1 | /* ----------------------------------------------------------------------------- |
2 | |
3 | Copyright (c) 2006 Simon Brown si@sjbrown.co.uk |
4 | |
5 | Permission is hereby granted, free of charge, to any person obtaining |
6 | a copy of this software and associated documentation files (the |
7 | "Software"), to deal in the Software without restriction, including |
8 | without limitation the rights to use, copy, modify, merge, publish, |
9 | distribute, sublicense, and/or sell copies of the Software, and to |
10 | permit persons to whom the Software is furnished to do so, subject to |
11 | the following conditions: |
12 | |
13 | The above copyright notice and this permission notice shall be included |
14 | in all copies or substantial portions of the Software. |
15 | |
16 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
17 | OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
18 | MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. |
19 | IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY |
20 | CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, |
21 | TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE |
22 | SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
23 | |
24 | -------------------------------------------------------------------------- */ |
25 | |
26 | /*! @file |
27 | |
28 | The symmetric eigensystem solver algorithm is from |
29 | http://www.geometrictools.com/Documentation/EigenSymmetric3x3.pdf |
30 | */ |
31 | |
32 | #include "maths.h" |
33 | #include "simd.h" |
34 | #include <cfloat> |
35 | |
36 | namespace squish { |
37 | |
38 | Sym3x3 ComputeWeightedCovariance( int n, Vec3 const* points, float const* weights ) |
39 | { |
40 | // compute the centroid |
41 | float total = 0.0f; |
42 | Vec3 centroid( 0.0f ); |
43 | for( int i = 0; i < n; ++i ) |
44 | { |
45 | total += weights[i]; |
46 | centroid += weights[i]*points[i]; |
47 | } |
48 | if( total > FLT_EPSILON ) |
49 | centroid /= total; |
50 | |
51 | // accumulate the covariance matrix |
52 | Sym3x3 covariance( 0.0f ); |
53 | for( int i = 0; i < n; ++i ) |
54 | { |
55 | Vec3 a = points[i] - centroid; |
56 | Vec3 b = weights[i]*a; |
57 | |
58 | covariance[0] += a.X()*b.X(); |
59 | covariance[1] += a.X()*b.Y(); |
60 | covariance[2] += a.X()*b.Z(); |
61 | covariance[3] += a.Y()*b.Y(); |
62 | covariance[4] += a.Y()*b.Z(); |
63 | covariance[5] += a.Z()*b.Z(); |
64 | } |
65 | |
66 | // return it |
67 | return covariance; |
68 | } |
69 | |
70 | #if 0 |
71 | |
72 | static Vec3 GetMultiplicity1Evector( Sym3x3 const& matrix, float evalue ) |
73 | { |
74 | // compute M |
75 | Sym3x3 m; |
76 | m[0] = matrix[0] - evalue; |
77 | m[1] = matrix[1]; |
78 | m[2] = matrix[2]; |
79 | m[3] = matrix[3] - evalue; |
80 | m[4] = matrix[4]; |
81 | m[5] = matrix[5] - evalue; |
82 | |
83 | // compute U |
84 | Sym3x3 u; |
85 | u[0] = m[3]*m[5] - m[4]*m[4]; |
86 | u[1] = m[2]*m[4] - m[1]*m[5]; |
87 | u[2] = m[1]*m[4] - m[2]*m[3]; |
88 | u[3] = m[0]*m[5] - m[2]*m[2]; |
89 | u[4] = m[1]*m[2] - m[4]*m[0]; |
90 | u[5] = m[0]*m[3] - m[1]*m[1]; |
91 | |
92 | // find the largest component |
93 | float mc = std::fabs( u[0] ); |
94 | int mi = 0; |
95 | for( int i = 1; i < 6; ++i ) |
96 | { |
97 | float c = std::fabs( u[i] ); |
98 | if( c > mc ) |
99 | { |
100 | mc = c; |
101 | mi = i; |
102 | } |
103 | } |
104 | |
105 | // pick the column with this component |
106 | switch( mi ) |
107 | { |
108 | case 0: |
109 | return Vec3( u[0], u[1], u[2] ); |
110 | |
111 | case 1: |
112 | case 3: |
113 | return Vec3( u[1], u[3], u[4] ); |
114 | |
115 | default: |
116 | return Vec3( u[2], u[4], u[5] ); |
117 | } |
118 | } |
119 | |
120 | static Vec3 GetMultiplicity2Evector( Sym3x3 const& matrix, float evalue ) |
121 | { |
122 | // compute M |
123 | Sym3x3 m; |
124 | m[0] = matrix[0] - evalue; |
125 | m[1] = matrix[1]; |
126 | m[2] = matrix[2]; |
127 | m[3] = matrix[3] - evalue; |
128 | m[4] = matrix[4]; |
129 | m[5] = matrix[5] - evalue; |
130 | |
131 | // find the largest component |
132 | float mc = std::fabs( m[0] ); |
133 | int mi = 0; |
134 | for( int i = 1; i < 6; ++i ) |
135 | { |
136 | float c = std::fabs( m[i] ); |
137 | if( c > mc ) |
138 | { |
139 | mc = c; |
140 | mi = i; |
141 | } |
142 | } |
143 | |
144 | // pick the first eigenvector based on this index |
145 | switch( mi ) |
146 | { |
147 | case 0: |
148 | case 1: |
149 | return Vec3( -m[1], m[0], 0.0f ); |
150 | |
151 | case 2: |
152 | return Vec3( m[2], 0.0f, -m[0] ); |
153 | |
154 | case 3: |
155 | case 4: |
156 | return Vec3( 0.0f, -m[4], m[3] ); |
157 | |
158 | default: |
159 | return Vec3( 0.0f, -m[5], m[4] ); |
160 | } |
161 | } |
162 | |
163 | Vec3 ComputePrincipleComponent( Sym3x3 const& matrix ) |
164 | { |
165 | // compute the cubic coefficients |
166 | float c0 = matrix[0]*matrix[3]*matrix[5] |
167 | + 2.0f*matrix[1]*matrix[2]*matrix[4] |
168 | - matrix[0]*matrix[4]*matrix[4] |
169 | - matrix[3]*matrix[2]*matrix[2] |
170 | - matrix[5]*matrix[1]*matrix[1]; |
171 | float c1 = matrix[0]*matrix[3] + matrix[0]*matrix[5] + matrix[3]*matrix[5] |
172 | - matrix[1]*matrix[1] - matrix[2]*matrix[2] - matrix[4]*matrix[4]; |
173 | float c2 = matrix[0] + matrix[3] + matrix[5]; |
174 | |
175 | // compute the quadratic coefficients |
176 | float a = c1 - ( 1.0f/3.0f )*c2*c2; |
177 | float b = ( -2.0f/27.0f )*c2*c2*c2 + ( 1.0f/3.0f )*c1*c2 - c0; |
178 | |
179 | // compute the root count check |
180 | float Q = 0.25f*b*b + ( 1.0f/27.0f )*a*a*a; |
181 | |
182 | // test the multiplicity |
183 | if( FLT_EPSILON < Q ) |
184 | { |
185 | // only one root, which implies we have a multiple of the identity |
186 | return Vec3( 1.0f ); |
187 | } |
188 | else if( Q < -FLT_EPSILON ) |
189 | { |
190 | // three distinct roots |
191 | float theta = std::atan2( std::sqrt( -Q ), -0.5f*b ); |
192 | float rho = std::sqrt( 0.25f*b*b - Q ); |
193 | |
194 | float rt = std::pow( rho, 1.0f/3.0f ); |
195 | float ct = std::cos( theta/3.0f ); |
196 | float st = std::sin( theta/3.0f ); |
197 | |
198 | float l1 = ( 1.0f/3.0f )*c2 + 2.0f*rt*ct; |
199 | float l2 = ( 1.0f/3.0f )*c2 - rt*( ct + ( float )sqrt( 3.0f )*st ); |
200 | float l3 = ( 1.0f/3.0f )*c2 - rt*( ct - ( float )sqrt( 3.0f )*st ); |
201 | |
202 | // pick the larger |
203 | if( std::fabs( l2 ) > std::fabs( l1 ) ) |
204 | l1 = l2; |
205 | if( std::fabs( l3 ) > std::fabs( l1 ) ) |
206 | l1 = l3; |
207 | |
208 | // get the eigenvector |
209 | return GetMultiplicity1Evector( matrix, l1 ); |
210 | } |
211 | else // if( -FLT_EPSILON <= Q && Q <= FLT_EPSILON ) |
212 | { |
213 | // two roots |
214 | float rt; |
215 | if( b < 0.0f ) |
216 | rt = -std::pow( -0.5f*b, 1.0f/3.0f ); |
217 | else |
218 | rt = std::pow( 0.5f*b, 1.0f/3.0f ); |
219 | |
220 | float l1 = ( 1.0f/3.0f )*c2 + rt; // repeated |
221 | float l2 = ( 1.0f/3.0f )*c2 - 2.0f*rt; |
222 | |
223 | // get the eigenvector |
224 | if( std::fabs( l1 ) > std::fabs( l2 ) ) |
225 | return GetMultiplicity2Evector( matrix, l1 ); |
226 | else |
227 | return GetMultiplicity1Evector( matrix, l2 ); |
228 | } |
229 | } |
230 | |
231 | #else |
232 | |
233 | #define POWER_ITERATION_COUNT 8 |
234 | |
235 | Vec3 ComputePrincipleComponent( Sym3x3 const& matrix ) |
236 | { |
237 | Vec4 const row0( matrix[0], matrix[1], matrix[2], 0.0f ); |
238 | Vec4 const row1( matrix[1], matrix[3], matrix[4], 0.0f ); |
239 | Vec4 const row2( matrix[2], matrix[4], matrix[5], 0.0f ); |
240 | Vec4 v = VEC4_CONST( 1.0f ); |
241 | for( int i = 0; i < POWER_ITERATION_COUNT; ++i ) |
242 | { |
243 | // matrix multiply |
244 | Vec4 w = row0*v.SplatX(); |
245 | w = MultiplyAdd(row1, v.SplatY(), w); |
246 | w = MultiplyAdd(row2, v.SplatZ(), w); |
247 | |
248 | // get max component from xyz in all channels |
249 | Vec4 a = Max(w.SplatX(), Max(w.SplatY(), w.SplatZ())); |
250 | |
251 | // divide through and advance |
252 | v = w*Reciprocal(a); |
253 | } |
254 | return v.GetVec3(); |
255 | } |
256 | |
257 | #endif |
258 | |
259 | } // namespace squish |
260 | |