| 1 | // © 2021 and later: Unicode, Inc. and others. |
| 2 | // License & terms of use: http://www.unicode.org/copyright.html |
| 3 | |
| 4 | #include <complex> |
| 5 | #include <utility> |
| 6 | |
| 7 | #include "unicode/utypes.h" |
| 8 | |
| 9 | #if !UCONFIG_NO_BREAK_ITERATION |
| 10 | |
| 11 | #include "brkeng.h" |
| 12 | #include "charstr.h" |
| 13 | #include "cmemory.h" |
| 14 | #include "lstmbe.h" |
| 15 | #include "putilimp.h" |
| 16 | #include "uassert.h" |
| 17 | #include "ubrkimpl.h" |
| 18 | #include "uresimp.h" |
| 19 | #include "uvectr32.h" |
| 20 | #include "uvector.h" |
| 21 | |
| 22 | #include "unicode/brkiter.h" |
| 23 | #include "unicode/resbund.h" |
| 24 | #include "unicode/ubrk.h" |
| 25 | #include "unicode/uniset.h" |
| 26 | #include "unicode/ustring.h" |
| 27 | #include "unicode/utf.h" |
| 28 | |
| 29 | U_NAMESPACE_BEGIN |
| 30 | |
| 31 | // Uncomment the following #define to debug. |
| 32 | // #define LSTM_DEBUG 1 |
| 33 | // #define LSTM_VECTORIZER_DEBUG 1 |
| 34 | |
| 35 | /** |
| 36 | * Interface for reading 1D array. |
| 37 | */ |
| 38 | class ReadArray1D { |
| 39 | public: |
| 40 | virtual ~ReadArray1D(); |
| 41 | virtual int32_t d1() const = 0; |
| 42 | virtual float get(int32_t i) const = 0; |
| 43 | |
| 44 | #ifdef LSTM_DEBUG |
| 45 | void print() const { |
| 46 | printf("\n[" ); |
| 47 | for (int32_t i = 0; i < d1(); i++) { |
| 48 | printf("%0.8e " , get(i)); |
| 49 | if (i % 4 == 3) printf("\n" ); |
| 50 | } |
| 51 | printf("]\n" ); |
| 52 | } |
| 53 | #endif |
| 54 | }; |
| 55 | |
| 56 | ReadArray1D::~ReadArray1D() |
| 57 | { |
| 58 | } |
| 59 | |
| 60 | /** |
| 61 | * Interface for reading 2D array. |
| 62 | */ |
| 63 | class ReadArray2D { |
| 64 | public: |
| 65 | virtual ~ReadArray2D(); |
| 66 | virtual int32_t d1() const = 0; |
| 67 | virtual int32_t d2() const = 0; |
| 68 | virtual float get(int32_t i, int32_t j) const = 0; |
| 69 | }; |
| 70 | |
| 71 | ReadArray2D::~ReadArray2D() |
| 72 | { |
| 73 | } |
| 74 | |
| 75 | /** |
| 76 | * A class to index a float array as a 1D Array without owning the pointer or |
| 77 | * copy the data. |
| 78 | */ |
| 79 | class ConstArray1D : public ReadArray1D { |
| 80 | public: |
| 81 | ConstArray1D() : data_(nullptr), d1_(0) {} |
| 82 | |
| 83 | ConstArray1D(const float* data, int32_t d1) : data_(data), d1_(d1) {} |
| 84 | |
| 85 | virtual ~ConstArray1D(); |
| 86 | |
| 87 | // Init the object, the object does not own the data nor copy. |
| 88 | // It is designed to directly use data from memory mapped resources. |
| 89 | void init(const int32_t* data, int32_t d1) { |
| 90 | U_ASSERT(IEEE_754 == 1); |
| 91 | data_ = reinterpret_cast<const float*>(data); |
| 92 | d1_ = d1; |
| 93 | } |
| 94 | |
| 95 | // ReadArray1D methods. |
| 96 | virtual int32_t d1() const override { return d1_; } |
| 97 | virtual float get(int32_t i) const override { |
| 98 | U_ASSERT(i < d1_); |
| 99 | return data_[i]; |
| 100 | } |
| 101 | |
| 102 | private: |
| 103 | const float* data_; |
| 104 | int32_t d1_; |
| 105 | }; |
| 106 | |
| 107 | ConstArray1D::~ConstArray1D() |
| 108 | { |
| 109 | } |
| 110 | |
| 111 | /** |
| 112 | * A class to index a float array as a 2D Array without owning the pointer or |
| 113 | * copy the data. |
| 114 | */ |
| 115 | class ConstArray2D : public ReadArray2D { |
| 116 | public: |
| 117 | ConstArray2D() : data_(nullptr), d1_(0), d2_(0) {} |
| 118 | |
| 119 | ConstArray2D(const float* data, int32_t d1, int32_t d2) |
| 120 | : data_(data), d1_(d1), d2_(d2) {} |
| 121 | |
| 122 | virtual ~ConstArray2D(); |
| 123 | |
| 124 | // Init the object, the object does not own the data nor copy. |
| 125 | // It is designed to directly use data from memory mapped resources. |
| 126 | void init(const int32_t* data, int32_t d1, int32_t d2) { |
| 127 | U_ASSERT(IEEE_754 == 1); |
| 128 | data_ = reinterpret_cast<const float*>(data); |
| 129 | d1_ = d1; |
| 130 | d2_ = d2; |
| 131 | } |
| 132 | |
| 133 | // ReadArray2D methods. |
| 134 | inline int32_t d1() const override { return d1_; } |
| 135 | inline int32_t d2() const override { return d2_; } |
| 136 | float get(int32_t i, int32_t j) const override { |
| 137 | U_ASSERT(i < d1_); |
| 138 | U_ASSERT(j < d2_); |
| 139 | return data_[i * d2_ + j]; |
| 140 | } |
| 141 | |
| 142 | // Expose the ith row as a ConstArray1D |
| 143 | inline ConstArray1D row(int32_t i) const { |
| 144 | U_ASSERT(i < d1_); |
| 145 | return ConstArray1D(data_ + i * d2_, d2_); |
| 146 | } |
| 147 | |
| 148 | private: |
| 149 | const float* data_; |
| 150 | int32_t d1_; |
| 151 | int32_t d2_; |
| 152 | }; |
| 153 | |
| 154 | ConstArray2D::~ConstArray2D() |
| 155 | { |
| 156 | } |
| 157 | |
| 158 | /** |
| 159 | * A class to allocate data as a writable 1D array. |
| 160 | * This is the main class implement matrix operation. |
| 161 | */ |
| 162 | class Array1D : public ReadArray1D { |
| 163 | public: |
| 164 | Array1D() : memory_(nullptr), data_(nullptr), d1_(0) {} |
| 165 | Array1D(int32_t d1, UErrorCode &status) |
| 166 | : memory_(uprv_malloc(d1 * sizeof(float))), |
| 167 | data_((float*)memory_), d1_(d1) { |
| 168 | if (U_SUCCESS(status)) { |
| 169 | if (memory_ == nullptr) { |
| 170 | status = U_MEMORY_ALLOCATION_ERROR; |
| 171 | return; |
| 172 | } |
| 173 | clear(); |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | virtual ~Array1D(); |
| 178 | |
| 179 | // A special constructor which does not own the memory but writeable |
| 180 | // as a slice of an array. |
| 181 | Array1D(float* data, int32_t d1) |
| 182 | : memory_(nullptr), data_(data), d1_(d1) {} |
| 183 | |
| 184 | // ReadArray1D methods. |
| 185 | virtual int32_t d1() const override { return d1_; } |
| 186 | virtual float get(int32_t i) const override { |
| 187 | U_ASSERT(i < d1_); |
| 188 | return data_[i]; |
| 189 | } |
| 190 | |
| 191 | // Return the index which point to the max data in the array. |
| 192 | inline int32_t maxIndex() const { |
| 193 | int32_t index = 0; |
| 194 | float max = data_[0]; |
| 195 | for (int32_t i = 1; i < d1_; i++) { |
| 196 | if (data_[i] > max) { |
| 197 | max = data_[i]; |
| 198 | index = i; |
| 199 | } |
| 200 | } |
| 201 | return index; |
| 202 | } |
| 203 | |
| 204 | // Slice part of the array to a new one. |
| 205 | inline Array1D slice(int32_t from, int32_t size) const { |
| 206 | U_ASSERT(from >= 0); |
| 207 | U_ASSERT(from < d1_); |
| 208 | U_ASSERT(from + size <= d1_); |
| 209 | return Array1D(data_ + from, size); |
| 210 | } |
| 211 | |
| 212 | // Add dot product of a 1D array and a 2D array into this one. |
| 213 | inline Array1D& addDotProduct(const ReadArray1D& a, const ReadArray2D& b) { |
| 214 | U_ASSERT(a.d1() == b.d1()); |
| 215 | U_ASSERT(b.d2() == d1()); |
| 216 | for (int32_t i = 0; i < d1(); i++) { |
| 217 | for (int32_t j = 0; j < a.d1(); j++) { |
| 218 | data_[i] += a.get(j) * b.get(j, i); |
| 219 | } |
| 220 | } |
| 221 | return *this; |
| 222 | } |
| 223 | |
| 224 | // Hadamard Product the values of another array of the same size into this one. |
| 225 | inline Array1D& hadamardProduct(const ReadArray1D& a) { |
| 226 | U_ASSERT(a.d1() == d1()); |
| 227 | for (int32_t i = 0; i < d1(); i++) { |
| 228 | data_[i] *= a.get(i); |
| 229 | } |
| 230 | return *this; |
| 231 | } |
| 232 | |
| 233 | // Add the Hadamard Product of two arrays of the same size into this one. |
| 234 | inline Array1D& addHadamardProduct(const ReadArray1D& a, const ReadArray1D& b) { |
| 235 | U_ASSERT(a.d1() == d1()); |
| 236 | U_ASSERT(b.d1() == d1()); |
| 237 | for (int32_t i = 0; i < d1(); i++) { |
| 238 | data_[i] += a.get(i) * b.get(i); |
| 239 | } |
| 240 | return *this; |
| 241 | } |
| 242 | |
| 243 | // Add the values of another array of the same size into this one. |
| 244 | inline Array1D& add(const ReadArray1D& a) { |
| 245 | U_ASSERT(a.d1() == d1()); |
| 246 | for (int32_t i = 0; i < d1(); i++) { |
| 247 | data_[i] += a.get(i); |
| 248 | } |
| 249 | return *this; |
| 250 | } |
| 251 | |
| 252 | // Assign the values of another array of the same size into this one. |
| 253 | inline Array1D& assign(const ReadArray1D& a) { |
| 254 | U_ASSERT(a.d1() == d1()); |
| 255 | for (int32_t i = 0; i < d1(); i++) { |
| 256 | data_[i] = a.get(i); |
| 257 | } |
| 258 | return *this; |
| 259 | } |
| 260 | |
| 261 | // Apply tanh to all the elements in the array. |
| 262 | inline Array1D& tanh() { |
| 263 | return tanh(*this); |
| 264 | } |
| 265 | |
| 266 | // Apply tanh of a and store into this array. |
| 267 | inline Array1D& tanh(const Array1D& a) { |
| 268 | U_ASSERT(a.d1() == d1()); |
| 269 | for (int32_t i = 0; i < d1_; i++) { |
| 270 | data_[i] = std::tanh(a.get(i)); |
| 271 | } |
| 272 | return *this; |
| 273 | } |
| 274 | |
| 275 | // Apply sigmoid to all the elements in the array. |
| 276 | inline Array1D& sigmoid() { |
| 277 | for (int32_t i = 0; i < d1_; i++) { |
| 278 | data_[i] = 1.0f/(1.0f + expf(-data_[i])); |
| 279 | } |
| 280 | return *this; |
| 281 | } |
| 282 | |
| 283 | inline Array1D& clear() { |
| 284 | uprv_memset(data_, 0, d1_ * sizeof(float)); |
| 285 | return *this; |
| 286 | } |
| 287 | |
| 288 | private: |
| 289 | void* memory_; |
| 290 | float* data_; |
| 291 | int32_t d1_; |
| 292 | }; |
| 293 | |
| 294 | Array1D::~Array1D() |
| 295 | { |
| 296 | uprv_free(memory_); |
| 297 | } |
| 298 | |
| 299 | class Array2D : public ReadArray2D { |
| 300 | public: |
| 301 | Array2D() : memory_(nullptr), data_(nullptr), d1_(0), d2_(0) {} |
| 302 | Array2D(int32_t d1, int32_t d2, UErrorCode &status) |
| 303 | : memory_(uprv_malloc(d1 * d2 * sizeof(float))), |
| 304 | data_((float*)memory_), d1_(d1), d2_(d2) { |
| 305 | if (U_SUCCESS(status)) { |
| 306 | if (memory_ == nullptr) { |
| 307 | status = U_MEMORY_ALLOCATION_ERROR; |
| 308 | return; |
| 309 | } |
| 310 | clear(); |
| 311 | } |
| 312 | } |
| 313 | virtual ~Array2D(); |
| 314 | |
| 315 | // ReadArray2D methods. |
| 316 | virtual int32_t d1() const override { return d1_; } |
| 317 | virtual int32_t d2() const override { return d2_; } |
| 318 | virtual float get(int32_t i, int32_t j) const override { |
| 319 | U_ASSERT(i < d1_); |
| 320 | U_ASSERT(j < d2_); |
| 321 | return data_[i * d2_ + j]; |
| 322 | } |
| 323 | |
| 324 | inline Array1D row(int32_t i) const { |
| 325 | U_ASSERT(i < d1_); |
| 326 | return Array1D(data_ + i * d2_, d2_); |
| 327 | } |
| 328 | |
| 329 | inline Array2D& clear() { |
| 330 | uprv_memset(data_, 0, d1_ * d2_ * sizeof(float)); |
| 331 | return *this; |
| 332 | } |
| 333 | |
| 334 | private: |
| 335 | void* memory_; |
| 336 | float* data_; |
| 337 | int32_t d1_; |
| 338 | int32_t d2_; |
| 339 | }; |
| 340 | |
| 341 | Array2D::~Array2D() |
| 342 | { |
| 343 | uprv_free(memory_); |
| 344 | } |
| 345 | |
| 346 | typedef enum { |
| 347 | BEGIN, |
| 348 | INSIDE, |
| 349 | END, |
| 350 | SINGLE |
| 351 | } LSTMClass; |
| 352 | |
| 353 | typedef enum { |
| 354 | UNKNOWN, |
| 355 | CODE_POINTS, |
| 356 | GRAPHEME_CLUSTER, |
| 357 | } EmbeddingType; |
| 358 | |
| 359 | struct LSTMData : public UMemory { |
| 360 | LSTMData(UResourceBundle* rb, UErrorCode &status); |
| 361 | ~LSTMData(); |
| 362 | UHashtable* fDict; |
| 363 | EmbeddingType fType; |
| 364 | const char16_t* fName; |
| 365 | ConstArray2D fEmbedding; |
| 366 | ConstArray2D fForwardW; |
| 367 | ConstArray2D fForwardU; |
| 368 | ConstArray1D fForwardB; |
| 369 | ConstArray2D fBackwardW; |
| 370 | ConstArray2D fBackwardU; |
| 371 | ConstArray1D fBackwardB; |
| 372 | ConstArray2D fOutputW; |
| 373 | ConstArray1D fOutputB; |
| 374 | |
| 375 | private: |
| 376 | UResourceBundle* fBundle; |
| 377 | }; |
| 378 | |
| 379 | LSTMData::LSTMData(UResourceBundle* rb, UErrorCode &status) |
| 380 | : fDict(nullptr), fType(UNKNOWN), fName(nullptr), |
| 381 | fBundle(rb) |
| 382 | { |
| 383 | if (U_FAILURE(status)) { |
| 384 | return; |
| 385 | } |
| 386 | if (IEEE_754 != 1) { |
| 387 | status = U_UNSUPPORTED_ERROR; |
| 388 | return; |
| 389 | } |
| 390 | LocalUResourceBundlePointer embeddings_res( |
| 391 | ures_getByKey(rb, "embeddings" , nullptr, &status)); |
| 392 | int32_t embedding_size = ures_getInt(embeddings_res.getAlias(), &status); |
| 393 | LocalUResourceBundlePointer hunits_res( |
| 394 | ures_getByKey(rb, "hunits" , nullptr, &status)); |
| 395 | if (U_FAILURE(status)) return; |
| 396 | int32_t hunits = ures_getInt(hunits_res.getAlias(), &status); |
| 397 | const char16_t* type = ures_getStringByKey(rb, "type" , nullptr, &status); |
| 398 | if (U_FAILURE(status)) return; |
| 399 | if (u_strCompare(type, -1, u"codepoints" , -1, false) == 0) { |
| 400 | fType = CODE_POINTS; |
| 401 | } else if (u_strCompare(type, -1, u"graphclust" , -1, false) == 0) { |
| 402 | fType = GRAPHEME_CLUSTER; |
| 403 | } |
| 404 | fName = ures_getStringByKey(rb, "model" , nullptr, &status); |
| 405 | LocalUResourceBundlePointer dataRes(ures_getByKey(rb, "data" , nullptr, &status)); |
| 406 | if (U_FAILURE(status)) return; |
| 407 | int32_t data_len = 0; |
| 408 | const int32_t* data = ures_getIntVector(dataRes.getAlias(), &data_len, &status); |
| 409 | fDict = uhash_open(uhash_hashUChars, uhash_compareUChars, nullptr, &status); |
| 410 | |
| 411 | StackUResourceBundle stackTempBundle; |
| 412 | ResourceDataValue value; |
| 413 | ures_getValueWithFallback(rb, "dict" , stackTempBundle.getAlias(), value, status); |
| 414 | ResourceArray stringArray = value.getArray(status); |
| 415 | int32_t num_index = stringArray.getSize(); |
| 416 | if (U_FAILURE(status)) { return; } |
| 417 | |
| 418 | // put dict into hash |
| 419 | int32_t stringLength; |
| 420 | for (int32_t idx = 0; idx < num_index; idx++) { |
| 421 | stringArray.getValue(idx, value); |
| 422 | const char16_t* str = value.getString(stringLength, status); |
| 423 | uhash_putiAllowZero(fDict, (void*)str, idx, &status); |
| 424 | if (U_FAILURE(status)) return; |
| 425 | #ifdef LSTM_VECTORIZER_DEBUG |
| 426 | printf("Assign [" ); |
| 427 | while (*str != 0x0000) { |
| 428 | printf("U+%04x " , *str); |
| 429 | str++; |
| 430 | } |
| 431 | printf("] map to %d\n" , idx-1); |
| 432 | #endif |
| 433 | } |
| 434 | int32_t mat1_size = (num_index + 1) * embedding_size; |
| 435 | int32_t mat2_size = embedding_size * 4 * hunits; |
| 436 | int32_t mat3_size = hunits * 4 * hunits; |
| 437 | int32_t mat4_size = 4 * hunits; |
| 438 | int32_t mat5_size = mat2_size; |
| 439 | int32_t mat6_size = mat3_size; |
| 440 | int32_t mat7_size = mat4_size; |
| 441 | int32_t mat8_size = 2 * hunits * 4; |
| 442 | #if U_DEBUG |
| 443 | int32_t mat9_size = 4; |
| 444 | U_ASSERT(data_len == mat1_size + mat2_size + mat3_size + mat4_size + mat5_size + |
| 445 | mat6_size + mat7_size + mat8_size + mat9_size); |
| 446 | #endif |
| 447 | |
| 448 | fEmbedding.init(data, (num_index + 1), embedding_size); |
| 449 | data += mat1_size; |
| 450 | fForwardW.init(data, embedding_size, 4 * hunits); |
| 451 | data += mat2_size; |
| 452 | fForwardU.init(data, hunits, 4 * hunits); |
| 453 | data += mat3_size; |
| 454 | fForwardB.init(data, 4 * hunits); |
| 455 | data += mat4_size; |
| 456 | fBackwardW.init(data, embedding_size, 4 * hunits); |
| 457 | data += mat5_size; |
| 458 | fBackwardU.init(data, hunits, 4 * hunits); |
| 459 | data += mat6_size; |
| 460 | fBackwardB.init(data, 4 * hunits); |
| 461 | data += mat7_size; |
| 462 | fOutputW.init(data, 2 * hunits, 4); |
| 463 | data += mat8_size; |
| 464 | fOutputB.init(data, 4); |
| 465 | } |
| 466 | |
| 467 | LSTMData::~LSTMData() { |
| 468 | uhash_close(fDict); |
| 469 | ures_close(fBundle); |
| 470 | } |
| 471 | |
| 472 | class Vectorizer : public UMemory { |
| 473 | public: |
| 474 | Vectorizer(UHashtable* dict) : fDict(dict) {} |
| 475 | virtual ~Vectorizer(); |
| 476 | virtual void vectorize(UText *text, int32_t startPos, int32_t endPos, |
| 477 | UVector32 &offsets, UVector32 &indices, |
| 478 | UErrorCode &status) const = 0; |
| 479 | protected: |
| 480 | int32_t stringToIndex(const char16_t* str) const { |
| 481 | UBool found = false; |
| 482 | int32_t ret = uhash_getiAndFound(fDict, (const void*)str, &found); |
| 483 | if (!found) { |
| 484 | ret = fDict->count; |
| 485 | } |
| 486 | #ifdef LSTM_VECTORIZER_DEBUG |
| 487 | printf("[" ); |
| 488 | while (*str != 0x0000) { |
| 489 | printf("U+%04x " , *str); |
| 490 | str++; |
| 491 | } |
| 492 | printf("] map to %d\n" , ret); |
| 493 | #endif |
| 494 | return ret; |
| 495 | } |
| 496 | |
| 497 | private: |
| 498 | UHashtable* fDict; |
| 499 | }; |
| 500 | |
| 501 | Vectorizer::~Vectorizer() |
| 502 | { |
| 503 | } |
| 504 | |
| 505 | class CodePointsVectorizer : public Vectorizer { |
| 506 | public: |
| 507 | CodePointsVectorizer(UHashtable* dict) : Vectorizer(dict) {} |
| 508 | virtual ~CodePointsVectorizer(); |
| 509 | virtual void vectorize(UText *text, int32_t startPos, int32_t endPos, |
| 510 | UVector32 &offsets, UVector32 &indices, |
| 511 | UErrorCode &status) const override; |
| 512 | }; |
| 513 | |
| 514 | CodePointsVectorizer::~CodePointsVectorizer() |
| 515 | { |
| 516 | } |
| 517 | |
| 518 | void CodePointsVectorizer::vectorize( |
| 519 | UText *text, int32_t startPos, int32_t endPos, |
| 520 | UVector32 &offsets, UVector32 &indices, UErrorCode &status) const |
| 521 | { |
| 522 | if (offsets.ensureCapacity(endPos - startPos, status) && |
| 523 | indices.ensureCapacity(endPos - startPos, status)) { |
| 524 | if (U_FAILURE(status)) return; |
| 525 | utext_setNativeIndex(text, startPos); |
| 526 | int32_t current; |
| 527 | char16_t str[2] = {0, 0}; |
| 528 | while (U_SUCCESS(status) && |
| 529 | (current = (int32_t)utext_getNativeIndex(text)) < endPos) { |
| 530 | // Since the LSTMBreakEngine is currently only accept chars in BMP, |
| 531 | // we can ignore the possibility of hitting supplementary code |
| 532 | // point. |
| 533 | str[0] = (char16_t) utext_next32(text); |
| 534 | U_ASSERT(!U_IS_SURROGATE(str[0])); |
| 535 | offsets.addElement(current, status); |
| 536 | indices.addElement(stringToIndex(str), status); |
| 537 | } |
| 538 | } |
| 539 | } |
| 540 | |
| 541 | class GraphemeClusterVectorizer : public Vectorizer { |
| 542 | public: |
| 543 | GraphemeClusterVectorizer(UHashtable* dict) |
| 544 | : Vectorizer(dict) |
| 545 | { |
| 546 | } |
| 547 | virtual ~GraphemeClusterVectorizer(); |
| 548 | virtual void vectorize(UText *text, int32_t startPos, int32_t endPos, |
| 549 | UVector32 &offsets, UVector32 &indices, |
| 550 | UErrorCode &status) const override; |
| 551 | }; |
| 552 | |
| 553 | GraphemeClusterVectorizer::~GraphemeClusterVectorizer() |
| 554 | { |
| 555 | } |
| 556 | |
| 557 | constexpr int32_t MAX_GRAPHEME_CLSTER_LENGTH = 10; |
| 558 | |
| 559 | void GraphemeClusterVectorizer::vectorize( |
| 560 | UText *text, int32_t startPos, int32_t endPos, |
| 561 | UVector32 &offsets, UVector32 &indices, UErrorCode &status) const |
| 562 | { |
| 563 | if (U_FAILURE(status)) return; |
| 564 | if (!offsets.ensureCapacity(endPos - startPos, status) || |
| 565 | !indices.ensureCapacity(endPos - startPos, status)) { |
| 566 | return; |
| 567 | } |
| 568 | if (U_FAILURE(status)) return; |
| 569 | LocalPointer<BreakIterator> graphemeIter(BreakIterator::createCharacterInstance(Locale(), status)); |
| 570 | if (U_FAILURE(status)) return; |
| 571 | graphemeIter->setText(text, status); |
| 572 | if (U_FAILURE(status)) return; |
| 573 | |
| 574 | if (startPos != 0) { |
| 575 | graphemeIter->preceding(startPos); |
| 576 | } |
| 577 | int32_t last = startPos; |
| 578 | int32_t current = startPos; |
| 579 | char16_t str[MAX_GRAPHEME_CLSTER_LENGTH]; |
| 580 | while ((current = graphemeIter->next()) != BreakIterator::DONE) { |
| 581 | if (current >= endPos) { |
| 582 | break; |
| 583 | } |
| 584 | if (current > startPos) { |
| 585 | utext_extract(text, last, current, str, MAX_GRAPHEME_CLSTER_LENGTH, &status); |
| 586 | if (U_FAILURE(status)) return; |
| 587 | offsets.addElement(last, status); |
| 588 | indices.addElement(stringToIndex(str), status); |
| 589 | if (U_FAILURE(status)) return; |
| 590 | } |
| 591 | last = current; |
| 592 | } |
| 593 | if (U_FAILURE(status) || last >= endPos) { |
| 594 | return; |
| 595 | } |
| 596 | utext_extract(text, last, endPos, str, MAX_GRAPHEME_CLSTER_LENGTH, &status); |
| 597 | if (U_SUCCESS(status)) { |
| 598 | offsets.addElement(last, status); |
| 599 | indices.addElement(stringToIndex(str), status); |
| 600 | } |
| 601 | } |
| 602 | |
| 603 | // Computing LSTM as stated in |
| 604 | // https://en.wikipedia.org/wiki/Long_short-term_memory#LSTM_with_a_forget_gate |
| 605 | // ifco is temp array allocate outside which does not need to be |
| 606 | // input/output value but could avoid unnecessary memory alloc/free if passing |
| 607 | // in. |
| 608 | void compute( |
| 609 | int32_t hunits, |
| 610 | const ReadArray2D& W, const ReadArray2D& U, const ReadArray1D& b, |
| 611 | const ReadArray1D& x, Array1D& h, Array1D& c, |
| 612 | Array1D& ifco) |
| 613 | { |
| 614 | // ifco = x * W + h * U + b |
| 615 | ifco.assign(b) |
| 616 | .addDotProduct(x, W) |
| 617 | .addDotProduct(h, U); |
| 618 | |
| 619 | ifco.slice(0*hunits, hunits).sigmoid(); // i: sigmod |
| 620 | ifco.slice(1*hunits, hunits).sigmoid(); // f: sigmoid |
| 621 | ifco.slice(2*hunits, hunits).tanh(); // c_: tanh |
| 622 | ifco.slice(3*hunits, hunits).sigmoid(); // o: sigmod |
| 623 | |
| 624 | c.hadamardProduct(ifco.slice(hunits, hunits)) |
| 625 | .addHadamardProduct(ifco.slice(0, hunits), ifco.slice(2*hunits, hunits)); |
| 626 | |
| 627 | h.tanh(c) |
| 628 | .hadamardProduct(ifco.slice(3*hunits, hunits)); |
| 629 | } |
| 630 | |
| 631 | // Minimum word size |
| 632 | static const int32_t MIN_WORD = 2; |
| 633 | |
| 634 | // Minimum number of characters for two words |
| 635 | static const int32_t MIN_WORD_SPAN = MIN_WORD * 2; |
| 636 | |
| 637 | int32_t |
| 638 | LSTMBreakEngine::divideUpDictionaryRange( UText *text, |
| 639 | int32_t startPos, |
| 640 | int32_t endPos, |
| 641 | UVector32 &foundBreaks, |
| 642 | UBool /* isPhraseBreaking */, |
| 643 | UErrorCode& status) const { |
| 644 | if (U_FAILURE(status)) return 0; |
| 645 | int32_t beginFoundBreakSize = foundBreaks.size(); |
| 646 | utext_setNativeIndex(text, startPos); |
| 647 | utext_moveIndex32(text, MIN_WORD_SPAN); |
| 648 | if (utext_getNativeIndex(text) >= endPos) { |
| 649 | return 0; // Not enough characters for two words |
| 650 | } |
| 651 | utext_setNativeIndex(text, startPos); |
| 652 | |
| 653 | UVector32 offsets(status); |
| 654 | UVector32 indices(status); |
| 655 | if (U_FAILURE(status)) return 0; |
| 656 | fVectorizer->vectorize(text, startPos, endPos, offsets, indices, status); |
| 657 | if (U_FAILURE(status)) return 0; |
| 658 | int32_t* offsetsBuf = offsets.getBuffer(); |
| 659 | int32_t* indicesBuf = indices.getBuffer(); |
| 660 | |
| 661 | int32_t input_seq_len = indices.size(); |
| 662 | int32_t hunits = fData->fForwardU.d1(); |
| 663 | |
| 664 | // ----- Begin of all the Array memory allocation needed for this function |
| 665 | // Allocate temp array used inside compute() |
| 666 | Array1D ifco(4 * hunits, status); |
| 667 | |
| 668 | Array1D c(hunits, status); |
| 669 | Array1D logp(4, status); |
| 670 | |
| 671 | // TODO: limit size of hBackward. If input_seq_len is too big, we could |
| 672 | // run out of memory. |
| 673 | // Backward LSTM |
| 674 | Array2D hBackward(input_seq_len, hunits, status); |
| 675 | |
| 676 | // Allocate fbRow and slice the internal array in two. |
| 677 | Array1D fbRow(2 * hunits, status); |
| 678 | |
| 679 | // ----- End of all the Array memory allocation needed for this function |
| 680 | if (U_FAILURE(status)) return 0; |
| 681 | |
| 682 | // To save the needed memory usage, the following is different from the |
| 683 | // Python or ICU4X implementation. We first perform the Backward LSTM |
| 684 | // and then merge the iteration of the forward LSTM and the output layer |
| 685 | // together because we only neetdto remember the h[t-1] for Forward LSTM. |
| 686 | for (int32_t i = input_seq_len - 1; i >= 0; i--) { |
| 687 | Array1D hRow = hBackward.row(i); |
| 688 | if (i != input_seq_len - 1) { |
| 689 | hRow.assign(hBackward.row(i+1)); |
| 690 | } |
| 691 | #ifdef LSTM_DEBUG |
| 692 | printf("hRow %d\n" , i); |
| 693 | hRow.print(); |
| 694 | printf("indicesBuf[%d] = %d\n" , i, indicesBuf[i]); |
| 695 | printf("fData->fEmbedding.row(indicesBuf[%d]):\n" , i); |
| 696 | fData->fEmbedding.row(indicesBuf[i]).print(); |
| 697 | #endif // LSTM_DEBUG |
| 698 | compute(hunits, |
| 699 | fData->fBackwardW, fData->fBackwardU, fData->fBackwardB, |
| 700 | fData->fEmbedding.row(indicesBuf[i]), |
| 701 | hRow, c, ifco); |
| 702 | } |
| 703 | |
| 704 | |
| 705 | Array1D forwardRow = fbRow.slice(0, hunits); // point to first half of data in fbRow. |
| 706 | Array1D backwardRow = fbRow.slice(hunits, hunits); // point to second half of data n fbRow. |
| 707 | |
| 708 | // The following iteration merge the forward LSTM and the output layer |
| 709 | // together. |
| 710 | c.clear(); // reuse c since it is the same size. |
| 711 | for (int32_t i = 0; i < input_seq_len; i++) { |
| 712 | #ifdef LSTM_DEBUG |
| 713 | printf("forwardRow %d\n" , i); |
| 714 | forwardRow.print(); |
| 715 | #endif // LSTM_DEBUG |
| 716 | // Forward LSTM |
| 717 | // Calculate the result into forwardRow, which point to the data in the first half |
| 718 | // of fbRow. |
| 719 | compute(hunits, |
| 720 | fData->fForwardW, fData->fForwardU, fData->fForwardB, |
| 721 | fData->fEmbedding.row(indicesBuf[i]), |
| 722 | forwardRow, c, ifco); |
| 723 | |
| 724 | // assign the data from hBackward.row(i) to second half of fbRowa. |
| 725 | backwardRow.assign(hBackward.row(i)); |
| 726 | |
| 727 | logp.assign(fData->fOutputB).addDotProduct(fbRow, fData->fOutputW); |
| 728 | #ifdef LSTM_DEBUG |
| 729 | printf("backwardRow %d\n" , i); |
| 730 | backwardRow.print(); |
| 731 | printf("logp %d\n" , i); |
| 732 | logp.print(); |
| 733 | #endif // LSTM_DEBUG |
| 734 | |
| 735 | // current = argmax(logp) |
| 736 | LSTMClass current = (LSTMClass)logp.maxIndex(); |
| 737 | // BIES logic. |
| 738 | if (current == BEGIN || current == SINGLE) { |
| 739 | if (i != 0) { |
| 740 | foundBreaks.addElement(offsetsBuf[i], status); |
| 741 | if (U_FAILURE(status)) return 0; |
| 742 | } |
| 743 | } |
| 744 | } |
| 745 | return foundBreaks.size() - beginFoundBreakSize; |
| 746 | } |
| 747 | |
| 748 | Vectorizer* createVectorizer(const LSTMData* data, UErrorCode &status) { |
| 749 | if (U_FAILURE(status)) { |
| 750 | return nullptr; |
| 751 | } |
| 752 | switch (data->fType) { |
| 753 | case CODE_POINTS: |
| 754 | return new CodePointsVectorizer(data->fDict); |
| 755 | break; |
| 756 | case GRAPHEME_CLUSTER: |
| 757 | return new GraphemeClusterVectorizer(data->fDict); |
| 758 | break; |
| 759 | default: |
| 760 | break; |
| 761 | } |
| 762 | UPRV_UNREACHABLE_EXIT; |
| 763 | } |
| 764 | |
| 765 | LSTMBreakEngine::LSTMBreakEngine(const LSTMData* data, const UnicodeSet& set, UErrorCode &status) |
| 766 | : DictionaryBreakEngine(), fData(data), fVectorizer(createVectorizer(fData, status)) |
| 767 | { |
| 768 | if (U_FAILURE(status)) { |
| 769 | fData = nullptr; // If failure, we should not delete fData in destructor because the caller will do so. |
| 770 | return; |
| 771 | } |
| 772 | setCharacters(set); |
| 773 | } |
| 774 | |
| 775 | LSTMBreakEngine::~LSTMBreakEngine() { |
| 776 | delete fData; |
| 777 | delete fVectorizer; |
| 778 | } |
| 779 | |
| 780 | const char16_t* LSTMBreakEngine::name() const { |
| 781 | return fData->fName; |
| 782 | } |
| 783 | |
| 784 | UnicodeString defaultLSTM(UScriptCode script, UErrorCode& status) { |
| 785 | // open root from brkitr tree. |
| 786 | UResourceBundle *b = ures_open(U_ICUDATA_BRKITR, "" , &status); |
| 787 | b = ures_getByKeyWithFallback(b, "lstm" , b, &status); |
| 788 | UnicodeString result = ures_getUnicodeStringByKey(b, uscript_getShortName(script), &status); |
| 789 | ures_close(b); |
| 790 | return result; |
| 791 | } |
| 792 | |
| 793 | U_CAPI const LSTMData* U_EXPORT2 CreateLSTMDataForScript(UScriptCode script, UErrorCode& status) |
| 794 | { |
| 795 | if (script != USCRIPT_KHMER && script != USCRIPT_LAO && script != USCRIPT_MYANMAR && script != USCRIPT_THAI) { |
| 796 | return nullptr; |
| 797 | } |
| 798 | UnicodeString name = defaultLSTM(script, status); |
| 799 | if (U_FAILURE(status)) return nullptr; |
| 800 | CharString namebuf; |
| 801 | namebuf.appendInvariantChars(name, status).truncate(namebuf.lastIndexOf('.')); |
| 802 | |
| 803 | LocalUResourceBundlePointer rb( |
| 804 | ures_openDirect(U_ICUDATA_BRKITR, namebuf.data(), &status)); |
| 805 | if (U_FAILURE(status)) return nullptr; |
| 806 | |
| 807 | return CreateLSTMData(rb.orphan(), status); |
| 808 | } |
| 809 | |
| 810 | U_CAPI const LSTMData* U_EXPORT2 CreateLSTMData(UResourceBundle* rb, UErrorCode& status) |
| 811 | { |
| 812 | return new LSTMData(rb, status); |
| 813 | } |
| 814 | |
| 815 | U_CAPI const LanguageBreakEngine* U_EXPORT2 |
| 816 | CreateLSTMBreakEngine(UScriptCode script, const LSTMData* data, UErrorCode& status) |
| 817 | { |
| 818 | UnicodeString unicodeSetString; |
| 819 | switch(script) { |
| 820 | case USCRIPT_THAI: |
| 821 | unicodeSetString = UnicodeString(u"[[:Thai:]&[:LineBreak=SA:]]" ); |
| 822 | break; |
| 823 | case USCRIPT_MYANMAR: |
| 824 | unicodeSetString = UnicodeString(u"[[:Mymr:]&[:LineBreak=SA:]]" ); |
| 825 | break; |
| 826 | default: |
| 827 | delete data; |
| 828 | return nullptr; |
| 829 | } |
| 830 | UnicodeSet unicodeSet; |
| 831 | unicodeSet.applyPattern(unicodeSetString, status); |
| 832 | const LanguageBreakEngine* engine = new LSTMBreakEngine(data, unicodeSet, status); |
| 833 | if (U_FAILURE(status) || engine == nullptr) { |
| 834 | if (engine != nullptr) { |
| 835 | delete engine; |
| 836 | } else { |
| 837 | status = U_MEMORY_ALLOCATION_ERROR; |
| 838 | } |
| 839 | return nullptr; |
| 840 | } |
| 841 | return engine; |
| 842 | } |
| 843 | |
| 844 | U_CAPI void U_EXPORT2 DeleteLSTMData(const LSTMData* data) |
| 845 | { |
| 846 | delete data; |
| 847 | } |
| 848 | |
| 849 | U_CAPI const char16_t* U_EXPORT2 LSTMDataName(const LSTMData* data) |
| 850 | { |
| 851 | return data->fName; |
| 852 | } |
| 853 | |
| 854 | U_NAMESPACE_END |
| 855 | |
| 856 | #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |
| 857 | |