1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | /* |
4 | ****************************************************************************** |
5 | * Copyright (C) 1997-2016, International Business Machines |
6 | * Corporation and others. All Rights Reserved. |
7 | ****************************************************************************** |
8 | * Date Name Description |
9 | * 03/22/00 aliu Adapted from original C++ ICU Hashtable. |
10 | * 07/06/01 aliu Modified to support int32_t keys on |
11 | * platforms with sizeof(void*) < 32. |
12 | ****************************************************************************** |
13 | */ |
14 | |
15 | #include "uhash.h" |
16 | #include "unicode/ustring.h" |
17 | #include "cstring.h" |
18 | #include "cmemory.h" |
19 | #include "uassert.h" |
20 | #include "ustr_imp.h" |
21 | |
22 | /* This hashtable is implemented as a double hash. All elements are |
23 | * stored in a single array with no secondary storage for collision |
24 | * resolution (no linked list, etc.). When there is a hash collision |
25 | * (when two unequal keys have the same hashcode) we resolve this by |
26 | * using a secondary hash. The secondary hash is an increment |
27 | * computed as a hash function (a different one) of the primary |
28 | * hashcode. This increment is added to the initial hash value to |
29 | * obtain further slots assigned to the same hash code. For this to |
30 | * work, the length of the array and the increment must be relatively |
31 | * prime. The easiest way to achieve this is to have the length of |
32 | * the array be prime, and the increment be any value from |
33 | * 1..length-1. |
34 | * |
35 | * Hashcodes are 32-bit integers. We make sure all hashcodes are |
36 | * non-negative by masking off the top bit. This has two effects: (1) |
37 | * modulo arithmetic is simplified. If we allowed negative hashcodes, |
38 | * then when we computed hashcode % length, we could get a negative |
39 | * result, which we would then have to adjust back into range. It's |
40 | * simpler to just make hashcodes non-negative. (2) It makes it easy |
41 | * to check for empty vs. occupied slots in the table. We just mark |
42 | * empty or deleted slots with a negative hashcode. |
43 | * |
44 | * The central function is _uhash_find(). This function looks for a |
45 | * slot matching the given key and hashcode. If one is found, it |
46 | * returns a pointer to that slot. If the table is full, and no match |
47 | * is found, it returns nullptr -- in theory. This would make the code |
48 | * more complicated, since all callers of _uhash_find() would then |
49 | * have to check for a nullptr result. To keep this from happening, we |
50 | * don't allow the table to fill. When there is only one |
51 | * empty/deleted slot left, uhash_put() will refuse to increase the |
52 | * count, and fail. This simplifies the code. In practice, one will |
53 | * seldom encounter this using default UHashtables. However, if a |
54 | * hashtable is set to a U_FIXED resize policy, or if memory is |
55 | * exhausted, then the table may fill. |
56 | * |
57 | * High and low water ratios control rehashing. They establish levels |
58 | * of fullness (from 0 to 1) outside of which the data array is |
59 | * reallocated and repopulated. Setting the low water ratio to zero |
60 | * means the table will never shrink. Setting the high water ratio to |
61 | * one means the table will never grow. The ratios should be |
62 | * coordinated with the ratio between successive elements of the |
63 | * PRIMES table, so that when the primeIndex is incremented or |
64 | * decremented during rehashing, it brings the ratio of count / length |
65 | * back into the desired range (between low and high water ratios). |
66 | */ |
67 | |
68 | /******************************************************************** |
69 | * PRIVATE Constants, Macros |
70 | ********************************************************************/ |
71 | |
72 | /* This is a list of non-consecutive primes chosen such that |
73 | * PRIMES[i+1] ~ 2*PRIMES[i]. (Currently, the ratio ranges from 1.81 |
74 | * to 2.18; the inverse ratio ranges from 0.459 to 0.552.) If this |
75 | * ratio is changed, the low and high water ratios should also be |
76 | * adjusted to suit. |
77 | * |
78 | * These prime numbers were also chosen so that they are the largest |
79 | * prime number while being less than a power of two. |
80 | */ |
81 | static const int32_t PRIMES[] = { |
82 | 7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749, |
83 | 65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593, |
84 | 16777213, 33554393, 67108859, 134217689, 268435399, 536870909, |
85 | 1073741789, 2147483647 /*, 4294967291 */ |
86 | }; |
87 | |
88 | #define PRIMES_LENGTH UPRV_LENGTHOF(PRIMES) |
89 | #define DEFAULT_PRIME_INDEX 4 |
90 | |
91 | /* These ratios are tuned to the PRIMES array such that a resize |
92 | * places the table back into the zone of non-resizing. That is, |
93 | * after a call to _uhash_rehash(), a subsequent call to |
94 | * _uhash_rehash() should do nothing (should not churn). This is only |
95 | * a potential problem with U_GROW_AND_SHRINK. |
96 | */ |
97 | static const float RESIZE_POLICY_RATIO_TABLE[6] = { |
98 | /* low, high water ratio */ |
99 | 0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */ |
100 | 0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */ |
101 | 0.0F, 1.0F /* U_FIXED: Never change size */ |
102 | }; |
103 | |
104 | /* |
105 | Invariants for hashcode values: |
106 | |
107 | * DELETED < 0 |
108 | * EMPTY < 0 |
109 | * Real hashes >= 0 |
110 | |
111 | Hashcodes may not start out this way, but internally they are |
112 | adjusted so that they are always positive. We assume 32-bit |
113 | hashcodes; adjust these constants for other hashcode sizes. |
114 | */ |
115 | #define HASH_DELETED ((int32_t) 0x80000000) |
116 | #define HASH_EMPTY ((int32_t) HASH_DELETED + 1) |
117 | |
118 | #define IS_EMPTY_OR_DELETED(x) ((x) < 0) |
119 | |
120 | /* This macro expects a UHashTok.pointer as its keypointer and |
121 | valuepointer parameters */ |
122 | #define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) UPRV_BLOCK_MACRO_BEGIN { \ |
123 | if (hash->keyDeleter != nullptr && keypointer != nullptr) { \ |
124 | (*hash->keyDeleter)(keypointer); \ |
125 | } \ |
126 | if (hash->valueDeleter != nullptr && valuepointer != nullptr) { \ |
127 | (*hash->valueDeleter)(valuepointer); \ |
128 | } \ |
129 | } UPRV_BLOCK_MACRO_END |
130 | |
131 | /* |
132 | * Constants for hinting whether a key or value is an integer |
133 | * or a pointer. If a hint bit is zero, then the associated |
134 | * token is assumed to be an integer. |
135 | */ |
136 | #define HINT_BOTH_INTEGERS (0) |
137 | #define HINT_KEY_POINTER (1) |
138 | #define HINT_VALUE_POINTER (2) |
139 | #define HINT_ALLOW_ZERO (4) |
140 | |
141 | /******************************************************************** |
142 | * PRIVATE Implementation |
143 | ********************************************************************/ |
144 | |
145 | static UHashTok |
146 | _uhash_setElement(UHashtable *hash, UHashElement* e, |
147 | int32_t hashcode, |
148 | UHashTok key, UHashTok value, int8_t hint) { |
149 | |
150 | UHashTok oldValue = e->value; |
151 | if (hash->keyDeleter != nullptr && e->key.pointer != nullptr && |
152 | e->key.pointer != key.pointer) { /* Avoid double deletion */ |
153 | (*hash->keyDeleter)(e->key.pointer); |
154 | } |
155 | if (hash->valueDeleter != nullptr) { |
156 | if (oldValue.pointer != nullptr && |
157 | oldValue.pointer != value.pointer) { /* Avoid double deletion */ |
158 | (*hash->valueDeleter)(oldValue.pointer); |
159 | } |
160 | oldValue.pointer = nullptr; |
161 | } |
162 | /* Compilers should copy the UHashTok union correctly, but even if |
163 | * they do, memory heap tools (e.g. BoundsChecker) can get |
164 | * confused when a pointer is cloaked in a union and then copied. |
165 | * TO ALLEVIATE THIS, we use hints (based on what API the user is |
166 | * calling) to copy pointers when we know the user thinks |
167 | * something is a pointer. */ |
168 | if (hint & HINT_KEY_POINTER) { |
169 | e->key.pointer = key.pointer; |
170 | } else { |
171 | e->key = key; |
172 | } |
173 | if (hint & HINT_VALUE_POINTER) { |
174 | e->value.pointer = value.pointer; |
175 | } else { |
176 | e->value = value; |
177 | } |
178 | e->hashcode = hashcode; |
179 | return oldValue; |
180 | } |
181 | |
182 | /** |
183 | * Assumes that the given element is not empty or deleted. |
184 | */ |
185 | static UHashTok |
186 | _uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) { |
187 | UHashTok empty; |
188 | U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode)); |
189 | --hash->count; |
190 | empty.pointer = nullptr; empty.integer = 0; |
191 | return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0); |
192 | } |
193 | |
194 | static void |
195 | _uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { |
196 | U_ASSERT(hash != nullptr); |
197 | U_ASSERT(((int32_t)policy) >= 0); |
198 | U_ASSERT(((int32_t)policy) < 3); |
199 | hash->lowWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2]; |
200 | hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1]; |
201 | } |
202 | |
203 | /** |
204 | * Allocate internal data array of a size determined by the given |
205 | * prime index. If the index is out of range it is pinned into range. |
206 | * If the allocation fails the status is set to |
207 | * U_MEMORY_ALLOCATION_ERROR and all array storage is freed. In |
208 | * either case the previous array pointer is overwritten. |
209 | * |
210 | * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1. |
211 | */ |
212 | static void |
213 | _uhash_allocate(UHashtable *hash, |
214 | int32_t primeIndex, |
215 | UErrorCode *status) { |
216 | |
217 | UHashElement *p, *limit; |
218 | UHashTok emptytok; |
219 | |
220 | if (U_FAILURE(*status)) return; |
221 | |
222 | U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH); |
223 | |
224 | hash->primeIndex = static_cast<int8_t>(primeIndex); |
225 | hash->length = PRIMES[primeIndex]; |
226 | |
227 | p = hash->elements = (UHashElement*) |
228 | uprv_malloc(sizeof(UHashElement) * hash->length); |
229 | |
230 | if (hash->elements == nullptr) { |
231 | *status = U_MEMORY_ALLOCATION_ERROR; |
232 | return; |
233 | } |
234 | |
235 | emptytok.pointer = nullptr; /* Only one of these two is needed */ |
236 | emptytok.integer = 0; /* but we don't know which one. */ |
237 | |
238 | limit = p + hash->length; |
239 | while (p < limit) { |
240 | p->key = emptytok; |
241 | p->value = emptytok; |
242 | p->hashcode = HASH_EMPTY; |
243 | ++p; |
244 | } |
245 | |
246 | hash->count = 0; |
247 | hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); |
248 | hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); |
249 | } |
250 | |
251 | static UHashtable* |
252 | _uhash_init(UHashtable *result, |
253 | UHashFunction *keyHash, |
254 | UKeyComparator *keyComp, |
255 | UValueComparator *valueComp, |
256 | int32_t primeIndex, |
257 | UErrorCode *status) |
258 | { |
259 | if (U_FAILURE(*status)) return nullptr; |
260 | U_ASSERT(keyHash != nullptr); |
261 | U_ASSERT(keyComp != nullptr); |
262 | |
263 | result->keyHasher = keyHash; |
264 | result->keyComparator = keyComp; |
265 | result->valueComparator = valueComp; |
266 | result->keyDeleter = nullptr; |
267 | result->valueDeleter = nullptr; |
268 | result->allocated = false; |
269 | _uhash_internalSetResizePolicy(result, U_GROW); |
270 | |
271 | _uhash_allocate(result, primeIndex, status); |
272 | |
273 | if (U_FAILURE(*status)) { |
274 | return nullptr; |
275 | } |
276 | |
277 | return result; |
278 | } |
279 | |
280 | static UHashtable* |
281 | _uhash_create(UHashFunction *keyHash, |
282 | UKeyComparator *keyComp, |
283 | UValueComparator *valueComp, |
284 | int32_t primeIndex, |
285 | UErrorCode *status) { |
286 | UHashtable *result; |
287 | |
288 | if (U_FAILURE(*status)) return nullptr; |
289 | |
290 | result = (UHashtable*) uprv_malloc(sizeof(UHashtable)); |
291 | if (result == nullptr) { |
292 | *status = U_MEMORY_ALLOCATION_ERROR; |
293 | return nullptr; |
294 | } |
295 | |
296 | _uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status); |
297 | result->allocated = true; |
298 | |
299 | if (U_FAILURE(*status)) { |
300 | uprv_free(result); |
301 | return nullptr; |
302 | } |
303 | |
304 | return result; |
305 | } |
306 | |
307 | /** |
308 | * Look for a key in the table, or if no such key exists, the first |
309 | * empty slot matching the given hashcode. Keys are compared using |
310 | * the keyComparator function. |
311 | * |
312 | * First find the start position, which is the hashcode modulo |
313 | * the length. Test it to see if it is: |
314 | * |
315 | * a. identical: First check the hash values for a quick check, |
316 | * then compare keys for equality using keyComparator. |
317 | * b. deleted |
318 | * c. empty |
319 | * |
320 | * Stop if it is identical or empty, otherwise continue by adding a |
321 | * "jump" value (moduloing by the length again to keep it within |
322 | * range) and retesting. For efficiency, there need enough empty |
323 | * values so that the searches stop within a reasonable amount of time. |
324 | * This can be changed by changing the high/low water marks. |
325 | * |
326 | * In theory, this function can return nullptr, if it is full (no empty |
327 | * or deleted slots) and if no matching key is found. In practice, we |
328 | * prevent this elsewhere (in uhash_put) by making sure the last slot |
329 | * in the table is never filled. |
330 | * |
331 | * The size of the table should be prime for this algorithm to work; |
332 | * otherwise we are not guaranteed that the jump value (the secondary |
333 | * hash) is relatively prime to the table length. |
334 | */ |
335 | static UHashElement* |
336 | _uhash_find(const UHashtable *hash, UHashTok key, |
337 | int32_t hashcode) { |
338 | |
339 | int32_t firstDeleted = -1; /* assume invalid index */ |
340 | int32_t theIndex, startIndex; |
341 | int32_t jump = 0; /* lazy evaluate */ |
342 | int32_t tableHash; |
343 | UHashElement *elements = hash->elements; |
344 | |
345 | hashcode &= 0x7FFFFFFF; /* must be positive */ |
346 | startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length; |
347 | |
348 | do { |
349 | tableHash = elements[theIndex].hashcode; |
350 | if (tableHash == hashcode) { /* quick check */ |
351 | if ((*hash->keyComparator)(key, elements[theIndex].key)) { |
352 | return &(elements[theIndex]); |
353 | } |
354 | } else if (!IS_EMPTY_OR_DELETED(tableHash)) { |
355 | /* We have hit a slot which contains a key-value pair, |
356 | * but for which the hash code does not match. Keep |
357 | * looking. |
358 | */ |
359 | } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */ |
360 | break; |
361 | } else if (firstDeleted < 0) { /* remember first deleted */ |
362 | firstDeleted = theIndex; |
363 | } |
364 | if (jump == 0) { /* lazy compute jump */ |
365 | /* The jump value must be relatively prime to the table |
366 | * length. As long as the length is prime, then any value |
367 | * 1..length-1 will be relatively prime to it. |
368 | */ |
369 | jump = (hashcode % (hash->length - 1)) + 1; |
370 | } |
371 | theIndex = (theIndex + jump) % hash->length; |
372 | } while (theIndex != startIndex); |
373 | |
374 | if (firstDeleted >= 0) { |
375 | theIndex = firstDeleted; /* reset if had deleted slot */ |
376 | } else if (tableHash != HASH_EMPTY) { |
377 | /* We get to this point if the hashtable is full (no empty or |
378 | * deleted slots), and we've failed to find a match. THIS |
379 | * WILL NEVER HAPPEN as long as uhash_put() makes sure that |
380 | * count is always < length. |
381 | */ |
382 | UPRV_UNREACHABLE_EXIT; |
383 | } |
384 | return &(elements[theIndex]); |
385 | } |
386 | |
387 | /** |
388 | * Attempt to grow or shrink the data arrays in order to make the |
389 | * count fit between the high and low water marks. hash_put() and |
390 | * hash_remove() call this method when the count exceeds the high or |
391 | * low water marks. This method may do nothing, if memory allocation |
392 | * fails, or if the count is already in range, or if the length is |
393 | * already at the low or high limit. In any case, upon return the |
394 | * arrays will be valid. |
395 | */ |
396 | static void |
397 | _uhash_rehash(UHashtable *hash, UErrorCode *status) { |
398 | |
399 | UHashElement *old = hash->elements; |
400 | int32_t oldLength = hash->length; |
401 | int32_t newPrimeIndex = hash->primeIndex; |
402 | int32_t i; |
403 | |
404 | if (hash->count > hash->highWaterMark) { |
405 | if (++newPrimeIndex >= PRIMES_LENGTH) { |
406 | return; |
407 | } |
408 | } else if (hash->count < hash->lowWaterMark) { |
409 | if (--newPrimeIndex < 0) { |
410 | return; |
411 | } |
412 | } else { |
413 | return; |
414 | } |
415 | |
416 | _uhash_allocate(hash, newPrimeIndex, status); |
417 | |
418 | if (U_FAILURE(*status)) { |
419 | hash->elements = old; |
420 | hash->length = oldLength; |
421 | return; |
422 | } |
423 | |
424 | for (i = oldLength - 1; i >= 0; --i) { |
425 | if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) { |
426 | UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode); |
427 | U_ASSERT(e != nullptr); |
428 | U_ASSERT(e->hashcode == HASH_EMPTY); |
429 | e->key = old[i].key; |
430 | e->value = old[i].value; |
431 | e->hashcode = old[i].hashcode; |
432 | ++hash->count; |
433 | } |
434 | } |
435 | |
436 | uprv_free(old); |
437 | } |
438 | |
439 | static UHashTok |
440 | _uhash_remove(UHashtable *hash, |
441 | UHashTok key) { |
442 | /* First find the position of the key in the table. If the object |
443 | * has not been removed already, remove it. If the user wanted |
444 | * keys deleted, then delete it also. We have to put a special |
445 | * hashcode in that position that means that something has been |
446 | * deleted, since when we do a find, we have to continue PAST any |
447 | * deleted values. |
448 | */ |
449 | UHashTok result; |
450 | UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key)); |
451 | U_ASSERT(e != nullptr); |
452 | result.pointer = nullptr; |
453 | result.integer = 0; |
454 | if (!IS_EMPTY_OR_DELETED(e->hashcode)) { |
455 | result = _uhash_internalRemoveElement(hash, e); |
456 | if (hash->count < hash->lowWaterMark) { |
457 | UErrorCode status = U_ZERO_ERROR; |
458 | _uhash_rehash(hash, &status); |
459 | } |
460 | } |
461 | return result; |
462 | } |
463 | |
464 | static UHashTok |
465 | _uhash_put(UHashtable *hash, |
466 | UHashTok key, |
467 | UHashTok value, |
468 | int8_t hint, |
469 | UErrorCode *status) { |
470 | |
471 | /* Put finds the position in the table for the new value. If the |
472 | * key is already in the table, it is deleted, if there is a |
473 | * non-nullptr keyDeleter. Then the key, the hash and the value are |
474 | * all put at the position in their respective arrays. |
475 | */ |
476 | int32_t hashcode; |
477 | UHashElement* e; |
478 | UHashTok emptytok; |
479 | |
480 | if (U_FAILURE(*status)) { |
481 | goto err; |
482 | } |
483 | U_ASSERT(hash != nullptr); |
484 | if ((hint & HINT_VALUE_POINTER) ? |
485 | value.pointer == nullptr : |
486 | value.integer == 0 && (hint & HINT_ALLOW_ZERO) == 0) { |
487 | /* Disallow storage of nullptr values, since nullptr is returned by |
488 | * get() to indicate an absent key. Storing nullptr == removing. |
489 | */ |
490 | return _uhash_remove(hash, key); |
491 | } |
492 | if (hash->count > hash->highWaterMark) { |
493 | _uhash_rehash(hash, status); |
494 | if (U_FAILURE(*status)) { |
495 | goto err; |
496 | } |
497 | } |
498 | |
499 | hashcode = (*hash->keyHasher)(key); |
500 | e = _uhash_find(hash, key, hashcode); |
501 | U_ASSERT(e != nullptr); |
502 | |
503 | if (IS_EMPTY_OR_DELETED(e->hashcode)) { |
504 | /* Important: We must never actually fill the table up. If we |
505 | * do so, then _uhash_find() will return nullptr, and we'll have |
506 | * to check for nullptr after every call to _uhash_find(). To |
507 | * avoid this we make sure there is always at least one empty |
508 | * or deleted slot in the table. This only is a problem if we |
509 | * are out of memory and rehash isn't working. |
510 | */ |
511 | ++hash->count; |
512 | if (hash->count == hash->length) { |
513 | /* Don't allow count to reach length */ |
514 | --hash->count; |
515 | *status = U_MEMORY_ALLOCATION_ERROR; |
516 | goto err; |
517 | } |
518 | } |
519 | |
520 | /* We must in all cases handle storage properly. If there was an |
521 | * old key, then it must be deleted (if the deleter != nullptr). |
522 | * Make hashcodes stored in table positive. |
523 | */ |
524 | return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint); |
525 | |
526 | err: |
527 | /* If the deleters are non-nullptr, this method adopts its key and/or |
528 | * value arguments, and we must be sure to delete the key and/or |
529 | * value in all cases, even upon failure. |
530 | */ |
531 | HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer); |
532 | emptytok.pointer = nullptr; emptytok.integer = 0; |
533 | return emptytok; |
534 | } |
535 | |
536 | |
537 | /******************************************************************** |
538 | * PUBLIC API |
539 | ********************************************************************/ |
540 | |
541 | U_CAPI UHashtable* U_EXPORT2 |
542 | uhash_open(UHashFunction *keyHash, |
543 | UKeyComparator *keyComp, |
544 | UValueComparator *valueComp, |
545 | UErrorCode *status) { |
546 | |
547 | return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status); |
548 | } |
549 | |
550 | U_CAPI UHashtable* U_EXPORT2 |
551 | uhash_openSize(UHashFunction *keyHash, |
552 | UKeyComparator *keyComp, |
553 | UValueComparator *valueComp, |
554 | int32_t size, |
555 | UErrorCode *status) { |
556 | |
557 | /* Find the smallest index i for which PRIMES[i] >= size. */ |
558 | int32_t i = 0; |
559 | while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) { |
560 | ++i; |
561 | } |
562 | |
563 | return _uhash_create(keyHash, keyComp, valueComp, i, status); |
564 | } |
565 | |
566 | U_CAPI UHashtable* U_EXPORT2 |
567 | uhash_init(UHashtable *fillinResult, |
568 | UHashFunction *keyHash, |
569 | UKeyComparator *keyComp, |
570 | UValueComparator *valueComp, |
571 | UErrorCode *status) { |
572 | |
573 | return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status); |
574 | } |
575 | |
576 | U_CAPI UHashtable* U_EXPORT2 |
577 | uhash_initSize(UHashtable *fillinResult, |
578 | UHashFunction *keyHash, |
579 | UKeyComparator *keyComp, |
580 | UValueComparator *valueComp, |
581 | int32_t size, |
582 | UErrorCode *status) { |
583 | |
584 | // Find the smallest index i for which PRIMES[i] >= size. |
585 | int32_t i = 0; |
586 | while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) { |
587 | ++i; |
588 | } |
589 | return _uhash_init(fillinResult, keyHash, keyComp, valueComp, i, status); |
590 | } |
591 | |
592 | U_CAPI void U_EXPORT2 |
593 | uhash_close(UHashtable *hash) { |
594 | if (hash == nullptr) { |
595 | return; |
596 | } |
597 | if (hash->elements != nullptr) { |
598 | if (hash->keyDeleter != nullptr || hash->valueDeleter != nullptr) { |
599 | int32_t pos=UHASH_FIRST; |
600 | UHashElement *e; |
601 | while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != nullptr) { |
602 | HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer); |
603 | } |
604 | } |
605 | uprv_free(hash->elements); |
606 | hash->elements = nullptr; |
607 | } |
608 | if (hash->allocated) { |
609 | uprv_free(hash); |
610 | } |
611 | } |
612 | |
613 | U_CAPI UHashFunction *U_EXPORT2 |
614 | uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) { |
615 | UHashFunction *result = hash->keyHasher; |
616 | hash->keyHasher = fn; |
617 | return result; |
618 | } |
619 | |
620 | U_CAPI UKeyComparator *U_EXPORT2 |
621 | uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) { |
622 | UKeyComparator *result = hash->keyComparator; |
623 | hash->keyComparator = fn; |
624 | return result; |
625 | } |
626 | U_CAPI UValueComparator *U_EXPORT2 |
627 | uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){ |
628 | UValueComparator *result = hash->valueComparator; |
629 | hash->valueComparator = fn; |
630 | return result; |
631 | } |
632 | |
633 | U_CAPI UObjectDeleter *U_EXPORT2 |
634 | uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) { |
635 | UObjectDeleter *result = hash->keyDeleter; |
636 | hash->keyDeleter = fn; |
637 | return result; |
638 | } |
639 | |
640 | U_CAPI UObjectDeleter *U_EXPORT2 |
641 | uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) { |
642 | UObjectDeleter *result = hash->valueDeleter; |
643 | hash->valueDeleter = fn; |
644 | return result; |
645 | } |
646 | |
647 | U_CAPI void U_EXPORT2 |
648 | uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { |
649 | UErrorCode status = U_ZERO_ERROR; |
650 | _uhash_internalSetResizePolicy(hash, policy); |
651 | hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); |
652 | hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); |
653 | _uhash_rehash(hash, &status); |
654 | } |
655 | |
656 | U_CAPI int32_t U_EXPORT2 |
657 | uhash_count(const UHashtable *hash) { |
658 | return hash->count; |
659 | } |
660 | |
661 | U_CAPI void* U_EXPORT2 |
662 | uhash_get(const UHashtable *hash, |
663 | const void* key) { |
664 | UHashTok keyholder; |
665 | keyholder.pointer = (void*) key; |
666 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; |
667 | } |
668 | |
669 | U_CAPI void* U_EXPORT2 |
670 | uhash_iget(const UHashtable *hash, |
671 | int32_t key) { |
672 | UHashTok keyholder; |
673 | keyholder.integer = key; |
674 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; |
675 | } |
676 | |
677 | U_CAPI int32_t U_EXPORT2 |
678 | uhash_geti(const UHashtable *hash, |
679 | const void* key) { |
680 | UHashTok keyholder; |
681 | keyholder.pointer = (void*) key; |
682 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; |
683 | } |
684 | |
685 | U_CAPI int32_t U_EXPORT2 |
686 | uhash_igeti(const UHashtable *hash, |
687 | int32_t key) { |
688 | UHashTok keyholder; |
689 | keyholder.integer = key; |
690 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; |
691 | } |
692 | |
693 | U_CAPI int32_t U_EXPORT2 |
694 | uhash_getiAndFound(const UHashtable *hash, |
695 | const void *key, |
696 | UBool *found) { |
697 | UHashTok keyholder; |
698 | keyholder.pointer = (void *)key; |
699 | const UHashElement *e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); |
700 | *found = !IS_EMPTY_OR_DELETED(e->hashcode); |
701 | return e->value.integer; |
702 | } |
703 | |
704 | U_CAPI int32_t U_EXPORT2 |
705 | uhash_igetiAndFound(const UHashtable *hash, |
706 | int32_t key, |
707 | UBool *found) { |
708 | UHashTok keyholder; |
709 | keyholder.integer = key; |
710 | const UHashElement *e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); |
711 | *found = !IS_EMPTY_OR_DELETED(e->hashcode); |
712 | return e->value.integer; |
713 | } |
714 | |
715 | U_CAPI void* U_EXPORT2 |
716 | uhash_put(UHashtable *hash, |
717 | void* key, |
718 | void* value, |
719 | UErrorCode *status) { |
720 | UHashTok keyholder, valueholder; |
721 | keyholder.pointer = key; |
722 | valueholder.pointer = value; |
723 | return _uhash_put(hash, keyholder, valueholder, |
724 | HINT_KEY_POINTER | HINT_VALUE_POINTER, |
725 | status).pointer; |
726 | } |
727 | |
728 | U_CAPI void* U_EXPORT2 |
729 | uhash_iput(UHashtable *hash, |
730 | int32_t key, |
731 | void* value, |
732 | UErrorCode *status) { |
733 | UHashTok keyholder, valueholder; |
734 | keyholder.integer = key; |
735 | valueholder.pointer = value; |
736 | return _uhash_put(hash, keyholder, valueholder, |
737 | HINT_VALUE_POINTER, |
738 | status).pointer; |
739 | } |
740 | |
741 | U_CAPI int32_t U_EXPORT2 |
742 | uhash_puti(UHashtable *hash, |
743 | void* key, |
744 | int32_t value, |
745 | UErrorCode *status) { |
746 | UHashTok keyholder, valueholder; |
747 | keyholder.pointer = key; |
748 | valueholder.integer = value; |
749 | return _uhash_put(hash, keyholder, valueholder, |
750 | HINT_KEY_POINTER, |
751 | status).integer; |
752 | } |
753 | |
754 | |
755 | U_CAPI int32_t U_EXPORT2 |
756 | uhash_iputi(UHashtable *hash, |
757 | int32_t key, |
758 | int32_t value, |
759 | UErrorCode *status) { |
760 | UHashTok keyholder, valueholder; |
761 | keyholder.integer = key; |
762 | valueholder.integer = value; |
763 | return _uhash_put(hash, keyholder, valueholder, |
764 | HINT_BOTH_INTEGERS, |
765 | status).integer; |
766 | } |
767 | |
768 | U_CAPI int32_t U_EXPORT2 |
769 | uhash_putiAllowZero(UHashtable *hash, |
770 | void *key, |
771 | int32_t value, |
772 | UErrorCode *status) { |
773 | UHashTok keyholder, valueholder; |
774 | keyholder.pointer = key; |
775 | valueholder.integer = value; |
776 | return _uhash_put(hash, keyholder, valueholder, |
777 | HINT_KEY_POINTER | HINT_ALLOW_ZERO, |
778 | status).integer; |
779 | } |
780 | |
781 | |
782 | U_CAPI int32_t U_EXPORT2 |
783 | uhash_iputiAllowZero(UHashtable *hash, |
784 | int32_t key, |
785 | int32_t value, |
786 | UErrorCode *status) { |
787 | UHashTok keyholder, valueholder; |
788 | keyholder.integer = key; |
789 | valueholder.integer = value; |
790 | return _uhash_put(hash, keyholder, valueholder, |
791 | HINT_BOTH_INTEGERS | HINT_ALLOW_ZERO, |
792 | status).integer; |
793 | } |
794 | |
795 | U_CAPI void* U_EXPORT2 |
796 | uhash_remove(UHashtable *hash, |
797 | const void* key) { |
798 | UHashTok keyholder; |
799 | keyholder.pointer = (void*) key; |
800 | return _uhash_remove(hash, keyholder).pointer; |
801 | } |
802 | |
803 | U_CAPI void* U_EXPORT2 |
804 | uhash_iremove(UHashtable *hash, |
805 | int32_t key) { |
806 | UHashTok keyholder; |
807 | keyholder.integer = key; |
808 | return _uhash_remove(hash, keyholder).pointer; |
809 | } |
810 | |
811 | U_CAPI int32_t U_EXPORT2 |
812 | uhash_removei(UHashtable *hash, |
813 | const void* key) { |
814 | UHashTok keyholder; |
815 | keyholder.pointer = (void*) key; |
816 | return _uhash_remove(hash, keyholder).integer; |
817 | } |
818 | |
819 | U_CAPI int32_t U_EXPORT2 |
820 | uhash_iremovei(UHashtable *hash, |
821 | int32_t key) { |
822 | UHashTok keyholder; |
823 | keyholder.integer = key; |
824 | return _uhash_remove(hash, keyholder).integer; |
825 | } |
826 | |
827 | U_CAPI void U_EXPORT2 |
828 | uhash_removeAll(UHashtable *hash) { |
829 | int32_t pos = UHASH_FIRST; |
830 | const UHashElement *e; |
831 | U_ASSERT(hash != nullptr); |
832 | if (hash->count != 0) { |
833 | while ((e = uhash_nextElement(hash, &pos)) != nullptr) { |
834 | uhash_removeElement(hash, e); |
835 | } |
836 | } |
837 | U_ASSERT(hash->count == 0); |
838 | } |
839 | |
840 | U_CAPI UBool U_EXPORT2 |
841 | uhash_containsKey(const UHashtable *hash, const void *key) { |
842 | UHashTok keyholder; |
843 | keyholder.pointer = (void *)key; |
844 | const UHashElement *e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); |
845 | return !IS_EMPTY_OR_DELETED(e->hashcode); |
846 | } |
847 | |
848 | /** |
849 | * Returns true if the UHashtable contains an item with this integer key. |
850 | * |
851 | * @param hash The target UHashtable. |
852 | * @param key An integer key stored in a hashtable |
853 | * @return true if the key is found. |
854 | */ |
855 | U_CAPI UBool U_EXPORT2 |
856 | uhash_icontainsKey(const UHashtable *hash, int32_t key) { |
857 | UHashTok keyholder; |
858 | keyholder.integer = key; |
859 | const UHashElement *e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); |
860 | return !IS_EMPTY_OR_DELETED(e->hashcode); |
861 | } |
862 | |
863 | U_CAPI const UHashElement* U_EXPORT2 |
864 | uhash_find(const UHashtable *hash, const void* key) { |
865 | UHashTok keyholder; |
866 | const UHashElement *e; |
867 | keyholder.pointer = (void*) key; |
868 | e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); |
869 | return IS_EMPTY_OR_DELETED(e->hashcode) ? nullptr : e; |
870 | } |
871 | |
872 | U_CAPI const UHashElement* U_EXPORT2 |
873 | uhash_nextElement(const UHashtable *hash, int32_t *pos) { |
874 | /* Walk through the array until we find an element that is not |
875 | * EMPTY and not DELETED. |
876 | */ |
877 | int32_t i; |
878 | U_ASSERT(hash != nullptr); |
879 | for (i = *pos + 1; i < hash->length; ++i) { |
880 | if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) { |
881 | *pos = i; |
882 | return &(hash->elements[i]); |
883 | } |
884 | } |
885 | |
886 | /* No more elements */ |
887 | return nullptr; |
888 | } |
889 | |
890 | U_CAPI void* U_EXPORT2 |
891 | uhash_removeElement(UHashtable *hash, const UHashElement* e) { |
892 | U_ASSERT(hash != nullptr); |
893 | U_ASSERT(e != nullptr); |
894 | if (!IS_EMPTY_OR_DELETED(e->hashcode)) { |
895 | UHashElement *nce = (UHashElement *)e; |
896 | return _uhash_internalRemoveElement(hash, nce).pointer; |
897 | } |
898 | return nullptr; |
899 | } |
900 | |
901 | /******************************************************************** |
902 | * UHashTok convenience |
903 | ********************************************************************/ |
904 | |
905 | /** |
906 | * Return a UHashTok for an integer. |
907 | */ |
908 | /*U_CAPI UHashTok U_EXPORT2 |
909 | uhash_toki(int32_t i) { |
910 | UHashTok tok; |
911 | tok.integer = i; |
912 | return tok; |
913 | }*/ |
914 | |
915 | /** |
916 | * Return a UHashTok for a pointer. |
917 | */ |
918 | /*U_CAPI UHashTok U_EXPORT2 |
919 | uhash_tokp(void* p) { |
920 | UHashTok tok; |
921 | tok.pointer = p; |
922 | return tok; |
923 | }*/ |
924 | |
925 | /******************************************************************** |
926 | * PUBLIC Key Hash Functions |
927 | ********************************************************************/ |
928 | |
929 | U_CAPI int32_t U_EXPORT2 |
930 | uhash_hashUChars(const UHashTok key) { |
931 | const char16_t *s = (const char16_t *)key.pointer; |
932 | return s == nullptr ? 0 : ustr_hashUCharsN(s, u_strlen(s)); |
933 | } |
934 | |
935 | U_CAPI int32_t U_EXPORT2 |
936 | uhash_hashChars(const UHashTok key) { |
937 | const char *s = (const char *)key.pointer; |
938 | return s == nullptr ? 0 : static_cast<int32_t>(ustr_hashCharsN(s, static_cast<int32_t>(uprv_strlen(s)))); |
939 | } |
940 | |
941 | U_CAPI int32_t U_EXPORT2 |
942 | uhash_hashIChars(const UHashTok key) { |
943 | const char *s = (const char *)key.pointer; |
944 | return s == nullptr ? 0 : ustr_hashICharsN(s, static_cast<int32_t>(uprv_strlen(s))); |
945 | } |
946 | |
947 | U_CAPI UBool U_EXPORT2 |
948 | uhash_equals(const UHashtable* hash1, const UHashtable* hash2){ |
949 | int32_t count1, count2, pos, i; |
950 | |
951 | if(hash1==hash2){ |
952 | return true; |
953 | } |
954 | |
955 | /* |
956 | * Make sure that we are comparing 2 valid hashes of the same type |
957 | * with valid comparison functions. |
958 | * Without valid comparison functions, a binary comparison |
959 | * of the hash values will yield random results on machines |
960 | * with 64-bit pointers and 32-bit integer hashes. |
961 | * A valueComparator is normally optional. |
962 | */ |
963 | if (hash1==nullptr || hash2==nullptr || |
964 | hash1->keyComparator != hash2->keyComparator || |
965 | hash1->valueComparator != hash2->valueComparator || |
966 | hash1->valueComparator == nullptr) |
967 | { |
968 | /* |
969 | Normally we would return an error here about incompatible hash tables, |
970 | but we return false instead. |
971 | */ |
972 | return false; |
973 | } |
974 | |
975 | count1 = uhash_count(hash1); |
976 | count2 = uhash_count(hash2); |
977 | if(count1!=count2){ |
978 | return false; |
979 | } |
980 | |
981 | pos=UHASH_FIRST; |
982 | for(i=0; i<count1; i++){ |
983 | const UHashElement* elem1 = uhash_nextElement(hash1, &pos); |
984 | const UHashTok key1 = elem1->key; |
985 | const UHashTok val1 = elem1->value; |
986 | /* here the keys are not compared, instead the key form hash1 is used to fetch |
987 | * value from hash2. If the hashes are equal then then both hashes should |
988 | * contain equal values for the same key! |
989 | */ |
990 | const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(key1)); |
991 | const UHashTok val2 = elem2->value; |
992 | if(hash1->valueComparator(val1, val2)==false){ |
993 | return false; |
994 | } |
995 | } |
996 | return true; |
997 | } |
998 | |
999 | /******************************************************************** |
1000 | * PUBLIC Comparator Functions |
1001 | ********************************************************************/ |
1002 | |
1003 | U_CAPI UBool U_EXPORT2 |
1004 | uhash_compareUChars(const UHashTok key1, const UHashTok key2) { |
1005 | const char16_t *p1 = (const char16_t*) key1.pointer; |
1006 | const char16_t *p2 = (const char16_t*) key2.pointer; |
1007 | if (p1 == p2) { |
1008 | return true; |
1009 | } |
1010 | if (p1 == nullptr || p2 == nullptr) { |
1011 | return false; |
1012 | } |
1013 | while (*p1 != 0 && *p1 == *p2) { |
1014 | ++p1; |
1015 | ++p2; |
1016 | } |
1017 | return (UBool)(*p1 == *p2); |
1018 | } |
1019 | |
1020 | U_CAPI UBool U_EXPORT2 |
1021 | uhash_compareChars(const UHashTok key1, const UHashTok key2) { |
1022 | const char *p1 = (const char*) key1.pointer; |
1023 | const char *p2 = (const char*) key2.pointer; |
1024 | if (p1 == p2) { |
1025 | return true; |
1026 | } |
1027 | if (p1 == nullptr || p2 == nullptr) { |
1028 | return false; |
1029 | } |
1030 | while (*p1 != 0 && *p1 == *p2) { |
1031 | ++p1; |
1032 | ++p2; |
1033 | } |
1034 | return (UBool)(*p1 == *p2); |
1035 | } |
1036 | |
1037 | U_CAPI UBool U_EXPORT2 |
1038 | uhash_compareIChars(const UHashTok key1, const UHashTok key2) { |
1039 | const char *p1 = (const char*) key1.pointer; |
1040 | const char *p2 = (const char*) key2.pointer; |
1041 | if (p1 == p2) { |
1042 | return true; |
1043 | } |
1044 | if (p1 == nullptr || p2 == nullptr) { |
1045 | return false; |
1046 | } |
1047 | while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) { |
1048 | ++p1; |
1049 | ++p2; |
1050 | } |
1051 | return (UBool)(*p1 == *p2); |
1052 | } |
1053 | |
1054 | /******************************************************************** |
1055 | * PUBLIC int32_t Support Functions |
1056 | ********************************************************************/ |
1057 | |
1058 | U_CAPI int32_t U_EXPORT2 |
1059 | uhash_hashLong(const UHashTok key) { |
1060 | return key.integer; |
1061 | } |
1062 | |
1063 | U_CAPI UBool U_EXPORT2 |
1064 | uhash_compareLong(const UHashTok key1, const UHashTok key2) { |
1065 | return (UBool)(key1.integer == key2.integer); |
1066 | } |
1067 | |