| 1 | /* |
| 2 | * Agent2d.cpp |
| 3 | * RVO2 Library |
| 4 | * |
| 5 | * Copyright 2008 University of North Carolina at Chapel Hill |
| 6 | * |
| 7 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 8 | * you may not use this file except in compliance with the License. |
| 9 | * You may obtain a copy of the License at |
| 10 | * |
| 11 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 12 | * |
| 13 | * Unless required by applicable law or agreed to in writing, software |
| 14 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 15 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 16 | * See the License for the specific language governing permissions and |
| 17 | * limitations under the License. |
| 18 | * |
| 19 | * Please send all bug reports to <geom@cs.unc.edu>. |
| 20 | * |
| 21 | * The authors may be contacted via: |
| 22 | * |
| 23 | * Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha |
| 24 | * Dept. of Computer Science |
| 25 | * 201 S. Columbia St. |
| 26 | * Frederick P. Brooks, Jr. Computer Science Bldg. |
| 27 | * Chapel Hill, N.C. 27599-3175 |
| 28 | * United States of America |
| 29 | * |
| 30 | * <http://gamma.cs.unc.edu/RVO2/> |
| 31 | */ |
| 32 | |
| 33 | #include "Agent2d.h" |
| 34 | |
| 35 | #include "KdTree2d.h" |
| 36 | #include "Obstacle2d.h" |
| 37 | |
| 38 | namespace RVO2D { |
| 39 | Agent2D::Agent2D() : maxNeighbors_(0), maxSpeed_(0.0f), neighborDist_(0.0f), radius_(0.0f), timeHorizon_(0.0f), timeHorizonObst_(0.0f), id_(0) { } |
| 40 | |
| 41 | void Agent2D::computeNeighbors(RVOSimulator2D *sim_) |
| 42 | { |
| 43 | obstacleNeighbors_.clear(); |
| 44 | float rangeSq = sqr(timeHorizonObst_ * maxSpeed_ + radius_); |
| 45 | sim_->kdTree_->computeObstacleNeighbors(this, rangeSq); |
| 46 | |
| 47 | agentNeighbors_.clear(); |
| 48 | |
| 49 | if (maxNeighbors_ > 0) { |
| 50 | rangeSq = sqr(neighborDist_); |
| 51 | sim_->kdTree_->computeAgentNeighbors(this, rangeSq); |
| 52 | } |
| 53 | } |
| 54 | |
| 55 | /* Search for the best new velocity. */ |
| 56 | void Agent2D::computeNewVelocity(RVOSimulator2D *sim_) |
| 57 | { |
| 58 | orcaLines_.clear(); |
| 59 | |
| 60 | const float invTimeHorizonObst = 1.0f / timeHorizonObst_; |
| 61 | |
| 62 | /* Create obstacle ORCA lines. */ |
| 63 | for (size_t i = 0; i < obstacleNeighbors_.size(); ++i) { |
| 64 | |
| 65 | const Obstacle2D *obstacle1 = obstacleNeighbors_[i].second; |
| 66 | const Obstacle2D *obstacle2 = obstacle1->nextObstacle_; |
| 67 | |
| 68 | const Vector2 relativePosition1 = obstacle1->point_ - position_; |
| 69 | const Vector2 relativePosition2 = obstacle2->point_ - position_; |
| 70 | |
| 71 | /* |
| 72 | * Check if velocity obstacle of obstacle is already taken care of by |
| 73 | * previously constructed obstacle ORCA lines. |
| 74 | */ |
| 75 | bool alreadyCovered = false; |
| 76 | |
| 77 | for (size_t j = 0; j < orcaLines_.size(); ++j) { |
| 78 | if (det(invTimeHorizonObst * relativePosition1 - orcaLines_[j].point, orcaLines_[j].direction) - invTimeHorizonObst * radius_ >= -RVO_EPSILON && det(invTimeHorizonObst * relativePosition2 - orcaLines_[j].point, orcaLines_[j].direction) - invTimeHorizonObst * radius_ >= -RVO_EPSILON) { |
| 79 | alreadyCovered = true; |
| 80 | break; |
| 81 | } |
| 82 | } |
| 83 | |
| 84 | if (alreadyCovered) { |
| 85 | continue; |
| 86 | } |
| 87 | |
| 88 | /* Not yet covered. Check for collisions. */ |
| 89 | |
| 90 | const float distSq1 = absSq(relativePosition1); |
| 91 | const float distSq2 = absSq(relativePosition2); |
| 92 | |
| 93 | const float radiusSq = sqr(radius_); |
| 94 | |
| 95 | const Vector2 obstacleVector = obstacle2->point_ - obstacle1->point_; |
| 96 | const float s = (-relativePosition1 * obstacleVector) / absSq(obstacleVector); |
| 97 | const float distSqLine = absSq(-relativePosition1 - s * obstacleVector); |
| 98 | |
| 99 | Line line; |
| 100 | |
| 101 | if (s < 0.0f && distSq1 <= radiusSq) { |
| 102 | /* Collision with left vertex. Ignore if non-convex. */ |
| 103 | if (obstacle1->isConvex_) { |
| 104 | line.point = Vector2(0.0f, 0.0f); |
| 105 | line.direction = normalize(Vector2(-relativePosition1.y(), relativePosition1.x())); |
| 106 | orcaLines_.push_back(line); |
| 107 | } |
| 108 | |
| 109 | continue; |
| 110 | } |
| 111 | else if (s > 1.0f && distSq2 <= radiusSq) { |
| 112 | /* Collision with right vertex. Ignore if non-convex |
| 113 | * or if it will be taken care of by neighoring obstace */ |
| 114 | if (obstacle2->isConvex_ && det(relativePosition2, obstacle2->unitDir_) >= 0.0f) { |
| 115 | line.point = Vector2(0.0f, 0.0f); |
| 116 | line.direction = normalize(Vector2(-relativePosition2.y(), relativePosition2.x())); |
| 117 | orcaLines_.push_back(line); |
| 118 | } |
| 119 | |
| 120 | continue; |
| 121 | } |
| 122 | else if (s >= 0.0f && s < 1.0f && distSqLine <= radiusSq) { |
| 123 | /* Collision with obstacle segment. */ |
| 124 | line.point = Vector2(0.0f, 0.0f); |
| 125 | line.direction = -obstacle1->unitDir_; |
| 126 | orcaLines_.push_back(line); |
| 127 | continue; |
| 128 | } |
| 129 | |
| 130 | /* |
| 131 | * No collision. |
| 132 | * Compute legs. When obliquely viewed, both legs can come from a single |
| 133 | * vertex. Legs extend cut-off line when nonconvex vertex. |
| 134 | */ |
| 135 | |
| 136 | Vector2 leftLegDirection, rightLegDirection; |
| 137 | |
| 138 | if (s < 0.0f && distSqLine <= radiusSq) { |
| 139 | /* |
| 140 | * Obstacle viewed obliquely so that left vertex |
| 141 | * defines velocity obstacle. |
| 142 | */ |
| 143 | if (!obstacle1->isConvex_) { |
| 144 | /* Ignore obstacle. */ |
| 145 | continue; |
| 146 | } |
| 147 | |
| 148 | obstacle2 = obstacle1; |
| 149 | |
| 150 | const float leg1 = std::sqrt(distSq1 - radiusSq); |
| 151 | leftLegDirection = Vector2(relativePosition1.x() * leg1 - relativePosition1.y() * radius_, relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1; |
| 152 | rightLegDirection = Vector2(relativePosition1.x() * leg1 + relativePosition1.y() * radius_, -relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1; |
| 153 | } |
| 154 | else if (s > 1.0f && distSqLine <= radiusSq) { |
| 155 | /* |
| 156 | * Obstacle viewed obliquely so that |
| 157 | * right vertex defines velocity obstacle. |
| 158 | */ |
| 159 | if (!obstacle2->isConvex_) { |
| 160 | /* Ignore obstacle. */ |
| 161 | continue; |
| 162 | } |
| 163 | |
| 164 | obstacle1 = obstacle2; |
| 165 | |
| 166 | const float leg2 = std::sqrt(distSq2 - radiusSq); |
| 167 | leftLegDirection = Vector2(relativePosition2.x() * leg2 - relativePosition2.y() * radius_, relativePosition2.x() * radius_ + relativePosition2.y() * leg2) / distSq2; |
| 168 | rightLegDirection = Vector2(relativePosition2.x() * leg2 + relativePosition2.y() * radius_, -relativePosition2.x() * radius_ + relativePosition2.y() * leg2) / distSq2; |
| 169 | } |
| 170 | else { |
| 171 | /* Usual situation. */ |
| 172 | if (obstacle1->isConvex_) { |
| 173 | const float leg1 = std::sqrt(distSq1 - radiusSq); |
| 174 | leftLegDirection = Vector2(relativePosition1.x() * leg1 - relativePosition1.y() * radius_, relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1; |
| 175 | } |
| 176 | else { |
| 177 | /* Left vertex non-convex; left leg extends cut-off line. */ |
| 178 | leftLegDirection = -obstacle1->unitDir_; |
| 179 | } |
| 180 | |
| 181 | if (obstacle2->isConvex_) { |
| 182 | const float leg2 = std::sqrt(distSq2 - radiusSq); |
| 183 | rightLegDirection = Vector2(relativePosition2.x() * leg2 + relativePosition2.y() * radius_, -relativePosition2.x() * radius_ + relativePosition2.y() * leg2) / distSq2; |
| 184 | } |
| 185 | else { |
| 186 | /* Right vertex non-convex; right leg extends cut-off line. */ |
| 187 | rightLegDirection = obstacle1->unitDir_; |
| 188 | } |
| 189 | } |
| 190 | |
| 191 | /* |
| 192 | * Legs can never point into neighboring edge when convex vertex, |
| 193 | * take cutoff-line of neighboring edge instead. If velocity projected on |
| 194 | * "foreign" leg, no constraint is added. |
| 195 | */ |
| 196 | |
| 197 | const Obstacle2D *const leftNeighbor = obstacle1->prevObstacle_; |
| 198 | |
| 199 | bool isLeftLegForeign = false; |
| 200 | bool isRightLegForeign = false; |
| 201 | |
| 202 | if (obstacle1->isConvex_ && det(leftLegDirection, -leftNeighbor->unitDir_) >= 0.0f) { |
| 203 | /* Left leg points into obstacle. */ |
| 204 | leftLegDirection = -leftNeighbor->unitDir_; |
| 205 | isLeftLegForeign = true; |
| 206 | } |
| 207 | |
| 208 | if (obstacle2->isConvex_ && det(rightLegDirection, obstacle2->unitDir_) <= 0.0f) { |
| 209 | /* Right leg points into obstacle. */ |
| 210 | rightLegDirection = obstacle2->unitDir_; |
| 211 | isRightLegForeign = true; |
| 212 | } |
| 213 | |
| 214 | /* Compute cut-off centers. */ |
| 215 | const Vector2 leftCutoff = invTimeHorizonObst * (obstacle1->point_ - position_); |
| 216 | const Vector2 rightCutoff = invTimeHorizonObst * (obstacle2->point_ - position_); |
| 217 | const Vector2 cutoffVec = rightCutoff - leftCutoff; |
| 218 | |
| 219 | /* Project current velocity on velocity obstacle. */ |
| 220 | |
| 221 | /* Check if current velocity is projected on cutoff circles. */ |
| 222 | const float t = (obstacle1 == obstacle2 ? 0.5f : ((velocity_ - leftCutoff) * cutoffVec) / absSq(cutoffVec)); |
| 223 | const float tLeft = ((velocity_ - leftCutoff) * leftLegDirection); |
| 224 | const float tRight = ((velocity_ - rightCutoff) * rightLegDirection); |
| 225 | |
| 226 | if ((t < 0.0f && tLeft < 0.0f) || (obstacle1 == obstacle2 && tLeft < 0.0f && tRight < 0.0f)) { |
| 227 | /* Project on left cut-off circle. */ |
| 228 | const Vector2 unitW = normalize(velocity_ - leftCutoff); |
| 229 | |
| 230 | line.direction = Vector2(unitW.y(), -unitW.x()); |
| 231 | line.point = leftCutoff + radius_ * invTimeHorizonObst * unitW; |
| 232 | orcaLines_.push_back(line); |
| 233 | continue; |
| 234 | } |
| 235 | else if (t > 1.0f && tRight < 0.0f) { |
| 236 | /* Project on right cut-off circle. */ |
| 237 | const Vector2 unitW = normalize(velocity_ - rightCutoff); |
| 238 | |
| 239 | line.direction = Vector2(unitW.y(), -unitW.x()); |
| 240 | line.point = rightCutoff + radius_ * invTimeHorizonObst * unitW; |
| 241 | orcaLines_.push_back(line); |
| 242 | continue; |
| 243 | } |
| 244 | |
| 245 | /* |
| 246 | * Project on left leg, right leg, or cut-off line, whichever is closest |
| 247 | * to velocity. |
| 248 | */ |
| 249 | const float distSqCutoff = ((t < 0.0f || t > 1.0f || obstacle1 == obstacle2) ? std::numeric_limits<float>::infinity() : absSq(velocity_ - (leftCutoff + t * cutoffVec))); |
| 250 | const float distSqLeft = ((tLeft < 0.0f) ? std::numeric_limits<float>::infinity() : absSq(velocity_ - (leftCutoff + tLeft * leftLegDirection))); |
| 251 | const float distSqRight = ((tRight < 0.0f) ? std::numeric_limits<float>::infinity() : absSq(velocity_ - (rightCutoff + tRight * rightLegDirection))); |
| 252 | |
| 253 | if (distSqCutoff <= distSqLeft && distSqCutoff <= distSqRight) { |
| 254 | /* Project on cut-off line. */ |
| 255 | line.direction = -obstacle1->unitDir_; |
| 256 | line.point = leftCutoff + radius_ * invTimeHorizonObst * Vector2(-line.direction.y(), line.direction.x()); |
| 257 | orcaLines_.push_back(line); |
| 258 | continue; |
| 259 | } |
| 260 | else if (distSqLeft <= distSqRight) { |
| 261 | /* Project on left leg. */ |
| 262 | if (isLeftLegForeign) { |
| 263 | continue; |
| 264 | } |
| 265 | |
| 266 | line.direction = leftLegDirection; |
| 267 | line.point = leftCutoff + radius_ * invTimeHorizonObst * Vector2(-line.direction.y(), line.direction.x()); |
| 268 | orcaLines_.push_back(line); |
| 269 | continue; |
| 270 | } |
| 271 | else { |
| 272 | /* Project on right leg. */ |
| 273 | if (isRightLegForeign) { |
| 274 | continue; |
| 275 | } |
| 276 | |
| 277 | line.direction = -rightLegDirection; |
| 278 | line.point = rightCutoff + radius_ * invTimeHorizonObst * Vector2(-line.direction.y(), line.direction.x()); |
| 279 | orcaLines_.push_back(line); |
| 280 | continue; |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | const size_t numObstLines = orcaLines_.size(); |
| 285 | |
| 286 | const float invTimeHorizon = 1.0f / timeHorizon_; |
| 287 | |
| 288 | /* Create agent ORCA lines. */ |
| 289 | for (size_t i = 0; i < agentNeighbors_.size(); ++i) { |
| 290 | const Agent2D *const other = agentNeighbors_[i].second; |
| 291 | |
| 292 | //const float timeHorizon_mod = (avoidance_priority_ - other->avoidance_priority_ + 1.0f) * 0.5f; |
| 293 | //const float invTimeHorizon = (1.0f / timeHorizon_) * timeHorizon_mod; |
| 294 | |
| 295 | const Vector2 relativePosition = other->position_ - position_; |
| 296 | const Vector2 relativeVelocity = velocity_ - other->velocity_; |
| 297 | const float distSq = absSq(relativePosition); |
| 298 | const float combinedRadius = radius_ + other->radius_; |
| 299 | const float combinedRadiusSq = sqr(combinedRadius); |
| 300 | |
| 301 | Line line; |
| 302 | Vector2 u; |
| 303 | |
| 304 | if (distSq > combinedRadiusSq) { |
| 305 | /* No collision. */ |
| 306 | const Vector2 w = relativeVelocity - invTimeHorizon * relativePosition; |
| 307 | /* Vector from cutoff center to relative velocity. */ |
| 308 | const float wLengthSq = absSq(w); |
| 309 | |
| 310 | const float dotProduct1 = w * relativePosition; |
| 311 | |
| 312 | if (dotProduct1 < 0.0f && sqr(dotProduct1) > combinedRadiusSq * wLengthSq) { |
| 313 | /* Project on cut-off circle. */ |
| 314 | const float wLength = std::sqrt(wLengthSq); |
| 315 | const Vector2 unitW = w / wLength; |
| 316 | |
| 317 | line.direction = Vector2(unitW.y(), -unitW.x()); |
| 318 | u = (combinedRadius * invTimeHorizon - wLength) * unitW; |
| 319 | } |
| 320 | else { |
| 321 | /* Project on legs. */ |
| 322 | const float leg = std::sqrt(distSq - combinedRadiusSq); |
| 323 | |
| 324 | if (det(relativePosition, w) > 0.0f) { |
| 325 | /* Project on left leg. */ |
| 326 | line.direction = Vector2(relativePosition.x() * leg - relativePosition.y() * combinedRadius, relativePosition.x() * combinedRadius + relativePosition.y() * leg) / distSq; |
| 327 | } |
| 328 | else { |
| 329 | /* Project on right leg. */ |
| 330 | line.direction = -Vector2(relativePosition.x() * leg + relativePosition.y() * combinedRadius, -relativePosition.x() * combinedRadius + relativePosition.y() * leg) / distSq; |
| 331 | } |
| 332 | |
| 333 | const float dotProduct2 = relativeVelocity * line.direction; |
| 334 | |
| 335 | u = dotProduct2 * line.direction - relativeVelocity; |
| 336 | } |
| 337 | } |
| 338 | else { |
| 339 | /* Collision. Project on cut-off circle of time timeStep. */ |
| 340 | const float invTimeStep = 1.0f / sim_->timeStep_; |
| 341 | |
| 342 | /* Vector from cutoff center to relative velocity. */ |
| 343 | const Vector2 w = relativeVelocity - invTimeStep * relativePosition; |
| 344 | |
| 345 | const float wLength = abs(w); |
| 346 | const Vector2 unitW = w / wLength; |
| 347 | |
| 348 | line.direction = Vector2(unitW.y(), -unitW.x()); |
| 349 | u = (combinedRadius * invTimeStep - wLength) * unitW; |
| 350 | } |
| 351 | |
| 352 | line.point = velocity_ + 0.5f * u; |
| 353 | orcaLines_.push_back(line); |
| 354 | } |
| 355 | |
| 356 | size_t lineFail = linearProgram2(orcaLines_, maxSpeed_, prefVelocity_, false, newVelocity_); |
| 357 | |
| 358 | if (lineFail < orcaLines_.size()) { |
| 359 | linearProgram3(orcaLines_, numObstLines, lineFail, maxSpeed_, newVelocity_); |
| 360 | } |
| 361 | } |
| 362 | |
| 363 | void Agent2D::insertAgentNeighbor(const Agent2D *agent, float &rangeSq) |
| 364 | { |
| 365 | // no point processing same agent |
| 366 | if (this == agent) { |
| 367 | return; |
| 368 | } |
| 369 | // ignore other agent if layers/mask bitmasks have no matching bit |
| 370 | if ((avoidance_mask_ & agent->avoidance_layers_) == 0) { |
| 371 | return; |
| 372 | } |
| 373 | // ignore other agent if this agent is below or above |
| 374 | if ((elevation_ > agent->elevation_ + agent->height_) || (elevation_ + height_ < agent->elevation_)) { |
| 375 | return; |
| 376 | } |
| 377 | |
| 378 | if (avoidance_priority_ > agent->avoidance_priority_) { |
| 379 | return; |
| 380 | } |
| 381 | |
| 382 | const float distSq = absSq(position_ - agent->position_); |
| 383 | |
| 384 | if (distSq < rangeSq) { |
| 385 | if (agentNeighbors_.size() < maxNeighbors_) { |
| 386 | agentNeighbors_.push_back(std::make_pair(distSq, agent)); |
| 387 | } |
| 388 | |
| 389 | size_t i = agentNeighbors_.size() - 1; |
| 390 | |
| 391 | while (i != 0 && distSq < agentNeighbors_[i - 1].first) { |
| 392 | agentNeighbors_[i] = agentNeighbors_[i - 1]; |
| 393 | --i; |
| 394 | } |
| 395 | |
| 396 | agentNeighbors_[i] = std::make_pair(distSq, agent); |
| 397 | |
| 398 | if (agentNeighbors_.size() == maxNeighbors_) { |
| 399 | rangeSq = agentNeighbors_.back().first; |
| 400 | } |
| 401 | } |
| 402 | } |
| 403 | |
| 404 | void Agent2D::insertObstacleNeighbor(const Obstacle2D *obstacle, float rangeSq) |
| 405 | { |
| 406 | const Obstacle2D *const nextObstacle = obstacle->nextObstacle_; |
| 407 | |
| 408 | // ignore obstacle if no matching layer/mask |
| 409 | if ((avoidance_mask_ & nextObstacle->avoidance_layers_) == 0) { |
| 410 | return; |
| 411 | } |
| 412 | // ignore obstacle if below or above |
| 413 | if ((elevation_ > obstacle->elevation_ + obstacle->height_) || (elevation_ + height_ < obstacle->elevation_)) { |
| 414 | return; |
| 415 | } |
| 416 | |
| 417 | const float distSq = distSqPointLineSegment(obstacle->point_, nextObstacle->point_, position_); |
| 418 | |
| 419 | if (distSq < rangeSq) { |
| 420 | obstacleNeighbors_.push_back(std::make_pair(distSq, obstacle)); |
| 421 | |
| 422 | size_t i = obstacleNeighbors_.size() - 1; |
| 423 | |
| 424 | while (i != 0 && distSq < obstacleNeighbors_[i - 1].first) { |
| 425 | obstacleNeighbors_[i] = obstacleNeighbors_[i - 1]; |
| 426 | --i; |
| 427 | } |
| 428 | |
| 429 | obstacleNeighbors_[i] = std::make_pair(distSq, obstacle); |
| 430 | } |
| 431 | //} |
| 432 | } |
| 433 | |
| 434 | void Agent2D::update(RVOSimulator2D *sim_) |
| 435 | { |
| 436 | velocity_ = newVelocity_; |
| 437 | position_ += velocity_ * sim_->timeStep_; |
| 438 | } |
| 439 | |
| 440 | bool linearProgram1(const std::vector<Line> &lines, size_t lineNo, float radius, const Vector2 &optVelocity, bool directionOpt, Vector2 &result) |
| 441 | { |
| 442 | const float dotProduct = lines[lineNo].point * lines[lineNo].direction; |
| 443 | const float discriminant = sqr(dotProduct) + sqr(radius) - absSq(lines[lineNo].point); |
| 444 | |
| 445 | if (discriminant < 0.0f) { |
| 446 | /* Max speed circle fully invalidates line lineNo. */ |
| 447 | return false; |
| 448 | } |
| 449 | |
| 450 | const float sqrtDiscriminant = std::sqrt(discriminant); |
| 451 | float tLeft = -dotProduct - sqrtDiscriminant; |
| 452 | float tRight = -dotProduct + sqrtDiscriminant; |
| 453 | |
| 454 | for (size_t i = 0; i < lineNo; ++i) { |
| 455 | const float denominator = det(lines[lineNo].direction, lines[i].direction); |
| 456 | const float numerator = det(lines[i].direction, lines[lineNo].point - lines[i].point); |
| 457 | |
| 458 | if (std::fabs(denominator) <= RVO_EPSILON) { |
| 459 | /* Lines lineNo and i are (almost) parallel. */ |
| 460 | if (numerator < 0.0f) { |
| 461 | return false; |
| 462 | } |
| 463 | else { |
| 464 | continue; |
| 465 | } |
| 466 | } |
| 467 | |
| 468 | const float t = numerator / denominator; |
| 469 | |
| 470 | if (denominator >= 0.0f) { |
| 471 | /* Line i bounds line lineNo on the right. */ |
| 472 | tRight = std::min(tRight, t); |
| 473 | } |
| 474 | else { |
| 475 | /* Line i bounds line lineNo on the left. */ |
| 476 | tLeft = std::max(tLeft, t); |
| 477 | } |
| 478 | |
| 479 | if (tLeft > tRight) { |
| 480 | return false; |
| 481 | } |
| 482 | } |
| 483 | |
| 484 | if (directionOpt) { |
| 485 | /* Optimize direction. */ |
| 486 | if (optVelocity * lines[lineNo].direction > 0.0f) { |
| 487 | /* Take right extreme. */ |
| 488 | result = lines[lineNo].point + tRight * lines[lineNo].direction; |
| 489 | } |
| 490 | else { |
| 491 | /* Take left extreme. */ |
| 492 | result = lines[lineNo].point + tLeft * lines[lineNo].direction; |
| 493 | } |
| 494 | } |
| 495 | else { |
| 496 | /* Optimize closest point. */ |
| 497 | const float t = lines[lineNo].direction * (optVelocity - lines[lineNo].point); |
| 498 | |
| 499 | if (t < tLeft) { |
| 500 | result = lines[lineNo].point + tLeft * lines[lineNo].direction; |
| 501 | } |
| 502 | else if (t > tRight) { |
| 503 | result = lines[lineNo].point + tRight * lines[lineNo].direction; |
| 504 | } |
| 505 | else { |
| 506 | result = lines[lineNo].point + t * lines[lineNo].direction; |
| 507 | } |
| 508 | } |
| 509 | |
| 510 | return true; |
| 511 | } |
| 512 | |
| 513 | size_t linearProgram2(const std::vector<Line> &lines, float radius, const Vector2 &optVelocity, bool directionOpt, Vector2 &result) |
| 514 | { |
| 515 | if (directionOpt) { |
| 516 | /* |
| 517 | * Optimize direction. Note that the optimization velocity is of unit |
| 518 | * length in this case. |
| 519 | */ |
| 520 | result = optVelocity * radius; |
| 521 | } |
| 522 | else if (absSq(optVelocity) > sqr(radius)) { |
| 523 | /* Optimize closest point and outside circle. */ |
| 524 | result = normalize(optVelocity) * radius; |
| 525 | } |
| 526 | else { |
| 527 | /* Optimize closest point and inside circle. */ |
| 528 | result = optVelocity; |
| 529 | } |
| 530 | |
| 531 | for (size_t i = 0; i < lines.size(); ++i) { |
| 532 | if (det(lines[i].direction, lines[i].point - result) > 0.0f) { |
| 533 | /* Result does not satisfy constraint i. Compute new optimal result. */ |
| 534 | const Vector2 tempResult = result; |
| 535 | |
| 536 | if (!linearProgram1(lines, i, radius, optVelocity, directionOpt, result)) { |
| 537 | result = tempResult; |
| 538 | return i; |
| 539 | } |
| 540 | } |
| 541 | } |
| 542 | |
| 543 | return lines.size(); |
| 544 | } |
| 545 | |
| 546 | void linearProgram3(const std::vector<Line> &lines, size_t numObstLines, size_t beginLine, float radius, Vector2 &result) |
| 547 | { |
| 548 | float distance = 0.0f; |
| 549 | |
| 550 | for (size_t i = beginLine; i < lines.size(); ++i) { |
| 551 | if (det(lines[i].direction, lines[i].point - result) > distance) { |
| 552 | /* Result does not satisfy constraint of line i. */ |
| 553 | std::vector<Line> projLines(lines.begin(), lines.begin() + static_cast<ptrdiff_t>(numObstLines)); |
| 554 | |
| 555 | for (size_t j = numObstLines; j < i; ++j) { |
| 556 | Line line; |
| 557 | |
| 558 | float determinant = det(lines[i].direction, lines[j].direction); |
| 559 | |
| 560 | if (std::fabs(determinant) <= RVO_EPSILON) { |
| 561 | /* Line i and line j are parallel. */ |
| 562 | if (lines[i].direction * lines[j].direction > 0.0f) { |
| 563 | /* Line i and line j point in the same direction. */ |
| 564 | continue; |
| 565 | } |
| 566 | else { |
| 567 | /* Line i and line j point in opposite direction. */ |
| 568 | line.point = 0.5f * (lines[i].point + lines[j].point); |
| 569 | } |
| 570 | } |
| 571 | else { |
| 572 | line.point = lines[i].point + (det(lines[j].direction, lines[i].point - lines[j].point) / determinant) * lines[i].direction; |
| 573 | } |
| 574 | |
| 575 | line.direction = normalize(lines[j].direction - lines[i].direction); |
| 576 | projLines.push_back(line); |
| 577 | } |
| 578 | |
| 579 | const Vector2 tempResult = result; |
| 580 | |
| 581 | if (linearProgram2(projLines, radius, Vector2(-lines[i].direction.y(), lines[i].direction.x()), true, result) < projLines.size()) { |
| 582 | /* This should in principle not happen. The result is by definition |
| 583 | * already in the feasible region of this linear program. If it fails, |
| 584 | * it is due to small floating point error, and the current result is |
| 585 | * kept. |
| 586 | */ |
| 587 | result = tempResult; |
| 588 | } |
| 589 | |
| 590 | distance = det(lines[i].direction, lines[i].point - result); |
| 591 | } |
| 592 | } |
| 593 | } |
| 594 | } |
| 595 | |