1 | // © 2021 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | |
4 | #include <complex> |
5 | #include <utility> |
6 | |
7 | #include "unicode/utypes.h" |
8 | |
9 | #if !UCONFIG_NO_BREAK_ITERATION |
10 | |
11 | #include "brkeng.h" |
12 | #include "charstr.h" |
13 | #include "cmemory.h" |
14 | #include "lstmbe.h" |
15 | #include "putilimp.h" |
16 | #include "uassert.h" |
17 | #include "ubrkimpl.h" |
18 | #include "uresimp.h" |
19 | #include "uvectr32.h" |
20 | #include "uvector.h" |
21 | |
22 | #include "unicode/brkiter.h" |
23 | #include "unicode/resbund.h" |
24 | #include "unicode/ubrk.h" |
25 | #include "unicode/uniset.h" |
26 | #include "unicode/ustring.h" |
27 | #include "unicode/utf.h" |
28 | |
29 | U_NAMESPACE_BEGIN |
30 | |
31 | // Uncomment the following #define to debug. |
32 | // #define LSTM_DEBUG 1 |
33 | // #define LSTM_VECTORIZER_DEBUG 1 |
34 | |
35 | /** |
36 | * Interface for reading 1D array. |
37 | */ |
38 | class ReadArray1D { |
39 | public: |
40 | virtual ~ReadArray1D(); |
41 | virtual int32_t d1() const = 0; |
42 | virtual float get(int32_t i) const = 0; |
43 | |
44 | #ifdef LSTM_DEBUG |
45 | void print() const { |
46 | printf("\n[" ); |
47 | for (int32_t i = 0; i < d1(); i++) { |
48 | printf("%0.8e " , get(i)); |
49 | if (i % 4 == 3) printf("\n" ); |
50 | } |
51 | printf("]\n" ); |
52 | } |
53 | #endif |
54 | }; |
55 | |
56 | ReadArray1D::~ReadArray1D() |
57 | { |
58 | } |
59 | |
60 | /** |
61 | * Interface for reading 2D array. |
62 | */ |
63 | class ReadArray2D { |
64 | public: |
65 | virtual ~ReadArray2D(); |
66 | virtual int32_t d1() const = 0; |
67 | virtual int32_t d2() const = 0; |
68 | virtual float get(int32_t i, int32_t j) const = 0; |
69 | }; |
70 | |
71 | ReadArray2D::~ReadArray2D() |
72 | { |
73 | } |
74 | |
75 | /** |
76 | * A class to index a float array as a 1D Array without owning the pointer or |
77 | * copy the data. |
78 | */ |
79 | class ConstArray1D : public ReadArray1D { |
80 | public: |
81 | ConstArray1D() : data_(nullptr), d1_(0) {} |
82 | |
83 | ConstArray1D(const float* data, int32_t d1) : data_(data), d1_(d1) {} |
84 | |
85 | virtual ~ConstArray1D(); |
86 | |
87 | // Init the object, the object does not own the data nor copy. |
88 | // It is designed to directly use data from memory mapped resources. |
89 | void init(const int32_t* data, int32_t d1) { |
90 | U_ASSERT(IEEE_754 == 1); |
91 | data_ = reinterpret_cast<const float*>(data); |
92 | d1_ = d1; |
93 | } |
94 | |
95 | // ReadArray1D methods. |
96 | virtual int32_t d1() const override { return d1_; } |
97 | virtual float get(int32_t i) const override { |
98 | U_ASSERT(i < d1_); |
99 | return data_[i]; |
100 | } |
101 | |
102 | private: |
103 | const float* data_; |
104 | int32_t d1_; |
105 | }; |
106 | |
107 | ConstArray1D::~ConstArray1D() |
108 | { |
109 | } |
110 | |
111 | /** |
112 | * A class to index a float array as a 2D Array without owning the pointer or |
113 | * copy the data. |
114 | */ |
115 | class ConstArray2D : public ReadArray2D { |
116 | public: |
117 | ConstArray2D() : data_(nullptr), d1_(0), d2_(0) {} |
118 | |
119 | ConstArray2D(const float* data, int32_t d1, int32_t d2) |
120 | : data_(data), d1_(d1), d2_(d2) {} |
121 | |
122 | virtual ~ConstArray2D(); |
123 | |
124 | // Init the object, the object does not own the data nor copy. |
125 | // It is designed to directly use data from memory mapped resources. |
126 | void init(const int32_t* data, int32_t d1, int32_t d2) { |
127 | U_ASSERT(IEEE_754 == 1); |
128 | data_ = reinterpret_cast<const float*>(data); |
129 | d1_ = d1; |
130 | d2_ = d2; |
131 | } |
132 | |
133 | // ReadArray2D methods. |
134 | inline int32_t d1() const override { return d1_; } |
135 | inline int32_t d2() const override { return d2_; } |
136 | float get(int32_t i, int32_t j) const override { |
137 | U_ASSERT(i < d1_); |
138 | U_ASSERT(j < d2_); |
139 | return data_[i * d2_ + j]; |
140 | } |
141 | |
142 | // Expose the ith row as a ConstArray1D |
143 | inline ConstArray1D row(int32_t i) const { |
144 | U_ASSERT(i < d1_); |
145 | return ConstArray1D(data_ + i * d2_, d2_); |
146 | } |
147 | |
148 | private: |
149 | const float* data_; |
150 | int32_t d1_; |
151 | int32_t d2_; |
152 | }; |
153 | |
154 | ConstArray2D::~ConstArray2D() |
155 | { |
156 | } |
157 | |
158 | /** |
159 | * A class to allocate data as a writable 1D array. |
160 | * This is the main class implement matrix operation. |
161 | */ |
162 | class Array1D : public ReadArray1D { |
163 | public: |
164 | Array1D() : memory_(nullptr), data_(nullptr), d1_(0) {} |
165 | Array1D(int32_t d1, UErrorCode &status) |
166 | : memory_(uprv_malloc(d1 * sizeof(float))), |
167 | data_((float*)memory_), d1_(d1) { |
168 | if (U_SUCCESS(status)) { |
169 | if (memory_ == nullptr) { |
170 | status = U_MEMORY_ALLOCATION_ERROR; |
171 | return; |
172 | } |
173 | clear(); |
174 | } |
175 | } |
176 | |
177 | virtual ~Array1D(); |
178 | |
179 | // A special constructor which does not own the memory but writeable |
180 | // as a slice of an array. |
181 | Array1D(float* data, int32_t d1) |
182 | : memory_(nullptr), data_(data), d1_(d1) {} |
183 | |
184 | // ReadArray1D methods. |
185 | virtual int32_t d1() const override { return d1_; } |
186 | virtual float get(int32_t i) const override { |
187 | U_ASSERT(i < d1_); |
188 | return data_[i]; |
189 | } |
190 | |
191 | // Return the index which point to the max data in the array. |
192 | inline int32_t maxIndex() const { |
193 | int32_t index = 0; |
194 | float max = data_[0]; |
195 | for (int32_t i = 1; i < d1_; i++) { |
196 | if (data_[i] > max) { |
197 | max = data_[i]; |
198 | index = i; |
199 | } |
200 | } |
201 | return index; |
202 | } |
203 | |
204 | // Slice part of the array to a new one. |
205 | inline Array1D slice(int32_t from, int32_t size) const { |
206 | U_ASSERT(from >= 0); |
207 | U_ASSERT(from < d1_); |
208 | U_ASSERT(from + size <= d1_); |
209 | return Array1D(data_ + from, size); |
210 | } |
211 | |
212 | // Add dot product of a 1D array and a 2D array into this one. |
213 | inline Array1D& addDotProduct(const ReadArray1D& a, const ReadArray2D& b) { |
214 | U_ASSERT(a.d1() == b.d1()); |
215 | U_ASSERT(b.d2() == d1()); |
216 | for (int32_t i = 0; i < d1(); i++) { |
217 | for (int32_t j = 0; j < a.d1(); j++) { |
218 | data_[i] += a.get(j) * b.get(j, i); |
219 | } |
220 | } |
221 | return *this; |
222 | } |
223 | |
224 | // Hadamard Product the values of another array of the same size into this one. |
225 | inline Array1D& hadamardProduct(const ReadArray1D& a) { |
226 | U_ASSERT(a.d1() == d1()); |
227 | for (int32_t i = 0; i < d1(); i++) { |
228 | data_[i] *= a.get(i); |
229 | } |
230 | return *this; |
231 | } |
232 | |
233 | // Add the Hadamard Product of two arrays of the same size into this one. |
234 | inline Array1D& addHadamardProduct(const ReadArray1D& a, const ReadArray1D& b) { |
235 | U_ASSERT(a.d1() == d1()); |
236 | U_ASSERT(b.d1() == d1()); |
237 | for (int32_t i = 0; i < d1(); i++) { |
238 | data_[i] += a.get(i) * b.get(i); |
239 | } |
240 | return *this; |
241 | } |
242 | |
243 | // Add the values of another array of the same size into this one. |
244 | inline Array1D& add(const ReadArray1D& a) { |
245 | U_ASSERT(a.d1() == d1()); |
246 | for (int32_t i = 0; i < d1(); i++) { |
247 | data_[i] += a.get(i); |
248 | } |
249 | return *this; |
250 | } |
251 | |
252 | // Assign the values of another array of the same size into this one. |
253 | inline Array1D& assign(const ReadArray1D& a) { |
254 | U_ASSERT(a.d1() == d1()); |
255 | for (int32_t i = 0; i < d1(); i++) { |
256 | data_[i] = a.get(i); |
257 | } |
258 | return *this; |
259 | } |
260 | |
261 | // Apply tanh to all the elements in the array. |
262 | inline Array1D& tanh() { |
263 | return tanh(*this); |
264 | } |
265 | |
266 | // Apply tanh of a and store into this array. |
267 | inline Array1D& tanh(const Array1D& a) { |
268 | U_ASSERT(a.d1() == d1()); |
269 | for (int32_t i = 0; i < d1_; i++) { |
270 | data_[i] = std::tanh(a.get(i)); |
271 | } |
272 | return *this; |
273 | } |
274 | |
275 | // Apply sigmoid to all the elements in the array. |
276 | inline Array1D& sigmoid() { |
277 | for (int32_t i = 0; i < d1_; i++) { |
278 | data_[i] = 1.0f/(1.0f + expf(-data_[i])); |
279 | } |
280 | return *this; |
281 | } |
282 | |
283 | inline Array1D& clear() { |
284 | uprv_memset(data_, 0, d1_ * sizeof(float)); |
285 | return *this; |
286 | } |
287 | |
288 | private: |
289 | void* memory_; |
290 | float* data_; |
291 | int32_t d1_; |
292 | }; |
293 | |
294 | Array1D::~Array1D() |
295 | { |
296 | uprv_free(memory_); |
297 | } |
298 | |
299 | class Array2D : public ReadArray2D { |
300 | public: |
301 | Array2D() : memory_(nullptr), data_(nullptr), d1_(0), d2_(0) {} |
302 | Array2D(int32_t d1, int32_t d2, UErrorCode &status) |
303 | : memory_(uprv_malloc(d1 * d2 * sizeof(float))), |
304 | data_((float*)memory_), d1_(d1), d2_(d2) { |
305 | if (U_SUCCESS(status)) { |
306 | if (memory_ == nullptr) { |
307 | status = U_MEMORY_ALLOCATION_ERROR; |
308 | return; |
309 | } |
310 | clear(); |
311 | } |
312 | } |
313 | virtual ~Array2D(); |
314 | |
315 | // ReadArray2D methods. |
316 | virtual int32_t d1() const override { return d1_; } |
317 | virtual int32_t d2() const override { return d2_; } |
318 | virtual float get(int32_t i, int32_t j) const override { |
319 | U_ASSERT(i < d1_); |
320 | U_ASSERT(j < d2_); |
321 | return data_[i * d2_ + j]; |
322 | } |
323 | |
324 | inline Array1D row(int32_t i) const { |
325 | U_ASSERT(i < d1_); |
326 | return Array1D(data_ + i * d2_, d2_); |
327 | } |
328 | |
329 | inline Array2D& clear() { |
330 | uprv_memset(data_, 0, d1_ * d2_ * sizeof(float)); |
331 | return *this; |
332 | } |
333 | |
334 | private: |
335 | void* memory_; |
336 | float* data_; |
337 | int32_t d1_; |
338 | int32_t d2_; |
339 | }; |
340 | |
341 | Array2D::~Array2D() |
342 | { |
343 | uprv_free(memory_); |
344 | } |
345 | |
346 | typedef enum { |
347 | BEGIN, |
348 | INSIDE, |
349 | END, |
350 | SINGLE |
351 | } LSTMClass; |
352 | |
353 | typedef enum { |
354 | UNKNOWN, |
355 | CODE_POINTS, |
356 | GRAPHEME_CLUSTER, |
357 | } EmbeddingType; |
358 | |
359 | struct LSTMData : public UMemory { |
360 | LSTMData(UResourceBundle* rb, UErrorCode &status); |
361 | ~LSTMData(); |
362 | UHashtable* fDict; |
363 | EmbeddingType fType; |
364 | const char16_t* fName; |
365 | ConstArray2D fEmbedding; |
366 | ConstArray2D fForwardW; |
367 | ConstArray2D fForwardU; |
368 | ConstArray1D fForwardB; |
369 | ConstArray2D fBackwardW; |
370 | ConstArray2D fBackwardU; |
371 | ConstArray1D fBackwardB; |
372 | ConstArray2D fOutputW; |
373 | ConstArray1D fOutputB; |
374 | |
375 | private: |
376 | UResourceBundle* fBundle; |
377 | }; |
378 | |
379 | LSTMData::LSTMData(UResourceBundle* rb, UErrorCode &status) |
380 | : fDict(nullptr), fType(UNKNOWN), fName(nullptr), |
381 | fBundle(rb) |
382 | { |
383 | if (U_FAILURE(status)) { |
384 | return; |
385 | } |
386 | if (IEEE_754 != 1) { |
387 | status = U_UNSUPPORTED_ERROR; |
388 | return; |
389 | } |
390 | LocalUResourceBundlePointer embeddings_res( |
391 | ures_getByKey(rb, "embeddings" , nullptr, &status)); |
392 | int32_t embedding_size = ures_getInt(embeddings_res.getAlias(), &status); |
393 | LocalUResourceBundlePointer hunits_res( |
394 | ures_getByKey(rb, "hunits" , nullptr, &status)); |
395 | if (U_FAILURE(status)) return; |
396 | int32_t hunits = ures_getInt(hunits_res.getAlias(), &status); |
397 | const char16_t* type = ures_getStringByKey(rb, "type" , nullptr, &status); |
398 | if (U_FAILURE(status)) return; |
399 | if (u_strCompare(type, -1, u"codepoints" , -1, false) == 0) { |
400 | fType = CODE_POINTS; |
401 | } else if (u_strCompare(type, -1, u"graphclust" , -1, false) == 0) { |
402 | fType = GRAPHEME_CLUSTER; |
403 | } |
404 | fName = ures_getStringByKey(rb, "model" , nullptr, &status); |
405 | LocalUResourceBundlePointer dataRes(ures_getByKey(rb, "data" , nullptr, &status)); |
406 | if (U_FAILURE(status)) return; |
407 | int32_t data_len = 0; |
408 | const int32_t* data = ures_getIntVector(dataRes.getAlias(), &data_len, &status); |
409 | fDict = uhash_open(uhash_hashUChars, uhash_compareUChars, nullptr, &status); |
410 | |
411 | StackUResourceBundle stackTempBundle; |
412 | ResourceDataValue value; |
413 | ures_getValueWithFallback(rb, "dict" , stackTempBundle.getAlias(), value, status); |
414 | ResourceArray stringArray = value.getArray(status); |
415 | int32_t num_index = stringArray.getSize(); |
416 | if (U_FAILURE(status)) { return; } |
417 | |
418 | // put dict into hash |
419 | int32_t stringLength; |
420 | for (int32_t idx = 0; idx < num_index; idx++) { |
421 | stringArray.getValue(idx, value); |
422 | const char16_t* str = value.getString(stringLength, status); |
423 | uhash_putiAllowZero(fDict, (void*)str, idx, &status); |
424 | if (U_FAILURE(status)) return; |
425 | #ifdef LSTM_VECTORIZER_DEBUG |
426 | printf("Assign [" ); |
427 | while (*str != 0x0000) { |
428 | printf("U+%04x " , *str); |
429 | str++; |
430 | } |
431 | printf("] map to %d\n" , idx-1); |
432 | #endif |
433 | } |
434 | int32_t mat1_size = (num_index + 1) * embedding_size; |
435 | int32_t mat2_size = embedding_size * 4 * hunits; |
436 | int32_t mat3_size = hunits * 4 * hunits; |
437 | int32_t mat4_size = 4 * hunits; |
438 | int32_t mat5_size = mat2_size; |
439 | int32_t mat6_size = mat3_size; |
440 | int32_t mat7_size = mat4_size; |
441 | int32_t mat8_size = 2 * hunits * 4; |
442 | #if U_DEBUG |
443 | int32_t mat9_size = 4; |
444 | U_ASSERT(data_len == mat1_size + mat2_size + mat3_size + mat4_size + mat5_size + |
445 | mat6_size + mat7_size + mat8_size + mat9_size); |
446 | #endif |
447 | |
448 | fEmbedding.init(data, (num_index + 1), embedding_size); |
449 | data += mat1_size; |
450 | fForwardW.init(data, embedding_size, 4 * hunits); |
451 | data += mat2_size; |
452 | fForwardU.init(data, hunits, 4 * hunits); |
453 | data += mat3_size; |
454 | fForwardB.init(data, 4 * hunits); |
455 | data += mat4_size; |
456 | fBackwardW.init(data, embedding_size, 4 * hunits); |
457 | data += mat5_size; |
458 | fBackwardU.init(data, hunits, 4 * hunits); |
459 | data += mat6_size; |
460 | fBackwardB.init(data, 4 * hunits); |
461 | data += mat7_size; |
462 | fOutputW.init(data, 2 * hunits, 4); |
463 | data += mat8_size; |
464 | fOutputB.init(data, 4); |
465 | } |
466 | |
467 | LSTMData::~LSTMData() { |
468 | uhash_close(fDict); |
469 | ures_close(fBundle); |
470 | } |
471 | |
472 | class Vectorizer : public UMemory { |
473 | public: |
474 | Vectorizer(UHashtable* dict) : fDict(dict) {} |
475 | virtual ~Vectorizer(); |
476 | virtual void vectorize(UText *text, int32_t startPos, int32_t endPos, |
477 | UVector32 &offsets, UVector32 &indices, |
478 | UErrorCode &status) const = 0; |
479 | protected: |
480 | int32_t stringToIndex(const char16_t* str) const { |
481 | UBool found = false; |
482 | int32_t ret = uhash_getiAndFound(fDict, (const void*)str, &found); |
483 | if (!found) { |
484 | ret = fDict->count; |
485 | } |
486 | #ifdef LSTM_VECTORIZER_DEBUG |
487 | printf("[" ); |
488 | while (*str != 0x0000) { |
489 | printf("U+%04x " , *str); |
490 | str++; |
491 | } |
492 | printf("] map to %d\n" , ret); |
493 | #endif |
494 | return ret; |
495 | } |
496 | |
497 | private: |
498 | UHashtable* fDict; |
499 | }; |
500 | |
501 | Vectorizer::~Vectorizer() |
502 | { |
503 | } |
504 | |
505 | class CodePointsVectorizer : public Vectorizer { |
506 | public: |
507 | CodePointsVectorizer(UHashtable* dict) : Vectorizer(dict) {} |
508 | virtual ~CodePointsVectorizer(); |
509 | virtual void vectorize(UText *text, int32_t startPos, int32_t endPos, |
510 | UVector32 &offsets, UVector32 &indices, |
511 | UErrorCode &status) const override; |
512 | }; |
513 | |
514 | CodePointsVectorizer::~CodePointsVectorizer() |
515 | { |
516 | } |
517 | |
518 | void CodePointsVectorizer::vectorize( |
519 | UText *text, int32_t startPos, int32_t endPos, |
520 | UVector32 &offsets, UVector32 &indices, UErrorCode &status) const |
521 | { |
522 | if (offsets.ensureCapacity(endPos - startPos, status) && |
523 | indices.ensureCapacity(endPos - startPos, status)) { |
524 | if (U_FAILURE(status)) return; |
525 | utext_setNativeIndex(text, startPos); |
526 | int32_t current; |
527 | char16_t str[2] = {0, 0}; |
528 | while (U_SUCCESS(status) && |
529 | (current = (int32_t)utext_getNativeIndex(text)) < endPos) { |
530 | // Since the LSTMBreakEngine is currently only accept chars in BMP, |
531 | // we can ignore the possibility of hitting supplementary code |
532 | // point. |
533 | str[0] = (char16_t) utext_next32(text); |
534 | U_ASSERT(!U_IS_SURROGATE(str[0])); |
535 | offsets.addElement(current, status); |
536 | indices.addElement(stringToIndex(str), status); |
537 | } |
538 | } |
539 | } |
540 | |
541 | class GraphemeClusterVectorizer : public Vectorizer { |
542 | public: |
543 | GraphemeClusterVectorizer(UHashtable* dict) |
544 | : Vectorizer(dict) |
545 | { |
546 | } |
547 | virtual ~GraphemeClusterVectorizer(); |
548 | virtual void vectorize(UText *text, int32_t startPos, int32_t endPos, |
549 | UVector32 &offsets, UVector32 &indices, |
550 | UErrorCode &status) const override; |
551 | }; |
552 | |
553 | GraphemeClusterVectorizer::~GraphemeClusterVectorizer() |
554 | { |
555 | } |
556 | |
557 | constexpr int32_t MAX_GRAPHEME_CLSTER_LENGTH = 10; |
558 | |
559 | void GraphemeClusterVectorizer::vectorize( |
560 | UText *text, int32_t startPos, int32_t endPos, |
561 | UVector32 &offsets, UVector32 &indices, UErrorCode &status) const |
562 | { |
563 | if (U_FAILURE(status)) return; |
564 | if (!offsets.ensureCapacity(endPos - startPos, status) || |
565 | !indices.ensureCapacity(endPos - startPos, status)) { |
566 | return; |
567 | } |
568 | if (U_FAILURE(status)) return; |
569 | LocalPointer<BreakIterator> graphemeIter(BreakIterator::createCharacterInstance(Locale(), status)); |
570 | if (U_FAILURE(status)) return; |
571 | graphemeIter->setText(text, status); |
572 | if (U_FAILURE(status)) return; |
573 | |
574 | if (startPos != 0) { |
575 | graphemeIter->preceding(startPos); |
576 | } |
577 | int32_t last = startPos; |
578 | int32_t current = startPos; |
579 | char16_t str[MAX_GRAPHEME_CLSTER_LENGTH]; |
580 | while ((current = graphemeIter->next()) != BreakIterator::DONE) { |
581 | if (current >= endPos) { |
582 | break; |
583 | } |
584 | if (current > startPos) { |
585 | utext_extract(text, last, current, str, MAX_GRAPHEME_CLSTER_LENGTH, &status); |
586 | if (U_FAILURE(status)) return; |
587 | offsets.addElement(last, status); |
588 | indices.addElement(stringToIndex(str), status); |
589 | if (U_FAILURE(status)) return; |
590 | } |
591 | last = current; |
592 | } |
593 | if (U_FAILURE(status) || last >= endPos) { |
594 | return; |
595 | } |
596 | utext_extract(text, last, endPos, str, MAX_GRAPHEME_CLSTER_LENGTH, &status); |
597 | if (U_SUCCESS(status)) { |
598 | offsets.addElement(last, status); |
599 | indices.addElement(stringToIndex(str), status); |
600 | } |
601 | } |
602 | |
603 | // Computing LSTM as stated in |
604 | // https://en.wikipedia.org/wiki/Long_short-term_memory#LSTM_with_a_forget_gate |
605 | // ifco is temp array allocate outside which does not need to be |
606 | // input/output value but could avoid unnecessary memory alloc/free if passing |
607 | // in. |
608 | void compute( |
609 | int32_t hunits, |
610 | const ReadArray2D& W, const ReadArray2D& U, const ReadArray1D& b, |
611 | const ReadArray1D& x, Array1D& h, Array1D& c, |
612 | Array1D& ifco) |
613 | { |
614 | // ifco = x * W + h * U + b |
615 | ifco.assign(b) |
616 | .addDotProduct(x, W) |
617 | .addDotProduct(h, U); |
618 | |
619 | ifco.slice(0*hunits, hunits).sigmoid(); // i: sigmod |
620 | ifco.slice(1*hunits, hunits).sigmoid(); // f: sigmoid |
621 | ifco.slice(2*hunits, hunits).tanh(); // c_: tanh |
622 | ifco.slice(3*hunits, hunits).sigmoid(); // o: sigmod |
623 | |
624 | c.hadamardProduct(ifco.slice(hunits, hunits)) |
625 | .addHadamardProduct(ifco.slice(0, hunits), ifco.slice(2*hunits, hunits)); |
626 | |
627 | h.tanh(c) |
628 | .hadamardProduct(ifco.slice(3*hunits, hunits)); |
629 | } |
630 | |
631 | // Minimum word size |
632 | static const int32_t MIN_WORD = 2; |
633 | |
634 | // Minimum number of characters for two words |
635 | static const int32_t MIN_WORD_SPAN = MIN_WORD * 2; |
636 | |
637 | int32_t |
638 | LSTMBreakEngine::divideUpDictionaryRange( UText *text, |
639 | int32_t startPos, |
640 | int32_t endPos, |
641 | UVector32 &foundBreaks, |
642 | UBool /* isPhraseBreaking */, |
643 | UErrorCode& status) const { |
644 | if (U_FAILURE(status)) return 0; |
645 | int32_t beginFoundBreakSize = foundBreaks.size(); |
646 | utext_setNativeIndex(text, startPos); |
647 | utext_moveIndex32(text, MIN_WORD_SPAN); |
648 | if (utext_getNativeIndex(text) >= endPos) { |
649 | return 0; // Not enough characters for two words |
650 | } |
651 | utext_setNativeIndex(text, startPos); |
652 | |
653 | UVector32 offsets(status); |
654 | UVector32 indices(status); |
655 | if (U_FAILURE(status)) return 0; |
656 | fVectorizer->vectorize(text, startPos, endPos, offsets, indices, status); |
657 | if (U_FAILURE(status)) return 0; |
658 | int32_t* offsetsBuf = offsets.getBuffer(); |
659 | int32_t* indicesBuf = indices.getBuffer(); |
660 | |
661 | int32_t input_seq_len = indices.size(); |
662 | int32_t hunits = fData->fForwardU.d1(); |
663 | |
664 | // ----- Begin of all the Array memory allocation needed for this function |
665 | // Allocate temp array used inside compute() |
666 | Array1D ifco(4 * hunits, status); |
667 | |
668 | Array1D c(hunits, status); |
669 | Array1D logp(4, status); |
670 | |
671 | // TODO: limit size of hBackward. If input_seq_len is too big, we could |
672 | // run out of memory. |
673 | // Backward LSTM |
674 | Array2D hBackward(input_seq_len, hunits, status); |
675 | |
676 | // Allocate fbRow and slice the internal array in two. |
677 | Array1D fbRow(2 * hunits, status); |
678 | |
679 | // ----- End of all the Array memory allocation needed for this function |
680 | if (U_FAILURE(status)) return 0; |
681 | |
682 | // To save the needed memory usage, the following is different from the |
683 | // Python or ICU4X implementation. We first perform the Backward LSTM |
684 | // and then merge the iteration of the forward LSTM and the output layer |
685 | // together because we only neetdto remember the h[t-1] for Forward LSTM. |
686 | for (int32_t i = input_seq_len - 1; i >= 0; i--) { |
687 | Array1D hRow = hBackward.row(i); |
688 | if (i != input_seq_len - 1) { |
689 | hRow.assign(hBackward.row(i+1)); |
690 | } |
691 | #ifdef LSTM_DEBUG |
692 | printf("hRow %d\n" , i); |
693 | hRow.print(); |
694 | printf("indicesBuf[%d] = %d\n" , i, indicesBuf[i]); |
695 | printf("fData->fEmbedding.row(indicesBuf[%d]):\n" , i); |
696 | fData->fEmbedding.row(indicesBuf[i]).print(); |
697 | #endif // LSTM_DEBUG |
698 | compute(hunits, |
699 | fData->fBackwardW, fData->fBackwardU, fData->fBackwardB, |
700 | fData->fEmbedding.row(indicesBuf[i]), |
701 | hRow, c, ifco); |
702 | } |
703 | |
704 | |
705 | Array1D forwardRow = fbRow.slice(0, hunits); // point to first half of data in fbRow. |
706 | Array1D backwardRow = fbRow.slice(hunits, hunits); // point to second half of data n fbRow. |
707 | |
708 | // The following iteration merge the forward LSTM and the output layer |
709 | // together. |
710 | c.clear(); // reuse c since it is the same size. |
711 | for (int32_t i = 0; i < input_seq_len; i++) { |
712 | #ifdef LSTM_DEBUG |
713 | printf("forwardRow %d\n" , i); |
714 | forwardRow.print(); |
715 | #endif // LSTM_DEBUG |
716 | // Forward LSTM |
717 | // Calculate the result into forwardRow, which point to the data in the first half |
718 | // of fbRow. |
719 | compute(hunits, |
720 | fData->fForwardW, fData->fForwardU, fData->fForwardB, |
721 | fData->fEmbedding.row(indicesBuf[i]), |
722 | forwardRow, c, ifco); |
723 | |
724 | // assign the data from hBackward.row(i) to second half of fbRowa. |
725 | backwardRow.assign(hBackward.row(i)); |
726 | |
727 | logp.assign(fData->fOutputB).addDotProduct(fbRow, fData->fOutputW); |
728 | #ifdef LSTM_DEBUG |
729 | printf("backwardRow %d\n" , i); |
730 | backwardRow.print(); |
731 | printf("logp %d\n" , i); |
732 | logp.print(); |
733 | #endif // LSTM_DEBUG |
734 | |
735 | // current = argmax(logp) |
736 | LSTMClass current = (LSTMClass)logp.maxIndex(); |
737 | // BIES logic. |
738 | if (current == BEGIN || current == SINGLE) { |
739 | if (i != 0) { |
740 | foundBreaks.addElement(offsetsBuf[i], status); |
741 | if (U_FAILURE(status)) return 0; |
742 | } |
743 | } |
744 | } |
745 | return foundBreaks.size() - beginFoundBreakSize; |
746 | } |
747 | |
748 | Vectorizer* createVectorizer(const LSTMData* data, UErrorCode &status) { |
749 | if (U_FAILURE(status)) { |
750 | return nullptr; |
751 | } |
752 | switch (data->fType) { |
753 | case CODE_POINTS: |
754 | return new CodePointsVectorizer(data->fDict); |
755 | break; |
756 | case GRAPHEME_CLUSTER: |
757 | return new GraphemeClusterVectorizer(data->fDict); |
758 | break; |
759 | default: |
760 | break; |
761 | } |
762 | UPRV_UNREACHABLE_EXIT; |
763 | } |
764 | |
765 | LSTMBreakEngine::LSTMBreakEngine(const LSTMData* data, const UnicodeSet& set, UErrorCode &status) |
766 | : DictionaryBreakEngine(), fData(data), fVectorizer(createVectorizer(fData, status)) |
767 | { |
768 | if (U_FAILURE(status)) { |
769 | fData = nullptr; // If failure, we should not delete fData in destructor because the caller will do so. |
770 | return; |
771 | } |
772 | setCharacters(set); |
773 | } |
774 | |
775 | LSTMBreakEngine::~LSTMBreakEngine() { |
776 | delete fData; |
777 | delete fVectorizer; |
778 | } |
779 | |
780 | const char16_t* LSTMBreakEngine::name() const { |
781 | return fData->fName; |
782 | } |
783 | |
784 | UnicodeString defaultLSTM(UScriptCode script, UErrorCode& status) { |
785 | // open root from brkitr tree. |
786 | UResourceBundle *b = ures_open(U_ICUDATA_BRKITR, "" , &status); |
787 | b = ures_getByKeyWithFallback(b, "lstm" , b, &status); |
788 | UnicodeString result = ures_getUnicodeStringByKey(b, uscript_getShortName(script), &status); |
789 | ures_close(b); |
790 | return result; |
791 | } |
792 | |
793 | U_CAPI const LSTMData* U_EXPORT2 CreateLSTMDataForScript(UScriptCode script, UErrorCode& status) |
794 | { |
795 | if (script != USCRIPT_KHMER && script != USCRIPT_LAO && script != USCRIPT_MYANMAR && script != USCRIPT_THAI) { |
796 | return nullptr; |
797 | } |
798 | UnicodeString name = defaultLSTM(script, status); |
799 | if (U_FAILURE(status)) return nullptr; |
800 | CharString namebuf; |
801 | namebuf.appendInvariantChars(name, status).truncate(namebuf.lastIndexOf('.')); |
802 | |
803 | LocalUResourceBundlePointer rb( |
804 | ures_openDirect(U_ICUDATA_BRKITR, namebuf.data(), &status)); |
805 | if (U_FAILURE(status)) return nullptr; |
806 | |
807 | return CreateLSTMData(rb.orphan(), status); |
808 | } |
809 | |
810 | U_CAPI const LSTMData* U_EXPORT2 CreateLSTMData(UResourceBundle* rb, UErrorCode& status) |
811 | { |
812 | return new LSTMData(rb, status); |
813 | } |
814 | |
815 | U_CAPI const LanguageBreakEngine* U_EXPORT2 |
816 | CreateLSTMBreakEngine(UScriptCode script, const LSTMData* data, UErrorCode& status) |
817 | { |
818 | UnicodeString unicodeSetString; |
819 | switch(script) { |
820 | case USCRIPT_THAI: |
821 | unicodeSetString = UnicodeString(u"[[:Thai:]&[:LineBreak=SA:]]" ); |
822 | break; |
823 | case USCRIPT_MYANMAR: |
824 | unicodeSetString = UnicodeString(u"[[:Mymr:]&[:LineBreak=SA:]]" ); |
825 | break; |
826 | default: |
827 | delete data; |
828 | return nullptr; |
829 | } |
830 | UnicodeSet unicodeSet; |
831 | unicodeSet.applyPattern(unicodeSetString, status); |
832 | const LanguageBreakEngine* engine = new LSTMBreakEngine(data, unicodeSet, status); |
833 | if (U_FAILURE(status) || engine == nullptr) { |
834 | if (engine != nullptr) { |
835 | delete engine; |
836 | } else { |
837 | status = U_MEMORY_ALLOCATION_ERROR; |
838 | } |
839 | return nullptr; |
840 | } |
841 | return engine; |
842 | } |
843 | |
844 | U_CAPI void U_EXPORT2 DeleteLSTMData(const LSTMData* data) |
845 | { |
846 | delete data; |
847 | } |
848 | |
849 | U_CAPI const char16_t* U_EXPORT2 LSTMDataName(const LSTMData* data) |
850 | { |
851 | return data->fName; |
852 | } |
853 | |
854 | U_NAMESPACE_END |
855 | |
856 | #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |
857 | |