| 1 | |
| 2 | #include "Shape.h" |
| 3 | |
| 4 | #include <algorithm> |
| 5 | #include "arithmetics.hpp" |
| 6 | |
| 7 | namespace msdfgen { |
| 8 | |
| 9 | Shape::Shape() : inverseYAxis(false) { } |
| 10 | |
| 11 | void Shape::addContour(const Contour &contour) { |
| 12 | contours.push_back(contour); |
| 13 | } |
| 14 | |
| 15 | #ifdef MSDFGEN_USE_CPP11 |
| 16 | void Shape::addContour(Contour &&contour) { |
| 17 | contours.push_back((Contour &&) contour); |
| 18 | } |
| 19 | #endif |
| 20 | |
| 21 | Contour & Shape::addContour() { |
| 22 | contours.resize(contours.size()+1); |
| 23 | return contours.back(); |
| 24 | } |
| 25 | |
| 26 | bool Shape::validate() const { |
| 27 | for (std::vector<Contour>::const_iterator contour = contours.begin(); contour != contours.end(); ++contour) { |
| 28 | if (!contour->edges.empty()) { |
| 29 | Point2 corner = contour->edges.back()->point(1); |
| 30 | for (std::vector<EdgeHolder>::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) { |
| 31 | if (!*edge) |
| 32 | return false; |
| 33 | if ((*edge)->point(0) != corner) |
| 34 | return false; |
| 35 | corner = (*edge)->point(1); |
| 36 | } |
| 37 | } |
| 38 | } |
| 39 | return true; |
| 40 | } |
| 41 | |
| 42 | static void deconvergeEdge(EdgeHolder &edgeHolder, int param) { |
| 43 | { |
| 44 | const QuadraticSegment *quadraticSegment = dynamic_cast<const QuadraticSegment *>(&*edgeHolder); |
| 45 | if (quadraticSegment) |
| 46 | edgeHolder = quadraticSegment->convertToCubic(); |
| 47 | } |
| 48 | { |
| 49 | CubicSegment *cubicSegment = dynamic_cast<CubicSegment *>(&*edgeHolder); |
| 50 | if (cubicSegment) |
| 51 | cubicSegment->deconverge(param, MSDFGEN_DECONVERGENCE_FACTOR); |
| 52 | } |
| 53 | } |
| 54 | |
| 55 | void Shape::normalize() { |
| 56 | for (std::vector<Contour>::iterator contour = contours.begin(); contour != contours.end(); ++contour) { |
| 57 | if (contour->edges.size() == 1) { |
| 58 | EdgeSegment *parts[3] = { }; |
| 59 | contour->edges[0]->splitInThirds(parts[0], parts[1], parts[2]); |
| 60 | contour->edges.clear(); |
| 61 | contour->edges.push_back(EdgeHolder(parts[0])); |
| 62 | contour->edges.push_back(EdgeHolder(parts[1])); |
| 63 | contour->edges.push_back(EdgeHolder(parts[2])); |
| 64 | } else { |
| 65 | EdgeHolder *prevEdge = &contour->edges.back(); |
| 66 | for (std::vector<EdgeHolder>::iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) { |
| 67 | Vector2 prevDir = (*prevEdge)->direction(1).normalize(); |
| 68 | Vector2 curDir = (*edge)->direction(0).normalize(); |
| 69 | if (dotProduct(prevDir, curDir) < MSDFGEN_CORNER_DOT_EPSILON-1) { |
| 70 | deconvergeEdge(*prevEdge, 1); |
| 71 | deconvergeEdge(*edge, 0); |
| 72 | } |
| 73 | prevEdge = &*edge; |
| 74 | } |
| 75 | } |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | void Shape::bound(double &l, double &b, double &r, double &t) const { |
| 80 | for (std::vector<Contour>::const_iterator contour = contours.begin(); contour != contours.end(); ++contour) |
| 81 | contour->bound(l, b, r, t); |
| 82 | } |
| 83 | |
| 84 | void Shape::boundMiters(double &l, double &b, double &r, double &t, double border, double miterLimit, int polarity) const { |
| 85 | for (std::vector<Contour>::const_iterator contour = contours.begin(); contour != contours.end(); ++contour) |
| 86 | contour->boundMiters(l, b, r, t, border, miterLimit, polarity); |
| 87 | } |
| 88 | |
| 89 | Shape::Bounds Shape::getBounds(double border, double miterLimit, int polarity) const { |
| 90 | static const double LARGE_VALUE = 1e240; |
| 91 | Shape::Bounds bounds = { +LARGE_VALUE, +LARGE_VALUE, -LARGE_VALUE, -LARGE_VALUE }; |
| 92 | bound(bounds.l, bounds.b, bounds.r, bounds.t); |
| 93 | if (border > 0) { |
| 94 | bounds.l -= border, bounds.b -= border; |
| 95 | bounds.r += border, bounds.t += border; |
| 96 | if (miterLimit > 0) |
| 97 | boundMiters(bounds.l, bounds.b, bounds.r, bounds.t, border, miterLimit, polarity); |
| 98 | } |
| 99 | return bounds; |
| 100 | } |
| 101 | |
| 102 | void Shape::scanline(Scanline &line, double y) const { |
| 103 | std::vector<Scanline::Intersection> intersections; |
| 104 | double x[3]; |
| 105 | int dy[3]; |
| 106 | for (std::vector<Contour>::const_iterator contour = contours.begin(); contour != contours.end(); ++contour) { |
| 107 | for (std::vector<EdgeHolder>::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) { |
| 108 | int n = (*edge)->scanlineIntersections(x, dy, y); |
| 109 | for (int i = 0; i < n; ++i) { |
| 110 | Scanline::Intersection intersection = { x[i], dy[i] }; |
| 111 | intersections.push_back(intersection); |
| 112 | } |
| 113 | } |
| 114 | } |
| 115 | #ifdef MSDFGEN_USE_CPP11 |
| 116 | line.setIntersections((std::vector<Scanline::Intersection> &&) intersections); |
| 117 | #else |
| 118 | line.setIntersections(intersections); |
| 119 | #endif |
| 120 | } |
| 121 | |
| 122 | int Shape::edgeCount() const { |
| 123 | int total = 0; |
| 124 | for (std::vector<Contour>::const_iterator contour = contours.begin(); contour != contours.end(); ++contour) |
| 125 | total += (int) contour->edges.size(); |
| 126 | return total; |
| 127 | } |
| 128 | |
| 129 | void Shape::orientContours() { |
| 130 | struct Intersection { |
| 131 | double x; |
| 132 | int direction; |
| 133 | int contourIndex; |
| 134 | |
| 135 | static int compare(const void *a, const void *b) { |
| 136 | return sign(reinterpret_cast<const Intersection *>(a)->x-reinterpret_cast<const Intersection *>(b)->x); |
| 137 | } |
| 138 | }; |
| 139 | |
| 140 | const double ratio = .5*(sqrt(5)-1); // an irrational number to minimize chance of intersecting a corner or other point of interest |
| 141 | std::vector<int> orientations(contours.size()); |
| 142 | std::vector<Intersection> intersections; |
| 143 | for (int i = 0; i < (int) contours.size(); ++i) { |
| 144 | if (!orientations[i] && !contours[i].edges.empty()) { |
| 145 | // Find an Y that crosses the contour |
| 146 | double y0 = contours[i].edges.front()->point(0).y; |
| 147 | double y1 = y0; |
| 148 | for (std::vector<EdgeHolder>::const_iterator edge = contours[i].edges.begin(); edge != contours[i].edges.end() && y0 == y1; ++edge) |
| 149 | y1 = (*edge)->point(1).y; |
| 150 | for (std::vector<EdgeHolder>::const_iterator edge = contours[i].edges.begin(); edge != contours[i].edges.end() && y0 == y1; ++edge) |
| 151 | y1 = (*edge)->point(ratio).y; // in case all endpoints are in a horizontal line |
| 152 | double y = mix(y0, y1, ratio); |
| 153 | // Scanline through whole shape at Y |
| 154 | double x[3]; |
| 155 | int dy[3]; |
| 156 | for (int j = 0; j < (int) contours.size(); ++j) { |
| 157 | for (std::vector<EdgeHolder>::const_iterator edge = contours[j].edges.begin(); edge != contours[j].edges.end(); ++edge) { |
| 158 | int n = (*edge)->scanlineIntersections(x, dy, y); |
| 159 | for (int k = 0; k < n; ++k) { |
| 160 | Intersection intersection = { x[k], dy[k], j }; |
| 161 | intersections.push_back(intersection); |
| 162 | } |
| 163 | } |
| 164 | } |
| 165 | qsort(&intersections[0], intersections.size(), sizeof(Intersection), &Intersection::compare); |
| 166 | // Disqualify multiple intersections |
| 167 | for (int j = 1; j < (int) intersections.size(); ++j) |
| 168 | if (intersections[j].x == intersections[j-1].x) |
| 169 | intersections[j].direction = intersections[j-1].direction = 0; |
| 170 | // Inspect scanline and deduce orientations of intersected contours |
| 171 | for (int j = 0; j < (int) intersections.size(); ++j) |
| 172 | if (intersections[j].direction) |
| 173 | orientations[intersections[j].contourIndex] += 2*((j&1)^(intersections[j].direction > 0))-1; |
| 174 | intersections.clear(); |
| 175 | } |
| 176 | } |
| 177 | // Reverse contours that have the opposite orientation |
| 178 | for (int i = 0; i < (int) contours.size(); ++i) |
| 179 | if (orientations[i] < 0) |
| 180 | contours[i].reverse(); |
| 181 | } |
| 182 | |
| 183 | } |
| 184 | |