| 1 | // © 2016 and later: Unicode, Inc. and others. | 
|---|
| 2 | // License & terms of use: http://www.unicode.org/copyright.html | 
|---|
| 3 | /* | 
|---|
| 4 | ****************************************************************************** | 
|---|
| 5 | *   Copyright (C) 1997-2016, International Business Machines | 
|---|
| 6 | *   Corporation and others.  All Rights Reserved. | 
|---|
| 7 | ****************************************************************************** | 
|---|
| 8 | *   Date        Name        Description | 
|---|
| 9 | *   03/22/00    aliu        Adapted from original C++ ICU Hashtable. | 
|---|
| 10 | *   07/06/01    aliu        Modified to support int32_t keys on | 
|---|
| 11 | *                           platforms with sizeof(void*) < 32. | 
|---|
| 12 | ****************************************************************************** | 
|---|
| 13 | */ | 
|---|
| 14 |  | 
|---|
| 15 | #include "uhash.h" | 
|---|
| 16 | #include "unicode/ustring.h" | 
|---|
| 17 | #include "cstring.h" | 
|---|
| 18 | #include "cmemory.h" | 
|---|
| 19 | #include "uassert.h" | 
|---|
| 20 | #include "ustr_imp.h" | 
|---|
| 21 |  | 
|---|
| 22 | /* This hashtable is implemented as a double hash.  All elements are | 
|---|
| 23 | * stored in a single array with no secondary storage for collision | 
|---|
| 24 | * resolution (no linked list, etc.).  When there is a hash collision | 
|---|
| 25 | * (when two unequal keys have the same hashcode) we resolve this by | 
|---|
| 26 | * using a secondary hash.  The secondary hash is an increment | 
|---|
| 27 | * computed as a hash function (a different one) of the primary | 
|---|
| 28 | * hashcode.  This increment is added to the initial hash value to | 
|---|
| 29 | * obtain further slots assigned to the same hash code.  For this to | 
|---|
| 30 | * work, the length of the array and the increment must be relatively | 
|---|
| 31 | * prime.  The easiest way to achieve this is to have the length of | 
|---|
| 32 | * the array be prime, and the increment be any value from | 
|---|
| 33 | * 1..length-1. | 
|---|
| 34 | * | 
|---|
| 35 | * Hashcodes are 32-bit integers.  We make sure all hashcodes are | 
|---|
| 36 | * non-negative by masking off the top bit.  This has two effects: (1) | 
|---|
| 37 | * modulo arithmetic is simplified.  If we allowed negative hashcodes, | 
|---|
| 38 | * then when we computed hashcode % length, we could get a negative | 
|---|
| 39 | * result, which we would then have to adjust back into range.  It's | 
|---|
| 40 | * simpler to just make hashcodes non-negative. (2) It makes it easy | 
|---|
| 41 | * to check for empty vs. occupied slots in the table.  We just mark | 
|---|
| 42 | * empty or deleted slots with a negative hashcode. | 
|---|
| 43 | * | 
|---|
| 44 | * The central function is _uhash_find().  This function looks for a | 
|---|
| 45 | * slot matching the given key and hashcode.  If one is found, it | 
|---|
| 46 | * returns a pointer to that slot.  If the table is full, and no match | 
|---|
| 47 | * is found, it returns nullptr -- in theory.  This would make the code | 
|---|
| 48 | * more complicated, since all callers of _uhash_find() would then | 
|---|
| 49 | * have to check for a nullptr result.  To keep this from happening, we | 
|---|
| 50 | * don't allow the table to fill.  When there is only one | 
|---|
| 51 | * empty/deleted slot left, uhash_put() will refuse to increase the | 
|---|
| 52 | * count, and fail.  This simplifies the code.  In practice, one will | 
|---|
| 53 | * seldom encounter this using default UHashtables.  However, if a | 
|---|
| 54 | * hashtable is set to a U_FIXED resize policy, or if memory is | 
|---|
| 55 | * exhausted, then the table may fill. | 
|---|
| 56 | * | 
|---|
| 57 | * High and low water ratios control rehashing.  They establish levels | 
|---|
| 58 | * of fullness (from 0 to 1) outside of which the data array is | 
|---|
| 59 | * reallocated and repopulated.  Setting the low water ratio to zero | 
|---|
| 60 | * means the table will never shrink.  Setting the high water ratio to | 
|---|
| 61 | * one means the table will never grow.  The ratios should be | 
|---|
| 62 | * coordinated with the ratio between successive elements of the | 
|---|
| 63 | * PRIMES table, so that when the primeIndex is incremented or | 
|---|
| 64 | * decremented during rehashing, it brings the ratio of count / length | 
|---|
| 65 | * back into the desired range (between low and high water ratios). | 
|---|
| 66 | */ | 
|---|
| 67 |  | 
|---|
| 68 | /******************************************************************** | 
|---|
| 69 | * PRIVATE Constants, Macros | 
|---|
| 70 | ********************************************************************/ | 
|---|
| 71 |  | 
|---|
| 72 | /* This is a list of non-consecutive primes chosen such that | 
|---|
| 73 | * PRIMES[i+1] ~ 2*PRIMES[i].  (Currently, the ratio ranges from 1.81 | 
|---|
| 74 | * to 2.18; the inverse ratio ranges from 0.459 to 0.552.)  If this | 
|---|
| 75 | * ratio is changed, the low and high water ratios should also be | 
|---|
| 76 | * adjusted to suit. | 
|---|
| 77 | * | 
|---|
| 78 | * These prime numbers were also chosen so that they are the largest | 
|---|
| 79 | * prime number while being less than a power of two. | 
|---|
| 80 | */ | 
|---|
| 81 | static const int32_t PRIMES[] = { | 
|---|
| 82 | 7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749, | 
|---|
| 83 | 65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593, | 
|---|
| 84 | 16777213, 33554393, 67108859, 134217689, 268435399, 536870909, | 
|---|
| 85 | 1073741789, 2147483647 /*, 4294967291 */ | 
|---|
| 86 | }; | 
|---|
| 87 |  | 
|---|
| 88 | #define PRIMES_LENGTH UPRV_LENGTHOF(PRIMES) | 
|---|
| 89 | #define DEFAULT_PRIME_INDEX 4 | 
|---|
| 90 |  | 
|---|
| 91 | /* These ratios are tuned to the PRIMES array such that a resize | 
|---|
| 92 | * places the table back into the zone of non-resizing.  That is, | 
|---|
| 93 | * after a call to _uhash_rehash(), a subsequent call to | 
|---|
| 94 | * _uhash_rehash() should do nothing (should not churn).  This is only | 
|---|
| 95 | * a potential problem with U_GROW_AND_SHRINK. | 
|---|
| 96 | */ | 
|---|
| 97 | static const float RESIZE_POLICY_RATIO_TABLE[6] = { | 
|---|
| 98 | /* low, high water ratio */ | 
|---|
| 99 | 0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */ | 
|---|
| 100 | 0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */ | 
|---|
| 101 | 0.0F, 1.0F  /* U_FIXED: Never change size */ | 
|---|
| 102 | }; | 
|---|
| 103 |  | 
|---|
| 104 | /* | 
|---|
| 105 | Invariants for hashcode values: | 
|---|
| 106 |  | 
|---|
| 107 | * DELETED < 0 | 
|---|
| 108 | * EMPTY < 0 | 
|---|
| 109 | * Real hashes >= 0 | 
|---|
| 110 |  | 
|---|
| 111 | Hashcodes may not start out this way, but internally they are | 
|---|
| 112 | adjusted so that they are always positive.  We assume 32-bit | 
|---|
| 113 | hashcodes; adjust these constants for other hashcode sizes. | 
|---|
| 114 | */ | 
|---|
| 115 | #define HASH_DELETED    ((int32_t) 0x80000000) | 
|---|
| 116 | #define HASH_EMPTY      ((int32_t) HASH_DELETED + 1) | 
|---|
| 117 |  | 
|---|
| 118 | #define IS_EMPTY_OR_DELETED(x) ((x) < 0) | 
|---|
| 119 |  | 
|---|
| 120 | /* This macro expects a UHashTok.pointer as its keypointer and | 
|---|
| 121 | valuepointer parameters */ | 
|---|
| 122 | #define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) UPRV_BLOCK_MACRO_BEGIN { \ | 
|---|
| 123 | if (hash->keyDeleter != nullptr && keypointer != nullptr) { \ | 
|---|
| 124 | (*hash->keyDeleter)(keypointer); \ | 
|---|
| 125 | } \ | 
|---|
| 126 | if (hash->valueDeleter != nullptr && valuepointer != nullptr) { \ | 
|---|
| 127 | (*hash->valueDeleter)(valuepointer); \ | 
|---|
| 128 | } \ | 
|---|
| 129 | } UPRV_BLOCK_MACRO_END | 
|---|
| 130 |  | 
|---|
| 131 | /* | 
|---|
| 132 | * Constants for hinting whether a key or value is an integer | 
|---|
| 133 | * or a pointer.  If a hint bit is zero, then the associated | 
|---|
| 134 | * token is assumed to be an integer. | 
|---|
| 135 | */ | 
|---|
| 136 | #define HINT_BOTH_INTEGERS (0) | 
|---|
| 137 | #define HINT_KEY_POINTER   (1) | 
|---|
| 138 | #define HINT_VALUE_POINTER (2) | 
|---|
| 139 | #define HINT_ALLOW_ZERO    (4) | 
|---|
| 140 |  | 
|---|
| 141 | /******************************************************************** | 
|---|
| 142 | * PRIVATE Implementation | 
|---|
| 143 | ********************************************************************/ | 
|---|
| 144 |  | 
|---|
| 145 | static UHashTok | 
|---|
| 146 | _uhash_setElement(UHashtable *hash, UHashElement* e, | 
|---|
| 147 | int32_t hashcode, | 
|---|
| 148 | UHashTok key, UHashTok value, int8_t hint) { | 
|---|
| 149 |  | 
|---|
| 150 | UHashTok oldValue = e->value; | 
|---|
| 151 | if (hash->keyDeleter != nullptr && e->key.pointer != nullptr && | 
|---|
| 152 | e->key.pointer != key.pointer) { /* Avoid double deletion */ | 
|---|
| 153 | (*hash->keyDeleter)(e->key.pointer); | 
|---|
| 154 | } | 
|---|
| 155 | if (hash->valueDeleter != nullptr) { | 
|---|
| 156 | if (oldValue.pointer != nullptr && | 
|---|
| 157 | oldValue.pointer != value.pointer) { /* Avoid double deletion */ | 
|---|
| 158 | (*hash->valueDeleter)(oldValue.pointer); | 
|---|
| 159 | } | 
|---|
| 160 | oldValue.pointer = nullptr; | 
|---|
| 161 | } | 
|---|
| 162 | /* Compilers should copy the UHashTok union correctly, but even if | 
|---|
| 163 | * they do, memory heap tools (e.g. BoundsChecker) can get | 
|---|
| 164 | * confused when a pointer is cloaked in a union and then copied. | 
|---|
| 165 | * TO ALLEVIATE THIS, we use hints (based on what API the user is | 
|---|
| 166 | * calling) to copy pointers when we know the user thinks | 
|---|
| 167 | * something is a pointer. */ | 
|---|
| 168 | if (hint & HINT_KEY_POINTER) { | 
|---|
| 169 | e->key.pointer = key.pointer; | 
|---|
| 170 | } else { | 
|---|
| 171 | e->key = key; | 
|---|
| 172 | } | 
|---|
| 173 | if (hint & HINT_VALUE_POINTER) { | 
|---|
| 174 | e->value.pointer = value.pointer; | 
|---|
| 175 | } else { | 
|---|
| 176 | e->value = value; | 
|---|
| 177 | } | 
|---|
| 178 | e->hashcode = hashcode; | 
|---|
| 179 | return oldValue; | 
|---|
| 180 | } | 
|---|
| 181 |  | 
|---|
| 182 | /** | 
|---|
| 183 | * Assumes that the given element is not empty or deleted. | 
|---|
| 184 | */ | 
|---|
| 185 | static UHashTok | 
|---|
| 186 | _uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) { | 
|---|
| 187 | UHashTok empty; | 
|---|
| 188 | U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode)); | 
|---|
| 189 | --hash->count; | 
|---|
| 190 | empty.pointer = nullptr; empty.integer = 0; | 
|---|
| 191 | return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0); | 
|---|
| 192 | } | 
|---|
| 193 |  | 
|---|
| 194 | static void | 
|---|
| 195 | _uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { | 
|---|
| 196 | U_ASSERT(hash != nullptr); | 
|---|
| 197 | U_ASSERT(((int32_t)policy) >= 0); | 
|---|
| 198 | U_ASSERT(((int32_t)policy) < 3); | 
|---|
| 199 | hash->lowWaterRatio  = RESIZE_POLICY_RATIO_TABLE[policy * 2]; | 
|---|
| 200 | hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1]; | 
|---|
| 201 | } | 
|---|
| 202 |  | 
|---|
| 203 | /** | 
|---|
| 204 | * Allocate internal data array of a size determined by the given | 
|---|
| 205 | * prime index.  If the index is out of range it is pinned into range. | 
|---|
| 206 | * If the allocation fails the status is set to | 
|---|
| 207 | * U_MEMORY_ALLOCATION_ERROR and all array storage is freed.  In | 
|---|
| 208 | * either case the previous array pointer is overwritten. | 
|---|
| 209 | * | 
|---|
| 210 | * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1. | 
|---|
| 211 | */ | 
|---|
| 212 | static void | 
|---|
| 213 | _uhash_allocate(UHashtable *hash, | 
|---|
| 214 | int32_t primeIndex, | 
|---|
| 215 | UErrorCode *status) { | 
|---|
| 216 |  | 
|---|
| 217 | UHashElement *p, *limit; | 
|---|
| 218 | UHashTok emptytok; | 
|---|
| 219 |  | 
|---|
| 220 | if (U_FAILURE(*status)) return; | 
|---|
| 221 |  | 
|---|
| 222 | U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH); | 
|---|
| 223 |  | 
|---|
| 224 | hash->primeIndex = static_cast<int8_t>(primeIndex); | 
|---|
| 225 | hash->length = PRIMES[primeIndex]; | 
|---|
| 226 |  | 
|---|
| 227 | p = hash->elements = (UHashElement*) | 
|---|
| 228 | uprv_malloc(sizeof(UHashElement) * hash->length); | 
|---|
| 229 |  | 
|---|
| 230 | if (hash->elements == nullptr) { | 
|---|
| 231 | *status = U_MEMORY_ALLOCATION_ERROR; | 
|---|
| 232 | return; | 
|---|
| 233 | } | 
|---|
| 234 |  | 
|---|
| 235 | emptytok.pointer = nullptr; /* Only one of these two is needed */ | 
|---|
| 236 | emptytok.integer = 0;    /* but we don't know which one. */ | 
|---|
| 237 |  | 
|---|
| 238 | limit = p + hash->length; | 
|---|
| 239 | while (p < limit) { | 
|---|
| 240 | p->key = emptytok; | 
|---|
| 241 | p->value = emptytok; | 
|---|
| 242 | p->hashcode = HASH_EMPTY; | 
|---|
| 243 | ++p; | 
|---|
| 244 | } | 
|---|
| 245 |  | 
|---|
| 246 | hash->count = 0; | 
|---|
| 247 | hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); | 
|---|
| 248 | hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); | 
|---|
| 249 | } | 
|---|
| 250 |  | 
|---|
| 251 | static UHashtable* | 
|---|
| 252 | _uhash_init(UHashtable *result, | 
|---|
| 253 | UHashFunction *keyHash, | 
|---|
| 254 | UKeyComparator *keyComp, | 
|---|
| 255 | UValueComparator *valueComp, | 
|---|
| 256 | int32_t primeIndex, | 
|---|
| 257 | UErrorCode *status) | 
|---|
| 258 | { | 
|---|
| 259 | if (U_FAILURE(*status)) return nullptr; | 
|---|
| 260 | U_ASSERT(keyHash != nullptr); | 
|---|
| 261 | U_ASSERT(keyComp != nullptr); | 
|---|
| 262 |  | 
|---|
| 263 | result->keyHasher       = keyHash; | 
|---|
| 264 | result->keyComparator   = keyComp; | 
|---|
| 265 | result->valueComparator = valueComp; | 
|---|
| 266 | result->keyDeleter      = nullptr; | 
|---|
| 267 | result->valueDeleter    = nullptr; | 
|---|
| 268 | result->allocated       = false; | 
|---|
| 269 | _uhash_internalSetResizePolicy(result, U_GROW); | 
|---|
| 270 |  | 
|---|
| 271 | _uhash_allocate(result, primeIndex, status); | 
|---|
| 272 |  | 
|---|
| 273 | if (U_FAILURE(*status)) { | 
|---|
| 274 | return nullptr; | 
|---|
| 275 | } | 
|---|
| 276 |  | 
|---|
| 277 | return result; | 
|---|
| 278 | } | 
|---|
| 279 |  | 
|---|
| 280 | static UHashtable* | 
|---|
| 281 | _uhash_create(UHashFunction *keyHash, | 
|---|
| 282 | UKeyComparator *keyComp, | 
|---|
| 283 | UValueComparator *valueComp, | 
|---|
| 284 | int32_t primeIndex, | 
|---|
| 285 | UErrorCode *status) { | 
|---|
| 286 | UHashtable *result; | 
|---|
| 287 |  | 
|---|
| 288 | if (U_FAILURE(*status)) return nullptr; | 
|---|
| 289 |  | 
|---|
| 290 | result = (UHashtable*) uprv_malloc(sizeof(UHashtable)); | 
|---|
| 291 | if (result == nullptr) { | 
|---|
| 292 | *status = U_MEMORY_ALLOCATION_ERROR; | 
|---|
| 293 | return nullptr; | 
|---|
| 294 | } | 
|---|
| 295 |  | 
|---|
| 296 | _uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status); | 
|---|
| 297 | result->allocated       = true; | 
|---|
| 298 |  | 
|---|
| 299 | if (U_FAILURE(*status)) { | 
|---|
| 300 | uprv_free(result); | 
|---|
| 301 | return nullptr; | 
|---|
| 302 | } | 
|---|
| 303 |  | 
|---|
| 304 | return result; | 
|---|
| 305 | } | 
|---|
| 306 |  | 
|---|
| 307 | /** | 
|---|
| 308 | * Look for a key in the table, or if no such key exists, the first | 
|---|
| 309 | * empty slot matching the given hashcode.  Keys are compared using | 
|---|
| 310 | * the keyComparator function. | 
|---|
| 311 | * | 
|---|
| 312 | * First find the start position, which is the hashcode modulo | 
|---|
| 313 | * the length.  Test it to see if it is: | 
|---|
| 314 | * | 
|---|
| 315 | * a. identical:  First check the hash values for a quick check, | 
|---|
| 316 | *    then compare keys for equality using keyComparator. | 
|---|
| 317 | * b. deleted | 
|---|
| 318 | * c. empty | 
|---|
| 319 | * | 
|---|
| 320 | * Stop if it is identical or empty, otherwise continue by adding a | 
|---|
| 321 | * "jump" value (moduloing by the length again to keep it within | 
|---|
| 322 | * range) and retesting.  For efficiency, there need enough empty | 
|---|
| 323 | * values so that the searches stop within a reasonable amount of time. | 
|---|
| 324 | * This can be changed by changing the high/low water marks. | 
|---|
| 325 | * | 
|---|
| 326 | * In theory, this function can return nullptr, if it is full (no empty | 
|---|
| 327 | * or deleted slots) and if no matching key is found.  In practice, we | 
|---|
| 328 | * prevent this elsewhere (in uhash_put) by making sure the last slot | 
|---|
| 329 | * in the table is never filled. | 
|---|
| 330 | * | 
|---|
| 331 | * The size of the table should be prime for this algorithm to work; | 
|---|
| 332 | * otherwise we are not guaranteed that the jump value (the secondary | 
|---|
| 333 | * hash) is relatively prime to the table length. | 
|---|
| 334 | */ | 
|---|
| 335 | static UHashElement* | 
|---|
| 336 | _uhash_find(const UHashtable *hash, UHashTok key, | 
|---|
| 337 | int32_t hashcode) { | 
|---|
| 338 |  | 
|---|
| 339 | int32_t firstDeleted = -1;  /* assume invalid index */ | 
|---|
| 340 | int32_t theIndex, startIndex; | 
|---|
| 341 | int32_t jump = 0; /* lazy evaluate */ | 
|---|
| 342 | int32_t tableHash; | 
|---|
| 343 | UHashElement *elements = hash->elements; | 
|---|
| 344 |  | 
|---|
| 345 | hashcode &= 0x7FFFFFFF; /* must be positive */ | 
|---|
| 346 | startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length; | 
|---|
| 347 |  | 
|---|
| 348 | do { | 
|---|
| 349 | tableHash = elements[theIndex].hashcode; | 
|---|
| 350 | if (tableHash == hashcode) {          /* quick check */ | 
|---|
| 351 | if ((*hash->keyComparator)(key, elements[theIndex].key)) { | 
|---|
| 352 | return &(elements[theIndex]); | 
|---|
| 353 | } | 
|---|
| 354 | } else if (!IS_EMPTY_OR_DELETED(tableHash)) { | 
|---|
| 355 | /* We have hit a slot which contains a key-value pair, | 
|---|
| 356 | * but for which the hash code does not match.  Keep | 
|---|
| 357 | * looking. | 
|---|
| 358 | */ | 
|---|
| 359 | } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */ | 
|---|
| 360 | break; | 
|---|
| 361 | } else if (firstDeleted < 0) { /* remember first deleted */ | 
|---|
| 362 | firstDeleted = theIndex; | 
|---|
| 363 | } | 
|---|
| 364 | if (jump == 0) { /* lazy compute jump */ | 
|---|
| 365 | /* The jump value must be relatively prime to the table | 
|---|
| 366 | * length.  As long as the length is prime, then any value | 
|---|
| 367 | * 1..length-1 will be relatively prime to it. | 
|---|
| 368 | */ | 
|---|
| 369 | jump = (hashcode % (hash->length - 1)) + 1; | 
|---|
| 370 | } | 
|---|
| 371 | theIndex = (theIndex + jump) % hash->length; | 
|---|
| 372 | } while (theIndex != startIndex); | 
|---|
| 373 |  | 
|---|
| 374 | if (firstDeleted >= 0) { | 
|---|
| 375 | theIndex = firstDeleted; /* reset if had deleted slot */ | 
|---|
| 376 | } else if (tableHash != HASH_EMPTY) { | 
|---|
| 377 | /* We get to this point if the hashtable is full (no empty or | 
|---|
| 378 | * deleted slots), and we've failed to find a match.  THIS | 
|---|
| 379 | * WILL NEVER HAPPEN as long as uhash_put() makes sure that | 
|---|
| 380 | * count is always < length. | 
|---|
| 381 | */ | 
|---|
| 382 | UPRV_UNREACHABLE_EXIT; | 
|---|
| 383 | } | 
|---|
| 384 | return &(elements[theIndex]); | 
|---|
| 385 | } | 
|---|
| 386 |  | 
|---|
| 387 | /** | 
|---|
| 388 | * Attempt to grow or shrink the data arrays in order to make the | 
|---|
| 389 | * count fit between the high and low water marks.  hash_put() and | 
|---|
| 390 | * hash_remove() call this method when the count exceeds the high or | 
|---|
| 391 | * low water marks.  This method may do nothing, if memory allocation | 
|---|
| 392 | * fails, or if the count is already in range, or if the length is | 
|---|
| 393 | * already at the low or high limit.  In any case, upon return the | 
|---|
| 394 | * arrays will be valid. | 
|---|
| 395 | */ | 
|---|
| 396 | static void | 
|---|
| 397 | _uhash_rehash(UHashtable *hash, UErrorCode *status) { | 
|---|
| 398 |  | 
|---|
| 399 | UHashElement *old = hash->elements; | 
|---|
| 400 | int32_t oldLength = hash->length; | 
|---|
| 401 | int32_t newPrimeIndex = hash->primeIndex; | 
|---|
| 402 | int32_t i; | 
|---|
| 403 |  | 
|---|
| 404 | if (hash->count > hash->highWaterMark) { | 
|---|
| 405 | if (++newPrimeIndex >= PRIMES_LENGTH) { | 
|---|
| 406 | return; | 
|---|
| 407 | } | 
|---|
| 408 | } else if (hash->count < hash->lowWaterMark) { | 
|---|
| 409 | if (--newPrimeIndex < 0) { | 
|---|
| 410 | return; | 
|---|
| 411 | } | 
|---|
| 412 | } else { | 
|---|
| 413 | return; | 
|---|
| 414 | } | 
|---|
| 415 |  | 
|---|
| 416 | _uhash_allocate(hash, newPrimeIndex, status); | 
|---|
| 417 |  | 
|---|
| 418 | if (U_FAILURE(*status)) { | 
|---|
| 419 | hash->elements = old; | 
|---|
| 420 | hash->length = oldLength; | 
|---|
| 421 | return; | 
|---|
| 422 | } | 
|---|
| 423 |  | 
|---|
| 424 | for (i = oldLength - 1; i >= 0; --i) { | 
|---|
| 425 | if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) { | 
|---|
| 426 | UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode); | 
|---|
| 427 | U_ASSERT(e != nullptr); | 
|---|
| 428 | U_ASSERT(e->hashcode == HASH_EMPTY); | 
|---|
| 429 | e->key = old[i].key; | 
|---|
| 430 | e->value = old[i].value; | 
|---|
| 431 | e->hashcode = old[i].hashcode; | 
|---|
| 432 | ++hash->count; | 
|---|
| 433 | } | 
|---|
| 434 | } | 
|---|
| 435 |  | 
|---|
| 436 | uprv_free(old); | 
|---|
| 437 | } | 
|---|
| 438 |  | 
|---|
| 439 | static UHashTok | 
|---|
| 440 | _uhash_remove(UHashtable *hash, | 
|---|
| 441 | UHashTok key) { | 
|---|
| 442 | /* First find the position of the key in the table.  If the object | 
|---|
| 443 | * has not been removed already, remove it.  If the user wanted | 
|---|
| 444 | * keys deleted, then delete it also.  We have to put a special | 
|---|
| 445 | * hashcode in that position that means that something has been | 
|---|
| 446 | * deleted, since when we do a find, we have to continue PAST any | 
|---|
| 447 | * deleted values. | 
|---|
| 448 | */ | 
|---|
| 449 | UHashTok result; | 
|---|
| 450 | UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key)); | 
|---|
| 451 | U_ASSERT(e != nullptr); | 
|---|
| 452 | result.pointer = nullptr; | 
|---|
| 453 | result.integer = 0; | 
|---|
| 454 | if (!IS_EMPTY_OR_DELETED(e->hashcode)) { | 
|---|
| 455 | result = _uhash_internalRemoveElement(hash, e); | 
|---|
| 456 | if (hash->count < hash->lowWaterMark) { | 
|---|
| 457 | UErrorCode status = U_ZERO_ERROR; | 
|---|
| 458 | _uhash_rehash(hash, &status); | 
|---|
| 459 | } | 
|---|
| 460 | } | 
|---|
| 461 | return result; | 
|---|
| 462 | } | 
|---|
| 463 |  | 
|---|
| 464 | static UHashTok | 
|---|
| 465 | _uhash_put(UHashtable *hash, | 
|---|
| 466 | UHashTok key, | 
|---|
| 467 | UHashTok value, | 
|---|
| 468 | int8_t hint, | 
|---|
| 469 | UErrorCode *status) { | 
|---|
| 470 |  | 
|---|
| 471 | /* Put finds the position in the table for the new value.  If the | 
|---|
| 472 | * key is already in the table, it is deleted, if there is a | 
|---|
| 473 | * non-nullptr keyDeleter.  Then the key, the hash and the value are | 
|---|
| 474 | * all put at the position in their respective arrays. | 
|---|
| 475 | */ | 
|---|
| 476 | int32_t hashcode; | 
|---|
| 477 | UHashElement* e; | 
|---|
| 478 | UHashTok emptytok; | 
|---|
| 479 |  | 
|---|
| 480 | if (U_FAILURE(*status)) { | 
|---|
| 481 | goto err; | 
|---|
| 482 | } | 
|---|
| 483 | U_ASSERT(hash != nullptr); | 
|---|
| 484 | if ((hint & HINT_VALUE_POINTER) ? | 
|---|
| 485 | value.pointer == nullptr : | 
|---|
| 486 | value.integer == 0 && (hint & HINT_ALLOW_ZERO) == 0) { | 
|---|
| 487 | /* Disallow storage of nullptr values, since nullptr is returned by | 
|---|
| 488 | * get() to indicate an absent key.  Storing nullptr == removing. | 
|---|
| 489 | */ | 
|---|
| 490 | return _uhash_remove(hash, key); | 
|---|
| 491 | } | 
|---|
| 492 | if (hash->count > hash->highWaterMark) { | 
|---|
| 493 | _uhash_rehash(hash, status); | 
|---|
| 494 | if (U_FAILURE(*status)) { | 
|---|
| 495 | goto err; | 
|---|
| 496 | } | 
|---|
| 497 | } | 
|---|
| 498 |  | 
|---|
| 499 | hashcode = (*hash->keyHasher)(key); | 
|---|
| 500 | e = _uhash_find(hash, key, hashcode); | 
|---|
| 501 | U_ASSERT(e != nullptr); | 
|---|
| 502 |  | 
|---|
| 503 | if (IS_EMPTY_OR_DELETED(e->hashcode)) { | 
|---|
| 504 | /* Important: We must never actually fill the table up.  If we | 
|---|
| 505 | * do so, then _uhash_find() will return nullptr, and we'll have | 
|---|
| 506 | * to check for nullptr after every call to _uhash_find().  To | 
|---|
| 507 | * avoid this we make sure there is always at least one empty | 
|---|
| 508 | * or deleted slot in the table.  This only is a problem if we | 
|---|
| 509 | * are out of memory and rehash isn't working. | 
|---|
| 510 | */ | 
|---|
| 511 | ++hash->count; | 
|---|
| 512 | if (hash->count == hash->length) { | 
|---|
| 513 | /* Don't allow count to reach length */ | 
|---|
| 514 | --hash->count; | 
|---|
| 515 | *status = U_MEMORY_ALLOCATION_ERROR; | 
|---|
| 516 | goto err; | 
|---|
| 517 | } | 
|---|
| 518 | } | 
|---|
| 519 |  | 
|---|
| 520 | /* We must in all cases handle storage properly.  If there was an | 
|---|
| 521 | * old key, then it must be deleted (if the deleter != nullptr). | 
|---|
| 522 | * Make hashcodes stored in table positive. | 
|---|
| 523 | */ | 
|---|
| 524 | return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint); | 
|---|
| 525 |  | 
|---|
| 526 | err: | 
|---|
| 527 | /* If the deleters are non-nullptr, this method adopts its key and/or | 
|---|
| 528 | * value arguments, and we must be sure to delete the key and/or | 
|---|
| 529 | * value in all cases, even upon failure. | 
|---|
| 530 | */ | 
|---|
| 531 | HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer); | 
|---|
| 532 | emptytok.pointer = nullptr; emptytok.integer = 0; | 
|---|
| 533 | return emptytok; | 
|---|
| 534 | } | 
|---|
| 535 |  | 
|---|
| 536 |  | 
|---|
| 537 | /******************************************************************** | 
|---|
| 538 | * PUBLIC API | 
|---|
| 539 | ********************************************************************/ | 
|---|
| 540 |  | 
|---|
| 541 | U_CAPI UHashtable* U_EXPORT2 | 
|---|
| 542 | uhash_open(UHashFunction *keyHash, | 
|---|
| 543 | UKeyComparator *keyComp, | 
|---|
| 544 | UValueComparator *valueComp, | 
|---|
| 545 | UErrorCode *status) { | 
|---|
| 546 |  | 
|---|
| 547 | return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status); | 
|---|
| 548 | } | 
|---|
| 549 |  | 
|---|
| 550 | U_CAPI UHashtable* U_EXPORT2 | 
|---|
| 551 | uhash_openSize(UHashFunction *keyHash, | 
|---|
| 552 | UKeyComparator *keyComp, | 
|---|
| 553 | UValueComparator *valueComp, | 
|---|
| 554 | int32_t size, | 
|---|
| 555 | UErrorCode *status) { | 
|---|
| 556 |  | 
|---|
| 557 | /* Find the smallest index i for which PRIMES[i] >= size. */ | 
|---|
| 558 | int32_t i = 0; | 
|---|
| 559 | while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) { | 
|---|
| 560 | ++i; | 
|---|
| 561 | } | 
|---|
| 562 |  | 
|---|
| 563 | return _uhash_create(keyHash, keyComp, valueComp, i, status); | 
|---|
| 564 | } | 
|---|
| 565 |  | 
|---|
| 566 | U_CAPI UHashtable* U_EXPORT2 | 
|---|
| 567 | uhash_init(UHashtable *fillinResult, | 
|---|
| 568 | UHashFunction *keyHash, | 
|---|
| 569 | UKeyComparator *keyComp, | 
|---|
| 570 | UValueComparator *valueComp, | 
|---|
| 571 | UErrorCode *status) { | 
|---|
| 572 |  | 
|---|
| 573 | return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status); | 
|---|
| 574 | } | 
|---|
| 575 |  | 
|---|
| 576 | U_CAPI UHashtable* U_EXPORT2 | 
|---|
| 577 | uhash_initSize(UHashtable *fillinResult, | 
|---|
| 578 | UHashFunction *keyHash, | 
|---|
| 579 | UKeyComparator *keyComp, | 
|---|
| 580 | UValueComparator *valueComp, | 
|---|
| 581 | int32_t size, | 
|---|
| 582 | UErrorCode *status) { | 
|---|
| 583 |  | 
|---|
| 584 | // Find the smallest index i for which PRIMES[i] >= size. | 
|---|
| 585 | int32_t i = 0; | 
|---|
| 586 | while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) { | 
|---|
| 587 | ++i; | 
|---|
| 588 | } | 
|---|
| 589 | return _uhash_init(fillinResult, keyHash, keyComp, valueComp, i, status); | 
|---|
| 590 | } | 
|---|
| 591 |  | 
|---|
| 592 | U_CAPI void U_EXPORT2 | 
|---|
| 593 | uhash_close(UHashtable *hash) { | 
|---|
| 594 | if (hash == nullptr) { | 
|---|
| 595 | return; | 
|---|
| 596 | } | 
|---|
| 597 | if (hash->elements != nullptr) { | 
|---|
| 598 | if (hash->keyDeleter != nullptr || hash->valueDeleter != nullptr) { | 
|---|
| 599 | int32_t pos=UHASH_FIRST; | 
|---|
| 600 | UHashElement *e; | 
|---|
| 601 | while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != nullptr) { | 
|---|
| 602 | HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer); | 
|---|
| 603 | } | 
|---|
| 604 | } | 
|---|
| 605 | uprv_free(hash->elements); | 
|---|
| 606 | hash->elements = nullptr; | 
|---|
| 607 | } | 
|---|
| 608 | if (hash->allocated) { | 
|---|
| 609 | uprv_free(hash); | 
|---|
| 610 | } | 
|---|
| 611 | } | 
|---|
| 612 |  | 
|---|
| 613 | U_CAPI UHashFunction *U_EXPORT2 | 
|---|
| 614 | uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) { | 
|---|
| 615 | UHashFunction *result = hash->keyHasher; | 
|---|
| 616 | hash->keyHasher = fn; | 
|---|
| 617 | return result; | 
|---|
| 618 | } | 
|---|
| 619 |  | 
|---|
| 620 | U_CAPI UKeyComparator *U_EXPORT2 | 
|---|
| 621 | uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) { | 
|---|
| 622 | UKeyComparator *result = hash->keyComparator; | 
|---|
| 623 | hash->keyComparator = fn; | 
|---|
| 624 | return result; | 
|---|
| 625 | } | 
|---|
| 626 | U_CAPI UValueComparator *U_EXPORT2 | 
|---|
| 627 | uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){ | 
|---|
| 628 | UValueComparator *result = hash->valueComparator; | 
|---|
| 629 | hash->valueComparator = fn; | 
|---|
| 630 | return result; | 
|---|
| 631 | } | 
|---|
| 632 |  | 
|---|
| 633 | U_CAPI UObjectDeleter *U_EXPORT2 | 
|---|
| 634 | uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) { | 
|---|
| 635 | UObjectDeleter *result = hash->keyDeleter; | 
|---|
| 636 | hash->keyDeleter = fn; | 
|---|
| 637 | return result; | 
|---|
| 638 | } | 
|---|
| 639 |  | 
|---|
| 640 | U_CAPI UObjectDeleter *U_EXPORT2 | 
|---|
| 641 | uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) { | 
|---|
| 642 | UObjectDeleter *result = hash->valueDeleter; | 
|---|
| 643 | hash->valueDeleter = fn; | 
|---|
| 644 | return result; | 
|---|
| 645 | } | 
|---|
| 646 |  | 
|---|
| 647 | U_CAPI void U_EXPORT2 | 
|---|
| 648 | uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { | 
|---|
| 649 | UErrorCode status = U_ZERO_ERROR; | 
|---|
| 650 | _uhash_internalSetResizePolicy(hash, policy); | 
|---|
| 651 | hash->lowWaterMark  = (int32_t)(hash->length * hash->lowWaterRatio); | 
|---|
| 652 | hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); | 
|---|
| 653 | _uhash_rehash(hash, &status); | 
|---|
| 654 | } | 
|---|
| 655 |  | 
|---|
| 656 | U_CAPI int32_t U_EXPORT2 | 
|---|
| 657 | uhash_count(const UHashtable *hash) { | 
|---|
| 658 | return hash->count; | 
|---|
| 659 | } | 
|---|
| 660 |  | 
|---|
| 661 | U_CAPI void* U_EXPORT2 | 
|---|
| 662 | uhash_get(const UHashtable *hash, | 
|---|
| 663 | const void* key) { | 
|---|
| 664 | UHashTok keyholder; | 
|---|
| 665 | keyholder.pointer = (void*) key; | 
|---|
| 666 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; | 
|---|
| 667 | } | 
|---|
| 668 |  | 
|---|
| 669 | U_CAPI void* U_EXPORT2 | 
|---|
| 670 | uhash_iget(const UHashtable *hash, | 
|---|
| 671 | int32_t key) { | 
|---|
| 672 | UHashTok keyholder; | 
|---|
| 673 | keyholder.integer = key; | 
|---|
| 674 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; | 
|---|
| 675 | } | 
|---|
| 676 |  | 
|---|
| 677 | U_CAPI int32_t U_EXPORT2 | 
|---|
| 678 | uhash_geti(const UHashtable *hash, | 
|---|
| 679 | const void* key) { | 
|---|
| 680 | UHashTok keyholder; | 
|---|
| 681 | keyholder.pointer = (void*) key; | 
|---|
| 682 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; | 
|---|
| 683 | } | 
|---|
| 684 |  | 
|---|
| 685 | U_CAPI int32_t U_EXPORT2 | 
|---|
| 686 | uhash_igeti(const UHashtable *hash, | 
|---|
| 687 | int32_t key) { | 
|---|
| 688 | UHashTok keyholder; | 
|---|
| 689 | keyholder.integer = key; | 
|---|
| 690 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; | 
|---|
| 691 | } | 
|---|
| 692 |  | 
|---|
| 693 | U_CAPI int32_t U_EXPORT2 | 
|---|
| 694 | uhash_getiAndFound(const UHashtable *hash, | 
|---|
| 695 | const void *key, | 
|---|
| 696 | UBool *found) { | 
|---|
| 697 | UHashTok keyholder; | 
|---|
| 698 | keyholder.pointer = (void *)key; | 
|---|
| 699 | const UHashElement *e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); | 
|---|
| 700 | *found = !IS_EMPTY_OR_DELETED(e->hashcode); | 
|---|
| 701 | return e->value.integer; | 
|---|
| 702 | } | 
|---|
| 703 |  | 
|---|
| 704 | U_CAPI int32_t U_EXPORT2 | 
|---|
| 705 | uhash_igetiAndFound(const UHashtable *hash, | 
|---|
| 706 | int32_t key, | 
|---|
| 707 | UBool *found) { | 
|---|
| 708 | UHashTok keyholder; | 
|---|
| 709 | keyholder.integer = key; | 
|---|
| 710 | const UHashElement *e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); | 
|---|
| 711 | *found = !IS_EMPTY_OR_DELETED(e->hashcode); | 
|---|
| 712 | return e->value.integer; | 
|---|
| 713 | } | 
|---|
| 714 |  | 
|---|
| 715 | U_CAPI void* U_EXPORT2 | 
|---|
| 716 | uhash_put(UHashtable *hash, | 
|---|
| 717 | void* key, | 
|---|
| 718 | void* value, | 
|---|
| 719 | UErrorCode *status) { | 
|---|
| 720 | UHashTok keyholder, valueholder; | 
|---|
| 721 | keyholder.pointer = key; | 
|---|
| 722 | valueholder.pointer = value; | 
|---|
| 723 | return _uhash_put(hash, keyholder, valueholder, | 
|---|
| 724 | HINT_KEY_POINTER | HINT_VALUE_POINTER, | 
|---|
| 725 | status).pointer; | 
|---|
| 726 | } | 
|---|
| 727 |  | 
|---|
| 728 | U_CAPI void* U_EXPORT2 | 
|---|
| 729 | uhash_iput(UHashtable *hash, | 
|---|
| 730 | int32_t key, | 
|---|
| 731 | void* value, | 
|---|
| 732 | UErrorCode *status) { | 
|---|
| 733 | UHashTok keyholder, valueholder; | 
|---|
| 734 | keyholder.integer = key; | 
|---|
| 735 | valueholder.pointer = value; | 
|---|
| 736 | return _uhash_put(hash, keyholder, valueholder, | 
|---|
| 737 | HINT_VALUE_POINTER, | 
|---|
| 738 | status).pointer; | 
|---|
| 739 | } | 
|---|
| 740 |  | 
|---|
| 741 | U_CAPI int32_t U_EXPORT2 | 
|---|
| 742 | uhash_puti(UHashtable *hash, | 
|---|
| 743 | void* key, | 
|---|
| 744 | int32_t value, | 
|---|
| 745 | UErrorCode *status) { | 
|---|
| 746 | UHashTok keyholder, valueholder; | 
|---|
| 747 | keyholder.pointer = key; | 
|---|
| 748 | valueholder.integer = value; | 
|---|
| 749 | return _uhash_put(hash, keyholder, valueholder, | 
|---|
| 750 | HINT_KEY_POINTER, | 
|---|
| 751 | status).integer; | 
|---|
| 752 | } | 
|---|
| 753 |  | 
|---|
| 754 |  | 
|---|
| 755 | U_CAPI int32_t U_EXPORT2 | 
|---|
| 756 | uhash_iputi(UHashtable *hash, | 
|---|
| 757 | int32_t key, | 
|---|
| 758 | int32_t value, | 
|---|
| 759 | UErrorCode *status) { | 
|---|
| 760 | UHashTok keyholder, valueholder; | 
|---|
| 761 | keyholder.integer = key; | 
|---|
| 762 | valueholder.integer = value; | 
|---|
| 763 | return _uhash_put(hash, keyholder, valueholder, | 
|---|
| 764 | HINT_BOTH_INTEGERS, | 
|---|
| 765 | status).integer; | 
|---|
| 766 | } | 
|---|
| 767 |  | 
|---|
| 768 | U_CAPI int32_t U_EXPORT2 | 
|---|
| 769 | uhash_putiAllowZero(UHashtable *hash, | 
|---|
| 770 | void *key, | 
|---|
| 771 | int32_t value, | 
|---|
| 772 | UErrorCode *status) { | 
|---|
| 773 | UHashTok keyholder, valueholder; | 
|---|
| 774 | keyholder.pointer = key; | 
|---|
| 775 | valueholder.integer = value; | 
|---|
| 776 | return _uhash_put(hash, keyholder, valueholder, | 
|---|
| 777 | HINT_KEY_POINTER | HINT_ALLOW_ZERO, | 
|---|
| 778 | status).integer; | 
|---|
| 779 | } | 
|---|
| 780 |  | 
|---|
| 781 |  | 
|---|
| 782 | U_CAPI int32_t U_EXPORT2 | 
|---|
| 783 | uhash_iputiAllowZero(UHashtable *hash, | 
|---|
| 784 | int32_t key, | 
|---|
| 785 | int32_t value, | 
|---|
| 786 | UErrorCode *status) { | 
|---|
| 787 | UHashTok keyholder, valueholder; | 
|---|
| 788 | keyholder.integer = key; | 
|---|
| 789 | valueholder.integer = value; | 
|---|
| 790 | return _uhash_put(hash, keyholder, valueholder, | 
|---|
| 791 | HINT_BOTH_INTEGERS | HINT_ALLOW_ZERO, | 
|---|
| 792 | status).integer; | 
|---|
| 793 | } | 
|---|
| 794 |  | 
|---|
| 795 | U_CAPI void* U_EXPORT2 | 
|---|
| 796 | uhash_remove(UHashtable *hash, | 
|---|
| 797 | const void* key) { | 
|---|
| 798 | UHashTok keyholder; | 
|---|
| 799 | keyholder.pointer = (void*) key; | 
|---|
| 800 | return _uhash_remove(hash, keyholder).pointer; | 
|---|
| 801 | } | 
|---|
| 802 |  | 
|---|
| 803 | U_CAPI void* U_EXPORT2 | 
|---|
| 804 | uhash_iremove(UHashtable *hash, | 
|---|
| 805 | int32_t key) { | 
|---|
| 806 | UHashTok keyholder; | 
|---|
| 807 | keyholder.integer = key; | 
|---|
| 808 | return _uhash_remove(hash, keyholder).pointer; | 
|---|
| 809 | } | 
|---|
| 810 |  | 
|---|
| 811 | U_CAPI int32_t U_EXPORT2 | 
|---|
| 812 | uhash_removei(UHashtable *hash, | 
|---|
| 813 | const void* key) { | 
|---|
| 814 | UHashTok keyholder; | 
|---|
| 815 | keyholder.pointer = (void*) key; | 
|---|
| 816 | return _uhash_remove(hash, keyholder).integer; | 
|---|
| 817 | } | 
|---|
| 818 |  | 
|---|
| 819 | U_CAPI int32_t U_EXPORT2 | 
|---|
| 820 | uhash_iremovei(UHashtable *hash, | 
|---|
| 821 | int32_t key) { | 
|---|
| 822 | UHashTok keyholder; | 
|---|
| 823 | keyholder.integer = key; | 
|---|
| 824 | return _uhash_remove(hash, keyholder).integer; | 
|---|
| 825 | } | 
|---|
| 826 |  | 
|---|
| 827 | U_CAPI void U_EXPORT2 | 
|---|
| 828 | uhash_removeAll(UHashtable *hash) { | 
|---|
| 829 | int32_t pos = UHASH_FIRST; | 
|---|
| 830 | const UHashElement *e; | 
|---|
| 831 | U_ASSERT(hash != nullptr); | 
|---|
| 832 | if (hash->count != 0) { | 
|---|
| 833 | while ((e = uhash_nextElement(hash, &pos)) != nullptr) { | 
|---|
| 834 | uhash_removeElement(hash, e); | 
|---|
| 835 | } | 
|---|
| 836 | } | 
|---|
| 837 | U_ASSERT(hash->count == 0); | 
|---|
| 838 | } | 
|---|
| 839 |  | 
|---|
| 840 | U_CAPI UBool U_EXPORT2 | 
|---|
| 841 | uhash_containsKey(const UHashtable *hash, const void *key) { | 
|---|
| 842 | UHashTok keyholder; | 
|---|
| 843 | keyholder.pointer = (void *)key; | 
|---|
| 844 | const UHashElement *e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); | 
|---|
| 845 | return !IS_EMPTY_OR_DELETED(e->hashcode); | 
|---|
| 846 | } | 
|---|
| 847 |  | 
|---|
| 848 | /** | 
|---|
| 849 | * Returns true if the UHashtable contains an item with this integer key. | 
|---|
| 850 | * | 
|---|
| 851 | * @param hash The target UHashtable. | 
|---|
| 852 | * @param key An integer key stored in a hashtable | 
|---|
| 853 | * @return true if the key is found. | 
|---|
| 854 | */ | 
|---|
| 855 | U_CAPI UBool U_EXPORT2 | 
|---|
| 856 | uhash_icontainsKey(const UHashtable *hash, int32_t key) { | 
|---|
| 857 | UHashTok keyholder; | 
|---|
| 858 | keyholder.integer = key; | 
|---|
| 859 | const UHashElement *e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); | 
|---|
| 860 | return !IS_EMPTY_OR_DELETED(e->hashcode); | 
|---|
| 861 | } | 
|---|
| 862 |  | 
|---|
| 863 | U_CAPI const UHashElement* U_EXPORT2 | 
|---|
| 864 | uhash_find(const UHashtable *hash, const void* key) { | 
|---|
| 865 | UHashTok keyholder; | 
|---|
| 866 | const UHashElement *e; | 
|---|
| 867 | keyholder.pointer = (void*) key; | 
|---|
| 868 | e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); | 
|---|
| 869 | return IS_EMPTY_OR_DELETED(e->hashcode) ? nullptr : e; | 
|---|
| 870 | } | 
|---|
| 871 |  | 
|---|
| 872 | U_CAPI const UHashElement* U_EXPORT2 | 
|---|
| 873 | uhash_nextElement(const UHashtable *hash, int32_t *pos) { | 
|---|
| 874 | /* Walk through the array until we find an element that is not | 
|---|
| 875 | * EMPTY and not DELETED. | 
|---|
| 876 | */ | 
|---|
| 877 | int32_t i; | 
|---|
| 878 | U_ASSERT(hash != nullptr); | 
|---|
| 879 | for (i = *pos + 1; i < hash->length; ++i) { | 
|---|
| 880 | if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) { | 
|---|
| 881 | *pos = i; | 
|---|
| 882 | return &(hash->elements[i]); | 
|---|
| 883 | } | 
|---|
| 884 | } | 
|---|
| 885 |  | 
|---|
| 886 | /* No more elements */ | 
|---|
| 887 | return nullptr; | 
|---|
| 888 | } | 
|---|
| 889 |  | 
|---|
| 890 | U_CAPI void* U_EXPORT2 | 
|---|
| 891 | uhash_removeElement(UHashtable *hash, const UHashElement* e) { | 
|---|
| 892 | U_ASSERT(hash != nullptr); | 
|---|
| 893 | U_ASSERT(e != nullptr); | 
|---|
| 894 | if (!IS_EMPTY_OR_DELETED(e->hashcode)) { | 
|---|
| 895 | UHashElement *nce = (UHashElement *)e; | 
|---|
| 896 | return _uhash_internalRemoveElement(hash, nce).pointer; | 
|---|
| 897 | } | 
|---|
| 898 | return nullptr; | 
|---|
| 899 | } | 
|---|
| 900 |  | 
|---|
| 901 | /******************************************************************** | 
|---|
| 902 | * UHashTok convenience | 
|---|
| 903 | ********************************************************************/ | 
|---|
| 904 |  | 
|---|
| 905 | /** | 
|---|
| 906 | * Return a UHashTok for an integer. | 
|---|
| 907 | */ | 
|---|
| 908 | /*U_CAPI UHashTok U_EXPORT2 | 
|---|
| 909 | uhash_toki(int32_t i) { | 
|---|
| 910 | UHashTok tok; | 
|---|
| 911 | tok.integer = i; | 
|---|
| 912 | return tok; | 
|---|
| 913 | }*/ | 
|---|
| 914 |  | 
|---|
| 915 | /** | 
|---|
| 916 | * Return a UHashTok for a pointer. | 
|---|
| 917 | */ | 
|---|
| 918 | /*U_CAPI UHashTok U_EXPORT2 | 
|---|
| 919 | uhash_tokp(void* p) { | 
|---|
| 920 | UHashTok tok; | 
|---|
| 921 | tok.pointer = p; | 
|---|
| 922 | return tok; | 
|---|
| 923 | }*/ | 
|---|
| 924 |  | 
|---|
| 925 | /******************************************************************** | 
|---|
| 926 | * PUBLIC Key Hash Functions | 
|---|
| 927 | ********************************************************************/ | 
|---|
| 928 |  | 
|---|
| 929 | U_CAPI int32_t U_EXPORT2 | 
|---|
| 930 | uhash_hashUChars(const UHashTok key) { | 
|---|
| 931 | const char16_t *s = (const char16_t *)key.pointer; | 
|---|
| 932 | return s == nullptr ? 0 : ustr_hashUCharsN(s, u_strlen(s)); | 
|---|
| 933 | } | 
|---|
| 934 |  | 
|---|
| 935 | U_CAPI int32_t U_EXPORT2 | 
|---|
| 936 | uhash_hashChars(const UHashTok key) { | 
|---|
| 937 | const char *s = (const char *)key.pointer; | 
|---|
| 938 | return s == nullptr ? 0 : static_cast<int32_t>(ustr_hashCharsN(s, static_cast<int32_t>(uprv_strlen(s)))); | 
|---|
| 939 | } | 
|---|
| 940 |  | 
|---|
| 941 | U_CAPI int32_t U_EXPORT2 | 
|---|
| 942 | uhash_hashIChars(const UHashTok key) { | 
|---|
| 943 | const char *s = (const char *)key.pointer; | 
|---|
| 944 | return s == nullptr ? 0 : ustr_hashICharsN(s, static_cast<int32_t>(uprv_strlen(s))); | 
|---|
| 945 | } | 
|---|
| 946 |  | 
|---|
| 947 | U_CAPI UBool U_EXPORT2 | 
|---|
| 948 | uhash_equals(const UHashtable* hash1, const UHashtable* hash2){ | 
|---|
| 949 | int32_t count1, count2, pos, i; | 
|---|
| 950 |  | 
|---|
| 951 | if(hash1==hash2){ | 
|---|
| 952 | return true; | 
|---|
| 953 | } | 
|---|
| 954 |  | 
|---|
| 955 | /* | 
|---|
| 956 | * Make sure that we are comparing 2 valid hashes of the same type | 
|---|
| 957 | * with valid comparison functions. | 
|---|
| 958 | * Without valid comparison functions, a binary comparison | 
|---|
| 959 | * of the hash values will yield random results on machines | 
|---|
| 960 | * with 64-bit pointers and 32-bit integer hashes. | 
|---|
| 961 | * A valueComparator is normally optional. | 
|---|
| 962 | */ | 
|---|
| 963 | if (hash1==nullptr || hash2==nullptr || | 
|---|
| 964 | hash1->keyComparator != hash2->keyComparator || | 
|---|
| 965 | hash1->valueComparator != hash2->valueComparator || | 
|---|
| 966 | hash1->valueComparator == nullptr) | 
|---|
| 967 | { | 
|---|
| 968 | /* | 
|---|
| 969 | Normally we would return an error here about incompatible hash tables, | 
|---|
| 970 | but we return false instead. | 
|---|
| 971 | */ | 
|---|
| 972 | return false; | 
|---|
| 973 | } | 
|---|
| 974 |  | 
|---|
| 975 | count1 = uhash_count(hash1); | 
|---|
| 976 | count2 = uhash_count(hash2); | 
|---|
| 977 | if(count1!=count2){ | 
|---|
| 978 | return false; | 
|---|
| 979 | } | 
|---|
| 980 |  | 
|---|
| 981 | pos=UHASH_FIRST; | 
|---|
| 982 | for(i=0; i<count1; i++){ | 
|---|
| 983 | const UHashElement* elem1 = uhash_nextElement(hash1, &pos); | 
|---|
| 984 | const UHashTok key1 = elem1->key; | 
|---|
| 985 | const UHashTok val1 = elem1->value; | 
|---|
| 986 | /* here the keys are not compared, instead the key form hash1 is used to fetch | 
|---|
| 987 | * value from hash2. If the hashes are equal then then both hashes should | 
|---|
| 988 | * contain equal values for the same key! | 
|---|
| 989 | */ | 
|---|
| 990 | const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(key1)); | 
|---|
| 991 | const UHashTok val2 = elem2->value; | 
|---|
| 992 | if(hash1->valueComparator(val1, val2)==false){ | 
|---|
| 993 | return false; | 
|---|
| 994 | } | 
|---|
| 995 | } | 
|---|
| 996 | return true; | 
|---|
| 997 | } | 
|---|
| 998 |  | 
|---|
| 999 | /******************************************************************** | 
|---|
| 1000 | * PUBLIC Comparator Functions | 
|---|
| 1001 | ********************************************************************/ | 
|---|
| 1002 |  | 
|---|
| 1003 | U_CAPI UBool U_EXPORT2 | 
|---|
| 1004 | uhash_compareUChars(const UHashTok key1, const UHashTok key2) { | 
|---|
| 1005 | const char16_t *p1 = (const char16_t*) key1.pointer; | 
|---|
| 1006 | const char16_t *p2 = (const char16_t*) key2.pointer; | 
|---|
| 1007 | if (p1 == p2) { | 
|---|
| 1008 | return true; | 
|---|
| 1009 | } | 
|---|
| 1010 | if (p1 == nullptr || p2 == nullptr) { | 
|---|
| 1011 | return false; | 
|---|
| 1012 | } | 
|---|
| 1013 | while (*p1 != 0 && *p1 == *p2) { | 
|---|
| 1014 | ++p1; | 
|---|
| 1015 | ++p2; | 
|---|
| 1016 | } | 
|---|
| 1017 | return (UBool)(*p1 == *p2); | 
|---|
| 1018 | } | 
|---|
| 1019 |  | 
|---|
| 1020 | U_CAPI UBool U_EXPORT2 | 
|---|
| 1021 | uhash_compareChars(const UHashTok key1, const UHashTok key2) { | 
|---|
| 1022 | const char *p1 = (const char*) key1.pointer; | 
|---|
| 1023 | const char *p2 = (const char*) key2.pointer; | 
|---|
| 1024 | if (p1 == p2) { | 
|---|
| 1025 | return true; | 
|---|
| 1026 | } | 
|---|
| 1027 | if (p1 == nullptr || p2 == nullptr) { | 
|---|
| 1028 | return false; | 
|---|
| 1029 | } | 
|---|
| 1030 | while (*p1 != 0 && *p1 == *p2) { | 
|---|
| 1031 | ++p1; | 
|---|
| 1032 | ++p2; | 
|---|
| 1033 | } | 
|---|
| 1034 | return (UBool)(*p1 == *p2); | 
|---|
| 1035 | } | 
|---|
| 1036 |  | 
|---|
| 1037 | U_CAPI UBool U_EXPORT2 | 
|---|
| 1038 | uhash_compareIChars(const UHashTok key1, const UHashTok key2) { | 
|---|
| 1039 | const char *p1 = (const char*) key1.pointer; | 
|---|
| 1040 | const char *p2 = (const char*) key2.pointer; | 
|---|
| 1041 | if (p1 == p2) { | 
|---|
| 1042 | return true; | 
|---|
| 1043 | } | 
|---|
| 1044 | if (p1 == nullptr || p2 == nullptr) { | 
|---|
| 1045 | return false; | 
|---|
| 1046 | } | 
|---|
| 1047 | while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) { | 
|---|
| 1048 | ++p1; | 
|---|
| 1049 | ++p2; | 
|---|
| 1050 | } | 
|---|
| 1051 | return (UBool)(*p1 == *p2); | 
|---|
| 1052 | } | 
|---|
| 1053 |  | 
|---|
| 1054 | /******************************************************************** | 
|---|
| 1055 | * PUBLIC int32_t Support Functions | 
|---|
| 1056 | ********************************************************************/ | 
|---|
| 1057 |  | 
|---|
| 1058 | U_CAPI int32_t U_EXPORT2 | 
|---|
| 1059 | uhash_hashLong(const UHashTok key) { | 
|---|
| 1060 | return key.integer; | 
|---|
| 1061 | } | 
|---|
| 1062 |  | 
|---|
| 1063 | U_CAPI UBool U_EXPORT2 | 
|---|
| 1064 | uhash_compareLong(const UHashTok key1, const UHashTok key2) { | 
|---|
| 1065 | return (UBool)(key1.integer == key2.integer); | 
|---|
| 1066 | } | 
|---|
| 1067 |  | 
|---|