| 1 | /* ----------------------------------------------------------------------------- |
| 2 | |
| 3 | Copyright (c) 2006 Simon Brown si@sjbrown.co.uk |
| 4 | |
| 5 | Permission is hereby granted, free of charge, to any person obtaining |
| 6 | a copy of this software and associated documentation files (the |
| 7 | "Software"), to deal in the Software without restriction, including |
| 8 | without limitation the rights to use, copy, modify, merge, publish, |
| 9 | distribute, sublicense, and/or sell copies of the Software, and to |
| 10 | permit persons to whom the Software is furnished to do so, subject to |
| 11 | the following conditions: |
| 12 | |
| 13 | The above copyright notice and this permission notice shall be included |
| 14 | in all copies or substantial portions of the Software. |
| 15 | |
| 16 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
| 17 | OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| 18 | MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. |
| 19 | IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY |
| 20 | CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, |
| 21 | TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE |
| 22 | SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| 23 | |
| 24 | -------------------------------------------------------------------------- */ |
| 25 | |
| 26 | #include <string.h> |
| 27 | #include "squish.h" |
| 28 | #include "colourset.h" |
| 29 | #include "maths.h" |
| 30 | #include "rangefit.h" |
| 31 | #include "clusterfit.h" |
| 32 | #include "colourblock.h" |
| 33 | #include "alpha.h" |
| 34 | #include "singlecolourfit.h" |
| 35 | |
| 36 | namespace squish { |
| 37 | |
| 38 | static int FixFlags( int flags ) |
| 39 | { |
| 40 | // grab the flag bits |
| 41 | int method = flags & ( kDxt1 | kDxt3 | kDxt5 | kBc4 | kBc5 ); |
| 42 | int fit = flags & ( kColourIterativeClusterFit | kColourClusterFit | kColourRangeFit ); |
| 43 | int = flags & kWeightColourByAlpha; |
| 44 | |
| 45 | // set defaults |
| 46 | if ( method != kDxt3 |
| 47 | && method != kDxt5 |
| 48 | && method != kBc4 |
| 49 | && method != kBc5 ) |
| 50 | { |
| 51 | method = kDxt1; |
| 52 | } |
| 53 | if( fit != kColourRangeFit && fit != kColourIterativeClusterFit ) |
| 54 | fit = kColourClusterFit; |
| 55 | |
| 56 | // done |
| 57 | return method | fit | extra; |
| 58 | } |
| 59 | |
| 60 | void CompressMasked( u8 const* rgba, int mask, void* block, int flags, float* metric ) |
| 61 | { |
| 62 | // fix any bad flags |
| 63 | flags = FixFlags( flags ); |
| 64 | |
| 65 | if ( ( flags & ( kBc4 | kBc5 ) ) != 0 ) |
| 66 | { |
| 67 | u8 alpha[16*4]; |
| 68 | for( int i = 0; i < 16; ++i ) |
| 69 | { |
| 70 | alpha[i*4 + 3] = rgba[i*4 + 0]; // copy R to A |
| 71 | } |
| 72 | |
| 73 | u8* rBlock = reinterpret_cast< u8* >( block ); |
| 74 | CompressAlphaDxt5( alpha, mask, rBlock ); |
| 75 | |
| 76 | if ( ( flags & ( kBc5 ) ) != 0 ) |
| 77 | { |
| 78 | for( int i = 0; i < 16; ++i ) |
| 79 | { |
| 80 | alpha[i*4 + 3] = rgba[i*4 + 1]; // copy G to A |
| 81 | } |
| 82 | |
| 83 | u8* gBlock = reinterpret_cast< u8* >( block ) + 8; |
| 84 | CompressAlphaDxt5( alpha, mask, gBlock ); |
| 85 | } |
| 86 | |
| 87 | return; |
| 88 | } |
| 89 | |
| 90 | // get the block locations |
| 91 | void* colourBlock = block; |
| 92 | void* alphaBlock = block; |
| 93 | if( ( flags & ( kDxt3 | kDxt5 ) ) != 0 ) |
| 94 | colourBlock = reinterpret_cast< u8* >( block ) + 8; |
| 95 | |
| 96 | // create the minimal point set |
| 97 | ColourSet colours( rgba, mask, flags ); |
| 98 | |
| 99 | // check the compression type and compress colour |
| 100 | if( colours.GetCount() == 1 ) |
| 101 | { |
| 102 | // always do a single colour fit |
| 103 | SingleColourFit fit( &colours, flags ); |
| 104 | fit.Compress( colourBlock ); |
| 105 | } |
| 106 | else if( ( flags & kColourRangeFit ) != 0 || colours.GetCount() == 0 ) |
| 107 | { |
| 108 | // do a range fit |
| 109 | RangeFit fit( &colours, flags, metric ); |
| 110 | fit.Compress( colourBlock ); |
| 111 | } |
| 112 | else |
| 113 | { |
| 114 | // default to a cluster fit (could be iterative or not) |
| 115 | ClusterFit fit( &colours, flags, metric ); |
| 116 | fit.Compress( colourBlock ); |
| 117 | } |
| 118 | |
| 119 | // compress alpha separately if necessary |
| 120 | if( ( flags & kDxt3 ) != 0 ) |
| 121 | CompressAlphaDxt3( rgba, mask, alphaBlock ); |
| 122 | else if( ( flags & kDxt5 ) != 0 ) |
| 123 | CompressAlphaDxt5( rgba, mask, alphaBlock ); |
| 124 | } |
| 125 | |
| 126 | void Decompress( u8* rgba, void const* block, int flags ) |
| 127 | { |
| 128 | // fix any bad flags |
| 129 | flags = FixFlags( flags ); |
| 130 | |
| 131 | // get the block locations |
| 132 | void const* colourBlock = block; |
| 133 | void const* alphaBlock = block; |
| 134 | if( ( flags & ( kDxt3 | kDxt5 ) ) != 0 ) |
| 135 | colourBlock = reinterpret_cast< u8 const* >( block ) + 8; |
| 136 | |
| 137 | // decompress colour |
| 138 | // -- GODOT start -- |
| 139 | //DecompressColour( rgba, colourBlock, ( flags & kDxt1 ) != 0 ); |
| 140 | if(( flags & ( kBc5 ) ) != 0) |
| 141 | DecompressColourBc5( rgba, colourBlock); |
| 142 | else |
| 143 | DecompressColour( rgba, colourBlock, ( flags & kDxt1 ) != 0 ); |
| 144 | // -- GODOT end -- |
| 145 | |
| 146 | // decompress alpha separately if necessary |
| 147 | if( ( flags & kDxt3 ) != 0 ) |
| 148 | DecompressAlphaDxt3( rgba, alphaBlock ); |
| 149 | else if( ( flags & kDxt5 ) != 0 ) |
| 150 | DecompressAlphaDxt5( rgba, alphaBlock ); |
| 151 | } |
| 152 | |
| 153 | int GetStorageRequirements( int width, int height, int flags ) |
| 154 | { |
| 155 | // fix any bad flags |
| 156 | flags = FixFlags( flags ); |
| 157 | |
| 158 | // compute the storage requirements |
| 159 | int blockcount = ( ( width + 3 )/4 ) * ( ( height + 3 )/4 ); |
| 160 | int blocksize = ( ( flags & ( kDxt1 | kBc4 ) ) != 0 ) ? 8 : 16; |
| 161 | return blockcount*blocksize; |
| 162 | } |
| 163 | |
| 164 | void CopyRGBA( u8 const* source, u8* dest, int flags ) |
| 165 | { |
| 166 | if (flags & kSourceBGRA) |
| 167 | { |
| 168 | // convert from bgra to rgba |
| 169 | dest[0] = source[2]; |
| 170 | dest[1] = source[1]; |
| 171 | dest[2] = source[0]; |
| 172 | dest[3] = source[3]; |
| 173 | } |
| 174 | else |
| 175 | { |
| 176 | for( int i = 0; i < 4; ++i ) |
| 177 | *dest++ = *source++; |
| 178 | } |
| 179 | } |
| 180 | |
| 181 | void CompressImage( u8 const* rgba, int width, int height, int pitch, void* blocks, int flags, float* metric ) |
| 182 | { |
| 183 | // fix any bad flags |
| 184 | flags = FixFlags( flags ); |
| 185 | |
| 186 | // loop over blocks |
| 187 | #ifdef SQUISH_USE_OPENMP |
| 188 | # pragma omp parallel for |
| 189 | #endif |
| 190 | for( int y = 0; y < height; y += 4 ) |
| 191 | { |
| 192 | // initialise the block output |
| 193 | u8* targetBlock = reinterpret_cast< u8* >( blocks ); |
| 194 | int bytesPerBlock = ( ( flags & ( kDxt1 | kBc4 ) ) != 0 ) ? 8 : 16; |
| 195 | targetBlock += ( (y / 4) * ( (width + 3) / 4) ) * bytesPerBlock; |
| 196 | |
| 197 | for( int x = 0; x < width; x += 4 ) |
| 198 | { |
| 199 | // build the 4x4 block of pixels |
| 200 | u8 sourceRgba[16*4]; |
| 201 | u8* targetPixel = sourceRgba; |
| 202 | int mask = 0; |
| 203 | for( int py = 0; py < 4; ++py ) |
| 204 | { |
| 205 | for( int px = 0; px < 4; ++px ) |
| 206 | { |
| 207 | // get the source pixel in the image |
| 208 | int sx = x + px; |
| 209 | int sy = y + py; |
| 210 | |
| 211 | // enable if we're in the image |
| 212 | if( sx < width && sy < height ) |
| 213 | { |
| 214 | // copy the rgba value |
| 215 | u8 const* sourcePixel = rgba + pitch*sy + 4*sx; |
| 216 | CopyRGBA(sourcePixel, targetPixel, flags); |
| 217 | // enable this pixel |
| 218 | mask |= ( 1 << ( 4*py + px ) ); |
| 219 | } |
| 220 | |
| 221 | // advance to the next pixel |
| 222 | targetPixel += 4; |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | // compress it into the output |
| 227 | CompressMasked( sourceRgba, mask, targetBlock, flags, metric ); |
| 228 | |
| 229 | // advance |
| 230 | targetBlock += bytesPerBlock; |
| 231 | } |
| 232 | } |
| 233 | } |
| 234 | |
| 235 | void CompressImage( u8 const* rgba, int width, int height, void* blocks, int flags, float* metric ) |
| 236 | { |
| 237 | CompressImage(rgba, width, height, width*4, blocks, flags, metric); |
| 238 | } |
| 239 | |
| 240 | void DecompressImage( u8* rgba, int width, int height, int pitch, void const* blocks, int flags ) |
| 241 | { |
| 242 | // fix any bad flags |
| 243 | flags = FixFlags( flags ); |
| 244 | |
| 245 | // loop over blocks |
| 246 | #ifdef SQUISH_USE_OPENMP |
| 247 | # pragma omp parallel for |
| 248 | #endif |
| 249 | for( int y = 0; y < height; y += 4 ) |
| 250 | { |
| 251 | // initialise the block input |
| 252 | u8 const* sourceBlock = reinterpret_cast< u8 const* >( blocks ); |
| 253 | int bytesPerBlock = ( ( flags & ( kDxt1 | kBc4 ) ) != 0 ) ? 8 : 16; |
| 254 | sourceBlock += ( (y / 4) * ( (width + 3) / 4) ) * bytesPerBlock; |
| 255 | |
| 256 | for( int x = 0; x < width; x += 4 ) |
| 257 | { |
| 258 | // decompress the block |
| 259 | u8 targetRgba[4*16]; |
| 260 | Decompress( targetRgba, sourceBlock, flags ); |
| 261 | |
| 262 | // write the decompressed pixels to the correct image locations |
| 263 | u8 const* sourcePixel = targetRgba; |
| 264 | for( int py = 0; py < 4; ++py ) |
| 265 | { |
| 266 | for( int px = 0; px < 4; ++px ) |
| 267 | { |
| 268 | // get the target location |
| 269 | int sx = x + px; |
| 270 | int sy = y + py; |
| 271 | |
| 272 | // write if we're in the image |
| 273 | if( sx < width && sy < height ) |
| 274 | { |
| 275 | // copy the rgba value |
| 276 | u8* targetPixel = rgba + pitch*sy + 4*sx; |
| 277 | CopyRGBA(sourcePixel, targetPixel, flags); |
| 278 | } |
| 279 | |
| 280 | // advance to the next pixel |
| 281 | sourcePixel += 4; |
| 282 | } |
| 283 | } |
| 284 | |
| 285 | // advance |
| 286 | sourceBlock += bytesPerBlock; |
| 287 | } |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | void DecompressImage( u8* rgba, int width, int height, void const* blocks, int flags ) |
| 292 | { |
| 293 | DecompressImage( rgba, width, height, width*4, blocks, flags ); |
| 294 | } |
| 295 | |
| 296 | static double ErrorSq(double x, double y) |
| 297 | { |
| 298 | return (x - y) * (x - y); |
| 299 | } |
| 300 | |
| 301 | static void ComputeBlockWMSE(u8 const *original, u8 const *compressed, unsigned int w, unsigned int h, double &cmse, double &amse) |
| 302 | { |
| 303 | // Computes the MSE for the block and weights it by the variance of the original block. |
| 304 | // If the variance of the original block is less than 4 (i.e. a standard deviation of 1 per channel) |
| 305 | // then the block is close to being a single colour. Quantisation errors in single colour blocks |
| 306 | // are easier to see than similar errors in blocks that contain more colours, particularly when there |
| 307 | // are many such blocks in a large area (eg a blue sky background) as they cause banding. Given that |
| 308 | // banding is easier to see than small errors in "complex" blocks, we weight the errors by a factor |
| 309 | // of 5. This implies that images with large, single colour areas will have a higher potential WMSE |
| 310 | // than images with lots of detail. |
| 311 | |
| 312 | cmse = amse = 0; |
| 313 | unsigned int sum_p[4]; // per channel sum of pixels |
| 314 | unsigned int sum_p2[4]; // per channel sum of pixels squared |
| 315 | memset(sum_p, 0, sizeof(sum_p)); |
| 316 | memset(sum_p2, 0, sizeof(sum_p2)); |
| 317 | for( unsigned int py = 0; py < 4; ++py ) |
| 318 | { |
| 319 | for( unsigned int px = 0; px < 4; ++px ) |
| 320 | { |
| 321 | if( px < w && py < h ) |
| 322 | { |
| 323 | double pixelCMSE = 0; |
| 324 | for( int i = 0; i < 3; ++i ) |
| 325 | { |
| 326 | pixelCMSE += ErrorSq(original[i], compressed[i]); |
| 327 | sum_p[i] += original[i]; |
| 328 | sum_p2[i] += (unsigned int)original[i]*original[i]; |
| 329 | } |
| 330 | if( original[3] == 0 && compressed[3] == 0 ) |
| 331 | pixelCMSE = 0; // transparent in both, so colour is inconsequential |
| 332 | amse += ErrorSq(original[3], compressed[3]); |
| 333 | cmse += pixelCMSE; |
| 334 | sum_p[3] += original[3]; |
| 335 | sum_p2[3] += (unsigned int)original[3]*original[3]; |
| 336 | } |
| 337 | original += 4; |
| 338 | compressed += 4; |
| 339 | } |
| 340 | } |
| 341 | unsigned int variance = 0; |
| 342 | for( int i = 0; i < 4; ++i ) |
| 343 | variance += w*h*sum_p2[i] - sum_p[i]*sum_p[i]; |
| 344 | if( variance < 4 * w * w * h * h ) |
| 345 | { |
| 346 | amse *= 5; |
| 347 | cmse *= 5; |
| 348 | } |
| 349 | } |
| 350 | |
| 351 | void ComputeMSE( u8 const *rgba, int width, int height, int pitch, u8 const *dxt, int flags, double &colourMSE, double &alphaMSE ) |
| 352 | { |
| 353 | // fix any bad flags |
| 354 | flags = FixFlags( flags ); |
| 355 | colourMSE = alphaMSE = 0; |
| 356 | |
| 357 | // initialise the block input |
| 358 | squish::u8 const* sourceBlock = dxt; |
| 359 | int bytesPerBlock = ( ( flags & squish::kDxt1 ) != 0 ) ? 8 : 16; |
| 360 | |
| 361 | // loop over blocks |
| 362 | for( int y = 0; y < height; y += 4 ) |
| 363 | { |
| 364 | for( int x = 0; x < width; x += 4 ) |
| 365 | { |
| 366 | // decompress the block |
| 367 | u8 targetRgba[4*16]; |
| 368 | Decompress( targetRgba, sourceBlock, flags ); |
| 369 | u8 const* sourcePixel = targetRgba; |
| 370 | |
| 371 | // copy across to a similar pixel block |
| 372 | u8 originalRgba[4*16]; |
| 373 | u8* originalPixel = originalRgba; |
| 374 | |
| 375 | for( int py = 0; py < 4; ++py ) |
| 376 | { |
| 377 | for( int px = 0; px < 4; ++px ) |
| 378 | { |
| 379 | int sx = x + px; |
| 380 | int sy = y + py; |
| 381 | if( sx < width && sy < height ) |
| 382 | { |
| 383 | u8 const* targetPixel = rgba + pitch*sy + 4*sx; |
| 384 | CopyRGBA(targetPixel, originalPixel, flags); |
| 385 | } |
| 386 | sourcePixel += 4; |
| 387 | originalPixel += 4; |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | // compute the weighted MSE of the block |
| 392 | double blockCMSE, blockAMSE; |
| 393 | ComputeBlockWMSE(originalRgba, targetRgba, std::min(4, width - x), std::min(4, height - y), blockCMSE, blockAMSE); |
| 394 | colourMSE += blockCMSE; |
| 395 | alphaMSE += blockAMSE; |
| 396 | // advance |
| 397 | sourceBlock += bytesPerBlock; |
| 398 | } |
| 399 | } |
| 400 | colourMSE /= (width * height * 3); |
| 401 | alphaMSE /= (width * height); |
| 402 | } |
| 403 | |
| 404 | void ComputeMSE( u8 const *rgba, int width, int height, u8 const *dxt, int flags, double &colourMSE, double &alphaMSE ) |
| 405 | { |
| 406 | ComputeMSE(rgba, width, height, width*4, dxt, flags, colourMSE, alphaMSE); |
| 407 | } |
| 408 | |
| 409 | } // namespace squish |
| 410 | |