| 1 | /* ----------------------------------------------------------------------------- |
| 2 | |
| 3 | Copyright (c) 2006 Simon Brown si@sjbrown.co.uk |
| 4 | |
| 5 | Permission is hereby granted, free of charge, to any person obtaining |
| 6 | a copy of this software and associated documentation files (the |
| 7 | "Software"), to deal in the Software without restriction, including |
| 8 | without limitation the rights to use, copy, modify, merge, publish, |
| 9 | distribute, sublicense, and/or sell copies of the Software, and to |
| 10 | permit persons to whom the Software is furnished to do so, subject to |
| 11 | the following conditions: |
| 12 | |
| 13 | The above copyright notice and this permission notice shall be included |
| 14 | in all copies or substantial portions of the Software. |
| 15 | |
| 16 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
| 17 | OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| 18 | MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. |
| 19 | IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY |
| 20 | CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, |
| 21 | TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE |
| 22 | SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| 23 | |
| 24 | -------------------------------------------------------------------------- */ |
| 25 | |
| 26 | /*! @file |
| 27 | |
| 28 | The symmetric eigensystem solver algorithm is from |
| 29 | http://www.geometrictools.com/Documentation/EigenSymmetric3x3.pdf |
| 30 | */ |
| 31 | |
| 32 | #include "maths.h" |
| 33 | #include "simd.h" |
| 34 | #include <cfloat> |
| 35 | |
| 36 | namespace squish { |
| 37 | |
| 38 | Sym3x3 ComputeWeightedCovariance( int n, Vec3 const* points, float const* weights ) |
| 39 | { |
| 40 | // compute the centroid |
| 41 | float total = 0.0f; |
| 42 | Vec3 centroid( 0.0f ); |
| 43 | for( int i = 0; i < n; ++i ) |
| 44 | { |
| 45 | total += weights[i]; |
| 46 | centroid += weights[i]*points[i]; |
| 47 | } |
| 48 | if( total > FLT_EPSILON ) |
| 49 | centroid /= total; |
| 50 | |
| 51 | // accumulate the covariance matrix |
| 52 | Sym3x3 covariance( 0.0f ); |
| 53 | for( int i = 0; i < n; ++i ) |
| 54 | { |
| 55 | Vec3 a = points[i] - centroid; |
| 56 | Vec3 b = weights[i]*a; |
| 57 | |
| 58 | covariance[0] += a.X()*b.X(); |
| 59 | covariance[1] += a.X()*b.Y(); |
| 60 | covariance[2] += a.X()*b.Z(); |
| 61 | covariance[3] += a.Y()*b.Y(); |
| 62 | covariance[4] += a.Y()*b.Z(); |
| 63 | covariance[5] += a.Z()*b.Z(); |
| 64 | } |
| 65 | |
| 66 | // return it |
| 67 | return covariance; |
| 68 | } |
| 69 | |
| 70 | #if 0 |
| 71 | |
| 72 | static Vec3 GetMultiplicity1Evector( Sym3x3 const& matrix, float evalue ) |
| 73 | { |
| 74 | // compute M |
| 75 | Sym3x3 m; |
| 76 | m[0] = matrix[0] - evalue; |
| 77 | m[1] = matrix[1]; |
| 78 | m[2] = matrix[2]; |
| 79 | m[3] = matrix[3] - evalue; |
| 80 | m[4] = matrix[4]; |
| 81 | m[5] = matrix[5] - evalue; |
| 82 | |
| 83 | // compute U |
| 84 | Sym3x3 u; |
| 85 | u[0] = m[3]*m[5] - m[4]*m[4]; |
| 86 | u[1] = m[2]*m[4] - m[1]*m[5]; |
| 87 | u[2] = m[1]*m[4] - m[2]*m[3]; |
| 88 | u[3] = m[0]*m[5] - m[2]*m[2]; |
| 89 | u[4] = m[1]*m[2] - m[4]*m[0]; |
| 90 | u[5] = m[0]*m[3] - m[1]*m[1]; |
| 91 | |
| 92 | // find the largest component |
| 93 | float mc = std::fabs( u[0] ); |
| 94 | int mi = 0; |
| 95 | for( int i = 1; i < 6; ++i ) |
| 96 | { |
| 97 | float c = std::fabs( u[i] ); |
| 98 | if( c > mc ) |
| 99 | { |
| 100 | mc = c; |
| 101 | mi = i; |
| 102 | } |
| 103 | } |
| 104 | |
| 105 | // pick the column with this component |
| 106 | switch( mi ) |
| 107 | { |
| 108 | case 0: |
| 109 | return Vec3( u[0], u[1], u[2] ); |
| 110 | |
| 111 | case 1: |
| 112 | case 3: |
| 113 | return Vec3( u[1], u[3], u[4] ); |
| 114 | |
| 115 | default: |
| 116 | return Vec3( u[2], u[4], u[5] ); |
| 117 | } |
| 118 | } |
| 119 | |
| 120 | static Vec3 GetMultiplicity2Evector( Sym3x3 const& matrix, float evalue ) |
| 121 | { |
| 122 | // compute M |
| 123 | Sym3x3 m; |
| 124 | m[0] = matrix[0] - evalue; |
| 125 | m[1] = matrix[1]; |
| 126 | m[2] = matrix[2]; |
| 127 | m[3] = matrix[3] - evalue; |
| 128 | m[4] = matrix[4]; |
| 129 | m[5] = matrix[5] - evalue; |
| 130 | |
| 131 | // find the largest component |
| 132 | float mc = std::fabs( m[0] ); |
| 133 | int mi = 0; |
| 134 | for( int i = 1; i < 6; ++i ) |
| 135 | { |
| 136 | float c = std::fabs( m[i] ); |
| 137 | if( c > mc ) |
| 138 | { |
| 139 | mc = c; |
| 140 | mi = i; |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | // pick the first eigenvector based on this index |
| 145 | switch( mi ) |
| 146 | { |
| 147 | case 0: |
| 148 | case 1: |
| 149 | return Vec3( -m[1], m[0], 0.0f ); |
| 150 | |
| 151 | case 2: |
| 152 | return Vec3( m[2], 0.0f, -m[0] ); |
| 153 | |
| 154 | case 3: |
| 155 | case 4: |
| 156 | return Vec3( 0.0f, -m[4], m[3] ); |
| 157 | |
| 158 | default: |
| 159 | return Vec3( 0.0f, -m[5], m[4] ); |
| 160 | } |
| 161 | } |
| 162 | |
| 163 | Vec3 ComputePrincipleComponent( Sym3x3 const& matrix ) |
| 164 | { |
| 165 | // compute the cubic coefficients |
| 166 | float c0 = matrix[0]*matrix[3]*matrix[5] |
| 167 | + 2.0f*matrix[1]*matrix[2]*matrix[4] |
| 168 | - matrix[0]*matrix[4]*matrix[4] |
| 169 | - matrix[3]*matrix[2]*matrix[2] |
| 170 | - matrix[5]*matrix[1]*matrix[1]; |
| 171 | float c1 = matrix[0]*matrix[3] + matrix[0]*matrix[5] + matrix[3]*matrix[5] |
| 172 | - matrix[1]*matrix[1] - matrix[2]*matrix[2] - matrix[4]*matrix[4]; |
| 173 | float c2 = matrix[0] + matrix[3] + matrix[5]; |
| 174 | |
| 175 | // compute the quadratic coefficients |
| 176 | float a = c1 - ( 1.0f/3.0f )*c2*c2; |
| 177 | float b = ( -2.0f/27.0f )*c2*c2*c2 + ( 1.0f/3.0f )*c1*c2 - c0; |
| 178 | |
| 179 | // compute the root count check |
| 180 | float Q = 0.25f*b*b + ( 1.0f/27.0f )*a*a*a; |
| 181 | |
| 182 | // test the multiplicity |
| 183 | if( FLT_EPSILON < Q ) |
| 184 | { |
| 185 | // only one root, which implies we have a multiple of the identity |
| 186 | return Vec3( 1.0f ); |
| 187 | } |
| 188 | else if( Q < -FLT_EPSILON ) |
| 189 | { |
| 190 | // three distinct roots |
| 191 | float theta = std::atan2( std::sqrt( -Q ), -0.5f*b ); |
| 192 | float rho = std::sqrt( 0.25f*b*b - Q ); |
| 193 | |
| 194 | float rt = std::pow( rho, 1.0f/3.0f ); |
| 195 | float ct = std::cos( theta/3.0f ); |
| 196 | float st = std::sin( theta/3.0f ); |
| 197 | |
| 198 | float l1 = ( 1.0f/3.0f )*c2 + 2.0f*rt*ct; |
| 199 | float l2 = ( 1.0f/3.0f )*c2 - rt*( ct + ( float )sqrt( 3.0f )*st ); |
| 200 | float l3 = ( 1.0f/3.0f )*c2 - rt*( ct - ( float )sqrt( 3.0f )*st ); |
| 201 | |
| 202 | // pick the larger |
| 203 | if( std::fabs( l2 ) > std::fabs( l1 ) ) |
| 204 | l1 = l2; |
| 205 | if( std::fabs( l3 ) > std::fabs( l1 ) ) |
| 206 | l1 = l3; |
| 207 | |
| 208 | // get the eigenvector |
| 209 | return GetMultiplicity1Evector( matrix, l1 ); |
| 210 | } |
| 211 | else // if( -FLT_EPSILON <= Q && Q <= FLT_EPSILON ) |
| 212 | { |
| 213 | // two roots |
| 214 | float rt; |
| 215 | if( b < 0.0f ) |
| 216 | rt = -std::pow( -0.5f*b, 1.0f/3.0f ); |
| 217 | else |
| 218 | rt = std::pow( 0.5f*b, 1.0f/3.0f ); |
| 219 | |
| 220 | float l1 = ( 1.0f/3.0f )*c2 + rt; // repeated |
| 221 | float l2 = ( 1.0f/3.0f )*c2 - 2.0f*rt; |
| 222 | |
| 223 | // get the eigenvector |
| 224 | if( std::fabs( l1 ) > std::fabs( l2 ) ) |
| 225 | return GetMultiplicity2Evector( matrix, l1 ); |
| 226 | else |
| 227 | return GetMultiplicity1Evector( matrix, l2 ); |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | #else |
| 232 | |
| 233 | #define POWER_ITERATION_COUNT 8 |
| 234 | |
| 235 | Vec3 ComputePrincipleComponent( Sym3x3 const& matrix ) |
| 236 | { |
| 237 | Vec4 const row0( matrix[0], matrix[1], matrix[2], 0.0f ); |
| 238 | Vec4 const row1( matrix[1], matrix[3], matrix[4], 0.0f ); |
| 239 | Vec4 const row2( matrix[2], matrix[4], matrix[5], 0.0f ); |
| 240 | Vec4 v = VEC4_CONST( 1.0f ); |
| 241 | for( int i = 0; i < POWER_ITERATION_COUNT; ++i ) |
| 242 | { |
| 243 | // matrix multiply |
| 244 | Vec4 w = row0*v.SplatX(); |
| 245 | w = MultiplyAdd(row1, v.SplatY(), w); |
| 246 | w = MultiplyAdd(row2, v.SplatZ(), w); |
| 247 | |
| 248 | // get max component from xyz in all channels |
| 249 | Vec4 a = Max(w.SplatX(), Max(w.SplatY(), w.SplatZ())); |
| 250 | |
| 251 | // divide through and advance |
| 252 | v = w*Reciprocal(a); |
| 253 | } |
| 254 | return v.GetVec3(); |
| 255 | } |
| 256 | |
| 257 | #endif |
| 258 | |
| 259 | } // namespace squish |
| 260 | |