| 1 | /* ----------------------------------------------------------------------------- | 
|---|
| 2 |  | 
|---|
| 3 | Copyright (c) 2006 Simon Brown                          si@sjbrown.co.uk | 
|---|
| 4 |  | 
|---|
| 5 | Permission is hereby granted, free of charge, to any person obtaining | 
|---|
| 6 | a copy of this software and associated documentation files (the | 
|---|
| 7 | "Software"), to deal in the Software without restriction, including | 
|---|
| 8 | without limitation the rights to use, copy, modify, merge, publish, | 
|---|
| 9 | distribute, sublicense, and/or sell copies of the Software, and to | 
|---|
| 10 | permit persons to whom the Software is furnished to do so, subject to | 
|---|
| 11 | the following conditions: | 
|---|
| 12 |  | 
|---|
| 13 | The above copyright notice and this permission notice shall be included | 
|---|
| 14 | in all copies or substantial portions of the Software. | 
|---|
| 15 |  | 
|---|
| 16 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS | 
|---|
| 17 | OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
|---|
| 18 | MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. | 
|---|
| 19 | IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY | 
|---|
| 20 | CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, | 
|---|
| 21 | TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE | 
|---|
| 22 | SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | 
|---|
| 23 |  | 
|---|
| 24 | -------------------------------------------------------------------------- */ | 
|---|
| 25 |  | 
|---|
| 26 | /*! @file | 
|---|
| 27 |  | 
|---|
| 28 | The symmetric eigensystem solver algorithm is from | 
|---|
| 29 | http://www.geometrictools.com/Documentation/EigenSymmetric3x3.pdf | 
|---|
| 30 | */ | 
|---|
| 31 |  | 
|---|
| 32 | #include "maths.h" | 
|---|
| 33 | #include "simd.h" | 
|---|
| 34 | #include <cfloat> | 
|---|
| 35 |  | 
|---|
| 36 | namespace squish { | 
|---|
| 37 |  | 
|---|
| 38 | Sym3x3 ComputeWeightedCovariance( int n, Vec3 const* points, float const* weights ) | 
|---|
| 39 | { | 
|---|
| 40 | // compute the centroid | 
|---|
| 41 | float total = 0.0f; | 
|---|
| 42 | Vec3 centroid( 0.0f ); | 
|---|
| 43 | for( int i = 0; i < n; ++i ) | 
|---|
| 44 | { | 
|---|
| 45 | total += weights[i]; | 
|---|
| 46 | centroid += weights[i]*points[i]; | 
|---|
| 47 | } | 
|---|
| 48 | if( total > FLT_EPSILON ) | 
|---|
| 49 | centroid /= total; | 
|---|
| 50 |  | 
|---|
| 51 | // accumulate the covariance matrix | 
|---|
| 52 | Sym3x3 covariance( 0.0f ); | 
|---|
| 53 | for( int i = 0; i < n; ++i ) | 
|---|
| 54 | { | 
|---|
| 55 | Vec3 a = points[i] - centroid; | 
|---|
| 56 | Vec3 b = weights[i]*a; | 
|---|
| 57 |  | 
|---|
| 58 | covariance[0] += a.X()*b.X(); | 
|---|
| 59 | covariance[1] += a.X()*b.Y(); | 
|---|
| 60 | covariance[2] += a.X()*b.Z(); | 
|---|
| 61 | covariance[3] += a.Y()*b.Y(); | 
|---|
| 62 | covariance[4] += a.Y()*b.Z(); | 
|---|
| 63 | covariance[5] += a.Z()*b.Z(); | 
|---|
| 64 | } | 
|---|
| 65 |  | 
|---|
| 66 | // return it | 
|---|
| 67 | return covariance; | 
|---|
| 68 | } | 
|---|
| 69 |  | 
|---|
| 70 | #if 0 | 
|---|
| 71 |  | 
|---|
| 72 | static Vec3 GetMultiplicity1Evector( Sym3x3 const& matrix, float evalue ) | 
|---|
| 73 | { | 
|---|
| 74 | // compute M | 
|---|
| 75 | Sym3x3 m; | 
|---|
| 76 | m[0] = matrix[0] - evalue; | 
|---|
| 77 | m[1] = matrix[1]; | 
|---|
| 78 | m[2] = matrix[2]; | 
|---|
| 79 | m[3] = matrix[3] - evalue; | 
|---|
| 80 | m[4] = matrix[4]; | 
|---|
| 81 | m[5] = matrix[5] - evalue; | 
|---|
| 82 |  | 
|---|
| 83 | // compute U | 
|---|
| 84 | Sym3x3 u; | 
|---|
| 85 | u[0] = m[3]*m[5] - m[4]*m[4]; | 
|---|
| 86 | u[1] = m[2]*m[4] - m[1]*m[5]; | 
|---|
| 87 | u[2] = m[1]*m[4] - m[2]*m[3]; | 
|---|
| 88 | u[3] = m[0]*m[5] - m[2]*m[2]; | 
|---|
| 89 | u[4] = m[1]*m[2] - m[4]*m[0]; | 
|---|
| 90 | u[5] = m[0]*m[3] - m[1]*m[1]; | 
|---|
| 91 |  | 
|---|
| 92 | // find the largest component | 
|---|
| 93 | float mc = std::fabs( u[0] ); | 
|---|
| 94 | int mi = 0; | 
|---|
| 95 | for( int i = 1; i < 6; ++i ) | 
|---|
| 96 | { | 
|---|
| 97 | float c = std::fabs( u[i] ); | 
|---|
| 98 | if( c > mc ) | 
|---|
| 99 | { | 
|---|
| 100 | mc = c; | 
|---|
| 101 | mi = i; | 
|---|
| 102 | } | 
|---|
| 103 | } | 
|---|
| 104 |  | 
|---|
| 105 | // pick the column with this component | 
|---|
| 106 | switch( mi ) | 
|---|
| 107 | { | 
|---|
| 108 | case 0: | 
|---|
| 109 | return Vec3( u[0], u[1], u[2] ); | 
|---|
| 110 |  | 
|---|
| 111 | case 1: | 
|---|
| 112 | case 3: | 
|---|
| 113 | return Vec3( u[1], u[3], u[4] ); | 
|---|
| 114 |  | 
|---|
| 115 | default: | 
|---|
| 116 | return Vec3( u[2], u[4], u[5] ); | 
|---|
| 117 | } | 
|---|
| 118 | } | 
|---|
| 119 |  | 
|---|
| 120 | static Vec3 GetMultiplicity2Evector( Sym3x3 const& matrix, float evalue ) | 
|---|
| 121 | { | 
|---|
| 122 | // compute M | 
|---|
| 123 | Sym3x3 m; | 
|---|
| 124 | m[0] = matrix[0] - evalue; | 
|---|
| 125 | m[1] = matrix[1]; | 
|---|
| 126 | m[2] = matrix[2]; | 
|---|
| 127 | m[3] = matrix[3] - evalue; | 
|---|
| 128 | m[4] = matrix[4]; | 
|---|
| 129 | m[5] = matrix[5] - evalue; | 
|---|
| 130 |  | 
|---|
| 131 | // find the largest component | 
|---|
| 132 | float mc = std::fabs( m[0] ); | 
|---|
| 133 | int mi = 0; | 
|---|
| 134 | for( int i = 1; i < 6; ++i ) | 
|---|
| 135 | { | 
|---|
| 136 | float c = std::fabs( m[i] ); | 
|---|
| 137 | if( c > mc ) | 
|---|
| 138 | { | 
|---|
| 139 | mc = c; | 
|---|
| 140 | mi = i; | 
|---|
| 141 | } | 
|---|
| 142 | } | 
|---|
| 143 |  | 
|---|
| 144 | // pick the first eigenvector based on this index | 
|---|
| 145 | switch( mi ) | 
|---|
| 146 | { | 
|---|
| 147 | case 0: | 
|---|
| 148 | case 1: | 
|---|
| 149 | return Vec3( -m[1], m[0], 0.0f ); | 
|---|
| 150 |  | 
|---|
| 151 | case 2: | 
|---|
| 152 | return Vec3( m[2], 0.0f, -m[0] ); | 
|---|
| 153 |  | 
|---|
| 154 | case 3: | 
|---|
| 155 | case 4: | 
|---|
| 156 | return Vec3( 0.0f, -m[4], m[3] ); | 
|---|
| 157 |  | 
|---|
| 158 | default: | 
|---|
| 159 | return Vec3( 0.0f, -m[5], m[4] ); | 
|---|
| 160 | } | 
|---|
| 161 | } | 
|---|
| 162 |  | 
|---|
| 163 | Vec3 ComputePrincipleComponent( Sym3x3 const& matrix ) | 
|---|
| 164 | { | 
|---|
| 165 | // compute the cubic coefficients | 
|---|
| 166 | float c0 = matrix[0]*matrix[3]*matrix[5] | 
|---|
| 167 | + 2.0f*matrix[1]*matrix[2]*matrix[4] | 
|---|
| 168 | - matrix[0]*matrix[4]*matrix[4] | 
|---|
| 169 | - matrix[3]*matrix[2]*matrix[2] | 
|---|
| 170 | - matrix[5]*matrix[1]*matrix[1]; | 
|---|
| 171 | float c1 = matrix[0]*matrix[3] + matrix[0]*matrix[5] + matrix[3]*matrix[5] | 
|---|
| 172 | - matrix[1]*matrix[1] - matrix[2]*matrix[2] - matrix[4]*matrix[4]; | 
|---|
| 173 | float c2 = matrix[0] + matrix[3] + matrix[5]; | 
|---|
| 174 |  | 
|---|
| 175 | // compute the quadratic coefficients | 
|---|
| 176 | float a = c1 - ( 1.0f/3.0f )*c2*c2; | 
|---|
| 177 | float b = ( -2.0f/27.0f )*c2*c2*c2 + ( 1.0f/3.0f )*c1*c2 - c0; | 
|---|
| 178 |  | 
|---|
| 179 | // compute the root count check | 
|---|
| 180 | float Q = 0.25f*b*b + ( 1.0f/27.0f )*a*a*a; | 
|---|
| 181 |  | 
|---|
| 182 | // test the multiplicity | 
|---|
| 183 | if( FLT_EPSILON < Q ) | 
|---|
| 184 | { | 
|---|
| 185 | // only one root, which implies we have a multiple of the identity | 
|---|
| 186 | return Vec3( 1.0f ); | 
|---|
| 187 | } | 
|---|
| 188 | else if( Q < -FLT_EPSILON ) | 
|---|
| 189 | { | 
|---|
| 190 | // three distinct roots | 
|---|
| 191 | float theta = std::atan2( std::sqrt( -Q ), -0.5f*b ); | 
|---|
| 192 | float rho = std::sqrt( 0.25f*b*b - Q ); | 
|---|
| 193 |  | 
|---|
| 194 | float rt = std::pow( rho, 1.0f/3.0f ); | 
|---|
| 195 | float ct = std::cos( theta/3.0f ); | 
|---|
| 196 | float st = std::sin( theta/3.0f ); | 
|---|
| 197 |  | 
|---|
| 198 | float l1 = ( 1.0f/3.0f )*c2 + 2.0f*rt*ct; | 
|---|
| 199 | float l2 = ( 1.0f/3.0f )*c2 - rt*( ct + ( float )sqrt( 3.0f )*st ); | 
|---|
| 200 | float l3 = ( 1.0f/3.0f )*c2 - rt*( ct - ( float )sqrt( 3.0f )*st ); | 
|---|
| 201 |  | 
|---|
| 202 | // pick the larger | 
|---|
| 203 | if( std::fabs( l2 ) > std::fabs( l1 ) ) | 
|---|
| 204 | l1 = l2; | 
|---|
| 205 | if( std::fabs( l3 ) > std::fabs( l1 ) ) | 
|---|
| 206 | l1 = l3; | 
|---|
| 207 |  | 
|---|
| 208 | // get the eigenvector | 
|---|
| 209 | return GetMultiplicity1Evector( matrix, l1 ); | 
|---|
| 210 | } | 
|---|
| 211 | else // if( -FLT_EPSILON <= Q && Q <= FLT_EPSILON ) | 
|---|
| 212 | { | 
|---|
| 213 | // two roots | 
|---|
| 214 | float rt; | 
|---|
| 215 | if( b < 0.0f ) | 
|---|
| 216 | rt = -std::pow( -0.5f*b, 1.0f/3.0f ); | 
|---|
| 217 | else | 
|---|
| 218 | rt = std::pow( 0.5f*b, 1.0f/3.0f ); | 
|---|
| 219 |  | 
|---|
| 220 | float l1 = ( 1.0f/3.0f )*c2 + rt;        // repeated | 
|---|
| 221 | float l2 = ( 1.0f/3.0f )*c2 - 2.0f*rt; | 
|---|
| 222 |  | 
|---|
| 223 | // get the eigenvector | 
|---|
| 224 | if( std::fabs( l1 ) > std::fabs( l2 ) ) | 
|---|
| 225 | return GetMultiplicity2Evector( matrix, l1 ); | 
|---|
| 226 | else | 
|---|
| 227 | return GetMultiplicity1Evector( matrix, l2 ); | 
|---|
| 228 | } | 
|---|
| 229 | } | 
|---|
| 230 |  | 
|---|
| 231 | #else | 
|---|
| 232 |  | 
|---|
| 233 | #define POWER_ITERATION_COUNT    8 | 
|---|
| 234 |  | 
|---|
| 235 | Vec3 ComputePrincipleComponent( Sym3x3 const& matrix ) | 
|---|
| 236 | { | 
|---|
| 237 | Vec4 const row0( matrix[0], matrix[1], matrix[2], 0.0f ); | 
|---|
| 238 | Vec4 const row1( matrix[1], matrix[3], matrix[4], 0.0f ); | 
|---|
| 239 | Vec4 const row2( matrix[2], matrix[4], matrix[5], 0.0f ); | 
|---|
| 240 | Vec4 v = VEC4_CONST( 1.0f ); | 
|---|
| 241 | for( int i = 0; i < POWER_ITERATION_COUNT; ++i ) | 
|---|
| 242 | { | 
|---|
| 243 | // matrix multiply | 
|---|
| 244 | Vec4 w = row0*v.SplatX(); | 
|---|
| 245 | w = MultiplyAdd(row1, v.SplatY(), w); | 
|---|
| 246 | w = MultiplyAdd(row2, v.SplatZ(), w); | 
|---|
| 247 |  | 
|---|
| 248 | // get max component from xyz in all channels | 
|---|
| 249 | Vec4 a = Max(w.SplatX(), Max(w.SplatY(), w.SplatZ())); | 
|---|
| 250 |  | 
|---|
| 251 | // divide through and advance | 
|---|
| 252 | v = w*Reciprocal(a); | 
|---|
| 253 | } | 
|---|
| 254 | return v.GetVec3(); | 
|---|
| 255 | } | 
|---|
| 256 |  | 
|---|
| 257 | #endif | 
|---|
| 258 |  | 
|---|
| 259 | } // namespace squish | 
|---|
| 260 |  | 
|---|