |
214 | // int32_t i = 1; |
215 | // find the segments |
216 | // This code iterates through the source string and |
217 | // extracts segments that end up on a codepoint that |
218 | // doesn't start any decompositions. (Analysis is done |
219 | // on the NFD form - see above). |
220 | for (; i < source.length(); i += U16_LENGTH(cp)) { |
221 | cp = source.char32At(i); |
222 | if (nfcImpl.isCanonSegmentStarter(cp)) { |
223 | source.extract(start, i-start, list[list_length++]); // add up to i |
224 | start = i; |
225 | } |
226 | } |
227 | source.extract(start, i-start, list[list_length++]); // add last one |
228 | |
229 | |
230 | // allocate the arrays, and find the strings that are CE to each segment |
231 | pieces = (UnicodeString **)uprv_malloc(list_length * sizeof(UnicodeString *)); |
232 | pieces_length = list_length; |
233 | pieces_lengths = (int32_t*)uprv_malloc(list_length * sizeof(int32_t)); |
234 | current = (int32_t*)uprv_malloc(list_length * sizeof(int32_t)); |
235 | current_length = list_length; |
236 | if (pieces == nullptr || pieces_lengths == nullptr || current == nullptr) { |
237 | status = U_MEMORY_ALLOCATION_ERROR; |
238 | goto CleanPartialInitialization; |
239 | } |
240 | |
241 | for (i = 0; i < current_length; i++) { |
242 | current[i] = 0; |
243 | } |
244 | // for each segment, get all the combinations that can produce |
245 | // it after NFD normalization |
246 | for (i = 0; i < pieces_length; ++i) { |
247 | //if (PROGRESS) printf("SEGMENT\n"); |
248 | pieces[i] = getEquivalents(list[i], pieces_lengths[i], status); |
249 | } |
250 | |
251 | delete[] list; |
252 | return; |
253 | // Common section to cleanup all local variables and reset object variables. |
254 | CleanPartialInitialization: |
255 | if (list != nullptr) { |
256 | delete[] list; |
257 | } |
258 | cleanPieces(); |
259 | } |
260 | |
261 | /** |
262 | * Dumb recursive implementation of permutation. |
263 | * TODO: optimize |
264 | * @param source the string to find permutations for |
265 | * @return the results in a set. |
266 | */ |
267 | void U_EXPORT2 CanonicalIterator::permute(UnicodeString &source, UBool skipZeros, Hashtable *result, UErrorCode &status) { |
268 | if(U_FAILURE(status)) { |
269 | return; |
270 | } |
271 | //if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source))); |
272 | int32_t i = 0; |
273 | |
274 | // optimization: |
275 | // if zero or one character, just return a set with it |
276 | // we check for length < 2 to keep from counting code points all the time |
277 | if (source.length() <= 2 && source.countChar32() <= 1) { |
278 | UnicodeString *toPut = new UnicodeString(source); |
279 | /* test for nullptr */ |
280 | if (toPut == 0) { |
281 | status = U_MEMORY_ALLOCATION_ERROR; |
282 | return; |
283 | } |
284 | result->put(source, toPut, status); |
285 | return; |
286 | } |
287 | |
288 | // otherwise iterate through the string, and recursively permute all the other characters |
289 | UChar32 cp; |
290 | Hashtable subpermute(status); |
291 | if(U_FAILURE(status)) { |
292 | return; |
293 | } |
294 | subpermute.setValueDeleter(uprv_deleteUObject); |
295 | |
296 | for (i = 0; i < source.length(); i += U16_LENGTH(cp)) { |
297 | cp = source.char32At(i); |
298 | const UHashElement *ne = nullptr; |
299 | int32_t el = UHASH_FIRST; |
300 | UnicodeString subPermuteString = source; |
301 | |
302 | // optimization: |
303 | // if the character is canonical combining class zero, |
304 | // don't permute it |
305 | if (skipZeros && i != 0 && u_getCombiningClass(cp) == 0) { |
306 | //System.out.println("Skipping " + Utility.hex(UTF16.valueOf(source, i))); |
307 | continue; |
308 | } |
309 | |
310 | subpermute.removeAll(); |
311 | |
312 | // see what the permutations of the characters before and after this one are |
313 | //Hashtable *subpermute = permute(source.substring(0,i) + source.substring(i + UTF16.getCharCount(cp))); |
314 | permute(subPermuteString.remove(i, U16_LENGTH(cp)), skipZeros, &subpermute, status); |
315 | /* Test for buffer overflows */ |
316 | if(U_FAILURE(status)) { |
317 | return; |
318 | } |
319 | // The upper remove is destructive. The question is do we have to make a copy, or we don't care about the contents |
320 | // of source at this point. |
321 | |
322 | // prefix this character to all of them |
323 | ne = subpermute.nextElement(el); |
324 | while (ne != nullptr) { |
325 | UnicodeString *permRes = (UnicodeString *)(ne->value.pointer); |
326 | UnicodeString *chStr = new UnicodeString(cp); |
327 | //test for nullptr |
328 | if (chStr == nullptr) { |
329 | status = U_MEMORY_ALLOCATION_ERROR; |
330 | return; |
331 | } |
332 | chStr->append(*permRes); //*((UnicodeString *)(ne->value.pointer)); |
333 | //if (PROGRESS) printf(" Piece: %s\n", UToS(*chStr)); |
334 | result->put(*chStr, chStr, status); |
335 | ne = subpermute.nextElement(el); |
336 | } |
337 | } |
338 | //return result; |
339 | } |
340 | |
341 | // privates |
342 | |
343 | // we have a segment, in NFD. Find all the strings that are canonically equivalent to it. |
344 | UnicodeString* CanonicalIterator::getEquivalents(const UnicodeString &segment, int32_t &result_len, UErrorCode &status) { |
345 | Hashtable result(status); |
346 | Hashtable permutations(status); |
347 | Hashtable basic(status); |
348 | if (U_FAILURE(status)) { |
349 | return 0; |
350 | } |
351 | result.setValueDeleter(uprv_deleteUObject); |
352 | permutations.setValueDeleter(uprv_deleteUObject); |
353 | basic.setValueDeleter(uprv_deleteUObject); |
354 | |
355 | char16_t USeg[256]; |
356 | int32_t segLen = segment.extract(USeg, 256, status); |
357 | getEquivalents2(&basic, USeg, segLen, status); |
358 | |
359 | // now get all the permutations |
360 | // add only the ones that are canonically equivalent |
361 | // TODO: optimize by not permuting any class zero. |
362 | |
363 | const UHashElement *ne = nullptr; |
364 | int32_t el = UHASH_FIRST; |
365 | //Iterator it = basic.iterator(); |
366 | ne = basic.nextElement(el); |
367 | //while (it.hasNext()) |
368 | while (ne != nullptr) { |
369 | //String item = (String) it.next(); |
370 | UnicodeString item = *((UnicodeString *)(ne->value.pointer)); |
371 | |
372 | permutations.removeAll(); |
373 | permute(item, CANITER_SKIP_ZEROES, &permutations, status); |
374 | const UHashElement *ne2 = nullptr; |
375 | int32_t el2 = UHASH_FIRST; |
376 | //Iterator it2 = permutations.iterator(); |
377 | ne2 = permutations.nextElement(el2); |
378 | //while (it2.hasNext()) |
379 | while (ne2 != nullptr) { |
380 | //String possible = (String) it2.next(); |
381 | //UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne2->value.pointer))); |
382 | UnicodeString possible(*((UnicodeString *)(ne2->value.pointer))); |
383 | UnicodeString attempt; |
384 | nfd.normalize(possible, attempt, status); |
385 | |
386 | // TODO: check if operator == is semanticaly the same as attempt.equals(segment) |
387 | if (attempt==segment) { |
388 | //if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*possible))); |
389 | // TODO: use the hashtable just to catch duplicates - store strings directly (somehow). |
390 | result.put(possible, new UnicodeString(possible), status); //add(possible); |
391 | } else { |
392 | //if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*possible))); |
393 | } |
394 | |
395 | ne2 = permutations.nextElement(el2); |
396 | } |
397 | ne = basic.nextElement(el); |
398 | } |
399 | |
400 | /* Test for buffer overflows */ |
401 | if(U_FAILURE(status)) { |
402 | return 0; |
403 | } |
404 | // convert into a String[] to clean up storage |
405 | //String[] finalResult = new String[result.size()]; |
406 | UnicodeString *finalResult = nullptr; |
407 | int32_t resultCount; |
408 | if((resultCount = result.count()) != 0) { |
409 | finalResult = new UnicodeString[resultCount]; |
410 | if (finalResult == 0) { |
411 | status = U_MEMORY_ALLOCATION_ERROR; |
412 | return nullptr; |
413 | } |
414 | } |
415 | else { |
416 | status = U_ILLEGAL_ARGUMENT_ERROR; |
417 | return nullptr; |
418 | } |
419 | //result.toArray(finalResult); |
420 | result_len = 0; |
421 | el = UHASH_FIRST; |
422 | ne = result.nextElement(el); |
423 | while(ne != nullptr) { |
424 | finalResult[result_len++] = *((UnicodeString *)(ne->value.pointer)); |
425 | ne = result.nextElement(el); |
426 | } |
427 | |
428 | |
429 | return finalResult; |
430 | } |
431 | |
432 | Hashtable *CanonicalIterator::getEquivalents2(Hashtable *fillinResult, const char16_t *segment, int32_t segLen, UErrorCode &status) { |
433 | |
434 | if (U_FAILURE(status)) { |
435 | return nullptr; |
436 | } |
437 | |
438 | //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment))); |
439 | |
440 | UnicodeString toPut(segment, segLen); |
441 | |
442 | fillinResult->put(toPut, new UnicodeString(toPut), status); |
443 | |
444 | UnicodeSet starts; |
445 | |
446 | // cycle through all the characters |
447 | UChar32 cp; |
448 | for (int32_t i = 0; i < segLen; i += U16_LENGTH(cp)) { |
449 | // see if any character is at the start of some decomposition |
450 | U16_GET(segment, 0, i, segLen, cp); |
451 | if (!nfcImpl.getCanonStartSet(cp, starts)) { |
452 | continue; |
453 | } |
454 | // if so, see which decompositions match |
455 | UnicodeSetIterator iter(starts); |
456 | while (iter.next()) { |
457 | UChar32 cp2 = iter.getCodepoint(); |
458 | Hashtable remainder(status); |
459 | remainder.setValueDeleter(uprv_deleteUObject); |
460 | if (extract(&remainder, cp2, segment, segLen, i, status) == nullptr) { |
461 | continue; |
462 | } |
463 | |
464 | // there were some matches, so add all the possibilities to the set. |
465 | UnicodeString prefix(segment, i); |
466 | prefix += cp2; |
467 | |
468 | int32_t el = UHASH_FIRST; |
469 | const UHashElement *ne = remainder.nextElement(el); |
470 | while (ne != nullptr) { |
471 | UnicodeString item = *((UnicodeString *)(ne->value.pointer)); |
472 | UnicodeString *toAdd = new UnicodeString(prefix); |
473 | /* test for nullptr */ |
474 | if (toAdd == 0) { |
475 | status = U_MEMORY_ALLOCATION_ERROR; |
476 | return nullptr; |
477 | } |
478 | *toAdd += item; |
479 | fillinResult->put(*toAdd, toAdd, status); |
480 | |
481 | //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*toAdd))); |
482 | |
483 | ne = remainder.nextElement(el); |
484 | } |
485 | } |
486 | } |
487 | |
488 | /* Test for buffer overflows */ |
489 | if(U_FAILURE(status)) { |
490 | return nullptr; |
491 | } |
492 | return fillinResult; |
493 | } |
494 | |
495 | /** |
496 | * See if the decomposition of cp2 is at segment starting at segmentPos |
497 | * (with canonical rearrangement!) |
498 | * If so, take the remainder, and return the equivalents |
499 | */ |
500 | Hashtable *CanonicalIterator::(Hashtable *fillinResult, UChar32 comp, const char16_t *segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) { |
501 | //Hashtable *CanonicalIterator::extract(UChar32 comp, const UnicodeString &segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) { |
502 | //if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp)))); |
503 | //if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos); |
504 | |
505 | if (U_FAILURE(status)) { |
506 | return nullptr; |
507 | } |
508 | |
509 | UnicodeString temp(comp); |
510 | int32_t inputLen=temp.length(); |
511 | UnicodeString decompString; |
512 | nfd.normalize(temp, decompString, status); |
513 | if (U_FAILURE(status)) { |
514 | return nullptr; |
515 | } |
516 | if (decompString.isBogus()) { |
517 | status = U_MEMORY_ALLOCATION_ERROR; |
518 | return nullptr; |
519 | } |
520 | const char16_t *decomp=decompString.getBuffer(); |
521 | int32_t decompLen=decompString.length(); |
522 | |
523 | // See if it matches the start of segment (at segmentPos) |
524 | UBool ok = false; |
525 | UChar32 cp; |
526 | int32_t decompPos = 0; |
527 | UChar32 decompCp; |
528 | U16_NEXT(decomp, decompPos, decompLen, decompCp); |
529 | |
530 | int32_t i = segmentPos; |
531 | while(i < segLen) { |
532 | U16_NEXT(segment, i, segLen, cp); |
533 | |
534 | if (cp == decompCp) { // if equal, eat another cp from decomp |
535 | |
536 | //if (PROGRESS) printf(" matches: %s\n", UToS(Tr(UnicodeString(cp)))); |
537 | |
538 | if (decompPos == decompLen) { // done, have all decomp characters! |
539 | temp.append(segment+i, segLen-i); |
540 | ok = true; |
541 | break; |
542 | } |
543 | U16_NEXT(decomp, decompPos, decompLen, decompCp); |
544 | } else { |
545 | //if (PROGRESS) printf(" buffer: %s\n", UToS(Tr(UnicodeString(cp)))); |
546 | |
547 | // brute force approach |
548 | temp.append(cp); |
549 | |
550 | /* TODO: optimize |
551 | // since we know that the classes are monotonically increasing, after zero |
552 | // e.g. 0 5 7 9 0 3 |
553 | // we can do an optimization |
554 | // there are only a few cases that work: zero, less, same, greater |
555 | // if both classes are the same, we fail |
556 | // if the decomp class < the segment class, we fail |
557 | |
558 | segClass = getClass(cp); |
559 | if (decompClass <= segClass) return null; |
560 | */ |
561 | } |
562 | } |
563 | if (!ok) |
564 | return nullptr; // we failed, characters left over |
565 | |
566 | //if (PROGRESS) printf("Matches\n"); |
567 | |
568 | if (inputLen == temp.length()) { |
569 | fillinResult->put(UnicodeString(), new UnicodeString(), status); |
570 | return fillinResult; // succeed, but no remainder |
571 | } |
572 | |
573 | // brute force approach |
574 | // check to make sure result is canonically equivalent |
575 | UnicodeString trial; |
576 | nfd.normalize(temp, trial, status); |
577 | if(U_FAILURE(status) || trial.compare(segment+segmentPos, segLen - segmentPos) != 0) { |
578 | return nullptr; |
579 | } |
580 | |
581 | return getEquivalents2(fillinResult, temp.getBuffer()+inputLen, temp.length()-inputLen, status); |
582 | } |
583 | |
584 | U_NAMESPACE_END |
585 | |
586 | #endif /* #if !UCONFIG_NO_NORMALIZATION */ |
587 | |