1 | |
2 | #include "Shape.h" |
3 | |
4 | #include <algorithm> |
5 | #include "arithmetics.hpp" |
6 | |
7 | namespace msdfgen { |
8 | |
9 | Shape::Shape() : inverseYAxis(false) { } |
10 | |
11 | void Shape::addContour(const Contour &contour) { |
12 | contours.push_back(contour); |
13 | } |
14 | |
15 | #ifdef MSDFGEN_USE_CPP11 |
16 | void Shape::addContour(Contour &&contour) { |
17 | contours.push_back((Contour &&) contour); |
18 | } |
19 | #endif |
20 | |
21 | Contour & Shape::addContour() { |
22 | contours.resize(contours.size()+1); |
23 | return contours.back(); |
24 | } |
25 | |
26 | bool Shape::validate() const { |
27 | for (std::vector<Contour>::const_iterator contour = contours.begin(); contour != contours.end(); ++contour) { |
28 | if (!contour->edges.empty()) { |
29 | Point2 corner = contour->edges.back()->point(1); |
30 | for (std::vector<EdgeHolder>::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) { |
31 | if (!*edge) |
32 | return false; |
33 | if ((*edge)->point(0) != corner) |
34 | return false; |
35 | corner = (*edge)->point(1); |
36 | } |
37 | } |
38 | } |
39 | return true; |
40 | } |
41 | |
42 | static void deconvergeEdge(EdgeHolder &edgeHolder, int param) { |
43 | { |
44 | const QuadraticSegment *quadraticSegment = dynamic_cast<const QuadraticSegment *>(&*edgeHolder); |
45 | if (quadraticSegment) |
46 | edgeHolder = quadraticSegment->convertToCubic(); |
47 | } |
48 | { |
49 | CubicSegment *cubicSegment = dynamic_cast<CubicSegment *>(&*edgeHolder); |
50 | if (cubicSegment) |
51 | cubicSegment->deconverge(param, MSDFGEN_DECONVERGENCE_FACTOR); |
52 | } |
53 | } |
54 | |
55 | void Shape::normalize() { |
56 | for (std::vector<Contour>::iterator contour = contours.begin(); contour != contours.end(); ++contour) { |
57 | if (contour->edges.size() == 1) { |
58 | EdgeSegment *parts[3] = { }; |
59 | contour->edges[0]->splitInThirds(parts[0], parts[1], parts[2]); |
60 | contour->edges.clear(); |
61 | contour->edges.push_back(EdgeHolder(parts[0])); |
62 | contour->edges.push_back(EdgeHolder(parts[1])); |
63 | contour->edges.push_back(EdgeHolder(parts[2])); |
64 | } else { |
65 | EdgeHolder *prevEdge = &contour->edges.back(); |
66 | for (std::vector<EdgeHolder>::iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) { |
67 | Vector2 prevDir = (*prevEdge)->direction(1).normalize(); |
68 | Vector2 curDir = (*edge)->direction(0).normalize(); |
69 | if (dotProduct(prevDir, curDir) < MSDFGEN_CORNER_DOT_EPSILON-1) { |
70 | deconvergeEdge(*prevEdge, 1); |
71 | deconvergeEdge(*edge, 0); |
72 | } |
73 | prevEdge = &*edge; |
74 | } |
75 | } |
76 | } |
77 | } |
78 | |
79 | void Shape::bound(double &l, double &b, double &r, double &t) const { |
80 | for (std::vector<Contour>::const_iterator contour = contours.begin(); contour != contours.end(); ++contour) |
81 | contour->bound(l, b, r, t); |
82 | } |
83 | |
84 | void Shape::boundMiters(double &l, double &b, double &r, double &t, double border, double miterLimit, int polarity) const { |
85 | for (std::vector<Contour>::const_iterator contour = contours.begin(); contour != contours.end(); ++contour) |
86 | contour->boundMiters(l, b, r, t, border, miterLimit, polarity); |
87 | } |
88 | |
89 | Shape::Bounds Shape::getBounds(double border, double miterLimit, int polarity) const { |
90 | static const double LARGE_VALUE = 1e240; |
91 | Shape::Bounds bounds = { +LARGE_VALUE, +LARGE_VALUE, -LARGE_VALUE, -LARGE_VALUE }; |
92 | bound(bounds.l, bounds.b, bounds.r, bounds.t); |
93 | if (border > 0) { |
94 | bounds.l -= border, bounds.b -= border; |
95 | bounds.r += border, bounds.t += border; |
96 | if (miterLimit > 0) |
97 | boundMiters(bounds.l, bounds.b, bounds.r, bounds.t, border, miterLimit, polarity); |
98 | } |
99 | return bounds; |
100 | } |
101 | |
102 | void Shape::scanline(Scanline &line, double y) const { |
103 | std::vector<Scanline::Intersection> intersections; |
104 | double x[3]; |
105 | int dy[3]; |
106 | for (std::vector<Contour>::const_iterator contour = contours.begin(); contour != contours.end(); ++contour) { |
107 | for (std::vector<EdgeHolder>::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) { |
108 | int n = (*edge)->scanlineIntersections(x, dy, y); |
109 | for (int i = 0; i < n; ++i) { |
110 | Scanline::Intersection intersection = { x[i], dy[i] }; |
111 | intersections.push_back(intersection); |
112 | } |
113 | } |
114 | } |
115 | #ifdef MSDFGEN_USE_CPP11 |
116 | line.setIntersections((std::vector<Scanline::Intersection> &&) intersections); |
117 | #else |
118 | line.setIntersections(intersections); |
119 | #endif |
120 | } |
121 | |
122 | int Shape::edgeCount() const { |
123 | int total = 0; |
124 | for (std::vector<Contour>::const_iterator contour = contours.begin(); contour != contours.end(); ++contour) |
125 | total += (int) contour->edges.size(); |
126 | return total; |
127 | } |
128 | |
129 | void Shape::orientContours() { |
130 | struct Intersection { |
131 | double x; |
132 | int direction; |
133 | int contourIndex; |
134 | |
135 | static int compare(const void *a, const void *b) { |
136 | return sign(reinterpret_cast<const Intersection *>(a)->x-reinterpret_cast<const Intersection *>(b)->x); |
137 | } |
138 | }; |
139 | |
140 | const double ratio = .5*(sqrt(5)-1); // an irrational number to minimize chance of intersecting a corner or other point of interest |
141 | std::vector<int> orientations(contours.size()); |
142 | std::vector<Intersection> intersections; |
143 | for (int i = 0; i < (int) contours.size(); ++i) { |
144 | if (!orientations[i] && !contours[i].edges.empty()) { |
145 | // Find an Y that crosses the contour |
146 | double y0 = contours[i].edges.front()->point(0).y; |
147 | double y1 = y0; |
148 | for (std::vector<EdgeHolder>::const_iterator edge = contours[i].edges.begin(); edge != contours[i].edges.end() && y0 == y1; ++edge) |
149 | y1 = (*edge)->point(1).y; |
150 | for (std::vector<EdgeHolder>::const_iterator edge = contours[i].edges.begin(); edge != contours[i].edges.end() && y0 == y1; ++edge) |
151 | y1 = (*edge)->point(ratio).y; // in case all endpoints are in a horizontal line |
152 | double y = mix(y0, y1, ratio); |
153 | // Scanline through whole shape at Y |
154 | double x[3]; |
155 | int dy[3]; |
156 | for (int j = 0; j < (int) contours.size(); ++j) { |
157 | for (std::vector<EdgeHolder>::const_iterator edge = contours[j].edges.begin(); edge != contours[j].edges.end(); ++edge) { |
158 | int n = (*edge)->scanlineIntersections(x, dy, y); |
159 | for (int k = 0; k < n; ++k) { |
160 | Intersection intersection = { x[k], dy[k], j }; |
161 | intersections.push_back(intersection); |
162 | } |
163 | } |
164 | } |
165 | qsort(&intersections[0], intersections.size(), sizeof(Intersection), &Intersection::compare); |
166 | // Disqualify multiple intersections |
167 | for (int j = 1; j < (int) intersections.size(); ++j) |
168 | if (intersections[j].x == intersections[j-1].x) |
169 | intersections[j].direction = intersections[j-1].direction = 0; |
170 | // Inspect scanline and deduce orientations of intersected contours |
171 | for (int j = 0; j < (int) intersections.size(); ++j) |
172 | if (intersections[j].direction) |
173 | orientations[intersections[j].contourIndex] += 2*((j&1)^(intersections[j].direction > 0))-1; |
174 | intersections.clear(); |
175 | } |
176 | } |
177 | // Reverse contours that have the opposite orientation |
178 | for (int i = 0; i < (int) contours.size(); ++i) |
179 | if (orientations[i] < 0) |
180 | contours[i].reverse(); |
181 | } |
182 | |
183 | } |
184 | |