1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | /* |
4 | ********************************************************************** |
5 | * Copyright (c) 2002-2016, International Business Machines |
6 | * Corporation and others. All Rights Reserved. |
7 | ********************************************************************** |
8 | */ |
9 | // |
10 | // rbbitblb.cpp |
11 | // |
12 | |
13 | |
14 | #include "unicode/utypes.h" |
15 | |
16 | #if !UCONFIG_NO_BREAK_ITERATION |
17 | |
18 | #include "unicode/unistr.h" |
19 | #include "rbbitblb.h" |
20 | #include "rbbirb.h" |
21 | #include "rbbiscan.h" |
22 | #include "rbbisetb.h" |
23 | #include "rbbidata.h" |
24 | #include "cstring.h" |
25 | #include "uassert.h" |
26 | #include "uvectr32.h" |
27 | #include "cmemory.h" |
28 | |
29 | U_NAMESPACE_BEGIN |
30 | |
31 | const int32_t kMaxStateFor8BitsTable = 255; |
32 | |
33 | RBBITableBuilder::RBBITableBuilder(RBBIRuleBuilder *rb, RBBINode **rootNode, UErrorCode &status) : |
34 | fRB(rb), |
35 | fTree(*rootNode), |
36 | fStatus(&status), |
37 | fDStates(nullptr), |
38 | fSafeTable(nullptr) { |
39 | if (U_FAILURE(status)) { |
40 | return; |
41 | } |
42 | // fDStates is UVector<RBBIStateDescriptor *> |
43 | fDStates = new UVector(status); |
44 | if (U_SUCCESS(status) && fDStates == nullptr ) { |
45 | status = U_MEMORY_ALLOCATION_ERROR; |
46 | } |
47 | } |
48 | |
49 | |
50 | |
51 | RBBITableBuilder::~RBBITableBuilder() { |
52 | int i; |
53 | for (i=0; i<fDStates->size(); i++) { |
54 | delete (RBBIStateDescriptor *)fDStates->elementAt(i); |
55 | } |
56 | delete fDStates; |
57 | delete fSafeTable; |
58 | delete fLookAheadRuleMap; |
59 | } |
60 | |
61 | |
62 | //----------------------------------------------------------------------------- |
63 | // |
64 | // RBBITableBuilder::buildForwardTable - This is the main function for building |
65 | // the DFA state transition table from the RBBI rules parse tree. |
66 | // |
67 | //----------------------------------------------------------------------------- |
68 | void RBBITableBuilder::buildForwardTable() { |
69 | |
70 | if (U_FAILURE(*fStatus)) { |
71 | return; |
72 | } |
73 | |
74 | // If there were no rules, just return. This situation can easily arise |
75 | // for the reverse rules. |
76 | if (fTree==nullptr) { |
77 | return; |
78 | } |
79 | |
80 | // |
81 | // Walk through the tree, replacing any references to $variables with a copy of the |
82 | // parse tree for the substitution expression. |
83 | // |
84 | fTree = fTree->flattenVariables(); |
85 | #ifdef RBBI_DEBUG |
86 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ftree" )) { |
87 | RBBIDebugPuts("\nParse tree after flattening variable references." ); |
88 | RBBINode::printTree(fTree, true); |
89 | } |
90 | #endif |
91 | |
92 | // |
93 | // If the rules contained any references to {bof} |
94 | // add a {bof} <cat> <former root of tree> to the |
95 | // tree. Means that all matches must start out with the |
96 | // {bof} fake character. |
97 | // |
98 | if (fRB->fSetBuilder->sawBOF()) { |
99 | RBBINode *bofTop = new RBBINode(RBBINode::opCat); |
100 | RBBINode *bofLeaf = new RBBINode(RBBINode::leafChar); |
101 | // Delete and exit if memory allocation failed. |
102 | if (bofTop == nullptr || bofLeaf == nullptr) { |
103 | *fStatus = U_MEMORY_ALLOCATION_ERROR; |
104 | delete bofTop; |
105 | delete bofLeaf; |
106 | return; |
107 | } |
108 | bofTop->fLeftChild = bofLeaf; |
109 | bofTop->fRightChild = fTree; |
110 | bofLeaf->fParent = bofTop; |
111 | bofLeaf->fVal = 2; // Reserved value for {bof}. |
112 | fTree = bofTop; |
113 | } |
114 | |
115 | // |
116 | // Add a unique right-end marker to the expression. |
117 | // Appears as a cat-node, left child being the original tree, |
118 | // right child being the end marker. |
119 | // |
120 | RBBINode *cn = new RBBINode(RBBINode::opCat); |
121 | // Exit if memory allocation failed. |
122 | if (cn == nullptr) { |
123 | *fStatus = U_MEMORY_ALLOCATION_ERROR; |
124 | return; |
125 | } |
126 | cn->fLeftChild = fTree; |
127 | fTree->fParent = cn; |
128 | RBBINode *endMarkerNode = cn->fRightChild = new RBBINode(RBBINode::endMark); |
129 | // Delete and exit if memory allocation failed. |
130 | if (cn->fRightChild == nullptr) { |
131 | *fStatus = U_MEMORY_ALLOCATION_ERROR; |
132 | delete cn; |
133 | return; |
134 | } |
135 | cn->fRightChild->fParent = cn; |
136 | fTree = cn; |
137 | |
138 | // |
139 | // Replace all references to UnicodeSets with the tree for the equivalent |
140 | // expression. |
141 | // |
142 | fTree->flattenSets(); |
143 | #ifdef RBBI_DEBUG |
144 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "stree" )) { |
145 | RBBIDebugPuts("\nParse tree after flattening Unicode Set references." ); |
146 | RBBINode::printTree(fTree, true); |
147 | } |
148 | #endif |
149 | |
150 | |
151 | // |
152 | // calculate the functions nullable, firstpos, lastpos and followpos on |
153 | // nodes in the parse tree. |
154 | // See the algorithm description in Aho. |
155 | // Understanding how this works by looking at the code alone will be |
156 | // nearly impossible. |
157 | // |
158 | calcNullable(fTree); |
159 | calcFirstPos(fTree); |
160 | calcLastPos(fTree); |
161 | calcFollowPos(fTree); |
162 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "pos" )) { |
163 | RBBIDebugPuts("\n" ); |
164 | printPosSets(fTree); |
165 | } |
166 | |
167 | // |
168 | // For "chained" rules, modify the followPos sets |
169 | // |
170 | if (fRB->fChainRules) { |
171 | calcChainedFollowPos(fTree, endMarkerNode); |
172 | } |
173 | |
174 | // |
175 | // BOF (start of input) test fixup. |
176 | // |
177 | if (fRB->fSetBuilder->sawBOF()) { |
178 | bofFixup(); |
179 | } |
180 | |
181 | // |
182 | // Build the DFA state transition tables. |
183 | // |
184 | buildStateTable(); |
185 | mapLookAheadRules(); |
186 | flagAcceptingStates(); |
187 | flagLookAheadStates(); |
188 | flagTaggedStates(); |
189 | |
190 | // |
191 | // Update the global table of rule status {tag} values |
192 | // The rule builder has a global vector of status values that are common |
193 | // for all tables. Merge the ones from this table into the global set. |
194 | // |
195 | mergeRuleStatusVals(); |
196 | } |
197 | |
198 | |
199 | |
200 | //----------------------------------------------------------------------------- |
201 | // |
202 | // calcNullable. Impossible to explain succinctly. See Aho, section 3.9 |
203 | // |
204 | //----------------------------------------------------------------------------- |
205 | void RBBITableBuilder::calcNullable(RBBINode *n) { |
206 | if (n == nullptr) { |
207 | return; |
208 | } |
209 | if (n->fType == RBBINode::setRef || |
210 | n->fType == RBBINode::endMark ) { |
211 | // These are non-empty leaf node types. |
212 | n->fNullable = false; |
213 | return; |
214 | } |
215 | |
216 | if (n->fType == RBBINode::lookAhead || n->fType == RBBINode::tag) { |
217 | // Lookahead marker node. It's a leaf, so no recursion on children. |
218 | // It's nullable because it does not match any literal text from the input stream. |
219 | n->fNullable = true; |
220 | return; |
221 | } |
222 | |
223 | |
224 | // The node is not a leaf. |
225 | // Calculate nullable on its children. |
226 | calcNullable(n->fLeftChild); |
227 | calcNullable(n->fRightChild); |
228 | |
229 | // Apply functions from table 3.40 in Aho |
230 | if (n->fType == RBBINode::opOr) { |
231 | n->fNullable = n->fLeftChild->fNullable || n->fRightChild->fNullable; |
232 | } |
233 | else if (n->fType == RBBINode::opCat) { |
234 | n->fNullable = n->fLeftChild->fNullable && n->fRightChild->fNullable; |
235 | } |
236 | else if (n->fType == RBBINode::opStar || n->fType == RBBINode::opQuestion) { |
237 | n->fNullable = true; |
238 | } |
239 | else { |
240 | n->fNullable = false; |
241 | } |
242 | } |
243 | |
244 | |
245 | |
246 | |
247 | //----------------------------------------------------------------------------- |
248 | // |
249 | // calcFirstPos. Impossible to explain succinctly. See Aho, section 3.9 |
250 | // |
251 | //----------------------------------------------------------------------------- |
252 | void RBBITableBuilder::calcFirstPos(RBBINode *n) { |
253 | if (n == nullptr) { |
254 | return; |
255 | } |
256 | if (n->fType == RBBINode::leafChar || |
257 | n->fType == RBBINode::endMark || |
258 | n->fType == RBBINode::lookAhead || |
259 | n->fType == RBBINode::tag) { |
260 | // These are non-empty leaf node types. |
261 | // Note: In order to maintain the sort invariant on the set, |
262 | // this function should only be called on a node whose set is |
263 | // empty to start with. |
264 | n->fFirstPosSet->addElement(n, *fStatus); |
265 | return; |
266 | } |
267 | |
268 | // The node is not a leaf. |
269 | // Calculate firstPos on its children. |
270 | calcFirstPos(n->fLeftChild); |
271 | calcFirstPos(n->fRightChild); |
272 | |
273 | // Apply functions from table 3.40 in Aho |
274 | if (n->fType == RBBINode::opOr) { |
275 | setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet); |
276 | setAdd(n->fFirstPosSet, n->fRightChild->fFirstPosSet); |
277 | } |
278 | else if (n->fType == RBBINode::opCat) { |
279 | setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet); |
280 | if (n->fLeftChild->fNullable) { |
281 | setAdd(n->fFirstPosSet, n->fRightChild->fFirstPosSet); |
282 | } |
283 | } |
284 | else if (n->fType == RBBINode::opStar || |
285 | n->fType == RBBINode::opQuestion || |
286 | n->fType == RBBINode::opPlus) { |
287 | setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet); |
288 | } |
289 | } |
290 | |
291 | |
292 | |
293 | //----------------------------------------------------------------------------- |
294 | // |
295 | // calcLastPos. Impossible to explain succinctly. See Aho, section 3.9 |
296 | // |
297 | //----------------------------------------------------------------------------- |
298 | void RBBITableBuilder::calcLastPos(RBBINode *n) { |
299 | if (n == nullptr) { |
300 | return; |
301 | } |
302 | if (n->fType == RBBINode::leafChar || |
303 | n->fType == RBBINode::endMark || |
304 | n->fType == RBBINode::lookAhead || |
305 | n->fType == RBBINode::tag) { |
306 | // These are non-empty leaf node types. |
307 | // Note: In order to maintain the sort invariant on the set, |
308 | // this function should only be called on a node whose set is |
309 | // empty to start with. |
310 | n->fLastPosSet->addElement(n, *fStatus); |
311 | return; |
312 | } |
313 | |
314 | // The node is not a leaf. |
315 | // Calculate lastPos on its children. |
316 | calcLastPos(n->fLeftChild); |
317 | calcLastPos(n->fRightChild); |
318 | |
319 | // Apply functions from table 3.40 in Aho |
320 | if (n->fType == RBBINode::opOr) { |
321 | setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet); |
322 | setAdd(n->fLastPosSet, n->fRightChild->fLastPosSet); |
323 | } |
324 | else if (n->fType == RBBINode::opCat) { |
325 | setAdd(n->fLastPosSet, n->fRightChild->fLastPosSet); |
326 | if (n->fRightChild->fNullable) { |
327 | setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet); |
328 | } |
329 | } |
330 | else if (n->fType == RBBINode::opStar || |
331 | n->fType == RBBINode::opQuestion || |
332 | n->fType == RBBINode::opPlus) { |
333 | setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet); |
334 | } |
335 | } |
336 | |
337 | |
338 | |
339 | //----------------------------------------------------------------------------- |
340 | // |
341 | // calcFollowPos. Impossible to explain succinctly. See Aho, section 3.9 |
342 | // |
343 | //----------------------------------------------------------------------------- |
344 | void RBBITableBuilder::calcFollowPos(RBBINode *n) { |
345 | if (n == nullptr || |
346 | n->fType == RBBINode::leafChar || |
347 | n->fType == RBBINode::endMark) { |
348 | return; |
349 | } |
350 | |
351 | calcFollowPos(n->fLeftChild); |
352 | calcFollowPos(n->fRightChild); |
353 | |
354 | // Aho rule #1 |
355 | if (n->fType == RBBINode::opCat) { |
356 | RBBINode *i; // is 'i' in Aho's description |
357 | uint32_t ix; |
358 | |
359 | UVector *LastPosOfLeftChild = n->fLeftChild->fLastPosSet; |
360 | |
361 | for (ix=0; ix<(uint32_t)LastPosOfLeftChild->size(); ix++) { |
362 | i = (RBBINode *)LastPosOfLeftChild->elementAt(ix); |
363 | setAdd(i->fFollowPos, n->fRightChild->fFirstPosSet); |
364 | } |
365 | } |
366 | |
367 | // Aho rule #2 |
368 | if (n->fType == RBBINode::opStar || |
369 | n->fType == RBBINode::opPlus) { |
370 | RBBINode *i; // again, n and i are the names from Aho's description. |
371 | uint32_t ix; |
372 | |
373 | for (ix=0; ix<(uint32_t)n->fLastPosSet->size(); ix++) { |
374 | i = (RBBINode *)n->fLastPosSet->elementAt(ix); |
375 | setAdd(i->fFollowPos, n->fFirstPosSet); |
376 | } |
377 | } |
378 | |
379 | |
380 | |
381 | } |
382 | |
383 | //----------------------------------------------------------------------------- |
384 | // |
385 | // addRuleRootNodes Recursively walk a parse tree, adding all nodes flagged |
386 | // as roots of a rule to a destination vector. |
387 | // |
388 | //----------------------------------------------------------------------------- |
389 | void RBBITableBuilder::addRuleRootNodes(UVector *dest, RBBINode *node) { |
390 | if (node == nullptr || U_FAILURE(*fStatus)) { |
391 | return; |
392 | } |
393 | U_ASSERT(!dest->hasDeleter()); |
394 | if (node->fRuleRoot) { |
395 | dest->addElement(node, *fStatus); |
396 | // Note: rules cannot nest. If we found a rule start node, |
397 | // no child node can also be a start node. |
398 | return; |
399 | } |
400 | addRuleRootNodes(dest, node->fLeftChild); |
401 | addRuleRootNodes(dest, node->fRightChild); |
402 | } |
403 | |
404 | //----------------------------------------------------------------------------- |
405 | // |
406 | // calcChainedFollowPos. Modify the previously calculated followPos sets |
407 | // to implement rule chaining. NOT described by Aho |
408 | // |
409 | //----------------------------------------------------------------------------- |
410 | void RBBITableBuilder::calcChainedFollowPos(RBBINode *tree, RBBINode *endMarkNode) { |
411 | |
412 | UVector leafNodes(*fStatus); |
413 | if (U_FAILURE(*fStatus)) { |
414 | return; |
415 | } |
416 | |
417 | // get a list all leaf nodes |
418 | tree->findNodes(&leafNodes, RBBINode::leafChar, *fStatus); |
419 | if (U_FAILURE(*fStatus)) { |
420 | return; |
421 | } |
422 | |
423 | // Collect all leaf nodes that can start matches for rules |
424 | // with inbound chaining enabled, which is the union of the |
425 | // firstPosition sets from each of the rule root nodes. |
426 | |
427 | UVector ruleRootNodes(*fStatus); |
428 | addRuleRootNodes(&ruleRootNodes, tree); |
429 | |
430 | UVector matchStartNodes(*fStatus); |
431 | for (int j=0; j<ruleRootNodes.size(); ++j) { |
432 | RBBINode *node = static_cast<RBBINode *>(ruleRootNodes.elementAt(j)); |
433 | if (node->fChainIn) { |
434 | setAdd(&matchStartNodes, node->fFirstPosSet); |
435 | } |
436 | } |
437 | if (U_FAILURE(*fStatus)) { |
438 | return; |
439 | } |
440 | |
441 | int32_t endNodeIx; |
442 | int32_t startNodeIx; |
443 | |
444 | for (endNodeIx=0; endNodeIx<leafNodes.size(); endNodeIx++) { |
445 | RBBINode *endNode = (RBBINode *)leafNodes.elementAt(endNodeIx); |
446 | |
447 | // Identify leaf nodes that correspond to overall rule match positions. |
448 | // These include the endMarkNode in their followPos sets. |
449 | // |
450 | // Note: do not consider other end marker nodes, those that are added to |
451 | // look-ahead rules. These can't chain; a match immediately stops |
452 | // further matching. This leaves exactly one end marker node, the one |
453 | // at the end of the complete tree. |
454 | |
455 | if (!endNode->fFollowPos->contains(endMarkNode)) { |
456 | continue; |
457 | } |
458 | |
459 | // We've got a node that can end a match. |
460 | |
461 | // !!LBCMNoChain implementation: If this node's val correspond to |
462 | // the Line Break $CM char class, don't chain from it. |
463 | // TODO: Remove this. !!LBCMNoChain is deprecated, and is not used |
464 | // by any of the standard ICU rules. |
465 | if (fRB->fLBCMNoChain) { |
466 | UChar32 c = this->fRB->fSetBuilder->getFirstChar(endNode->fVal); |
467 | if (c != -1) { |
468 | // c == -1 occurs with sets containing only the {eof} marker string. |
469 | ULineBreak cLBProp = (ULineBreak)u_getIntPropertyValue(c, UCHAR_LINE_BREAK); |
470 | if (cLBProp == U_LB_COMBINING_MARK) { |
471 | continue; |
472 | } |
473 | } |
474 | } |
475 | |
476 | // Now iterate over the nodes that can start a match, looking for ones |
477 | // with the same char class as our ending node. |
478 | RBBINode *startNode; |
479 | for (startNodeIx = 0; startNodeIx<matchStartNodes.size(); startNodeIx++) { |
480 | startNode = (RBBINode *)matchStartNodes.elementAt(startNodeIx); |
481 | if (startNode->fType != RBBINode::leafChar) { |
482 | continue; |
483 | } |
484 | |
485 | if (endNode->fVal == startNode->fVal) { |
486 | // The end val (character class) of one possible match is the |
487 | // same as the start of another. |
488 | |
489 | // Add all nodes from the followPos of the start node to the |
490 | // followPos set of the end node, which will have the effect of |
491 | // letting matches transition from a match state at endNode |
492 | // to the second char of a match starting with startNode. |
493 | setAdd(endNode->fFollowPos, startNode->fFollowPos); |
494 | } |
495 | } |
496 | } |
497 | } |
498 | |
499 | |
500 | //----------------------------------------------------------------------------- |
501 | // |
502 | // bofFixup. Fixup for state tables that include {bof} beginning of input testing. |
503 | // Do an swizzle similar to chaining, modifying the followPos set of |
504 | // the bofNode to include the followPos nodes from other {bot} nodes |
505 | // scattered through the tree. |
506 | // |
507 | // This function has much in common with calcChainedFollowPos(). |
508 | // |
509 | //----------------------------------------------------------------------------- |
510 | void RBBITableBuilder::bofFixup() { |
511 | |
512 | if (U_FAILURE(*fStatus)) { |
513 | return; |
514 | } |
515 | |
516 | // The parse tree looks like this ... |
517 | // fTree root ---> <cat> |
518 | // / \ . |
519 | // <cat> <#end node> |
520 | // / \ . |
521 | // <bofNode> rest |
522 | // of tree |
523 | // |
524 | // We will be adding things to the followPos set of the <bofNode> |
525 | // |
526 | RBBINode *bofNode = fTree->fLeftChild->fLeftChild; |
527 | U_ASSERT(bofNode->fType == RBBINode::leafChar); |
528 | U_ASSERT(bofNode->fVal == 2); |
529 | |
530 | // Get all nodes that can be the start a match of the user-written rules |
531 | // (excluding the fake bofNode) |
532 | // We want the nodes that can start a match in the |
533 | // part labeled "rest of tree" |
534 | // |
535 | UVector *matchStartNodes = fTree->fLeftChild->fRightChild->fFirstPosSet; |
536 | |
537 | RBBINode *startNode; |
538 | int startNodeIx; |
539 | for (startNodeIx = 0; startNodeIx<matchStartNodes->size(); startNodeIx++) { |
540 | startNode = (RBBINode *)matchStartNodes->elementAt(startNodeIx); |
541 | if (startNode->fType != RBBINode::leafChar) { |
542 | continue; |
543 | } |
544 | |
545 | if (startNode->fVal == bofNode->fVal) { |
546 | // We found a leaf node corresponding to a {bof} that was |
547 | // explicitly written into a rule. |
548 | // Add everything from the followPos set of this node to the |
549 | // followPos set of the fake bofNode at the start of the tree. |
550 | // |
551 | setAdd(bofNode->fFollowPos, startNode->fFollowPos); |
552 | } |
553 | } |
554 | } |
555 | |
556 | //----------------------------------------------------------------------------- |
557 | // |
558 | // buildStateTable() Determine the set of runtime DFA states and the |
559 | // transition tables for these states, by the algorithm |
560 | // of fig. 3.44 in Aho. |
561 | // |
562 | // Most of the comments are quotes of Aho's psuedo-code. |
563 | // |
564 | //----------------------------------------------------------------------------- |
565 | void RBBITableBuilder::buildStateTable() { |
566 | if (U_FAILURE(*fStatus)) { |
567 | return; |
568 | } |
569 | RBBIStateDescriptor *failState; |
570 | // Set it to nullptr to avoid uninitialized warning |
571 | RBBIStateDescriptor *initialState = nullptr; |
572 | // |
573 | // Add a dummy state 0 - the stop state. Not from Aho. |
574 | int lastInputSymbol = fRB->fSetBuilder->getNumCharCategories() - 1; |
575 | failState = new RBBIStateDescriptor(lastInputSymbol, fStatus); |
576 | if (failState == nullptr) { |
577 | *fStatus = U_MEMORY_ALLOCATION_ERROR; |
578 | goto ExitBuildSTdeleteall; |
579 | } |
580 | failState->fPositions = new UVector(*fStatus); |
581 | if (failState->fPositions == nullptr) { |
582 | *fStatus = U_MEMORY_ALLOCATION_ERROR; |
583 | } |
584 | if (failState->fPositions == nullptr || U_FAILURE(*fStatus)) { |
585 | goto ExitBuildSTdeleteall; |
586 | } |
587 | fDStates->addElement(failState, *fStatus); |
588 | if (U_FAILURE(*fStatus)) { |
589 | goto ExitBuildSTdeleteall; |
590 | } |
591 | |
592 | // initially, the only unmarked state in Dstates is firstpos(root), |
593 | // where toot is the root of the syntax tree for (r)#; |
594 | initialState = new RBBIStateDescriptor(lastInputSymbol, fStatus); |
595 | if (initialState == nullptr) { |
596 | *fStatus = U_MEMORY_ALLOCATION_ERROR; |
597 | } |
598 | if (U_FAILURE(*fStatus)) { |
599 | goto ExitBuildSTdeleteall; |
600 | } |
601 | initialState->fPositions = new UVector(*fStatus); |
602 | if (initialState->fPositions == nullptr) { |
603 | *fStatus = U_MEMORY_ALLOCATION_ERROR; |
604 | } |
605 | if (U_FAILURE(*fStatus)) { |
606 | goto ExitBuildSTdeleteall; |
607 | } |
608 | setAdd(initialState->fPositions, fTree->fFirstPosSet); |
609 | fDStates->addElement(initialState, *fStatus); |
610 | if (U_FAILURE(*fStatus)) { |
611 | goto ExitBuildSTdeleteall; |
612 | } |
613 | |
614 | // while there is an unmarked state T in Dstates do begin |
615 | for (;;) { |
616 | RBBIStateDescriptor *T = nullptr; |
617 | int32_t tx; |
618 | for (tx=1; tx<fDStates->size(); tx++) { |
619 | RBBIStateDescriptor *temp; |
620 | temp = (RBBIStateDescriptor *)fDStates->elementAt(tx); |
621 | if (temp->fMarked == false) { |
622 | T = temp; |
623 | break; |
624 | } |
625 | } |
626 | if (T == nullptr) { |
627 | break; |
628 | } |
629 | |
630 | // mark T; |
631 | T->fMarked = true; |
632 | |
633 | // for each input symbol a do begin |
634 | int32_t a; |
635 | for (a = 1; a<=lastInputSymbol; a++) { |
636 | // let U be the set of positions that are in followpos(p) |
637 | // for some position p in T |
638 | // such that the symbol at position p is a; |
639 | UVector *U = nullptr; |
640 | RBBINode *p; |
641 | int32_t px; |
642 | for (px=0; px<T->fPositions->size(); px++) { |
643 | p = (RBBINode *)T->fPositions->elementAt(px); |
644 | if ((p->fType == RBBINode::leafChar) && (p->fVal == a)) { |
645 | if (U == nullptr) { |
646 | U = new UVector(*fStatus); |
647 | if (U == nullptr) { |
648 | *fStatus = U_MEMORY_ALLOCATION_ERROR; |
649 | goto ExitBuildSTdeleteall; |
650 | } |
651 | } |
652 | setAdd(U, p->fFollowPos); |
653 | } |
654 | } |
655 | |
656 | // if U is not empty and not in DStates then |
657 | int32_t ux = 0; |
658 | UBool UinDstates = false; |
659 | if (U != nullptr) { |
660 | U_ASSERT(U->size() > 0); |
661 | int ix; |
662 | for (ix=0; ix<fDStates->size(); ix++) { |
663 | RBBIStateDescriptor *temp2; |
664 | temp2 = (RBBIStateDescriptor *)fDStates->elementAt(ix); |
665 | if (setEquals(U, temp2->fPositions)) { |
666 | delete U; |
667 | U = temp2->fPositions; |
668 | ux = ix; |
669 | UinDstates = true; |
670 | break; |
671 | } |
672 | } |
673 | |
674 | // Add U as an unmarked state to Dstates |
675 | if (!UinDstates) |
676 | { |
677 | RBBIStateDescriptor *newState = new RBBIStateDescriptor(lastInputSymbol, fStatus); |
678 | if (newState == nullptr) { |
679 | *fStatus = U_MEMORY_ALLOCATION_ERROR; |
680 | } |
681 | if (U_FAILURE(*fStatus)) { |
682 | goto ExitBuildSTdeleteall; |
683 | } |
684 | newState->fPositions = U; |
685 | fDStates->addElement(newState, *fStatus); |
686 | if (U_FAILURE(*fStatus)) { |
687 | return; |
688 | } |
689 | ux = fDStates->size()-1; |
690 | } |
691 | |
692 | // Dtran[T, a] := U; |
693 | T->fDtran->setElementAt(ux, a); |
694 | } |
695 | } |
696 | } |
697 | return; |
698 | // delete local pointers only if error occurred. |
699 | ExitBuildSTdeleteall: |
700 | delete initialState; |
701 | delete failState; |
702 | } |
703 | |
704 | |
705 | /** |
706 | * mapLookAheadRules |
707 | * |
708 | */ |
709 | void RBBITableBuilder::mapLookAheadRules() { |
710 | fLookAheadRuleMap = new UVector32(fRB->fScanner->numRules() + 1, *fStatus); |
711 | if (fLookAheadRuleMap == nullptr) { |
712 | *fStatus = U_MEMORY_ALLOCATION_ERROR; |
713 | } |
714 | if (U_FAILURE(*fStatus)) { |
715 | return; |
716 | } |
717 | fLookAheadRuleMap->setSize(fRB->fScanner->numRules() + 1); |
718 | |
719 | for (int32_t n=0; n<fDStates->size(); n++) { |
720 | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); |
721 | int32_t laSlotForState = 0; |
722 | |
723 | // Establish the look-ahead slot for this state, if the state covers |
724 | // any look-ahead nodes - corresponding to the '/' in look-ahead rules. |
725 | |
726 | // If any of the look-ahead nodes already have a slot assigned, use it, |
727 | // otherwise assign a new one. |
728 | |
729 | bool sawLookAheadNode = false; |
730 | for (int32_t ipos=0; ipos<sd->fPositions->size(); ++ipos) { |
731 | RBBINode *node = static_cast<RBBINode *>(sd->fPositions->elementAt(ipos)); |
732 | if (node->fType != RBBINode::NodeType::lookAhead) { |
733 | continue; |
734 | } |
735 | sawLookAheadNode = true; |
736 | int32_t ruleNum = node->fVal; // Set when rule was originally parsed. |
737 | U_ASSERT(ruleNum < fLookAheadRuleMap->size()); |
738 | U_ASSERT(ruleNum > 0); |
739 | int32_t laSlot = fLookAheadRuleMap->elementAti(ruleNum); |
740 | if (laSlot != 0) { |
741 | if (laSlotForState == 0) { |
742 | laSlotForState = laSlot; |
743 | } else { |
744 | // TODO: figure out if this can fail, change to setting an error code if so. |
745 | U_ASSERT(laSlot == laSlotForState); |
746 | } |
747 | } |
748 | } |
749 | if (!sawLookAheadNode) { |
750 | continue; |
751 | } |
752 | |
753 | if (laSlotForState == 0) { |
754 | laSlotForState = ++fLASlotsInUse; |
755 | } |
756 | |
757 | // For each look ahead node covered by this state, |
758 | // set the mapping from the node's rule number to the look ahead slot. |
759 | // There can be multiple nodes/rule numbers going to the same la slot. |
760 | |
761 | for (int32_t ipos=0; ipos<sd->fPositions->size(); ++ipos) { |
762 | RBBINode *node = static_cast<RBBINode *>(sd->fPositions->elementAt(ipos)); |
763 | if (node->fType != RBBINode::NodeType::lookAhead) { |
764 | continue; |
765 | } |
766 | int32_t ruleNum = node->fVal; // Set when rule was originally parsed. |
767 | int32_t existingVal = fLookAheadRuleMap->elementAti(ruleNum); |
768 | (void)existingVal; |
769 | U_ASSERT(existingVal == 0 || existingVal == laSlotForState); |
770 | fLookAheadRuleMap->setElementAt(laSlotForState, ruleNum); |
771 | } |
772 | } |
773 | |
774 | } |
775 | |
776 | //----------------------------------------------------------------------------- |
777 | // |
778 | // flagAcceptingStates Identify accepting states. |
779 | // First get a list of all of the end marker nodes. |
780 | // Then, for each state s, |
781 | // if s contains one of the end marker nodes in its list of tree positions then |
782 | // s is an accepting state. |
783 | // |
784 | //----------------------------------------------------------------------------- |
785 | void RBBITableBuilder::flagAcceptingStates() { |
786 | if (U_FAILURE(*fStatus)) { |
787 | return; |
788 | } |
789 | UVector endMarkerNodes(*fStatus); |
790 | RBBINode *endMarker; |
791 | int32_t i; |
792 | int32_t n; |
793 | |
794 | if (U_FAILURE(*fStatus)) { |
795 | return; |
796 | } |
797 | |
798 | fTree->findNodes(&endMarkerNodes, RBBINode::endMark, *fStatus); |
799 | if (U_FAILURE(*fStatus)) { |
800 | return; |
801 | } |
802 | |
803 | for (i=0; i<endMarkerNodes.size(); i++) { |
804 | endMarker = (RBBINode *)endMarkerNodes.elementAt(i); |
805 | for (n=0; n<fDStates->size(); n++) { |
806 | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); |
807 | if (sd->fPositions->indexOf(endMarker) >= 0) { |
808 | // Any non-zero value for fAccepting means this is an accepting node. |
809 | // The value is what will be returned to the user as the break status. |
810 | // If no other value was specified, force it to ACCEPTING_UNCONDITIONAL (1). |
811 | |
812 | if (sd->fAccepting==0) { |
813 | // State hasn't been marked as accepting yet. Do it now. |
814 | sd->fAccepting = fLookAheadRuleMap->elementAti(endMarker->fVal); |
815 | if (sd->fAccepting == 0) { |
816 | sd->fAccepting = ACCEPTING_UNCONDITIONAL; |
817 | } |
818 | } |
819 | if (sd->fAccepting==ACCEPTING_UNCONDITIONAL && endMarker->fVal != 0) { |
820 | // Both lookahead and non-lookahead accepting for this state. |
821 | // Favor the look-ahead, because a look-ahead match needs to |
822 | // immediately stop the run-time engine. First match, not longest. |
823 | sd->fAccepting = fLookAheadRuleMap->elementAti(endMarker->fVal); |
824 | } |
825 | // implicit else: |
826 | // if sd->fAccepting already had a value other than 0 or 1, leave it be. |
827 | } |
828 | } |
829 | } |
830 | } |
831 | |
832 | |
833 | //----------------------------------------------------------------------------- |
834 | // |
835 | // flagLookAheadStates Very similar to flagAcceptingStates, above. |
836 | // |
837 | //----------------------------------------------------------------------------- |
838 | void RBBITableBuilder::flagLookAheadStates() { |
839 | if (U_FAILURE(*fStatus)) { |
840 | return; |
841 | } |
842 | UVector lookAheadNodes(*fStatus); |
843 | RBBINode *lookAheadNode; |
844 | int32_t i; |
845 | int32_t n; |
846 | |
847 | fTree->findNodes(&lookAheadNodes, RBBINode::lookAhead, *fStatus); |
848 | if (U_FAILURE(*fStatus)) { |
849 | return; |
850 | } |
851 | for (i=0; i<lookAheadNodes.size(); i++) { |
852 | lookAheadNode = (RBBINode *)lookAheadNodes.elementAt(i); |
853 | U_ASSERT(lookAheadNode->fType == RBBINode::NodeType::lookAhead); |
854 | |
855 | for (n=0; n<fDStates->size(); n++) { |
856 | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); |
857 | int32_t positionsIdx = sd->fPositions->indexOf(lookAheadNode); |
858 | if (positionsIdx >= 0) { |
859 | U_ASSERT(lookAheadNode == sd->fPositions->elementAt(positionsIdx)); |
860 | uint32_t lookaheadSlot = fLookAheadRuleMap->elementAti(lookAheadNode->fVal); |
861 | U_ASSERT(sd->fLookAhead == 0 || sd->fLookAhead == lookaheadSlot); |
862 | // if (sd->fLookAhead != 0 && sd->fLookAhead != lookaheadSlot) { |
863 | // printf("%s:%d Bingo. sd->fLookAhead:%d lookaheadSlot:%d\n", |
864 | // __FILE__, __LINE__, sd->fLookAhead, lookaheadSlot); |
865 | // } |
866 | sd->fLookAhead = lookaheadSlot; |
867 | } |
868 | } |
869 | } |
870 | } |
871 | |
872 | |
873 | |
874 | |
875 | //----------------------------------------------------------------------------- |
876 | // |
877 | // flagTaggedStates |
878 | // |
879 | //----------------------------------------------------------------------------- |
880 | void RBBITableBuilder::flagTaggedStates() { |
881 | if (U_FAILURE(*fStatus)) { |
882 | return; |
883 | } |
884 | UVector tagNodes(*fStatus); |
885 | RBBINode *tagNode; |
886 | int32_t i; |
887 | int32_t n; |
888 | |
889 | if (U_FAILURE(*fStatus)) { |
890 | return; |
891 | } |
892 | fTree->findNodes(&tagNodes, RBBINode::tag, *fStatus); |
893 | if (U_FAILURE(*fStatus)) { |
894 | return; |
895 | } |
896 | for (i=0; i<tagNodes.size(); i++) { // For each tag node t (all of 'em) |
897 | tagNode = (RBBINode *)tagNodes.elementAt(i); |
898 | |
899 | for (n=0; n<fDStates->size(); n++) { // For each state s (row in the state table) |
900 | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); |
901 | if (sd->fPositions->indexOf(tagNode) >= 0) { // if s include the tag node t |
902 | sortedAdd(&sd->fTagVals, tagNode->fVal); |
903 | } |
904 | } |
905 | } |
906 | } |
907 | |
908 | |
909 | |
910 | |
911 | //----------------------------------------------------------------------------- |
912 | // |
913 | // mergeRuleStatusVals |
914 | // |
915 | // Update the global table of rule status {tag} values |
916 | // The rule builder has a global vector of status values that are common |
917 | // for all tables. Merge the ones from this table into the global set. |
918 | // |
919 | //----------------------------------------------------------------------------- |
920 | void RBBITableBuilder::mergeRuleStatusVals() { |
921 | // |
922 | // The basic outline of what happens here is this... |
923 | // |
924 | // for each state in this state table |
925 | // if the status tag list for this state is in the global statuses list |
926 | // record where and |
927 | // continue with the next state |
928 | // else |
929 | // add the tag list for this state to the global list. |
930 | // |
931 | int i; |
932 | int n; |
933 | |
934 | // Pre-set a single tag of {0} into the table. |
935 | // We will need this as a default, for rule sets with no explicit tagging. |
936 | if (fRB->fRuleStatusVals->size() == 0) { |
937 | fRB->fRuleStatusVals->addElement(1, *fStatus); // Num of statuses in group |
938 | fRB->fRuleStatusVals->addElement((int32_t)0, *fStatus); // and our single status of zero |
939 | } |
940 | |
941 | // For each state |
942 | for (n=0; n<fDStates->size(); n++) { |
943 | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); |
944 | UVector *thisStatesTagValues = sd->fTagVals; |
945 | if (thisStatesTagValues == nullptr) { |
946 | // No tag values are explicitly associated with this state. |
947 | // Set the default tag value. |
948 | sd->fTagsIdx = 0; |
949 | continue; |
950 | } |
951 | |
952 | // There are tag(s) associated with this state. |
953 | // fTagsIdx will be the index into the global tag list for this state's tag values. |
954 | // Initial value of -1 flags that we haven't got it set yet. |
955 | sd->fTagsIdx = -1; |
956 | int32_t thisTagGroupStart = 0; // indexes into the global rule status vals list |
957 | int32_t nextTagGroupStart = 0; |
958 | |
959 | // Loop runs once per group of tags in the global list |
960 | while (nextTagGroupStart < fRB->fRuleStatusVals->size()) { |
961 | thisTagGroupStart = nextTagGroupStart; |
962 | nextTagGroupStart += fRB->fRuleStatusVals->elementAti(thisTagGroupStart) + 1; |
963 | if (thisStatesTagValues->size() != fRB->fRuleStatusVals->elementAti(thisTagGroupStart)) { |
964 | // The number of tags for this state is different from |
965 | // the number of tags in this group from the global list. |
966 | // Continue with the next group from the global list. |
967 | continue; |
968 | } |
969 | // The lengths match, go ahead and compare the actual tag values |
970 | // between this state and the group from the global list. |
971 | for (i=0; i<thisStatesTagValues->size(); i++) { |
972 | if (thisStatesTagValues->elementAti(i) != |
973 | fRB->fRuleStatusVals->elementAti(thisTagGroupStart + 1 + i) ) { |
974 | // Mismatch. |
975 | break; |
976 | } |
977 | } |
978 | |
979 | if (i == thisStatesTagValues->size()) { |
980 | // We found a set of tag values in the global list that match |
981 | // those for this state. Use them. |
982 | sd->fTagsIdx = thisTagGroupStart; |
983 | break; |
984 | } |
985 | } |
986 | |
987 | if (sd->fTagsIdx == -1) { |
988 | // No suitable entry in the global tag list already. Add one |
989 | sd->fTagsIdx = fRB->fRuleStatusVals->size(); |
990 | fRB->fRuleStatusVals->addElement(thisStatesTagValues->size(), *fStatus); |
991 | for (i=0; i<thisStatesTagValues->size(); i++) { |
992 | fRB->fRuleStatusVals->addElement(thisStatesTagValues->elementAti(i), *fStatus); |
993 | } |
994 | } |
995 | } |
996 | } |
997 | |
998 | |
999 | |
1000 | |
1001 | |
1002 | |
1003 | |
1004 | //----------------------------------------------------------------------------- |
1005 | // |
1006 | // sortedAdd Add a value to a vector of sorted values (ints). |
1007 | // Do not replicate entries; if the value is already there, do not |
1008 | // add a second one. |
1009 | // Lazily create the vector if it does not already exist. |
1010 | // |
1011 | //----------------------------------------------------------------------------- |
1012 | void RBBITableBuilder::sortedAdd(UVector **vector, int32_t val) { |
1013 | int32_t i; |
1014 | |
1015 | if (*vector == nullptr) { |
1016 | *vector = new UVector(*fStatus); |
1017 | } |
1018 | if (*vector == nullptr || U_FAILURE(*fStatus)) { |
1019 | return; |
1020 | } |
1021 | UVector *vec = *vector; |
1022 | int32_t vSize = vec->size(); |
1023 | for (i=0; i<vSize; i++) { |
1024 | int32_t valAtI = vec->elementAti(i); |
1025 | if (valAtI == val) { |
1026 | // The value is already in the vector. Don't add it again. |
1027 | return; |
1028 | } |
1029 | if (valAtI > val) { |
1030 | break; |
1031 | } |
1032 | } |
1033 | vec->insertElementAt(val, i, *fStatus); |
1034 | } |
1035 | |
1036 | |
1037 | |
1038 | //----------------------------------------------------------------------------- |
1039 | // |
1040 | // setAdd Set operation on UVector |
1041 | // dest = dest union source |
1042 | // Elements may only appear once and must be sorted. |
1043 | // |
1044 | //----------------------------------------------------------------------------- |
1045 | void RBBITableBuilder::setAdd(UVector *dest, UVector *source) { |
1046 | U_ASSERT(!dest->hasDeleter()); |
1047 | U_ASSERT(!source->hasDeleter()); |
1048 | int32_t destOriginalSize = dest->size(); |
1049 | int32_t sourceSize = source->size(); |
1050 | int32_t di = 0; |
1051 | MaybeStackArray<void *, 16> destArray, sourceArray; // Handle small cases without malloc |
1052 | void **destPtr, **sourcePtr; |
1053 | void **destLim, **sourceLim; |
1054 | |
1055 | if (destOriginalSize > destArray.getCapacity()) { |
1056 | if (destArray.resize(destOriginalSize) == nullptr) { |
1057 | return; |
1058 | } |
1059 | } |
1060 | destPtr = destArray.getAlias(); |
1061 | destLim = destPtr + destOriginalSize; // destArray.getArrayLimit()? |
1062 | |
1063 | if (sourceSize > sourceArray.getCapacity()) { |
1064 | if (sourceArray.resize(sourceSize) == nullptr) { |
1065 | return; |
1066 | } |
1067 | } |
1068 | sourcePtr = sourceArray.getAlias(); |
1069 | sourceLim = sourcePtr + sourceSize; // sourceArray.getArrayLimit()? |
1070 | |
1071 | // Avoid multiple "get element" calls by getting the contents into arrays |
1072 | (void) dest->toArray(destPtr); |
1073 | (void) source->toArray(sourcePtr); |
1074 | |
1075 | dest->setSize(sourceSize+destOriginalSize, *fStatus); |
1076 | if (U_FAILURE(*fStatus)) { |
1077 | return; |
1078 | } |
1079 | |
1080 | while (sourcePtr < sourceLim && destPtr < destLim) { |
1081 | if (*destPtr == *sourcePtr) { |
1082 | dest->setElementAt(*sourcePtr++, di++); |
1083 | destPtr++; |
1084 | } |
1085 | // This check is required for machines with segmented memory, like i5/OS. |
1086 | // Direct pointer comparison is not recommended. |
1087 | else if (uprv_memcmp(destPtr, sourcePtr, sizeof(void *)) < 0) { |
1088 | dest->setElementAt(*destPtr++, di++); |
1089 | } |
1090 | else { /* *sourcePtr < *destPtr */ |
1091 | dest->setElementAt(*sourcePtr++, di++); |
1092 | } |
1093 | } |
1094 | |
1095 | // At most one of these two cleanup loops will execute |
1096 | while (destPtr < destLim) { |
1097 | dest->setElementAt(*destPtr++, di++); |
1098 | } |
1099 | while (sourcePtr < sourceLim) { |
1100 | dest->setElementAt(*sourcePtr++, di++); |
1101 | } |
1102 | |
1103 | dest->setSize(di, *fStatus); |
1104 | } |
1105 | |
1106 | |
1107 | |
1108 | //----------------------------------------------------------------------------- |
1109 | // |
1110 | // setEqual Set operation on UVector. |
1111 | // Compare for equality. |
1112 | // Elements must be sorted. |
1113 | // |
1114 | //----------------------------------------------------------------------------- |
1115 | UBool RBBITableBuilder::setEquals(UVector *a, UVector *b) { |
1116 | return a->equals(*b); |
1117 | } |
1118 | |
1119 | |
1120 | //----------------------------------------------------------------------------- |
1121 | // |
1122 | // printPosSets Debug function. Dump Nullable, firstpos, lastpos and followpos |
1123 | // for each node in the tree. |
1124 | // |
1125 | //----------------------------------------------------------------------------- |
1126 | #ifdef RBBI_DEBUG |
1127 | void RBBITableBuilder::printPosSets(RBBINode *n) { |
1128 | if (n==nullptr) { |
1129 | return; |
1130 | } |
1131 | printf("\n" ); |
1132 | RBBINode::printNodeHeader(); |
1133 | RBBINode::printNode(n); |
1134 | RBBIDebugPrintf(" Nullable: %s\n" , n->fNullable?"true" :"false" ); |
1135 | |
1136 | RBBIDebugPrintf(" firstpos: " ); |
1137 | printSet(n->fFirstPosSet); |
1138 | |
1139 | RBBIDebugPrintf(" lastpos: " ); |
1140 | printSet(n->fLastPosSet); |
1141 | |
1142 | RBBIDebugPrintf(" followpos: " ); |
1143 | printSet(n->fFollowPos); |
1144 | |
1145 | printPosSets(n->fLeftChild); |
1146 | printPosSets(n->fRightChild); |
1147 | } |
1148 | #endif |
1149 | |
1150 | // |
1151 | // findDuplCharClassFrom() |
1152 | // |
1153 | bool RBBITableBuilder::findDuplCharClassFrom(IntPair *categories) { |
1154 | int32_t numStates = fDStates->size(); |
1155 | int32_t numCols = fRB->fSetBuilder->getNumCharCategories(); |
1156 | |
1157 | for (; categories->first < numCols-1; categories->first++) { |
1158 | // Note: dictionary & non-dictionary columns cannot be merged. |
1159 | // The limitSecond value prevents considering mixed pairs. |
1160 | // Dictionary categories are >= DictCategoriesStart. |
1161 | // Non dict categories are < DictCategoriesStart. |
1162 | int limitSecond = categories->first < fRB->fSetBuilder->getDictCategoriesStart() ? |
1163 | fRB->fSetBuilder->getDictCategoriesStart() : numCols; |
1164 | for (categories->second=categories->first+1; categories->second < limitSecond; categories->second++) { |
1165 | // Initialized to different values to prevent returning true if numStates = 0 (implies no duplicates). |
1166 | uint16_t table_base = 0; |
1167 | uint16_t table_dupl = 1; |
1168 | for (int32_t state=0; state<numStates; state++) { |
1169 | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state); |
1170 | table_base = (uint16_t)sd->fDtran->elementAti(categories->first); |
1171 | table_dupl = (uint16_t)sd->fDtran->elementAti(categories->second); |
1172 | if (table_base != table_dupl) { |
1173 | break; |
1174 | } |
1175 | } |
1176 | if (table_base == table_dupl) { |
1177 | return true; |
1178 | } |
1179 | } |
1180 | } |
1181 | return false; |
1182 | } |
1183 | |
1184 | |
1185 | // |
1186 | // removeColumn() |
1187 | // |
1188 | void RBBITableBuilder::removeColumn(int32_t column) { |
1189 | int32_t numStates = fDStates->size(); |
1190 | for (int32_t state=0; state<numStates; state++) { |
1191 | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state); |
1192 | U_ASSERT(column < sd->fDtran->size()); |
1193 | sd->fDtran->removeElementAt(column); |
1194 | } |
1195 | } |
1196 | |
1197 | /* |
1198 | * findDuplicateState |
1199 | */ |
1200 | bool RBBITableBuilder::findDuplicateState(IntPair *states) { |
1201 | int32_t numStates = fDStates->size(); |
1202 | int32_t numCols = fRB->fSetBuilder->getNumCharCategories(); |
1203 | |
1204 | for (; states->first<numStates-1; states->first++) { |
1205 | RBBIStateDescriptor *firstSD = (RBBIStateDescriptor *)fDStates->elementAt(states->first); |
1206 | for (states->second=states->first+1; states->second<numStates; states->second++) { |
1207 | RBBIStateDescriptor *duplSD = (RBBIStateDescriptor *)fDStates->elementAt(states->second); |
1208 | if (firstSD->fAccepting != duplSD->fAccepting || |
1209 | firstSD->fLookAhead != duplSD->fLookAhead || |
1210 | firstSD->fTagsIdx != duplSD->fTagsIdx) { |
1211 | continue; |
1212 | } |
1213 | bool rowsMatch = true; |
1214 | for (int32_t col=0; col < numCols; ++col) { |
1215 | int32_t firstVal = firstSD->fDtran->elementAti(col); |
1216 | int32_t duplVal = duplSD->fDtran->elementAti(col); |
1217 | if (!((firstVal == duplVal) || |
1218 | ((firstVal == states->first || firstVal == states->second) && |
1219 | (duplVal == states->first || duplVal == states->second)))) { |
1220 | rowsMatch = false; |
1221 | break; |
1222 | } |
1223 | } |
1224 | if (rowsMatch) { |
1225 | return true; |
1226 | } |
1227 | } |
1228 | } |
1229 | return false; |
1230 | } |
1231 | |
1232 | |
1233 | bool RBBITableBuilder::findDuplicateSafeState(IntPair *states) { |
1234 | int32_t numStates = fSafeTable->size(); |
1235 | |
1236 | for (; states->first<numStates-1; states->first++) { |
1237 | UnicodeString *firstRow = static_cast<UnicodeString *>(fSafeTable->elementAt(states->first)); |
1238 | for (states->second=states->first+1; states->second<numStates; states->second++) { |
1239 | UnicodeString *duplRow = static_cast<UnicodeString *>(fSafeTable->elementAt(states->second)); |
1240 | bool rowsMatch = true; |
1241 | int32_t numCols = firstRow->length(); |
1242 | for (int32_t col=0; col < numCols; ++col) { |
1243 | int32_t firstVal = firstRow->charAt(col); |
1244 | int32_t duplVal = duplRow->charAt(col); |
1245 | if (!((firstVal == duplVal) || |
1246 | ((firstVal == states->first || firstVal == states->second) && |
1247 | (duplVal == states->first || duplVal == states->second)))) { |
1248 | rowsMatch = false; |
1249 | break; |
1250 | } |
1251 | } |
1252 | if (rowsMatch) { |
1253 | return true; |
1254 | } |
1255 | } |
1256 | } |
1257 | return false; |
1258 | } |
1259 | |
1260 | |
1261 | void RBBITableBuilder::removeState(IntPair duplStates) { |
1262 | const int32_t keepState = duplStates.first; |
1263 | const int32_t duplState = duplStates.second; |
1264 | U_ASSERT(keepState < duplState); |
1265 | U_ASSERT(duplState < fDStates->size()); |
1266 | |
1267 | RBBIStateDescriptor *duplSD = (RBBIStateDescriptor *)fDStates->elementAt(duplState); |
1268 | fDStates->removeElementAt(duplState); |
1269 | delete duplSD; |
1270 | |
1271 | int32_t numStates = fDStates->size(); |
1272 | int32_t numCols = fRB->fSetBuilder->getNumCharCategories(); |
1273 | for (int32_t state=0; state<numStates; ++state) { |
1274 | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state); |
1275 | for (int32_t col=0; col<numCols; col++) { |
1276 | int32_t existingVal = sd->fDtran->elementAti(col); |
1277 | int32_t newVal = existingVal; |
1278 | if (existingVal == duplState) { |
1279 | newVal = keepState; |
1280 | } else if (existingVal > duplState) { |
1281 | newVal = existingVal - 1; |
1282 | } |
1283 | sd->fDtran->setElementAt(newVal, col); |
1284 | } |
1285 | } |
1286 | } |
1287 | |
1288 | void RBBITableBuilder::removeSafeState(IntPair duplStates) { |
1289 | const int32_t keepState = duplStates.first; |
1290 | const int32_t duplState = duplStates.second; |
1291 | U_ASSERT(keepState < duplState); |
1292 | U_ASSERT(duplState < fSafeTable->size()); |
1293 | |
1294 | fSafeTable->removeElementAt(duplState); // Note that fSafeTable has a deleter function |
1295 | // and will auto-delete the removed element. |
1296 | int32_t numStates = fSafeTable->size(); |
1297 | for (int32_t state=0; state<numStates; ++state) { |
1298 | UnicodeString *sd = (UnicodeString *)fSafeTable->elementAt(state); |
1299 | int32_t numCols = sd->length(); |
1300 | for (int32_t col=0; col<numCols; col++) { |
1301 | int32_t existingVal = sd->charAt(col); |
1302 | int32_t newVal = existingVal; |
1303 | if (existingVal == duplState) { |
1304 | newVal = keepState; |
1305 | } else if (existingVal > duplState) { |
1306 | newVal = existingVal - 1; |
1307 | } |
1308 | sd->setCharAt(col, static_cast<char16_t>(newVal)); |
1309 | } |
1310 | } |
1311 | } |
1312 | |
1313 | |
1314 | /* |
1315 | * RemoveDuplicateStates |
1316 | */ |
1317 | int32_t RBBITableBuilder::removeDuplicateStates() { |
1318 | IntPair dupls = {3, 0}; |
1319 | int32_t numStatesRemoved = 0; |
1320 | |
1321 | while (findDuplicateState(&dupls)) { |
1322 | // printf("Removing duplicate states (%d, %d)\n", dupls.first, dupls.second); |
1323 | removeState(dupls); |
1324 | ++numStatesRemoved; |
1325 | } |
1326 | return numStatesRemoved; |
1327 | } |
1328 | |
1329 | |
1330 | //----------------------------------------------------------------------------- |
1331 | // |
1332 | // getTableSize() Calculate the size of the runtime form of this |
1333 | // state transition table. |
1334 | // |
1335 | //----------------------------------------------------------------------------- |
1336 | int32_t RBBITableBuilder::getTableSize() const { |
1337 | int32_t size = 0; |
1338 | int32_t numRows; |
1339 | int32_t numCols; |
1340 | int32_t rowSize; |
1341 | |
1342 | if (fTree == nullptr) { |
1343 | return 0; |
1344 | } |
1345 | |
1346 | size = offsetof(RBBIStateTable, fTableData); // The header, with no rows to the table. |
1347 | |
1348 | numRows = fDStates->size(); |
1349 | numCols = fRB->fSetBuilder->getNumCharCategories(); |
1350 | |
1351 | if (use8BitsForTable()) { |
1352 | rowSize = offsetof(RBBIStateTableRow8, fNextState) + sizeof(int8_t)*numCols; |
1353 | } else { |
1354 | rowSize = offsetof(RBBIStateTableRow16, fNextState) + sizeof(int16_t)*numCols; |
1355 | } |
1356 | size += numRows * rowSize; |
1357 | return size; |
1358 | } |
1359 | |
1360 | bool RBBITableBuilder::use8BitsForTable() const { |
1361 | return fDStates->size() <= kMaxStateFor8BitsTable; |
1362 | } |
1363 | |
1364 | //----------------------------------------------------------------------------- |
1365 | // |
1366 | // exportTable() export the state transition table in the format required |
1367 | // by the runtime engine. getTableSize() bytes of memory |
1368 | // must be available at the output address "where". |
1369 | // |
1370 | //----------------------------------------------------------------------------- |
1371 | void RBBITableBuilder::exportTable(void *where) { |
1372 | RBBIStateTable *table = (RBBIStateTable *)where; |
1373 | uint32_t state; |
1374 | int col; |
1375 | |
1376 | if (U_FAILURE(*fStatus) || fTree == nullptr) { |
1377 | return; |
1378 | } |
1379 | |
1380 | int32_t catCount = fRB->fSetBuilder->getNumCharCategories(); |
1381 | if (catCount > 0x7fff || |
1382 | fDStates->size() > 0x7fff) { |
1383 | *fStatus = U_BRK_INTERNAL_ERROR; |
1384 | return; |
1385 | } |
1386 | |
1387 | table->fNumStates = fDStates->size(); |
1388 | table->fDictCategoriesStart = fRB->fSetBuilder->getDictCategoriesStart(); |
1389 | table->fLookAheadResultsSize = fLASlotsInUse == ACCEPTING_UNCONDITIONAL ? 0 : fLASlotsInUse + 1; |
1390 | table->fFlags = 0; |
1391 | if (use8BitsForTable()) { |
1392 | table->fRowLen = offsetof(RBBIStateTableRow8, fNextState) + sizeof(uint8_t) * catCount; |
1393 | table->fFlags |= RBBI_8BITS_ROWS; |
1394 | } else { |
1395 | table->fRowLen = offsetof(RBBIStateTableRow16, fNextState) + sizeof(int16_t) * catCount; |
1396 | } |
1397 | if (fRB->fLookAheadHardBreak) { |
1398 | table->fFlags |= RBBI_LOOKAHEAD_HARD_BREAK; |
1399 | } |
1400 | if (fRB->fSetBuilder->sawBOF()) { |
1401 | table->fFlags |= RBBI_BOF_REQUIRED; |
1402 | } |
1403 | |
1404 | for (state=0; state<table->fNumStates; state++) { |
1405 | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state); |
1406 | RBBIStateTableRow *row = (RBBIStateTableRow *)(table->fTableData + state*table->fRowLen); |
1407 | if (use8BitsForTable()) { |
1408 | U_ASSERT (sd->fAccepting <= 255); |
1409 | U_ASSERT (sd->fLookAhead <= 255); |
1410 | U_ASSERT (0 <= sd->fTagsIdx && sd->fTagsIdx <= 255); |
1411 | RBBIStateTableRow8 *r8 = (RBBIStateTableRow8*)row; |
1412 | r8->fAccepting = sd->fAccepting; |
1413 | r8->fLookAhead = sd->fLookAhead; |
1414 | r8->fTagsIdx = sd->fTagsIdx; |
1415 | for (col=0; col<catCount; col++) { |
1416 | U_ASSERT (sd->fDtran->elementAti(col) <= kMaxStateFor8BitsTable); |
1417 | r8->fNextState[col] = sd->fDtran->elementAti(col); |
1418 | } |
1419 | } else { |
1420 | U_ASSERT (sd->fAccepting <= 0xffff); |
1421 | U_ASSERT (sd->fLookAhead <= 0xffff); |
1422 | U_ASSERT (0 <= sd->fTagsIdx && sd->fTagsIdx <= 0xffff); |
1423 | row->r16.fAccepting = sd->fAccepting; |
1424 | row->r16.fLookAhead = sd->fLookAhead; |
1425 | row->r16.fTagsIdx = sd->fTagsIdx; |
1426 | for (col=0; col<catCount; col++) { |
1427 | row->r16.fNextState[col] = sd->fDtran->elementAti(col); |
1428 | } |
1429 | } |
1430 | } |
1431 | } |
1432 | |
1433 | |
1434 | /** |
1435 | * Synthesize a safe state table from the main state table. |
1436 | */ |
1437 | void RBBITableBuilder::buildSafeReverseTable(UErrorCode &status) { |
1438 | // The safe table creation has three steps: |
1439 | |
1440 | // 1. Identify pairs of character classes that are "safe." Safe means that boundaries |
1441 | // following the pair do not depend on context or state before the pair. To test |
1442 | // whether a pair is safe, run it through the main forward state table, starting |
1443 | // from each state. If the the final state is the same, no matter what the starting state, |
1444 | // the pair is safe. |
1445 | // |
1446 | // 2. Build a state table that recognizes the safe pairs. It's similar to their |
1447 | // forward table, with a column for each input character [class], and a row for |
1448 | // each state. Row 1 is the start state, and row 0 is the stop state. Initially |
1449 | // create an additional state for each input character category; being in |
1450 | // one of these states means that the character has been seen, and is potentially |
1451 | // the first of a pair. In each of these rows, the entry for the second character |
1452 | // of a safe pair is set to the stop state (0), indicating that a match was found. |
1453 | // All other table entries are set to the state corresponding the current input |
1454 | // character, allowing that character to be the of a start following pair. |
1455 | // |
1456 | // Because the safe rules are to be run in reverse, moving backwards in the text, |
1457 | // the first and second pair categories are swapped when building the table. |
1458 | // |
1459 | // 3. Compress the table. There are typically many rows (states) that are |
1460 | // equivalent - that have zeroes (match completed) in the same columns - |
1461 | // and can be folded together. |
1462 | |
1463 | // Each safe pair is stored as two UChars in the safePair string. |
1464 | UnicodeString safePairs; |
1465 | |
1466 | int32_t numCharClasses = fRB->fSetBuilder->getNumCharCategories(); |
1467 | int32_t numStates = fDStates->size(); |
1468 | |
1469 | for (int32_t c1=0; c1<numCharClasses; ++c1) { |
1470 | for (int32_t c2=0; c2 < numCharClasses; ++c2) { |
1471 | int32_t wantedEndState = -1; |
1472 | int32_t endState = 0; |
1473 | for (int32_t startState = 1; startState < numStates; ++startState) { |
1474 | RBBIStateDescriptor *startStateD = static_cast<RBBIStateDescriptor *>(fDStates->elementAt(startState)); |
1475 | int32_t s2 = startStateD->fDtran->elementAti(c1); |
1476 | RBBIStateDescriptor *s2StateD = static_cast<RBBIStateDescriptor *>(fDStates->elementAt(s2)); |
1477 | endState = s2StateD->fDtran->elementAti(c2); |
1478 | if (wantedEndState < 0) { |
1479 | wantedEndState = endState; |
1480 | } else { |
1481 | if (wantedEndState != endState) { |
1482 | break; |
1483 | } |
1484 | } |
1485 | } |
1486 | if (wantedEndState == endState) { |
1487 | safePairs.append((char16_t)c1); |
1488 | safePairs.append((char16_t)c2); |
1489 | // printf("(%d, %d) ", c1, c2); |
1490 | } |
1491 | } |
1492 | // printf("\n"); |
1493 | } |
1494 | |
1495 | // Populate the initial safe table. |
1496 | // The table as a whole is UVector<UnicodeString> |
1497 | // Each row is represented by a UnicodeString, being used as a Vector<int16>. |
1498 | // Row 0 is the stop state. |
1499 | // Row 1 is the start state. |
1500 | // Row 2 and beyond are other states, initially one per char class, but |
1501 | // after initial construction, many of the states will be combined, compacting the table. |
1502 | // The String holds the nextState data only. The four leading fields of a row, fAccepting, |
1503 | // fLookAhead, etc. are not needed for the safe table, and are omitted at this stage of building. |
1504 | |
1505 | U_ASSERT(fSafeTable == nullptr); |
1506 | LocalPointer<UVector> lpSafeTable( |
1507 | new UVector(uprv_deleteUObject, uhash_compareUnicodeString, numCharClasses + 2, status), status); |
1508 | if (U_FAILURE(status)) { |
1509 | return; |
1510 | } |
1511 | fSafeTable = lpSafeTable.orphan(); |
1512 | for (int32_t row=0; row<numCharClasses + 2; ++row) { |
1513 | LocalPointer<UnicodeString> lpString(new UnicodeString(numCharClasses, 0, numCharClasses+4), status); |
1514 | fSafeTable->adoptElement(lpString.orphan(), status); |
1515 | } |
1516 | if (U_FAILURE(status)) { |
1517 | return; |
1518 | } |
1519 | |
1520 | // From the start state, each input char class transitions to the state for that input. |
1521 | UnicodeString &startState = *static_cast<UnicodeString *>(fSafeTable->elementAt(1)); |
1522 | for (int32_t charClass=0; charClass < numCharClasses; ++charClass) { |
1523 | // Note: +2 for the start & stop state. |
1524 | startState.setCharAt(charClass, static_cast<char16_t>(charClass+2)); |
1525 | } |
1526 | |
1527 | // Initially make every other state table row look like the start state row, |
1528 | for (int32_t row=2; row<numCharClasses+2; ++row) { |
1529 | UnicodeString &rowState = *static_cast<UnicodeString *>(fSafeTable->elementAt(row)); |
1530 | rowState = startState; // UnicodeString assignment, copies contents. |
1531 | } |
1532 | |
1533 | // Run through the safe pairs, set the next state to zero when pair has been seen. |
1534 | // Zero being the stop state, meaning we found a safe point. |
1535 | for (int32_t pairIdx=0; pairIdx<safePairs.length(); pairIdx+=2) { |
1536 | int32_t c1 = safePairs.charAt(pairIdx); |
1537 | int32_t c2 = safePairs.charAt(pairIdx + 1); |
1538 | |
1539 | UnicodeString &rowState = *static_cast<UnicodeString *>(fSafeTable->elementAt(c2 + 2)); |
1540 | rowState.setCharAt(c1, 0); |
1541 | } |
1542 | |
1543 | // Remove duplicate or redundant rows from the table. |
1544 | IntPair states = {1, 0}; |
1545 | while (findDuplicateSafeState(&states)) { |
1546 | // printf("Removing duplicate safe states (%d, %d)\n", states.first, states.second); |
1547 | removeSafeState(states); |
1548 | } |
1549 | } |
1550 | |
1551 | |
1552 | //----------------------------------------------------------------------------- |
1553 | // |
1554 | // getSafeTableSize() Calculate the size of the runtime form of this |
1555 | // safe state table. |
1556 | // |
1557 | //----------------------------------------------------------------------------- |
1558 | int32_t RBBITableBuilder::getSafeTableSize() const { |
1559 | int32_t size = 0; |
1560 | int32_t numRows; |
1561 | int32_t numCols; |
1562 | int32_t rowSize; |
1563 | |
1564 | if (fSafeTable == nullptr) { |
1565 | return 0; |
1566 | } |
1567 | |
1568 | size = offsetof(RBBIStateTable, fTableData); // The header, with no rows to the table. |
1569 | |
1570 | numRows = fSafeTable->size(); |
1571 | numCols = fRB->fSetBuilder->getNumCharCategories(); |
1572 | |
1573 | if (use8BitsForSafeTable()) { |
1574 | rowSize = offsetof(RBBIStateTableRow8, fNextState) + sizeof(int8_t)*numCols; |
1575 | } else { |
1576 | rowSize = offsetof(RBBIStateTableRow16, fNextState) + sizeof(int16_t)*numCols; |
1577 | } |
1578 | size += numRows * rowSize; |
1579 | return size; |
1580 | } |
1581 | |
1582 | bool RBBITableBuilder::use8BitsForSafeTable() const { |
1583 | return fSafeTable->size() <= kMaxStateFor8BitsTable; |
1584 | } |
1585 | |
1586 | //----------------------------------------------------------------------------- |
1587 | // |
1588 | // exportSafeTable() export the state transition table in the format required |
1589 | // by the runtime engine. getTableSize() bytes of memory |
1590 | // must be available at the output address "where". |
1591 | // |
1592 | //----------------------------------------------------------------------------- |
1593 | void RBBITableBuilder::exportSafeTable(void *where) { |
1594 | RBBIStateTable *table = (RBBIStateTable *)where; |
1595 | uint32_t state; |
1596 | int col; |
1597 | |
1598 | if (U_FAILURE(*fStatus) || fSafeTable == nullptr) { |
1599 | return; |
1600 | } |
1601 | |
1602 | int32_t catCount = fRB->fSetBuilder->getNumCharCategories(); |
1603 | if (catCount > 0x7fff || |
1604 | fSafeTable->size() > 0x7fff) { |
1605 | *fStatus = U_BRK_INTERNAL_ERROR; |
1606 | return; |
1607 | } |
1608 | |
1609 | table->fNumStates = fSafeTable->size(); |
1610 | table->fFlags = 0; |
1611 | if (use8BitsForSafeTable()) { |
1612 | table->fRowLen = offsetof(RBBIStateTableRow8, fNextState) + sizeof(uint8_t) * catCount; |
1613 | table->fFlags |= RBBI_8BITS_ROWS; |
1614 | } else { |
1615 | table->fRowLen = offsetof(RBBIStateTableRow16, fNextState) + sizeof(int16_t) * catCount; |
1616 | } |
1617 | |
1618 | for (state=0; state<table->fNumStates; state++) { |
1619 | UnicodeString *rowString = (UnicodeString *)fSafeTable->elementAt(state); |
1620 | RBBIStateTableRow *row = (RBBIStateTableRow *)(table->fTableData + state*table->fRowLen); |
1621 | if (use8BitsForSafeTable()) { |
1622 | RBBIStateTableRow8 *r8 = (RBBIStateTableRow8*)row; |
1623 | r8->fAccepting = 0; |
1624 | r8->fLookAhead = 0; |
1625 | r8->fTagsIdx = 0; |
1626 | for (col=0; col<catCount; col++) { |
1627 | U_ASSERT(rowString->charAt(col) <= kMaxStateFor8BitsTable); |
1628 | r8->fNextState[col] = static_cast<uint8_t>(rowString->charAt(col)); |
1629 | } |
1630 | } else { |
1631 | row->r16.fAccepting = 0; |
1632 | row->r16.fLookAhead = 0; |
1633 | row->r16.fTagsIdx = 0; |
1634 | for (col=0; col<catCount; col++) { |
1635 | row->r16.fNextState[col] = rowString->charAt(col); |
1636 | } |
1637 | } |
1638 | } |
1639 | } |
1640 | |
1641 | |
1642 | |
1643 | |
1644 | //----------------------------------------------------------------------------- |
1645 | // |
1646 | // printSet Debug function. Print the contents of a UVector |
1647 | // |
1648 | //----------------------------------------------------------------------------- |
1649 | #ifdef RBBI_DEBUG |
1650 | void RBBITableBuilder::printSet(UVector *s) { |
1651 | int32_t i; |
1652 | for (i=0; i<s->size(); i++) { |
1653 | const RBBINode *v = static_cast<const RBBINode *>(s->elementAt(i)); |
1654 | RBBIDebugPrintf("%5d" , v==nullptr? -1 : v->fSerialNum); |
1655 | } |
1656 | RBBIDebugPrintf("\n" ); |
1657 | } |
1658 | #endif |
1659 | |
1660 | |
1661 | //----------------------------------------------------------------------------- |
1662 | // |
1663 | // printStates Debug Function. Dump the fully constructed state transition table. |
1664 | // |
1665 | //----------------------------------------------------------------------------- |
1666 | #ifdef RBBI_DEBUG |
1667 | void RBBITableBuilder::printStates() { |
1668 | int c; // input "character" |
1669 | int n; // state number |
1670 | |
1671 | RBBIDebugPrintf("state | i n p u t s y m b o l s \n" ); |
1672 | RBBIDebugPrintf(" | Acc LA Tag" ); |
1673 | for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { |
1674 | RBBIDebugPrintf(" %3d" , c); |
1675 | } |
1676 | RBBIDebugPrintf("\n" ); |
1677 | RBBIDebugPrintf(" |---------------" ); |
1678 | for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { |
1679 | RBBIDebugPrintf("----" ); |
1680 | } |
1681 | RBBIDebugPrintf("\n" ); |
1682 | |
1683 | for (n=0; n<fDStates->size(); n++) { |
1684 | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); |
1685 | RBBIDebugPrintf(" %3d | " , n); |
1686 | RBBIDebugPrintf("%3d %3d %5d " , sd->fAccepting, sd->fLookAhead, sd->fTagsIdx); |
1687 | for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { |
1688 | RBBIDebugPrintf(" %3d" , sd->fDtran->elementAti(c)); |
1689 | } |
1690 | RBBIDebugPrintf("\n" ); |
1691 | } |
1692 | RBBIDebugPrintf("\n\n" ); |
1693 | } |
1694 | #endif |
1695 | |
1696 | |
1697 | //----------------------------------------------------------------------------- |
1698 | // |
1699 | // printSafeTable Debug Function. Dump the fully constructed safe table. |
1700 | // |
1701 | //----------------------------------------------------------------------------- |
1702 | #ifdef RBBI_DEBUG |
1703 | void RBBITableBuilder::printReverseTable() { |
1704 | int c; // input "character" |
1705 | int n; // state number |
1706 | |
1707 | RBBIDebugPrintf(" Safe Reverse Table \n" ); |
1708 | if (fSafeTable == nullptr) { |
1709 | RBBIDebugPrintf(" --- nullptr ---\n" ); |
1710 | return; |
1711 | } |
1712 | RBBIDebugPrintf("state | i n p u t s y m b o l s \n" ); |
1713 | RBBIDebugPrintf(" | Acc LA Tag" ); |
1714 | for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { |
1715 | RBBIDebugPrintf(" %2d" , c); |
1716 | } |
1717 | RBBIDebugPrintf("\n" ); |
1718 | RBBIDebugPrintf(" |---------------" ); |
1719 | for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { |
1720 | RBBIDebugPrintf("---" ); |
1721 | } |
1722 | RBBIDebugPrintf("\n" ); |
1723 | |
1724 | for (n=0; n<fSafeTable->size(); n++) { |
1725 | UnicodeString *rowString = (UnicodeString *)fSafeTable->elementAt(n); |
1726 | RBBIDebugPrintf(" %3d | " , n); |
1727 | RBBIDebugPrintf("%3d %3d %5d " , 0, 0, 0); // Accepting, LookAhead, Tags |
1728 | for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { |
1729 | RBBIDebugPrintf(" %2d" , rowString->charAt(c)); |
1730 | } |
1731 | RBBIDebugPrintf("\n" ); |
1732 | } |
1733 | RBBIDebugPrintf("\n\n" ); |
1734 | } |
1735 | #endif |
1736 | |
1737 | |
1738 | |
1739 | //----------------------------------------------------------------------------- |
1740 | // |
1741 | // printRuleStatusTable Debug Function. Dump the common rule status table |
1742 | // |
1743 | //----------------------------------------------------------------------------- |
1744 | #ifdef RBBI_DEBUG |
1745 | void RBBITableBuilder::printRuleStatusTable() { |
1746 | int32_t thisRecord = 0; |
1747 | int32_t nextRecord = 0; |
1748 | int i; |
1749 | UVector *tbl = fRB->fRuleStatusVals; |
1750 | |
1751 | RBBIDebugPrintf("index | tags \n" ); |
1752 | RBBIDebugPrintf("-------------------\n" ); |
1753 | |
1754 | while (nextRecord < tbl->size()) { |
1755 | thisRecord = nextRecord; |
1756 | nextRecord = thisRecord + tbl->elementAti(thisRecord) + 1; |
1757 | RBBIDebugPrintf("%4d " , thisRecord); |
1758 | for (i=thisRecord+1; i<nextRecord; i++) { |
1759 | RBBIDebugPrintf(" %5d" , tbl->elementAti(i)); |
1760 | } |
1761 | RBBIDebugPrintf("\n" ); |
1762 | } |
1763 | RBBIDebugPrintf("\n\n" ); |
1764 | } |
1765 | #endif |
1766 | |
1767 | |
1768 | //----------------------------------------------------------------------------- |
1769 | // |
1770 | // RBBIStateDescriptor Methods. This is a very struct-like class |
1771 | // Most access is directly to the fields. |
1772 | // |
1773 | //----------------------------------------------------------------------------- |
1774 | |
1775 | RBBIStateDescriptor::RBBIStateDescriptor(int lastInputSymbol, UErrorCode *fStatus) { |
1776 | fMarked = false; |
1777 | fAccepting = 0; |
1778 | fLookAhead = 0; |
1779 | fTagsIdx = 0; |
1780 | fTagVals = nullptr; |
1781 | fPositions = nullptr; |
1782 | fDtran = nullptr; |
1783 | |
1784 | fDtran = new UVector32(lastInputSymbol+1, *fStatus); |
1785 | if (U_FAILURE(*fStatus)) { |
1786 | return; |
1787 | } |
1788 | if (fDtran == nullptr) { |
1789 | *fStatus = U_MEMORY_ALLOCATION_ERROR; |
1790 | return; |
1791 | } |
1792 | fDtran->setSize(lastInputSymbol+1); // fDtran needs to be pre-sized. |
1793 | // It is indexed by input symbols, and will |
1794 | // hold the next state number for each |
1795 | // symbol. |
1796 | } |
1797 | |
1798 | |
1799 | RBBIStateDescriptor::~RBBIStateDescriptor() { |
1800 | delete fPositions; |
1801 | delete fDtran; |
1802 | delete fTagVals; |
1803 | fPositions = nullptr; |
1804 | fDtran = nullptr; |
1805 | fTagVals = nullptr; |
1806 | } |
1807 | |
1808 | U_NAMESPACE_END |
1809 | |
1810 | #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |
1811 | |