1 | /* |
2 | * Agent2d.cpp |
3 | * RVO2 Library |
4 | * |
5 | * Copyright 2008 University of North Carolina at Chapel Hill |
6 | * |
7 | * Licensed under the Apache License, Version 2.0 (the "License"); |
8 | * you may not use this file except in compliance with the License. |
9 | * You may obtain a copy of the License at |
10 | * |
11 | * http://www.apache.org/licenses/LICENSE-2.0 |
12 | * |
13 | * Unless required by applicable law or agreed to in writing, software |
14 | * distributed under the License is distributed on an "AS IS" BASIS, |
15 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
16 | * See the License for the specific language governing permissions and |
17 | * limitations under the License. |
18 | * |
19 | * Please send all bug reports to <geom@cs.unc.edu>. |
20 | * |
21 | * The authors may be contacted via: |
22 | * |
23 | * Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha |
24 | * Dept. of Computer Science |
25 | * 201 S. Columbia St. |
26 | * Frederick P. Brooks, Jr. Computer Science Bldg. |
27 | * Chapel Hill, N.C. 27599-3175 |
28 | * United States of America |
29 | * |
30 | * <http://gamma.cs.unc.edu/RVO2/> |
31 | */ |
32 | |
33 | #include "Agent2d.h" |
34 | |
35 | #include "KdTree2d.h" |
36 | #include "Obstacle2d.h" |
37 | |
38 | namespace RVO2D { |
39 | Agent2D::Agent2D() : maxNeighbors_(0), maxSpeed_(0.0f), neighborDist_(0.0f), radius_(0.0f), timeHorizon_(0.0f), timeHorizonObst_(0.0f), id_(0) { } |
40 | |
41 | void Agent2D::computeNeighbors(RVOSimulator2D *sim_) |
42 | { |
43 | obstacleNeighbors_.clear(); |
44 | float rangeSq = sqr(timeHorizonObst_ * maxSpeed_ + radius_); |
45 | sim_->kdTree_->computeObstacleNeighbors(this, rangeSq); |
46 | |
47 | agentNeighbors_.clear(); |
48 | |
49 | if (maxNeighbors_ > 0) { |
50 | rangeSq = sqr(neighborDist_); |
51 | sim_->kdTree_->computeAgentNeighbors(this, rangeSq); |
52 | } |
53 | } |
54 | |
55 | /* Search for the best new velocity. */ |
56 | void Agent2D::computeNewVelocity(RVOSimulator2D *sim_) |
57 | { |
58 | orcaLines_.clear(); |
59 | |
60 | const float invTimeHorizonObst = 1.0f / timeHorizonObst_; |
61 | |
62 | /* Create obstacle ORCA lines. */ |
63 | for (size_t i = 0; i < obstacleNeighbors_.size(); ++i) { |
64 | |
65 | const Obstacle2D *obstacle1 = obstacleNeighbors_[i].second; |
66 | const Obstacle2D *obstacle2 = obstacle1->nextObstacle_; |
67 | |
68 | const Vector2 relativePosition1 = obstacle1->point_ - position_; |
69 | const Vector2 relativePosition2 = obstacle2->point_ - position_; |
70 | |
71 | /* |
72 | * Check if velocity obstacle of obstacle is already taken care of by |
73 | * previously constructed obstacle ORCA lines. |
74 | */ |
75 | bool alreadyCovered = false; |
76 | |
77 | for (size_t j = 0; j < orcaLines_.size(); ++j) { |
78 | if (det(invTimeHorizonObst * relativePosition1 - orcaLines_[j].point, orcaLines_[j].direction) - invTimeHorizonObst * radius_ >= -RVO_EPSILON && det(invTimeHorizonObst * relativePosition2 - orcaLines_[j].point, orcaLines_[j].direction) - invTimeHorizonObst * radius_ >= -RVO_EPSILON) { |
79 | alreadyCovered = true; |
80 | break; |
81 | } |
82 | } |
83 | |
84 | if (alreadyCovered) { |
85 | continue; |
86 | } |
87 | |
88 | /* Not yet covered. Check for collisions. */ |
89 | |
90 | const float distSq1 = absSq(relativePosition1); |
91 | const float distSq2 = absSq(relativePosition2); |
92 | |
93 | const float radiusSq = sqr(radius_); |
94 | |
95 | const Vector2 obstacleVector = obstacle2->point_ - obstacle1->point_; |
96 | const float s = (-relativePosition1 * obstacleVector) / absSq(obstacleVector); |
97 | const float distSqLine = absSq(-relativePosition1 - s * obstacleVector); |
98 | |
99 | Line line; |
100 | |
101 | if (s < 0.0f && distSq1 <= radiusSq) { |
102 | /* Collision with left vertex. Ignore if non-convex. */ |
103 | if (obstacle1->isConvex_) { |
104 | line.point = Vector2(0.0f, 0.0f); |
105 | line.direction = normalize(Vector2(-relativePosition1.y(), relativePosition1.x())); |
106 | orcaLines_.push_back(line); |
107 | } |
108 | |
109 | continue; |
110 | } |
111 | else if (s > 1.0f && distSq2 <= radiusSq) { |
112 | /* Collision with right vertex. Ignore if non-convex |
113 | * or if it will be taken care of by neighoring obstace */ |
114 | if (obstacle2->isConvex_ && det(relativePosition2, obstacle2->unitDir_) >= 0.0f) { |
115 | line.point = Vector2(0.0f, 0.0f); |
116 | line.direction = normalize(Vector2(-relativePosition2.y(), relativePosition2.x())); |
117 | orcaLines_.push_back(line); |
118 | } |
119 | |
120 | continue; |
121 | } |
122 | else if (s >= 0.0f && s < 1.0f && distSqLine <= radiusSq) { |
123 | /* Collision with obstacle segment. */ |
124 | line.point = Vector2(0.0f, 0.0f); |
125 | line.direction = -obstacle1->unitDir_; |
126 | orcaLines_.push_back(line); |
127 | continue; |
128 | } |
129 | |
130 | /* |
131 | * No collision. |
132 | * Compute legs. When obliquely viewed, both legs can come from a single |
133 | * vertex. Legs extend cut-off line when nonconvex vertex. |
134 | */ |
135 | |
136 | Vector2 leftLegDirection, rightLegDirection; |
137 | |
138 | if (s < 0.0f && distSqLine <= radiusSq) { |
139 | /* |
140 | * Obstacle viewed obliquely so that left vertex |
141 | * defines velocity obstacle. |
142 | */ |
143 | if (!obstacle1->isConvex_) { |
144 | /* Ignore obstacle. */ |
145 | continue; |
146 | } |
147 | |
148 | obstacle2 = obstacle1; |
149 | |
150 | const float leg1 = std::sqrt(distSq1 - radiusSq); |
151 | leftLegDirection = Vector2(relativePosition1.x() * leg1 - relativePosition1.y() * radius_, relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1; |
152 | rightLegDirection = Vector2(relativePosition1.x() * leg1 + relativePosition1.y() * radius_, -relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1; |
153 | } |
154 | else if (s > 1.0f && distSqLine <= radiusSq) { |
155 | /* |
156 | * Obstacle viewed obliquely so that |
157 | * right vertex defines velocity obstacle. |
158 | */ |
159 | if (!obstacle2->isConvex_) { |
160 | /* Ignore obstacle. */ |
161 | continue; |
162 | } |
163 | |
164 | obstacle1 = obstacle2; |
165 | |
166 | const float leg2 = std::sqrt(distSq2 - radiusSq); |
167 | leftLegDirection = Vector2(relativePosition2.x() * leg2 - relativePosition2.y() * radius_, relativePosition2.x() * radius_ + relativePosition2.y() * leg2) / distSq2; |
168 | rightLegDirection = Vector2(relativePosition2.x() * leg2 + relativePosition2.y() * radius_, -relativePosition2.x() * radius_ + relativePosition2.y() * leg2) / distSq2; |
169 | } |
170 | else { |
171 | /* Usual situation. */ |
172 | if (obstacle1->isConvex_) { |
173 | const float leg1 = std::sqrt(distSq1 - radiusSq); |
174 | leftLegDirection = Vector2(relativePosition1.x() * leg1 - relativePosition1.y() * radius_, relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1; |
175 | } |
176 | else { |
177 | /* Left vertex non-convex; left leg extends cut-off line. */ |
178 | leftLegDirection = -obstacle1->unitDir_; |
179 | } |
180 | |
181 | if (obstacle2->isConvex_) { |
182 | const float leg2 = std::sqrt(distSq2 - radiusSq); |
183 | rightLegDirection = Vector2(relativePosition2.x() * leg2 + relativePosition2.y() * radius_, -relativePosition2.x() * radius_ + relativePosition2.y() * leg2) / distSq2; |
184 | } |
185 | else { |
186 | /* Right vertex non-convex; right leg extends cut-off line. */ |
187 | rightLegDirection = obstacle1->unitDir_; |
188 | } |
189 | } |
190 | |
191 | /* |
192 | * Legs can never point into neighboring edge when convex vertex, |
193 | * take cutoff-line of neighboring edge instead. If velocity projected on |
194 | * "foreign" leg, no constraint is added. |
195 | */ |
196 | |
197 | const Obstacle2D *const leftNeighbor = obstacle1->prevObstacle_; |
198 | |
199 | bool isLeftLegForeign = false; |
200 | bool isRightLegForeign = false; |
201 | |
202 | if (obstacle1->isConvex_ && det(leftLegDirection, -leftNeighbor->unitDir_) >= 0.0f) { |
203 | /* Left leg points into obstacle. */ |
204 | leftLegDirection = -leftNeighbor->unitDir_; |
205 | isLeftLegForeign = true; |
206 | } |
207 | |
208 | if (obstacle2->isConvex_ && det(rightLegDirection, obstacle2->unitDir_) <= 0.0f) { |
209 | /* Right leg points into obstacle. */ |
210 | rightLegDirection = obstacle2->unitDir_; |
211 | isRightLegForeign = true; |
212 | } |
213 | |
214 | /* Compute cut-off centers. */ |
215 | const Vector2 leftCutoff = invTimeHorizonObst * (obstacle1->point_ - position_); |
216 | const Vector2 rightCutoff = invTimeHorizonObst * (obstacle2->point_ - position_); |
217 | const Vector2 cutoffVec = rightCutoff - leftCutoff; |
218 | |
219 | /* Project current velocity on velocity obstacle. */ |
220 | |
221 | /* Check if current velocity is projected on cutoff circles. */ |
222 | const float t = (obstacle1 == obstacle2 ? 0.5f : ((velocity_ - leftCutoff) * cutoffVec) / absSq(cutoffVec)); |
223 | const float tLeft = ((velocity_ - leftCutoff) * leftLegDirection); |
224 | const float tRight = ((velocity_ - rightCutoff) * rightLegDirection); |
225 | |
226 | if ((t < 0.0f && tLeft < 0.0f) || (obstacle1 == obstacle2 && tLeft < 0.0f && tRight < 0.0f)) { |
227 | /* Project on left cut-off circle. */ |
228 | const Vector2 unitW = normalize(velocity_ - leftCutoff); |
229 | |
230 | line.direction = Vector2(unitW.y(), -unitW.x()); |
231 | line.point = leftCutoff + radius_ * invTimeHorizonObst * unitW; |
232 | orcaLines_.push_back(line); |
233 | continue; |
234 | } |
235 | else if (t > 1.0f && tRight < 0.0f) { |
236 | /* Project on right cut-off circle. */ |
237 | const Vector2 unitW = normalize(velocity_ - rightCutoff); |
238 | |
239 | line.direction = Vector2(unitW.y(), -unitW.x()); |
240 | line.point = rightCutoff + radius_ * invTimeHorizonObst * unitW; |
241 | orcaLines_.push_back(line); |
242 | continue; |
243 | } |
244 | |
245 | /* |
246 | * Project on left leg, right leg, or cut-off line, whichever is closest |
247 | * to velocity. |
248 | */ |
249 | const float distSqCutoff = ((t < 0.0f || t > 1.0f || obstacle1 == obstacle2) ? std::numeric_limits<float>::infinity() : absSq(velocity_ - (leftCutoff + t * cutoffVec))); |
250 | const float distSqLeft = ((tLeft < 0.0f) ? std::numeric_limits<float>::infinity() : absSq(velocity_ - (leftCutoff + tLeft * leftLegDirection))); |
251 | const float distSqRight = ((tRight < 0.0f) ? std::numeric_limits<float>::infinity() : absSq(velocity_ - (rightCutoff + tRight * rightLegDirection))); |
252 | |
253 | if (distSqCutoff <= distSqLeft && distSqCutoff <= distSqRight) { |
254 | /* Project on cut-off line. */ |
255 | line.direction = -obstacle1->unitDir_; |
256 | line.point = leftCutoff + radius_ * invTimeHorizonObst * Vector2(-line.direction.y(), line.direction.x()); |
257 | orcaLines_.push_back(line); |
258 | continue; |
259 | } |
260 | else if (distSqLeft <= distSqRight) { |
261 | /* Project on left leg. */ |
262 | if (isLeftLegForeign) { |
263 | continue; |
264 | } |
265 | |
266 | line.direction = leftLegDirection; |
267 | line.point = leftCutoff + radius_ * invTimeHorizonObst * Vector2(-line.direction.y(), line.direction.x()); |
268 | orcaLines_.push_back(line); |
269 | continue; |
270 | } |
271 | else { |
272 | /* Project on right leg. */ |
273 | if (isRightLegForeign) { |
274 | continue; |
275 | } |
276 | |
277 | line.direction = -rightLegDirection; |
278 | line.point = rightCutoff + radius_ * invTimeHorizonObst * Vector2(-line.direction.y(), line.direction.x()); |
279 | orcaLines_.push_back(line); |
280 | continue; |
281 | } |
282 | } |
283 | |
284 | const size_t numObstLines = orcaLines_.size(); |
285 | |
286 | const float invTimeHorizon = 1.0f / timeHorizon_; |
287 | |
288 | /* Create agent ORCA lines. */ |
289 | for (size_t i = 0; i < agentNeighbors_.size(); ++i) { |
290 | const Agent2D *const other = agentNeighbors_[i].second; |
291 | |
292 | //const float timeHorizon_mod = (avoidance_priority_ - other->avoidance_priority_ + 1.0f) * 0.5f; |
293 | //const float invTimeHorizon = (1.0f / timeHorizon_) * timeHorizon_mod; |
294 | |
295 | const Vector2 relativePosition = other->position_ - position_; |
296 | const Vector2 relativeVelocity = velocity_ - other->velocity_; |
297 | const float distSq = absSq(relativePosition); |
298 | const float combinedRadius = radius_ + other->radius_; |
299 | const float combinedRadiusSq = sqr(combinedRadius); |
300 | |
301 | Line line; |
302 | Vector2 u; |
303 | |
304 | if (distSq > combinedRadiusSq) { |
305 | /* No collision. */ |
306 | const Vector2 w = relativeVelocity - invTimeHorizon * relativePosition; |
307 | /* Vector from cutoff center to relative velocity. */ |
308 | const float wLengthSq = absSq(w); |
309 | |
310 | const float dotProduct1 = w * relativePosition; |
311 | |
312 | if (dotProduct1 < 0.0f && sqr(dotProduct1) > combinedRadiusSq * wLengthSq) { |
313 | /* Project on cut-off circle. */ |
314 | const float wLength = std::sqrt(wLengthSq); |
315 | const Vector2 unitW = w / wLength; |
316 | |
317 | line.direction = Vector2(unitW.y(), -unitW.x()); |
318 | u = (combinedRadius * invTimeHorizon - wLength) * unitW; |
319 | } |
320 | else { |
321 | /* Project on legs. */ |
322 | const float leg = std::sqrt(distSq - combinedRadiusSq); |
323 | |
324 | if (det(relativePosition, w) > 0.0f) { |
325 | /* Project on left leg. */ |
326 | line.direction = Vector2(relativePosition.x() * leg - relativePosition.y() * combinedRadius, relativePosition.x() * combinedRadius + relativePosition.y() * leg) / distSq; |
327 | } |
328 | else { |
329 | /* Project on right leg. */ |
330 | line.direction = -Vector2(relativePosition.x() * leg + relativePosition.y() * combinedRadius, -relativePosition.x() * combinedRadius + relativePosition.y() * leg) / distSq; |
331 | } |
332 | |
333 | const float dotProduct2 = relativeVelocity * line.direction; |
334 | |
335 | u = dotProduct2 * line.direction - relativeVelocity; |
336 | } |
337 | } |
338 | else { |
339 | /* Collision. Project on cut-off circle of time timeStep. */ |
340 | const float invTimeStep = 1.0f / sim_->timeStep_; |
341 | |
342 | /* Vector from cutoff center to relative velocity. */ |
343 | const Vector2 w = relativeVelocity - invTimeStep * relativePosition; |
344 | |
345 | const float wLength = abs(w); |
346 | const Vector2 unitW = w / wLength; |
347 | |
348 | line.direction = Vector2(unitW.y(), -unitW.x()); |
349 | u = (combinedRadius * invTimeStep - wLength) * unitW; |
350 | } |
351 | |
352 | line.point = velocity_ + 0.5f * u; |
353 | orcaLines_.push_back(line); |
354 | } |
355 | |
356 | size_t lineFail = linearProgram2(orcaLines_, maxSpeed_, prefVelocity_, false, newVelocity_); |
357 | |
358 | if (lineFail < orcaLines_.size()) { |
359 | linearProgram3(orcaLines_, numObstLines, lineFail, maxSpeed_, newVelocity_); |
360 | } |
361 | } |
362 | |
363 | void Agent2D::insertAgentNeighbor(const Agent2D *agent, float &rangeSq) |
364 | { |
365 | // no point processing same agent |
366 | if (this == agent) { |
367 | return; |
368 | } |
369 | // ignore other agent if layers/mask bitmasks have no matching bit |
370 | if ((avoidance_mask_ & agent->avoidance_layers_) == 0) { |
371 | return; |
372 | } |
373 | // ignore other agent if this agent is below or above |
374 | if ((elevation_ > agent->elevation_ + agent->height_) || (elevation_ + height_ < agent->elevation_)) { |
375 | return; |
376 | } |
377 | |
378 | if (avoidance_priority_ > agent->avoidance_priority_) { |
379 | return; |
380 | } |
381 | |
382 | const float distSq = absSq(position_ - agent->position_); |
383 | |
384 | if (distSq < rangeSq) { |
385 | if (agentNeighbors_.size() < maxNeighbors_) { |
386 | agentNeighbors_.push_back(std::make_pair(distSq, agent)); |
387 | } |
388 | |
389 | size_t i = agentNeighbors_.size() - 1; |
390 | |
391 | while (i != 0 && distSq < agentNeighbors_[i - 1].first) { |
392 | agentNeighbors_[i] = agentNeighbors_[i - 1]; |
393 | --i; |
394 | } |
395 | |
396 | agentNeighbors_[i] = std::make_pair(distSq, agent); |
397 | |
398 | if (agentNeighbors_.size() == maxNeighbors_) { |
399 | rangeSq = agentNeighbors_.back().first; |
400 | } |
401 | } |
402 | } |
403 | |
404 | void Agent2D::insertObstacleNeighbor(const Obstacle2D *obstacle, float rangeSq) |
405 | { |
406 | const Obstacle2D *const nextObstacle = obstacle->nextObstacle_; |
407 | |
408 | // ignore obstacle if no matching layer/mask |
409 | if ((avoidance_mask_ & nextObstacle->avoidance_layers_) == 0) { |
410 | return; |
411 | } |
412 | // ignore obstacle if below or above |
413 | if ((elevation_ > obstacle->elevation_ + obstacle->height_) || (elevation_ + height_ < obstacle->elevation_)) { |
414 | return; |
415 | } |
416 | |
417 | const float distSq = distSqPointLineSegment(obstacle->point_, nextObstacle->point_, position_); |
418 | |
419 | if (distSq < rangeSq) { |
420 | obstacleNeighbors_.push_back(std::make_pair(distSq, obstacle)); |
421 | |
422 | size_t i = obstacleNeighbors_.size() - 1; |
423 | |
424 | while (i != 0 && distSq < obstacleNeighbors_[i - 1].first) { |
425 | obstacleNeighbors_[i] = obstacleNeighbors_[i - 1]; |
426 | --i; |
427 | } |
428 | |
429 | obstacleNeighbors_[i] = std::make_pair(distSq, obstacle); |
430 | } |
431 | //} |
432 | } |
433 | |
434 | void Agent2D::update(RVOSimulator2D *sim_) |
435 | { |
436 | velocity_ = newVelocity_; |
437 | position_ += velocity_ * sim_->timeStep_; |
438 | } |
439 | |
440 | bool linearProgram1(const std::vector<Line> &lines, size_t lineNo, float radius, const Vector2 &optVelocity, bool directionOpt, Vector2 &result) |
441 | { |
442 | const float dotProduct = lines[lineNo].point * lines[lineNo].direction; |
443 | const float discriminant = sqr(dotProduct) + sqr(radius) - absSq(lines[lineNo].point); |
444 | |
445 | if (discriminant < 0.0f) { |
446 | /* Max speed circle fully invalidates line lineNo. */ |
447 | return false; |
448 | } |
449 | |
450 | const float sqrtDiscriminant = std::sqrt(discriminant); |
451 | float tLeft = -dotProduct - sqrtDiscriminant; |
452 | float tRight = -dotProduct + sqrtDiscriminant; |
453 | |
454 | for (size_t i = 0; i < lineNo; ++i) { |
455 | const float denominator = det(lines[lineNo].direction, lines[i].direction); |
456 | const float numerator = det(lines[i].direction, lines[lineNo].point - lines[i].point); |
457 | |
458 | if (std::fabs(denominator) <= RVO_EPSILON) { |
459 | /* Lines lineNo and i are (almost) parallel. */ |
460 | if (numerator < 0.0f) { |
461 | return false; |
462 | } |
463 | else { |
464 | continue; |
465 | } |
466 | } |
467 | |
468 | const float t = numerator / denominator; |
469 | |
470 | if (denominator >= 0.0f) { |
471 | /* Line i bounds line lineNo on the right. */ |
472 | tRight = std::min(tRight, t); |
473 | } |
474 | else { |
475 | /* Line i bounds line lineNo on the left. */ |
476 | tLeft = std::max(tLeft, t); |
477 | } |
478 | |
479 | if (tLeft > tRight) { |
480 | return false; |
481 | } |
482 | } |
483 | |
484 | if (directionOpt) { |
485 | /* Optimize direction. */ |
486 | if (optVelocity * lines[lineNo].direction > 0.0f) { |
487 | /* Take right extreme. */ |
488 | result = lines[lineNo].point + tRight * lines[lineNo].direction; |
489 | } |
490 | else { |
491 | /* Take left extreme. */ |
492 | result = lines[lineNo].point + tLeft * lines[lineNo].direction; |
493 | } |
494 | } |
495 | else { |
496 | /* Optimize closest point. */ |
497 | const float t = lines[lineNo].direction * (optVelocity - lines[lineNo].point); |
498 | |
499 | if (t < tLeft) { |
500 | result = lines[lineNo].point + tLeft * lines[lineNo].direction; |
501 | } |
502 | else if (t > tRight) { |
503 | result = lines[lineNo].point + tRight * lines[lineNo].direction; |
504 | } |
505 | else { |
506 | result = lines[lineNo].point + t * lines[lineNo].direction; |
507 | } |
508 | } |
509 | |
510 | return true; |
511 | } |
512 | |
513 | size_t linearProgram2(const std::vector<Line> &lines, float radius, const Vector2 &optVelocity, bool directionOpt, Vector2 &result) |
514 | { |
515 | if (directionOpt) { |
516 | /* |
517 | * Optimize direction. Note that the optimization velocity is of unit |
518 | * length in this case. |
519 | */ |
520 | result = optVelocity * radius; |
521 | } |
522 | else if (absSq(optVelocity) > sqr(radius)) { |
523 | /* Optimize closest point and outside circle. */ |
524 | result = normalize(optVelocity) * radius; |
525 | } |
526 | else { |
527 | /* Optimize closest point and inside circle. */ |
528 | result = optVelocity; |
529 | } |
530 | |
531 | for (size_t i = 0; i < lines.size(); ++i) { |
532 | if (det(lines[i].direction, lines[i].point - result) > 0.0f) { |
533 | /* Result does not satisfy constraint i. Compute new optimal result. */ |
534 | const Vector2 tempResult = result; |
535 | |
536 | if (!linearProgram1(lines, i, radius, optVelocity, directionOpt, result)) { |
537 | result = tempResult; |
538 | return i; |
539 | } |
540 | } |
541 | } |
542 | |
543 | return lines.size(); |
544 | } |
545 | |
546 | void linearProgram3(const std::vector<Line> &lines, size_t numObstLines, size_t beginLine, float radius, Vector2 &result) |
547 | { |
548 | float distance = 0.0f; |
549 | |
550 | for (size_t i = beginLine; i < lines.size(); ++i) { |
551 | if (det(lines[i].direction, lines[i].point - result) > distance) { |
552 | /* Result does not satisfy constraint of line i. */ |
553 | std::vector<Line> projLines(lines.begin(), lines.begin() + static_cast<ptrdiff_t>(numObstLines)); |
554 | |
555 | for (size_t j = numObstLines; j < i; ++j) { |
556 | Line line; |
557 | |
558 | float determinant = det(lines[i].direction, lines[j].direction); |
559 | |
560 | if (std::fabs(determinant) <= RVO_EPSILON) { |
561 | /* Line i and line j are parallel. */ |
562 | if (lines[i].direction * lines[j].direction > 0.0f) { |
563 | /* Line i and line j point in the same direction. */ |
564 | continue; |
565 | } |
566 | else { |
567 | /* Line i and line j point in opposite direction. */ |
568 | line.point = 0.5f * (lines[i].point + lines[j].point); |
569 | } |
570 | } |
571 | else { |
572 | line.point = lines[i].point + (det(lines[j].direction, lines[i].point - lines[j].point) / determinant) * lines[i].direction; |
573 | } |
574 | |
575 | line.direction = normalize(lines[j].direction - lines[i].direction); |
576 | projLines.push_back(line); |
577 | } |
578 | |
579 | const Vector2 tempResult = result; |
580 | |
581 | if (linearProgram2(projLines, radius, Vector2(-lines[i].direction.y(), lines[i].direction.x()), true, result) < projLines.size()) { |
582 | /* This should in principle not happen. The result is by definition |
583 | * already in the feasible region of this linear program. If it fails, |
584 | * it is due to small floating point error, and the current result is |
585 | * kept. |
586 | */ |
587 | result = tempResult; |
588 | } |
589 | |
590 | distance = det(lines[i].direction, lines[i].point - result); |
591 | } |
592 | } |
593 | } |
594 | } |
595 | |