1 | /* |
2 | * Copyright (c) Meta Platforms, Inc. and affiliates. |
3 | * All rights reserved. |
4 | * |
5 | * This source code is licensed under both the BSD-style license (found in the |
6 | * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
7 | * in the COPYING file in the root directory of this source tree). |
8 | * You may select, at your option, one of the above-listed licenses. |
9 | */ |
10 | |
11 | |
12 | /* ====== Compiler specifics ====== */ |
13 | #if defined(_MSC_VER) |
14 | # pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */ |
15 | #endif |
16 | |
17 | |
18 | /* ====== Constants ====== */ |
19 | #define ZSTDMT_OVERLAPLOG_DEFAULT 0 |
20 | |
21 | |
22 | /* ====== Dependencies ====== */ |
23 | #include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customCalloc, ZSTD_customFree */ |
24 | #include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset, INT_MAX, UINT_MAX */ |
25 | #include "../common/mem.h" /* MEM_STATIC */ |
26 | #include "../common/pool.h" /* threadpool */ |
27 | #include "../common/threading.h" /* mutex */ |
28 | #include "zstd_compress_internal.h" /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */ |
29 | #include "zstd_ldm.h" |
30 | #include "zstdmt_compress.h" |
31 | |
32 | /* Guards code to support resizing the SeqPool. |
33 | * We will want to resize the SeqPool to save memory in the future. |
34 | * Until then, comment the code out since it is unused. |
35 | */ |
36 | #define ZSTD_RESIZE_SEQPOOL 0 |
37 | |
38 | /* ====== Debug ====== */ |
39 | #if defined(DEBUGLEVEL) && (DEBUGLEVEL>=2) \ |
40 | && !defined(_MSC_VER) \ |
41 | && !defined(__MINGW32__) |
42 | |
43 | # include <stdio.h> |
44 | # include <unistd.h> |
45 | # include <sys/times.h> |
46 | |
47 | # define DEBUG_PRINTHEX(l,p,n) { \ |
48 | unsigned debug_u; \ |
49 | for (debug_u=0; debug_u<(n); debug_u++) \ |
50 | RAWLOG(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \ |
51 | RAWLOG(l, " \n"); \ |
52 | } |
53 | |
54 | static unsigned long long GetCurrentClockTimeMicroseconds(void) |
55 | { |
56 | static clock_t _ticksPerSecond = 0; |
57 | if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK); |
58 | |
59 | { struct tms junk; clock_t newTicks = (clock_t) times(&junk); |
60 | return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond); |
61 | } } |
62 | |
63 | #define MUTEX_WAIT_TIME_DLEVEL 6 |
64 | #define ZSTD_PTHREAD_MUTEX_LOCK(mutex) { \ |
65 | if (DEBUGLEVEL >= MUTEX_WAIT_TIME_DLEVEL) { \ |
66 | unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds(); \ |
67 | ZSTD_pthread_mutex_lock(mutex); \ |
68 | { unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \ |
69 | unsigned long long const elapsedTime = (afterTime-beforeTime); \ |
70 | if (elapsedTime > 1000) { /* or whatever threshold you like; I'm using 1 millisecond here */ \ |
71 | DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, "Thread took %llu microseconds to acquire mutex %s \n", \ |
72 | elapsedTime, #mutex); \ |
73 | } } \ |
74 | } else { \ |
75 | ZSTD_pthread_mutex_lock(mutex); \ |
76 | } \ |
77 | } |
78 | |
79 | #else |
80 | |
81 | # define ZSTD_PTHREAD_MUTEX_LOCK(m) ZSTD_pthread_mutex_lock(m) |
82 | # define DEBUG_PRINTHEX(l,p,n) {} |
83 | |
84 | #endif |
85 | |
86 | |
87 | /* ===== Buffer Pool ===== */ |
88 | /* a single Buffer Pool can be invoked from multiple threads in parallel */ |
89 | |
90 | typedef struct buffer_s { |
91 | void* start; |
92 | size_t capacity; |
93 | } buffer_t; |
94 | |
95 | static const buffer_t g_nullBuffer = { NULL, 0 }; |
96 | |
97 | typedef struct ZSTDMT_bufferPool_s { |
98 | ZSTD_pthread_mutex_t poolMutex; |
99 | size_t bufferSize; |
100 | unsigned totalBuffers; |
101 | unsigned nbBuffers; |
102 | ZSTD_customMem cMem; |
103 | buffer_t bTable[1]; /* variable size */ |
104 | } ZSTDMT_bufferPool; |
105 | |
106 | static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned maxNbBuffers, ZSTD_customMem cMem) |
107 | { |
108 | ZSTDMT_bufferPool* const bufPool = (ZSTDMT_bufferPool*)ZSTD_customCalloc( |
109 | sizeof(ZSTDMT_bufferPool) + (maxNbBuffers-1) * sizeof(buffer_t), cMem); |
110 | if (bufPool==NULL) return NULL; |
111 | if (ZSTD_pthread_mutex_init(&bufPool->poolMutex, NULL)) { |
112 | ZSTD_customFree(bufPool, cMem); |
113 | return NULL; |
114 | } |
115 | bufPool->bufferSize = 64 KB; |
116 | bufPool->totalBuffers = maxNbBuffers; |
117 | bufPool->nbBuffers = 0; |
118 | bufPool->cMem = cMem; |
119 | return bufPool; |
120 | } |
121 | |
122 | static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool) |
123 | { |
124 | unsigned u; |
125 | DEBUGLOG(3, "ZSTDMT_freeBufferPool (address:%08X)" , (U32)(size_t)bufPool); |
126 | if (!bufPool) return; /* compatibility with free on NULL */ |
127 | for (u=0; u<bufPool->totalBuffers; u++) { |
128 | DEBUGLOG(4, "free buffer %2u (address:%08X)" , u, (U32)(size_t)bufPool->bTable[u].start); |
129 | ZSTD_customFree(bufPool->bTable[u].start, bufPool->cMem); |
130 | } |
131 | ZSTD_pthread_mutex_destroy(&bufPool->poolMutex); |
132 | ZSTD_customFree(bufPool, bufPool->cMem); |
133 | } |
134 | |
135 | /* only works at initialization, not during compression */ |
136 | static size_t ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool* bufPool) |
137 | { |
138 | size_t const poolSize = sizeof(*bufPool) |
139 | + (bufPool->totalBuffers - 1) * sizeof(buffer_t); |
140 | unsigned u; |
141 | size_t totalBufferSize = 0; |
142 | ZSTD_pthread_mutex_lock(&bufPool->poolMutex); |
143 | for (u=0; u<bufPool->totalBuffers; u++) |
144 | totalBufferSize += bufPool->bTable[u].capacity; |
145 | ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); |
146 | |
147 | return poolSize + totalBufferSize; |
148 | } |
149 | |
150 | /* ZSTDMT_setBufferSize() : |
151 | * all future buffers provided by this buffer pool will have _at least_ this size |
152 | * note : it's better for all buffers to have same size, |
153 | * as they become freely interchangeable, reducing malloc/free usages and memory fragmentation */ |
154 | static void ZSTDMT_setBufferSize(ZSTDMT_bufferPool* const bufPool, size_t const bSize) |
155 | { |
156 | ZSTD_pthread_mutex_lock(&bufPool->poolMutex); |
157 | DEBUGLOG(4, "ZSTDMT_setBufferSize: bSize = %u" , (U32)bSize); |
158 | bufPool->bufferSize = bSize; |
159 | ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); |
160 | } |
161 | |
162 | |
163 | static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool, unsigned maxNbBuffers) |
164 | { |
165 | if (srcBufPool==NULL) return NULL; |
166 | if (srcBufPool->totalBuffers >= maxNbBuffers) /* good enough */ |
167 | return srcBufPool; |
168 | /* need a larger buffer pool */ |
169 | { ZSTD_customMem const cMem = srcBufPool->cMem; |
170 | size_t const bSize = srcBufPool->bufferSize; /* forward parameters */ |
171 | ZSTDMT_bufferPool* newBufPool; |
172 | ZSTDMT_freeBufferPool(srcBufPool); |
173 | newBufPool = ZSTDMT_createBufferPool(maxNbBuffers, cMem); |
174 | if (newBufPool==NULL) return newBufPool; |
175 | ZSTDMT_setBufferSize(newBufPool, bSize); |
176 | return newBufPool; |
177 | } |
178 | } |
179 | |
180 | /** ZSTDMT_getBuffer() : |
181 | * assumption : bufPool must be valid |
182 | * @return : a buffer, with start pointer and size |
183 | * note: allocation may fail, in this case, start==NULL and size==0 */ |
184 | static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* bufPool) |
185 | { |
186 | size_t const bSize = bufPool->bufferSize; |
187 | DEBUGLOG(5, "ZSTDMT_getBuffer: bSize = %u" , (U32)bufPool->bufferSize); |
188 | ZSTD_pthread_mutex_lock(&bufPool->poolMutex); |
189 | if (bufPool->nbBuffers) { /* try to use an existing buffer */ |
190 | buffer_t const buf = bufPool->bTable[--(bufPool->nbBuffers)]; |
191 | size_t const availBufferSize = buf.capacity; |
192 | bufPool->bTable[bufPool->nbBuffers] = g_nullBuffer; |
193 | if ((availBufferSize >= bSize) & ((availBufferSize>>3) <= bSize)) { |
194 | /* large enough, but not too much */ |
195 | DEBUGLOG(5, "ZSTDMT_getBuffer: provide buffer %u of size %u" , |
196 | bufPool->nbBuffers, (U32)buf.capacity); |
197 | ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); |
198 | return buf; |
199 | } |
200 | /* size conditions not respected : scratch this buffer, create new one */ |
201 | DEBUGLOG(5, "ZSTDMT_getBuffer: existing buffer does not meet size conditions => freeing" ); |
202 | ZSTD_customFree(buf.start, bufPool->cMem); |
203 | } |
204 | ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); |
205 | /* create new buffer */ |
206 | DEBUGLOG(5, "ZSTDMT_getBuffer: create a new buffer" ); |
207 | { buffer_t buffer; |
208 | void* const start = ZSTD_customMalloc(bSize, bufPool->cMem); |
209 | buffer.start = start; /* note : start can be NULL if malloc fails ! */ |
210 | buffer.capacity = (start==NULL) ? 0 : bSize; |
211 | if (start==NULL) { |
212 | DEBUGLOG(5, "ZSTDMT_getBuffer: buffer allocation failure !!" ); |
213 | } else { |
214 | DEBUGLOG(5, "ZSTDMT_getBuffer: created buffer of size %u" , (U32)bSize); |
215 | } |
216 | return buffer; |
217 | } |
218 | } |
219 | |
220 | #if ZSTD_RESIZE_SEQPOOL |
221 | /** ZSTDMT_resizeBuffer() : |
222 | * assumption : bufPool must be valid |
223 | * @return : a buffer that is at least the buffer pool buffer size. |
224 | * If a reallocation happens, the data in the input buffer is copied. |
225 | */ |
226 | static buffer_t ZSTDMT_resizeBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buffer) |
227 | { |
228 | size_t const bSize = bufPool->bufferSize; |
229 | if (buffer.capacity < bSize) { |
230 | void* const start = ZSTD_customMalloc(bSize, bufPool->cMem); |
231 | buffer_t newBuffer; |
232 | newBuffer.start = start; |
233 | newBuffer.capacity = start == NULL ? 0 : bSize; |
234 | if (start != NULL) { |
235 | assert(newBuffer.capacity >= buffer.capacity); |
236 | ZSTD_memcpy(newBuffer.start, buffer.start, buffer.capacity); |
237 | DEBUGLOG(5, "ZSTDMT_resizeBuffer: created buffer of size %u" , (U32)bSize); |
238 | return newBuffer; |
239 | } |
240 | DEBUGLOG(5, "ZSTDMT_resizeBuffer: buffer allocation failure !!" ); |
241 | } |
242 | return buffer; |
243 | } |
244 | #endif |
245 | |
246 | /* store buffer for later re-use, up to pool capacity */ |
247 | static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buf) |
248 | { |
249 | DEBUGLOG(5, "ZSTDMT_releaseBuffer" ); |
250 | if (buf.start == NULL) return; /* compatible with release on NULL */ |
251 | ZSTD_pthread_mutex_lock(&bufPool->poolMutex); |
252 | if (bufPool->nbBuffers < bufPool->totalBuffers) { |
253 | bufPool->bTable[bufPool->nbBuffers++] = buf; /* stored for later use */ |
254 | DEBUGLOG(5, "ZSTDMT_releaseBuffer: stored buffer of size %u in slot %u" , |
255 | (U32)buf.capacity, (U32)(bufPool->nbBuffers-1)); |
256 | ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); |
257 | return; |
258 | } |
259 | ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); |
260 | /* Reached bufferPool capacity (should not happen) */ |
261 | DEBUGLOG(5, "ZSTDMT_releaseBuffer: pool capacity reached => freeing " ); |
262 | ZSTD_customFree(buf.start, bufPool->cMem); |
263 | } |
264 | |
265 | /* We need 2 output buffers per worker since each dstBuff must be flushed after it is released. |
266 | * The 3 additional buffers are as follows: |
267 | * 1 buffer for input loading |
268 | * 1 buffer for "next input" when submitting current one |
269 | * 1 buffer stuck in queue */ |
270 | #define BUF_POOL_MAX_NB_BUFFERS(nbWorkers) (2*(nbWorkers) + 3) |
271 | |
272 | /* After a worker releases its rawSeqStore, it is immediately ready for reuse. |
273 | * So we only need one seq buffer per worker. */ |
274 | #define SEQ_POOL_MAX_NB_BUFFERS(nbWorkers) (nbWorkers) |
275 | |
276 | /* ===== Seq Pool Wrapper ====== */ |
277 | |
278 | typedef ZSTDMT_bufferPool ZSTDMT_seqPool; |
279 | |
280 | static size_t ZSTDMT_sizeof_seqPool(ZSTDMT_seqPool* seqPool) |
281 | { |
282 | return ZSTDMT_sizeof_bufferPool(seqPool); |
283 | } |
284 | |
285 | static rawSeqStore_t bufferToSeq(buffer_t buffer) |
286 | { |
287 | rawSeqStore_t seq = kNullRawSeqStore; |
288 | seq.seq = (rawSeq*)buffer.start; |
289 | seq.capacity = buffer.capacity / sizeof(rawSeq); |
290 | return seq; |
291 | } |
292 | |
293 | static buffer_t seqToBuffer(rawSeqStore_t seq) |
294 | { |
295 | buffer_t buffer; |
296 | buffer.start = seq.seq; |
297 | buffer.capacity = seq.capacity * sizeof(rawSeq); |
298 | return buffer; |
299 | } |
300 | |
301 | static rawSeqStore_t ZSTDMT_getSeq(ZSTDMT_seqPool* seqPool) |
302 | { |
303 | if (seqPool->bufferSize == 0) { |
304 | return kNullRawSeqStore; |
305 | } |
306 | return bufferToSeq(ZSTDMT_getBuffer(seqPool)); |
307 | } |
308 | |
309 | #if ZSTD_RESIZE_SEQPOOL |
310 | static rawSeqStore_t ZSTDMT_resizeSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq) |
311 | { |
312 | return bufferToSeq(ZSTDMT_resizeBuffer(seqPool, seqToBuffer(seq))); |
313 | } |
314 | #endif |
315 | |
316 | static void ZSTDMT_releaseSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq) |
317 | { |
318 | ZSTDMT_releaseBuffer(seqPool, seqToBuffer(seq)); |
319 | } |
320 | |
321 | static void ZSTDMT_setNbSeq(ZSTDMT_seqPool* const seqPool, size_t const nbSeq) |
322 | { |
323 | ZSTDMT_setBufferSize(seqPool, nbSeq * sizeof(rawSeq)); |
324 | } |
325 | |
326 | static ZSTDMT_seqPool* ZSTDMT_createSeqPool(unsigned nbWorkers, ZSTD_customMem cMem) |
327 | { |
328 | ZSTDMT_seqPool* const seqPool = ZSTDMT_createBufferPool(SEQ_POOL_MAX_NB_BUFFERS(nbWorkers), cMem); |
329 | if (seqPool == NULL) return NULL; |
330 | ZSTDMT_setNbSeq(seqPool, 0); |
331 | return seqPool; |
332 | } |
333 | |
334 | static void ZSTDMT_freeSeqPool(ZSTDMT_seqPool* seqPool) |
335 | { |
336 | ZSTDMT_freeBufferPool(seqPool); |
337 | } |
338 | |
339 | static ZSTDMT_seqPool* ZSTDMT_expandSeqPool(ZSTDMT_seqPool* pool, U32 nbWorkers) |
340 | { |
341 | return ZSTDMT_expandBufferPool(pool, SEQ_POOL_MAX_NB_BUFFERS(nbWorkers)); |
342 | } |
343 | |
344 | |
345 | /* ===== CCtx Pool ===== */ |
346 | /* a single CCtx Pool can be invoked from multiple threads in parallel */ |
347 | |
348 | typedef struct { |
349 | ZSTD_pthread_mutex_t poolMutex; |
350 | int totalCCtx; |
351 | int availCCtx; |
352 | ZSTD_customMem cMem; |
353 | ZSTD_CCtx* cctx[1]; /* variable size */ |
354 | } ZSTDMT_CCtxPool; |
355 | |
356 | /* note : all CCtx borrowed from the pool should be released back to the pool _before_ freeing the pool */ |
357 | static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool) |
358 | { |
359 | int cid; |
360 | for (cid=0; cid<pool->totalCCtx; cid++) |
361 | ZSTD_freeCCtx(pool->cctx[cid]); /* note : compatible with free on NULL */ |
362 | ZSTD_pthread_mutex_destroy(&pool->poolMutex); |
363 | ZSTD_customFree(pool, pool->cMem); |
364 | } |
365 | |
366 | /* ZSTDMT_createCCtxPool() : |
367 | * implies nbWorkers >= 1 , checked by caller ZSTDMT_createCCtx() */ |
368 | static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(int nbWorkers, |
369 | ZSTD_customMem cMem) |
370 | { |
371 | ZSTDMT_CCtxPool* const cctxPool = (ZSTDMT_CCtxPool*) ZSTD_customCalloc( |
372 | sizeof(ZSTDMT_CCtxPool) + (nbWorkers-1)*sizeof(ZSTD_CCtx*), cMem); |
373 | assert(nbWorkers > 0); |
374 | if (!cctxPool) return NULL; |
375 | if (ZSTD_pthread_mutex_init(&cctxPool->poolMutex, NULL)) { |
376 | ZSTD_customFree(cctxPool, cMem); |
377 | return NULL; |
378 | } |
379 | cctxPool->cMem = cMem; |
380 | cctxPool->totalCCtx = nbWorkers; |
381 | cctxPool->availCCtx = 1; /* at least one cctx for single-thread mode */ |
382 | cctxPool->cctx[0] = ZSTD_createCCtx_advanced(cMem); |
383 | if (!cctxPool->cctx[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; } |
384 | DEBUGLOG(3, "cctxPool created, with %u workers" , nbWorkers); |
385 | return cctxPool; |
386 | } |
387 | |
388 | static ZSTDMT_CCtxPool* ZSTDMT_expandCCtxPool(ZSTDMT_CCtxPool* srcPool, |
389 | int nbWorkers) |
390 | { |
391 | if (srcPool==NULL) return NULL; |
392 | if (nbWorkers <= srcPool->totalCCtx) return srcPool; /* good enough */ |
393 | /* need a larger cctx pool */ |
394 | { ZSTD_customMem const cMem = srcPool->cMem; |
395 | ZSTDMT_freeCCtxPool(srcPool); |
396 | return ZSTDMT_createCCtxPool(nbWorkers, cMem); |
397 | } |
398 | } |
399 | |
400 | /* only works during initialization phase, not during compression */ |
401 | static size_t ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool* cctxPool) |
402 | { |
403 | ZSTD_pthread_mutex_lock(&cctxPool->poolMutex); |
404 | { unsigned const nbWorkers = cctxPool->totalCCtx; |
405 | size_t const poolSize = sizeof(*cctxPool) |
406 | + (nbWorkers-1) * sizeof(ZSTD_CCtx*); |
407 | unsigned u; |
408 | size_t totalCCtxSize = 0; |
409 | for (u=0; u<nbWorkers; u++) { |
410 | totalCCtxSize += ZSTD_sizeof_CCtx(cctxPool->cctx[u]); |
411 | } |
412 | ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); |
413 | assert(nbWorkers > 0); |
414 | return poolSize + totalCCtxSize; |
415 | } |
416 | } |
417 | |
418 | static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* cctxPool) |
419 | { |
420 | DEBUGLOG(5, "ZSTDMT_getCCtx" ); |
421 | ZSTD_pthread_mutex_lock(&cctxPool->poolMutex); |
422 | if (cctxPool->availCCtx) { |
423 | cctxPool->availCCtx--; |
424 | { ZSTD_CCtx* const cctx = cctxPool->cctx[cctxPool->availCCtx]; |
425 | ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); |
426 | return cctx; |
427 | } } |
428 | ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); |
429 | DEBUGLOG(5, "create one more CCtx" ); |
430 | return ZSTD_createCCtx_advanced(cctxPool->cMem); /* note : can be NULL, when creation fails ! */ |
431 | } |
432 | |
433 | static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx) |
434 | { |
435 | if (cctx==NULL) return; /* compatibility with release on NULL */ |
436 | ZSTD_pthread_mutex_lock(&pool->poolMutex); |
437 | if (pool->availCCtx < pool->totalCCtx) |
438 | pool->cctx[pool->availCCtx++] = cctx; |
439 | else { |
440 | /* pool overflow : should not happen, since totalCCtx==nbWorkers */ |
441 | DEBUGLOG(4, "CCtx pool overflow : free cctx" ); |
442 | ZSTD_freeCCtx(cctx); |
443 | } |
444 | ZSTD_pthread_mutex_unlock(&pool->poolMutex); |
445 | } |
446 | |
447 | /* ==== Serial State ==== */ |
448 | |
449 | typedef struct { |
450 | void const* start; |
451 | size_t size; |
452 | } range_t; |
453 | |
454 | typedef struct { |
455 | /* All variables in the struct are protected by mutex. */ |
456 | ZSTD_pthread_mutex_t mutex; |
457 | ZSTD_pthread_cond_t cond; |
458 | ZSTD_CCtx_params params; |
459 | ldmState_t ldmState; |
460 | XXH64_state_t xxhState; |
461 | unsigned nextJobID; |
462 | /* Protects ldmWindow. |
463 | * Must be acquired after the main mutex when acquiring both. |
464 | */ |
465 | ZSTD_pthread_mutex_t ldmWindowMutex; |
466 | ZSTD_pthread_cond_t ldmWindowCond; /* Signaled when ldmWindow is updated */ |
467 | ZSTD_window_t ldmWindow; /* A thread-safe copy of ldmState.window */ |
468 | } serialState_t; |
469 | |
470 | static int |
471 | ZSTDMT_serialState_reset(serialState_t* serialState, |
472 | ZSTDMT_seqPool* seqPool, |
473 | ZSTD_CCtx_params params, |
474 | size_t jobSize, |
475 | const void* dict, size_t const dictSize, |
476 | ZSTD_dictContentType_e dictContentType) |
477 | { |
478 | /* Adjust parameters */ |
479 | if (params.ldmParams.enableLdm == ZSTD_ps_enable) { |
480 | DEBUGLOG(4, "LDM window size = %u KB" , (1U << params.cParams.windowLog) >> 10); |
481 | ZSTD_ldm_adjustParameters(¶ms.ldmParams, ¶ms.cParams); |
482 | assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog); |
483 | assert(params.ldmParams.hashRateLog < 32); |
484 | } else { |
485 | ZSTD_memset(¶ms.ldmParams, 0, sizeof(params.ldmParams)); |
486 | } |
487 | serialState->nextJobID = 0; |
488 | if (params.fParams.checksumFlag) |
489 | XXH64_reset(&serialState->xxhState, 0); |
490 | if (params.ldmParams.enableLdm == ZSTD_ps_enable) { |
491 | ZSTD_customMem cMem = params.customMem; |
492 | unsigned const hashLog = params.ldmParams.hashLog; |
493 | size_t const hashSize = ((size_t)1 << hashLog) * sizeof(ldmEntry_t); |
494 | unsigned const bucketLog = |
495 | params.ldmParams.hashLog - params.ldmParams.bucketSizeLog; |
496 | unsigned const prevBucketLog = |
497 | serialState->params.ldmParams.hashLog - |
498 | serialState->params.ldmParams.bucketSizeLog; |
499 | size_t const numBuckets = (size_t)1 << bucketLog; |
500 | /* Size the seq pool tables */ |
501 | ZSTDMT_setNbSeq(seqPool, ZSTD_ldm_getMaxNbSeq(params.ldmParams, jobSize)); |
502 | /* Reset the window */ |
503 | ZSTD_window_init(&serialState->ldmState.window); |
504 | /* Resize tables and output space if necessary. */ |
505 | if (serialState->ldmState.hashTable == NULL || serialState->params.ldmParams.hashLog < hashLog) { |
506 | ZSTD_customFree(serialState->ldmState.hashTable, cMem); |
507 | serialState->ldmState.hashTable = (ldmEntry_t*)ZSTD_customMalloc(hashSize, cMem); |
508 | } |
509 | if (serialState->ldmState.bucketOffsets == NULL || prevBucketLog < bucketLog) { |
510 | ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem); |
511 | serialState->ldmState.bucketOffsets = (BYTE*)ZSTD_customMalloc(numBuckets, cMem); |
512 | } |
513 | if (!serialState->ldmState.hashTable || !serialState->ldmState.bucketOffsets) |
514 | return 1; |
515 | /* Zero the tables */ |
516 | ZSTD_memset(serialState->ldmState.hashTable, 0, hashSize); |
517 | ZSTD_memset(serialState->ldmState.bucketOffsets, 0, numBuckets); |
518 | |
519 | /* Update window state and fill hash table with dict */ |
520 | serialState->ldmState.loadedDictEnd = 0; |
521 | if (dictSize > 0) { |
522 | if (dictContentType == ZSTD_dct_rawContent) { |
523 | BYTE const* const dictEnd = (const BYTE*)dict + dictSize; |
524 | ZSTD_window_update(&serialState->ldmState.window, dict, dictSize, /* forceNonContiguous */ 0); |
525 | ZSTD_ldm_fillHashTable(&serialState->ldmState, (const BYTE*)dict, dictEnd, ¶ms.ldmParams); |
526 | serialState->ldmState.loadedDictEnd = params.forceWindow ? 0 : (U32)(dictEnd - serialState->ldmState.window.base); |
527 | } else { |
528 | /* don't even load anything */ |
529 | } |
530 | } |
531 | |
532 | /* Initialize serialState's copy of ldmWindow. */ |
533 | serialState->ldmWindow = serialState->ldmState.window; |
534 | } |
535 | |
536 | serialState->params = params; |
537 | serialState->params.jobSize = (U32)jobSize; |
538 | return 0; |
539 | } |
540 | |
541 | static int ZSTDMT_serialState_init(serialState_t* serialState) |
542 | { |
543 | int initError = 0; |
544 | ZSTD_memset(serialState, 0, sizeof(*serialState)); |
545 | initError |= ZSTD_pthread_mutex_init(&serialState->mutex, NULL); |
546 | initError |= ZSTD_pthread_cond_init(&serialState->cond, NULL); |
547 | initError |= ZSTD_pthread_mutex_init(&serialState->ldmWindowMutex, NULL); |
548 | initError |= ZSTD_pthread_cond_init(&serialState->ldmWindowCond, NULL); |
549 | return initError; |
550 | } |
551 | |
552 | static void ZSTDMT_serialState_free(serialState_t* serialState) |
553 | { |
554 | ZSTD_customMem cMem = serialState->params.customMem; |
555 | ZSTD_pthread_mutex_destroy(&serialState->mutex); |
556 | ZSTD_pthread_cond_destroy(&serialState->cond); |
557 | ZSTD_pthread_mutex_destroy(&serialState->ldmWindowMutex); |
558 | ZSTD_pthread_cond_destroy(&serialState->ldmWindowCond); |
559 | ZSTD_customFree(serialState->ldmState.hashTable, cMem); |
560 | ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem); |
561 | } |
562 | |
563 | static void ZSTDMT_serialState_update(serialState_t* serialState, |
564 | ZSTD_CCtx* jobCCtx, rawSeqStore_t seqStore, |
565 | range_t src, unsigned jobID) |
566 | { |
567 | /* Wait for our turn */ |
568 | ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex); |
569 | while (serialState->nextJobID < jobID) { |
570 | DEBUGLOG(5, "wait for serialState->cond" ); |
571 | ZSTD_pthread_cond_wait(&serialState->cond, &serialState->mutex); |
572 | } |
573 | /* A future job may error and skip our job */ |
574 | if (serialState->nextJobID == jobID) { |
575 | /* It is now our turn, do any processing necessary */ |
576 | if (serialState->params.ldmParams.enableLdm == ZSTD_ps_enable) { |
577 | size_t error; |
578 | assert(seqStore.seq != NULL && seqStore.pos == 0 && |
579 | seqStore.size == 0 && seqStore.capacity > 0); |
580 | assert(src.size <= serialState->params.jobSize); |
581 | ZSTD_window_update(&serialState->ldmState.window, src.start, src.size, /* forceNonContiguous */ 0); |
582 | error = ZSTD_ldm_generateSequences( |
583 | &serialState->ldmState, &seqStore, |
584 | &serialState->params.ldmParams, src.start, src.size); |
585 | /* We provide a large enough buffer to never fail. */ |
586 | assert(!ZSTD_isError(error)); (void)error; |
587 | /* Update ldmWindow to match the ldmState.window and signal the main |
588 | * thread if it is waiting for a buffer. |
589 | */ |
590 | ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex); |
591 | serialState->ldmWindow = serialState->ldmState.window; |
592 | ZSTD_pthread_cond_signal(&serialState->ldmWindowCond); |
593 | ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex); |
594 | } |
595 | if (serialState->params.fParams.checksumFlag && src.size > 0) |
596 | XXH64_update(&serialState->xxhState, src.start, src.size); |
597 | } |
598 | /* Now it is the next jobs turn */ |
599 | serialState->nextJobID++; |
600 | ZSTD_pthread_cond_broadcast(&serialState->cond); |
601 | ZSTD_pthread_mutex_unlock(&serialState->mutex); |
602 | |
603 | if (seqStore.size > 0) { |
604 | size_t const err = ZSTD_referenceExternalSequences( |
605 | jobCCtx, seqStore.seq, seqStore.size); |
606 | assert(serialState->params.ldmParams.enableLdm == ZSTD_ps_enable); |
607 | assert(!ZSTD_isError(err)); |
608 | (void)err; |
609 | } |
610 | } |
611 | |
612 | static void ZSTDMT_serialState_ensureFinished(serialState_t* serialState, |
613 | unsigned jobID, size_t cSize) |
614 | { |
615 | ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex); |
616 | if (serialState->nextJobID <= jobID) { |
617 | assert(ZSTD_isError(cSize)); (void)cSize; |
618 | DEBUGLOG(5, "Skipping past job %u because of error" , jobID); |
619 | serialState->nextJobID = jobID + 1; |
620 | ZSTD_pthread_cond_broadcast(&serialState->cond); |
621 | |
622 | ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex); |
623 | ZSTD_window_clear(&serialState->ldmWindow); |
624 | ZSTD_pthread_cond_signal(&serialState->ldmWindowCond); |
625 | ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex); |
626 | } |
627 | ZSTD_pthread_mutex_unlock(&serialState->mutex); |
628 | |
629 | } |
630 | |
631 | |
632 | /* ------------------------------------------ */ |
633 | /* ===== Worker thread ===== */ |
634 | /* ------------------------------------------ */ |
635 | |
636 | static const range_t kNullRange = { NULL, 0 }; |
637 | |
638 | typedef struct { |
639 | size_t consumed; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx */ |
640 | size_t cSize; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx, then set0 by mtctx */ |
641 | ZSTD_pthread_mutex_t job_mutex; /* Thread-safe - used by mtctx and worker */ |
642 | ZSTD_pthread_cond_t job_cond; /* Thread-safe - used by mtctx and worker */ |
643 | ZSTDMT_CCtxPool* cctxPool; /* Thread-safe - used by mtctx and (all) workers */ |
644 | ZSTDMT_bufferPool* bufPool; /* Thread-safe - used by mtctx and (all) workers */ |
645 | ZSTDMT_seqPool* seqPool; /* Thread-safe - used by mtctx and (all) workers */ |
646 | serialState_t* serial; /* Thread-safe - used by mtctx and (all) workers */ |
647 | buffer_t dstBuff; /* set by worker (or mtctx), then read by worker & mtctx, then modified by mtctx => no barrier */ |
648 | range_t prefix; /* set by mtctx, then read by worker & mtctx => no barrier */ |
649 | range_t src; /* set by mtctx, then read by worker & mtctx => no barrier */ |
650 | unsigned jobID; /* set by mtctx, then read by worker => no barrier */ |
651 | unsigned firstJob; /* set by mtctx, then read by worker => no barrier */ |
652 | unsigned lastJob; /* set by mtctx, then read by worker => no barrier */ |
653 | ZSTD_CCtx_params params; /* set by mtctx, then read by worker => no barrier */ |
654 | const ZSTD_CDict* cdict; /* set by mtctx, then read by worker => no barrier */ |
655 | unsigned long long fullFrameSize; /* set by mtctx, then read by worker => no barrier */ |
656 | size_t dstFlushed; /* used only by mtctx */ |
657 | unsigned frameChecksumNeeded; /* used only by mtctx */ |
658 | } ZSTDMT_jobDescription; |
659 | |
660 | #define JOB_ERROR(e) { \ |
661 | ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); \ |
662 | job->cSize = e; \ |
663 | ZSTD_pthread_mutex_unlock(&job->job_mutex); \ |
664 | goto _endJob; \ |
665 | } |
666 | |
667 | /* ZSTDMT_compressionJob() is a POOL_function type */ |
668 | static void ZSTDMT_compressionJob(void* jobDescription) |
669 | { |
670 | ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription; |
671 | ZSTD_CCtx_params jobParams = job->params; /* do not modify job->params ! copy it, modify the copy */ |
672 | ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(job->cctxPool); |
673 | rawSeqStore_t rawSeqStore = ZSTDMT_getSeq(job->seqPool); |
674 | buffer_t dstBuff = job->dstBuff; |
675 | size_t lastCBlockSize = 0; |
676 | |
677 | /* resources */ |
678 | if (cctx==NULL) JOB_ERROR(ERROR(memory_allocation)); |
679 | if (dstBuff.start == NULL) { /* streaming job : doesn't provide a dstBuffer */ |
680 | dstBuff = ZSTDMT_getBuffer(job->bufPool); |
681 | if (dstBuff.start==NULL) JOB_ERROR(ERROR(memory_allocation)); |
682 | job->dstBuff = dstBuff; /* this value can be read in ZSTDMT_flush, when it copies the whole job */ |
683 | } |
684 | if (jobParams.ldmParams.enableLdm == ZSTD_ps_enable && rawSeqStore.seq == NULL) |
685 | JOB_ERROR(ERROR(memory_allocation)); |
686 | |
687 | /* Don't compute the checksum for chunks, since we compute it externally, |
688 | * but write it in the header. |
689 | */ |
690 | if (job->jobID != 0) jobParams.fParams.checksumFlag = 0; |
691 | /* Don't run LDM for the chunks, since we handle it externally */ |
692 | jobParams.ldmParams.enableLdm = ZSTD_ps_disable; |
693 | /* Correct nbWorkers to 0. */ |
694 | jobParams.nbWorkers = 0; |
695 | |
696 | |
697 | /* init */ |
698 | if (job->cdict) { |
699 | size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, job->cdict, &jobParams, job->fullFrameSize); |
700 | assert(job->firstJob); /* only allowed for first job */ |
701 | if (ZSTD_isError(initError)) JOB_ERROR(initError); |
702 | } else { /* srcStart points at reloaded section */ |
703 | U64 const pledgedSrcSize = job->firstJob ? job->fullFrameSize : job->src.size; |
704 | { size_t const forceWindowError = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_forceMaxWindow, !job->firstJob); |
705 | if (ZSTD_isError(forceWindowError)) JOB_ERROR(forceWindowError); |
706 | } |
707 | if (!job->firstJob) { |
708 | size_t const err = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_deterministicRefPrefix, 0); |
709 | if (ZSTD_isError(err)) JOB_ERROR(err); |
710 | } |
711 | { size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, |
712 | job->prefix.start, job->prefix.size, ZSTD_dct_rawContent, /* load dictionary in "content-only" mode (no header analysis) */ |
713 | ZSTD_dtlm_fast, |
714 | NULL, /*cdict*/ |
715 | &jobParams, pledgedSrcSize); |
716 | if (ZSTD_isError(initError)) JOB_ERROR(initError); |
717 | } } |
718 | |
719 | /* Perform serial step as early as possible, but after CCtx initialization */ |
720 | ZSTDMT_serialState_update(job->serial, cctx, rawSeqStore, job->src, job->jobID); |
721 | |
722 | if (!job->firstJob) { /* flush and overwrite frame header when it's not first job */ |
723 | size_t const hSize = ZSTD_compressContinue_public(cctx, dstBuff.start, dstBuff.capacity, job->src.start, 0); |
724 | if (ZSTD_isError(hSize)) JOB_ERROR(hSize); |
725 | DEBUGLOG(5, "ZSTDMT_compressionJob: flush and overwrite %u bytes of frame header (not first job)" , (U32)hSize); |
726 | ZSTD_invalidateRepCodes(cctx); |
727 | } |
728 | |
729 | /* compress */ |
730 | { size_t const chunkSize = 4*ZSTD_BLOCKSIZE_MAX; |
731 | int const nbChunks = (int)((job->src.size + (chunkSize-1)) / chunkSize); |
732 | const BYTE* ip = (const BYTE*) job->src.start; |
733 | BYTE* const ostart = (BYTE*)dstBuff.start; |
734 | BYTE* op = ostart; |
735 | BYTE* oend = op + dstBuff.capacity; |
736 | int chunkNb; |
737 | if (sizeof(size_t) > sizeof(int)) assert(job->src.size < ((size_t)INT_MAX) * chunkSize); /* check overflow */ |
738 | DEBUGLOG(5, "ZSTDMT_compressionJob: compress %u bytes in %i blocks" , (U32)job->src.size, nbChunks); |
739 | assert(job->cSize == 0); |
740 | for (chunkNb = 1; chunkNb < nbChunks; chunkNb++) { |
741 | size_t const cSize = ZSTD_compressContinue_public(cctx, op, oend-op, ip, chunkSize); |
742 | if (ZSTD_isError(cSize)) JOB_ERROR(cSize); |
743 | ip += chunkSize; |
744 | op += cSize; assert(op < oend); |
745 | /* stats */ |
746 | ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); |
747 | job->cSize += cSize; |
748 | job->consumed = chunkSize * chunkNb; |
749 | DEBUGLOG(5, "ZSTDMT_compressionJob: compress new block : cSize==%u bytes (total: %u)" , |
750 | (U32)cSize, (U32)job->cSize); |
751 | ZSTD_pthread_cond_signal(&job->job_cond); /* warns some more data is ready to be flushed */ |
752 | ZSTD_pthread_mutex_unlock(&job->job_mutex); |
753 | } |
754 | /* last block */ |
755 | assert(chunkSize > 0); |
756 | assert((chunkSize & (chunkSize - 1)) == 0); /* chunkSize must be power of 2 for mask==(chunkSize-1) to work */ |
757 | if ((nbChunks > 0) | job->lastJob /*must output a "last block" flag*/ ) { |
758 | size_t const lastBlockSize1 = job->src.size & (chunkSize-1); |
759 | size_t const lastBlockSize = ((lastBlockSize1==0) & (job->src.size>=chunkSize)) ? chunkSize : lastBlockSize1; |
760 | size_t const cSize = (job->lastJob) ? |
761 | ZSTD_compressEnd_public(cctx, op, oend-op, ip, lastBlockSize) : |
762 | ZSTD_compressContinue_public(cctx, op, oend-op, ip, lastBlockSize); |
763 | if (ZSTD_isError(cSize)) JOB_ERROR(cSize); |
764 | lastCBlockSize = cSize; |
765 | } } |
766 | if (!job->firstJob) { |
767 | /* Double check that we don't have an ext-dict, because then our |
768 | * repcode invalidation doesn't work. |
769 | */ |
770 | assert(!ZSTD_window_hasExtDict(cctx->blockState.matchState.window)); |
771 | } |
772 | ZSTD_CCtx_trace(cctx, 0); |
773 | |
774 | _endJob: |
775 | ZSTDMT_serialState_ensureFinished(job->serial, job->jobID, job->cSize); |
776 | if (job->prefix.size > 0) |
777 | DEBUGLOG(5, "Finished with prefix: %zx" , (size_t)job->prefix.start); |
778 | DEBUGLOG(5, "Finished with source: %zx" , (size_t)job->src.start); |
779 | /* release resources */ |
780 | ZSTDMT_releaseSeq(job->seqPool, rawSeqStore); |
781 | ZSTDMT_releaseCCtx(job->cctxPool, cctx); |
782 | /* report */ |
783 | ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); |
784 | if (ZSTD_isError(job->cSize)) assert(lastCBlockSize == 0); |
785 | job->cSize += lastCBlockSize; |
786 | job->consumed = job->src.size; /* when job->consumed == job->src.size , compression job is presumed completed */ |
787 | ZSTD_pthread_cond_signal(&job->job_cond); |
788 | ZSTD_pthread_mutex_unlock(&job->job_mutex); |
789 | } |
790 | |
791 | |
792 | /* ------------------------------------------ */ |
793 | /* ===== Multi-threaded compression ===== */ |
794 | /* ------------------------------------------ */ |
795 | |
796 | typedef struct { |
797 | range_t prefix; /* read-only non-owned prefix buffer */ |
798 | buffer_t buffer; |
799 | size_t filled; |
800 | } inBuff_t; |
801 | |
802 | typedef struct { |
803 | BYTE* buffer; /* The round input buffer. All jobs get references |
804 | * to pieces of the buffer. ZSTDMT_tryGetInputRange() |
805 | * handles handing out job input buffers, and makes |
806 | * sure it doesn't overlap with any pieces still in use. |
807 | */ |
808 | size_t capacity; /* The capacity of buffer. */ |
809 | size_t pos; /* The position of the current inBuff in the round |
810 | * buffer. Updated past the end if the inBuff once |
811 | * the inBuff is sent to the worker thread. |
812 | * pos <= capacity. |
813 | */ |
814 | } roundBuff_t; |
815 | |
816 | static const roundBuff_t kNullRoundBuff = {NULL, 0, 0}; |
817 | |
818 | #define RSYNC_LENGTH 32 |
819 | /* Don't create chunks smaller than the zstd block size. |
820 | * This stops us from regressing compression ratio too much, |
821 | * and ensures our output fits in ZSTD_compressBound(). |
822 | * |
823 | * If this is shrunk < ZSTD_BLOCKSIZELOG_MIN then |
824 | * ZSTD_COMPRESSBOUND() will need to be updated. |
825 | */ |
826 | #define RSYNC_MIN_BLOCK_LOG ZSTD_BLOCKSIZELOG_MAX |
827 | #define RSYNC_MIN_BLOCK_SIZE (1<<RSYNC_MIN_BLOCK_LOG) |
828 | |
829 | typedef struct { |
830 | U64 hash; |
831 | U64 hitMask; |
832 | U64 primePower; |
833 | } rsyncState_t; |
834 | |
835 | struct ZSTDMT_CCtx_s { |
836 | POOL_ctx* factory; |
837 | ZSTDMT_jobDescription* jobs; |
838 | ZSTDMT_bufferPool* bufPool; |
839 | ZSTDMT_CCtxPool* cctxPool; |
840 | ZSTDMT_seqPool* seqPool; |
841 | ZSTD_CCtx_params params; |
842 | size_t targetSectionSize; |
843 | size_t targetPrefixSize; |
844 | int jobReady; /* 1 => one job is already prepared, but pool has shortage of workers. Don't create a new job. */ |
845 | inBuff_t inBuff; |
846 | roundBuff_t roundBuff; |
847 | serialState_t serial; |
848 | rsyncState_t rsync; |
849 | unsigned jobIDMask; |
850 | unsigned doneJobID; |
851 | unsigned nextJobID; |
852 | unsigned frameEnded; |
853 | unsigned allJobsCompleted; |
854 | unsigned long long frameContentSize; |
855 | unsigned long long consumed; |
856 | unsigned long long produced; |
857 | ZSTD_customMem cMem; |
858 | ZSTD_CDict* cdictLocal; |
859 | const ZSTD_CDict* cdict; |
860 | unsigned providedFactory: 1; |
861 | }; |
862 | |
863 | static void ZSTDMT_freeJobsTable(ZSTDMT_jobDescription* jobTable, U32 nbJobs, ZSTD_customMem cMem) |
864 | { |
865 | U32 jobNb; |
866 | if (jobTable == NULL) return; |
867 | for (jobNb=0; jobNb<nbJobs; jobNb++) { |
868 | ZSTD_pthread_mutex_destroy(&jobTable[jobNb].job_mutex); |
869 | ZSTD_pthread_cond_destroy(&jobTable[jobNb].job_cond); |
870 | } |
871 | ZSTD_customFree(jobTable, cMem); |
872 | } |
873 | |
874 | /* ZSTDMT_allocJobsTable() |
875 | * allocate and init a job table. |
876 | * update *nbJobsPtr to next power of 2 value, as size of table */ |
877 | static ZSTDMT_jobDescription* ZSTDMT_createJobsTable(U32* nbJobsPtr, ZSTD_customMem cMem) |
878 | { |
879 | U32 const nbJobsLog2 = ZSTD_highbit32(*nbJobsPtr) + 1; |
880 | U32 const nbJobs = 1 << nbJobsLog2; |
881 | U32 jobNb; |
882 | ZSTDMT_jobDescription* const jobTable = (ZSTDMT_jobDescription*) |
883 | ZSTD_customCalloc(nbJobs * sizeof(ZSTDMT_jobDescription), cMem); |
884 | int initError = 0; |
885 | if (jobTable==NULL) return NULL; |
886 | *nbJobsPtr = nbJobs; |
887 | for (jobNb=0; jobNb<nbJobs; jobNb++) { |
888 | initError |= ZSTD_pthread_mutex_init(&jobTable[jobNb].job_mutex, NULL); |
889 | initError |= ZSTD_pthread_cond_init(&jobTable[jobNb].job_cond, NULL); |
890 | } |
891 | if (initError != 0) { |
892 | ZSTDMT_freeJobsTable(jobTable, nbJobs, cMem); |
893 | return NULL; |
894 | } |
895 | return jobTable; |
896 | } |
897 | |
898 | static size_t ZSTDMT_expandJobsTable (ZSTDMT_CCtx* mtctx, U32 nbWorkers) { |
899 | U32 nbJobs = nbWorkers + 2; |
900 | if (nbJobs > mtctx->jobIDMask+1) { /* need more job capacity */ |
901 | ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem); |
902 | mtctx->jobIDMask = 0; |
903 | mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, mtctx->cMem); |
904 | if (mtctx->jobs==NULL) return ERROR(memory_allocation); |
905 | assert((nbJobs != 0) && ((nbJobs & (nbJobs - 1)) == 0)); /* ensure nbJobs is a power of 2 */ |
906 | mtctx->jobIDMask = nbJobs - 1; |
907 | } |
908 | return 0; |
909 | } |
910 | |
911 | |
912 | /* ZSTDMT_CCtxParam_setNbWorkers(): |
913 | * Internal use only */ |
914 | static size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers) |
915 | { |
916 | return ZSTD_CCtxParams_setParameter(params, ZSTD_c_nbWorkers, (int)nbWorkers); |
917 | } |
918 | |
919 | MEM_STATIC ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced_internal(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool) |
920 | { |
921 | ZSTDMT_CCtx* mtctx; |
922 | U32 nbJobs = nbWorkers + 2; |
923 | int initError; |
924 | DEBUGLOG(3, "ZSTDMT_createCCtx_advanced (nbWorkers = %u)" , nbWorkers); |
925 | |
926 | if (nbWorkers < 1) return NULL; |
927 | nbWorkers = MIN(nbWorkers , ZSTDMT_NBWORKERS_MAX); |
928 | if ((cMem.customAlloc!=NULL) ^ (cMem.customFree!=NULL)) |
929 | /* invalid custom allocator */ |
930 | return NULL; |
931 | |
932 | mtctx = (ZSTDMT_CCtx*) ZSTD_customCalloc(sizeof(ZSTDMT_CCtx), cMem); |
933 | if (!mtctx) return NULL; |
934 | ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers); |
935 | mtctx->cMem = cMem; |
936 | mtctx->allJobsCompleted = 1; |
937 | if (pool != NULL) { |
938 | mtctx->factory = pool; |
939 | mtctx->providedFactory = 1; |
940 | } |
941 | else { |
942 | mtctx->factory = POOL_create_advanced(nbWorkers, 0, cMem); |
943 | mtctx->providedFactory = 0; |
944 | } |
945 | mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, cMem); |
946 | assert(nbJobs > 0); assert((nbJobs & (nbJobs - 1)) == 0); /* ensure nbJobs is a power of 2 */ |
947 | mtctx->jobIDMask = nbJobs - 1; |
948 | mtctx->bufPool = ZSTDMT_createBufferPool(BUF_POOL_MAX_NB_BUFFERS(nbWorkers), cMem); |
949 | mtctx->cctxPool = ZSTDMT_createCCtxPool(nbWorkers, cMem); |
950 | mtctx->seqPool = ZSTDMT_createSeqPool(nbWorkers, cMem); |
951 | initError = ZSTDMT_serialState_init(&mtctx->serial); |
952 | mtctx->roundBuff = kNullRoundBuff; |
953 | if (!mtctx->factory | !mtctx->jobs | !mtctx->bufPool | !mtctx->cctxPool | !mtctx->seqPool | initError) { |
954 | ZSTDMT_freeCCtx(mtctx); |
955 | return NULL; |
956 | } |
957 | DEBUGLOG(3, "mt_cctx created, for %u threads" , nbWorkers); |
958 | return mtctx; |
959 | } |
960 | |
961 | ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool) |
962 | { |
963 | #ifdef ZSTD_MULTITHREAD |
964 | return ZSTDMT_createCCtx_advanced_internal(nbWorkers, cMem, pool); |
965 | #else |
966 | (void)nbWorkers; |
967 | (void)cMem; |
968 | (void)pool; |
969 | return NULL; |
970 | #endif |
971 | } |
972 | |
973 | |
974 | /* ZSTDMT_releaseAllJobResources() : |
975 | * note : ensure all workers are killed first ! */ |
976 | static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx) |
977 | { |
978 | unsigned jobID; |
979 | DEBUGLOG(3, "ZSTDMT_releaseAllJobResources" ); |
980 | for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) { |
981 | /* Copy the mutex/cond out */ |
982 | ZSTD_pthread_mutex_t const mutex = mtctx->jobs[jobID].job_mutex; |
983 | ZSTD_pthread_cond_t const cond = mtctx->jobs[jobID].job_cond; |
984 | |
985 | DEBUGLOG(4, "job%02u: release dst address %08X" , jobID, (U32)(size_t)mtctx->jobs[jobID].dstBuff.start); |
986 | ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff); |
987 | |
988 | /* Clear the job description, but keep the mutex/cond */ |
989 | ZSTD_memset(&mtctx->jobs[jobID], 0, sizeof(mtctx->jobs[jobID])); |
990 | mtctx->jobs[jobID].job_mutex = mutex; |
991 | mtctx->jobs[jobID].job_cond = cond; |
992 | } |
993 | mtctx->inBuff.buffer = g_nullBuffer; |
994 | mtctx->inBuff.filled = 0; |
995 | mtctx->allJobsCompleted = 1; |
996 | } |
997 | |
998 | static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* mtctx) |
999 | { |
1000 | DEBUGLOG(4, "ZSTDMT_waitForAllJobsCompleted" ); |
1001 | while (mtctx->doneJobID < mtctx->nextJobID) { |
1002 | unsigned const jobID = mtctx->doneJobID & mtctx->jobIDMask; |
1003 | ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex); |
1004 | while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) { |
1005 | DEBUGLOG(4, "waiting for jobCompleted signal from job %u" , mtctx->doneJobID); /* we want to block when waiting for data to flush */ |
1006 | ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex); |
1007 | } |
1008 | ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex); |
1009 | mtctx->doneJobID++; |
1010 | } |
1011 | } |
1012 | |
1013 | size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx) |
1014 | { |
1015 | if (mtctx==NULL) return 0; /* compatible with free on NULL */ |
1016 | if (!mtctx->providedFactory) |
1017 | POOL_free(mtctx->factory); /* stop and free worker threads */ |
1018 | ZSTDMT_releaseAllJobResources(mtctx); /* release job resources into pools first */ |
1019 | ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem); |
1020 | ZSTDMT_freeBufferPool(mtctx->bufPool); |
1021 | ZSTDMT_freeCCtxPool(mtctx->cctxPool); |
1022 | ZSTDMT_freeSeqPool(mtctx->seqPool); |
1023 | ZSTDMT_serialState_free(&mtctx->serial); |
1024 | ZSTD_freeCDict(mtctx->cdictLocal); |
1025 | if (mtctx->roundBuff.buffer) |
1026 | ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem); |
1027 | ZSTD_customFree(mtctx, mtctx->cMem); |
1028 | return 0; |
1029 | } |
1030 | |
1031 | size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx) |
1032 | { |
1033 | if (mtctx == NULL) return 0; /* supports sizeof NULL */ |
1034 | return sizeof(*mtctx) |
1035 | + POOL_sizeof(mtctx->factory) |
1036 | + ZSTDMT_sizeof_bufferPool(mtctx->bufPool) |
1037 | + (mtctx->jobIDMask+1) * sizeof(ZSTDMT_jobDescription) |
1038 | + ZSTDMT_sizeof_CCtxPool(mtctx->cctxPool) |
1039 | + ZSTDMT_sizeof_seqPool(mtctx->seqPool) |
1040 | + ZSTD_sizeof_CDict(mtctx->cdictLocal) |
1041 | + mtctx->roundBuff.capacity; |
1042 | } |
1043 | |
1044 | |
1045 | /* ZSTDMT_resize() : |
1046 | * @return : error code if fails, 0 on success */ |
1047 | static size_t ZSTDMT_resize(ZSTDMT_CCtx* mtctx, unsigned nbWorkers) |
1048 | { |
1049 | if (POOL_resize(mtctx->factory, nbWorkers)) return ERROR(memory_allocation); |
1050 | FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbWorkers) , "" ); |
1051 | mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, BUF_POOL_MAX_NB_BUFFERS(nbWorkers)); |
1052 | if (mtctx->bufPool == NULL) return ERROR(memory_allocation); |
1053 | mtctx->cctxPool = ZSTDMT_expandCCtxPool(mtctx->cctxPool, nbWorkers); |
1054 | if (mtctx->cctxPool == NULL) return ERROR(memory_allocation); |
1055 | mtctx->seqPool = ZSTDMT_expandSeqPool(mtctx->seqPool, nbWorkers); |
1056 | if (mtctx->seqPool == NULL) return ERROR(memory_allocation); |
1057 | ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers); |
1058 | return 0; |
1059 | } |
1060 | |
1061 | |
1062 | /*! ZSTDMT_updateCParams_whileCompressing() : |
1063 | * Updates a selected set of compression parameters, remaining compatible with currently active frame. |
1064 | * New parameters will be applied to next compression job. */ |
1065 | void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams) |
1066 | { |
1067 | U32 const saved_wlog = mtctx->params.cParams.windowLog; /* Do not modify windowLog while compressing */ |
1068 | int const compressionLevel = cctxParams->compressionLevel; |
1069 | DEBUGLOG(5, "ZSTDMT_updateCParams_whileCompressing (level:%i)" , |
1070 | compressionLevel); |
1071 | mtctx->params.compressionLevel = compressionLevel; |
1072 | { ZSTD_compressionParameters cParams = ZSTD_getCParamsFromCCtxParams(cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict); |
1073 | cParams.windowLog = saved_wlog; |
1074 | mtctx->params.cParams = cParams; |
1075 | } |
1076 | } |
1077 | |
1078 | /* ZSTDMT_getFrameProgression(): |
1079 | * tells how much data has been consumed (input) and produced (output) for current frame. |
1080 | * able to count progression inside worker threads. |
1081 | * Note : mutex will be acquired during statistics collection inside workers. */ |
1082 | ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx) |
1083 | { |
1084 | ZSTD_frameProgression fps; |
1085 | DEBUGLOG(5, "ZSTDMT_getFrameProgression" ); |
1086 | fps.ingested = mtctx->consumed + mtctx->inBuff.filled; |
1087 | fps.consumed = mtctx->consumed; |
1088 | fps.produced = fps.flushed = mtctx->produced; |
1089 | fps.currentJobID = mtctx->nextJobID; |
1090 | fps.nbActiveWorkers = 0; |
1091 | { unsigned jobNb; |
1092 | unsigned lastJobNb = mtctx->nextJobID + mtctx->jobReady; assert(mtctx->jobReady <= 1); |
1093 | DEBUGLOG(6, "ZSTDMT_getFrameProgression: jobs: from %u to <%u (jobReady:%u)" , |
1094 | mtctx->doneJobID, lastJobNb, mtctx->jobReady) |
1095 | for (jobNb = mtctx->doneJobID ; jobNb < lastJobNb ; jobNb++) { |
1096 | unsigned const wJobID = jobNb & mtctx->jobIDMask; |
1097 | ZSTDMT_jobDescription* jobPtr = &mtctx->jobs[wJobID]; |
1098 | ZSTD_pthread_mutex_lock(&jobPtr->job_mutex); |
1099 | { size_t const cResult = jobPtr->cSize; |
1100 | size_t const produced = ZSTD_isError(cResult) ? 0 : cResult; |
1101 | size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed; |
1102 | assert(flushed <= produced); |
1103 | fps.ingested += jobPtr->src.size; |
1104 | fps.consumed += jobPtr->consumed; |
1105 | fps.produced += produced; |
1106 | fps.flushed += flushed; |
1107 | fps.nbActiveWorkers += (jobPtr->consumed < jobPtr->src.size); |
1108 | } |
1109 | ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); |
1110 | } |
1111 | } |
1112 | return fps; |
1113 | } |
1114 | |
1115 | |
1116 | size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx) |
1117 | { |
1118 | size_t toFlush; |
1119 | unsigned const jobID = mtctx->doneJobID; |
1120 | assert(jobID <= mtctx->nextJobID); |
1121 | if (jobID == mtctx->nextJobID) return 0; /* no active job => nothing to flush */ |
1122 | |
1123 | /* look into oldest non-fully-flushed job */ |
1124 | { unsigned const wJobID = jobID & mtctx->jobIDMask; |
1125 | ZSTDMT_jobDescription* const jobPtr = &mtctx->jobs[wJobID]; |
1126 | ZSTD_pthread_mutex_lock(&jobPtr->job_mutex); |
1127 | { size_t const cResult = jobPtr->cSize; |
1128 | size_t const produced = ZSTD_isError(cResult) ? 0 : cResult; |
1129 | size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed; |
1130 | assert(flushed <= produced); |
1131 | assert(jobPtr->consumed <= jobPtr->src.size); |
1132 | toFlush = produced - flushed; |
1133 | /* if toFlush==0, nothing is available to flush. |
1134 | * However, jobID is expected to still be active: |
1135 | * if jobID was already completed and fully flushed, |
1136 | * ZSTDMT_flushProduced() should have already moved onto next job. |
1137 | * Therefore, some input has not yet been consumed. */ |
1138 | if (toFlush==0) { |
1139 | assert(jobPtr->consumed < jobPtr->src.size); |
1140 | } |
1141 | } |
1142 | ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); |
1143 | } |
1144 | |
1145 | return toFlush; |
1146 | } |
1147 | |
1148 | |
1149 | /* ------------------------------------------ */ |
1150 | /* ===== Multi-threaded compression ===== */ |
1151 | /* ------------------------------------------ */ |
1152 | |
1153 | static unsigned ZSTDMT_computeTargetJobLog(const ZSTD_CCtx_params* params) |
1154 | { |
1155 | unsigned jobLog; |
1156 | if (params->ldmParams.enableLdm == ZSTD_ps_enable) { |
1157 | /* In Long Range Mode, the windowLog is typically oversized. |
1158 | * In which case, it's preferable to determine the jobSize |
1159 | * based on cycleLog instead. */ |
1160 | jobLog = MAX(21, ZSTD_cycleLog(params->cParams.chainLog, params->cParams.strategy) + 3); |
1161 | } else { |
1162 | jobLog = MAX(20, params->cParams.windowLog + 2); |
1163 | } |
1164 | return MIN(jobLog, (unsigned)ZSTDMT_JOBLOG_MAX); |
1165 | } |
1166 | |
1167 | static int ZSTDMT_overlapLog_default(ZSTD_strategy strat) |
1168 | { |
1169 | switch(strat) |
1170 | { |
1171 | case ZSTD_btultra2: |
1172 | return 9; |
1173 | case ZSTD_btultra: |
1174 | case ZSTD_btopt: |
1175 | return 8; |
1176 | case ZSTD_btlazy2: |
1177 | case ZSTD_lazy2: |
1178 | return 7; |
1179 | case ZSTD_lazy: |
1180 | case ZSTD_greedy: |
1181 | case ZSTD_dfast: |
1182 | case ZSTD_fast: |
1183 | default:; |
1184 | } |
1185 | return 6; |
1186 | } |
1187 | |
1188 | static int ZSTDMT_overlapLog(int ovlog, ZSTD_strategy strat) |
1189 | { |
1190 | assert(0 <= ovlog && ovlog <= 9); |
1191 | if (ovlog == 0) return ZSTDMT_overlapLog_default(strat); |
1192 | return ovlog; |
1193 | } |
1194 | |
1195 | static size_t ZSTDMT_computeOverlapSize(const ZSTD_CCtx_params* params) |
1196 | { |
1197 | int const overlapRLog = 9 - ZSTDMT_overlapLog(params->overlapLog, params->cParams.strategy); |
1198 | int ovLog = (overlapRLog >= 8) ? 0 : (params->cParams.windowLog - overlapRLog); |
1199 | assert(0 <= overlapRLog && overlapRLog <= 8); |
1200 | if (params->ldmParams.enableLdm == ZSTD_ps_enable) { |
1201 | /* In Long Range Mode, the windowLog is typically oversized. |
1202 | * In which case, it's preferable to determine the jobSize |
1203 | * based on chainLog instead. |
1204 | * Then, ovLog becomes a fraction of the jobSize, rather than windowSize */ |
1205 | ovLog = MIN(params->cParams.windowLog, ZSTDMT_computeTargetJobLog(params) - 2) |
1206 | - overlapRLog; |
1207 | } |
1208 | assert(0 <= ovLog && ovLog <= ZSTD_WINDOWLOG_MAX); |
1209 | DEBUGLOG(4, "overlapLog : %i" , params->overlapLog); |
1210 | DEBUGLOG(4, "overlap size : %i" , 1 << ovLog); |
1211 | return (ovLog==0) ? 0 : (size_t)1 << ovLog; |
1212 | } |
1213 | |
1214 | /* ====================================== */ |
1215 | /* ======= Streaming API ======= */ |
1216 | /* ====================================== */ |
1217 | |
1218 | size_t ZSTDMT_initCStream_internal( |
1219 | ZSTDMT_CCtx* mtctx, |
1220 | const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType, |
1221 | const ZSTD_CDict* cdict, ZSTD_CCtx_params params, |
1222 | unsigned long long pledgedSrcSize) |
1223 | { |
1224 | DEBUGLOG(4, "ZSTDMT_initCStream_internal (pledgedSrcSize=%u, nbWorkers=%u, cctxPool=%u)" , |
1225 | (U32)pledgedSrcSize, params.nbWorkers, mtctx->cctxPool->totalCCtx); |
1226 | |
1227 | /* params supposed partially fully validated at this point */ |
1228 | assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); |
1229 | assert(!((dict) && (cdict))); /* either dict or cdict, not both */ |
1230 | |
1231 | /* init */ |
1232 | if (params.nbWorkers != mtctx->params.nbWorkers) |
1233 | FORWARD_IF_ERROR( ZSTDMT_resize(mtctx, params.nbWorkers) , "" ); |
1234 | |
1235 | if (params.jobSize != 0 && params.jobSize < ZSTDMT_JOBSIZE_MIN) params.jobSize = ZSTDMT_JOBSIZE_MIN; |
1236 | if (params.jobSize > (size_t)ZSTDMT_JOBSIZE_MAX) params.jobSize = (size_t)ZSTDMT_JOBSIZE_MAX; |
1237 | |
1238 | DEBUGLOG(4, "ZSTDMT_initCStream_internal: %u workers" , params.nbWorkers); |
1239 | |
1240 | if (mtctx->allJobsCompleted == 0) { /* previous compression not correctly finished */ |
1241 | ZSTDMT_waitForAllJobsCompleted(mtctx); |
1242 | ZSTDMT_releaseAllJobResources(mtctx); |
1243 | mtctx->allJobsCompleted = 1; |
1244 | } |
1245 | |
1246 | mtctx->params = params; |
1247 | mtctx->frameContentSize = pledgedSrcSize; |
1248 | if (dict) { |
1249 | ZSTD_freeCDict(mtctx->cdictLocal); |
1250 | mtctx->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize, |
1251 | ZSTD_dlm_byCopy, dictContentType, /* note : a loadPrefix becomes an internal CDict */ |
1252 | params.cParams, mtctx->cMem); |
1253 | mtctx->cdict = mtctx->cdictLocal; |
1254 | if (mtctx->cdictLocal == NULL) return ERROR(memory_allocation); |
1255 | } else { |
1256 | ZSTD_freeCDict(mtctx->cdictLocal); |
1257 | mtctx->cdictLocal = NULL; |
1258 | mtctx->cdict = cdict; |
1259 | } |
1260 | |
1261 | mtctx->targetPrefixSize = ZSTDMT_computeOverlapSize(¶ms); |
1262 | DEBUGLOG(4, "overlapLog=%i => %u KB" , params.overlapLog, (U32)(mtctx->targetPrefixSize>>10)); |
1263 | mtctx->targetSectionSize = params.jobSize; |
1264 | if (mtctx->targetSectionSize == 0) { |
1265 | mtctx->targetSectionSize = 1ULL << ZSTDMT_computeTargetJobLog(¶ms); |
1266 | } |
1267 | assert(mtctx->targetSectionSize <= (size_t)ZSTDMT_JOBSIZE_MAX); |
1268 | |
1269 | if (params.rsyncable) { |
1270 | /* Aim for the targetsectionSize as the average job size. */ |
1271 | U32 const jobSizeKB = (U32)(mtctx->targetSectionSize >> 10); |
1272 | U32 const rsyncBits = (assert(jobSizeKB >= 1), ZSTD_highbit32(jobSizeKB) + 10); |
1273 | /* We refuse to create jobs < RSYNC_MIN_BLOCK_SIZE bytes, so make sure our |
1274 | * expected job size is at least 4x larger. */ |
1275 | assert(rsyncBits >= RSYNC_MIN_BLOCK_LOG + 2); |
1276 | DEBUGLOG(4, "rsyncLog = %u" , rsyncBits); |
1277 | mtctx->rsync.hash = 0; |
1278 | mtctx->rsync.hitMask = (1ULL << rsyncBits) - 1; |
1279 | mtctx->rsync.primePower = ZSTD_rollingHash_primePower(RSYNC_LENGTH); |
1280 | } |
1281 | if (mtctx->targetSectionSize < mtctx->targetPrefixSize) mtctx->targetSectionSize = mtctx->targetPrefixSize; /* job size must be >= overlap size */ |
1282 | DEBUGLOG(4, "Job Size : %u KB (note : set to %u)" , (U32)(mtctx->targetSectionSize>>10), (U32)params.jobSize); |
1283 | DEBUGLOG(4, "inBuff Size : %u KB" , (U32)(mtctx->targetSectionSize>>10)); |
1284 | ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(mtctx->targetSectionSize)); |
1285 | { |
1286 | /* If ldm is enabled we need windowSize space. */ |
1287 | size_t const windowSize = mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable ? (1U << mtctx->params.cParams.windowLog) : 0; |
1288 | /* Two buffers of slack, plus extra space for the overlap |
1289 | * This is the minimum slack that LDM works with. One extra because |
1290 | * flush might waste up to targetSectionSize-1 bytes. Another extra |
1291 | * for the overlap (if > 0), then one to fill which doesn't overlap |
1292 | * with the LDM window. |
1293 | */ |
1294 | size_t const nbSlackBuffers = 2 + (mtctx->targetPrefixSize > 0); |
1295 | size_t const slackSize = mtctx->targetSectionSize * nbSlackBuffers; |
1296 | /* Compute the total size, and always have enough slack */ |
1297 | size_t const nbWorkers = MAX(mtctx->params.nbWorkers, 1); |
1298 | size_t const sectionsSize = mtctx->targetSectionSize * nbWorkers; |
1299 | size_t const capacity = MAX(windowSize, sectionsSize) + slackSize; |
1300 | if (mtctx->roundBuff.capacity < capacity) { |
1301 | if (mtctx->roundBuff.buffer) |
1302 | ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem); |
1303 | mtctx->roundBuff.buffer = (BYTE*)ZSTD_customMalloc(capacity, mtctx->cMem); |
1304 | if (mtctx->roundBuff.buffer == NULL) { |
1305 | mtctx->roundBuff.capacity = 0; |
1306 | return ERROR(memory_allocation); |
1307 | } |
1308 | mtctx->roundBuff.capacity = capacity; |
1309 | } |
1310 | } |
1311 | DEBUGLOG(4, "roundBuff capacity : %u KB" , (U32)(mtctx->roundBuff.capacity>>10)); |
1312 | mtctx->roundBuff.pos = 0; |
1313 | mtctx->inBuff.buffer = g_nullBuffer; |
1314 | mtctx->inBuff.filled = 0; |
1315 | mtctx->inBuff.prefix = kNullRange; |
1316 | mtctx->doneJobID = 0; |
1317 | mtctx->nextJobID = 0; |
1318 | mtctx->frameEnded = 0; |
1319 | mtctx->allJobsCompleted = 0; |
1320 | mtctx->consumed = 0; |
1321 | mtctx->produced = 0; |
1322 | if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, mtctx->targetSectionSize, |
1323 | dict, dictSize, dictContentType)) |
1324 | return ERROR(memory_allocation); |
1325 | return 0; |
1326 | } |
1327 | |
1328 | |
1329 | /* ZSTDMT_writeLastEmptyBlock() |
1330 | * Write a single empty block with an end-of-frame to finish a frame. |
1331 | * Job must be created from streaming variant. |
1332 | * This function is always successful if expected conditions are fulfilled. |
1333 | */ |
1334 | static void ZSTDMT_writeLastEmptyBlock(ZSTDMT_jobDescription* job) |
1335 | { |
1336 | assert(job->lastJob == 1); |
1337 | assert(job->src.size == 0); /* last job is empty -> will be simplified into a last empty block */ |
1338 | assert(job->firstJob == 0); /* cannot be first job, as it also needs to create frame header */ |
1339 | assert(job->dstBuff.start == NULL); /* invoked from streaming variant only (otherwise, dstBuff might be user's output) */ |
1340 | job->dstBuff = ZSTDMT_getBuffer(job->bufPool); |
1341 | if (job->dstBuff.start == NULL) { |
1342 | job->cSize = ERROR(memory_allocation); |
1343 | return; |
1344 | } |
1345 | assert(job->dstBuff.capacity >= ZSTD_blockHeaderSize); /* no buffer should ever be that small */ |
1346 | job->src = kNullRange; |
1347 | job->cSize = ZSTD_writeLastEmptyBlock(job->dstBuff.start, job->dstBuff.capacity); |
1348 | assert(!ZSTD_isError(job->cSize)); |
1349 | assert(job->consumed == 0); |
1350 | } |
1351 | |
1352 | static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* mtctx, size_t srcSize, ZSTD_EndDirective endOp) |
1353 | { |
1354 | unsigned const jobID = mtctx->nextJobID & mtctx->jobIDMask; |
1355 | int const endFrame = (endOp == ZSTD_e_end); |
1356 | |
1357 | if (mtctx->nextJobID > mtctx->doneJobID + mtctx->jobIDMask) { |
1358 | DEBUGLOG(5, "ZSTDMT_createCompressionJob: will not create new job : table is full" ); |
1359 | assert((mtctx->nextJobID & mtctx->jobIDMask) == (mtctx->doneJobID & mtctx->jobIDMask)); |
1360 | return 0; |
1361 | } |
1362 | |
1363 | if (!mtctx->jobReady) { |
1364 | BYTE const* src = (BYTE const*)mtctx->inBuff.buffer.start; |
1365 | DEBUGLOG(5, "ZSTDMT_createCompressionJob: preparing job %u to compress %u bytes with %u preload " , |
1366 | mtctx->nextJobID, (U32)srcSize, (U32)mtctx->inBuff.prefix.size); |
1367 | mtctx->jobs[jobID].src.start = src; |
1368 | mtctx->jobs[jobID].src.size = srcSize; |
1369 | assert(mtctx->inBuff.filled >= srcSize); |
1370 | mtctx->jobs[jobID].prefix = mtctx->inBuff.prefix; |
1371 | mtctx->jobs[jobID].consumed = 0; |
1372 | mtctx->jobs[jobID].cSize = 0; |
1373 | mtctx->jobs[jobID].params = mtctx->params; |
1374 | mtctx->jobs[jobID].cdict = mtctx->nextJobID==0 ? mtctx->cdict : NULL; |
1375 | mtctx->jobs[jobID].fullFrameSize = mtctx->frameContentSize; |
1376 | mtctx->jobs[jobID].dstBuff = g_nullBuffer; |
1377 | mtctx->jobs[jobID].cctxPool = mtctx->cctxPool; |
1378 | mtctx->jobs[jobID].bufPool = mtctx->bufPool; |
1379 | mtctx->jobs[jobID].seqPool = mtctx->seqPool; |
1380 | mtctx->jobs[jobID].serial = &mtctx->serial; |
1381 | mtctx->jobs[jobID].jobID = mtctx->nextJobID; |
1382 | mtctx->jobs[jobID].firstJob = (mtctx->nextJobID==0); |
1383 | mtctx->jobs[jobID].lastJob = endFrame; |
1384 | mtctx->jobs[jobID].frameChecksumNeeded = mtctx->params.fParams.checksumFlag && endFrame && (mtctx->nextJobID>0); |
1385 | mtctx->jobs[jobID].dstFlushed = 0; |
1386 | |
1387 | /* Update the round buffer pos and clear the input buffer to be reset */ |
1388 | mtctx->roundBuff.pos += srcSize; |
1389 | mtctx->inBuff.buffer = g_nullBuffer; |
1390 | mtctx->inBuff.filled = 0; |
1391 | /* Set the prefix */ |
1392 | if (!endFrame) { |
1393 | size_t const newPrefixSize = MIN(srcSize, mtctx->targetPrefixSize); |
1394 | mtctx->inBuff.prefix.start = src + srcSize - newPrefixSize; |
1395 | mtctx->inBuff.prefix.size = newPrefixSize; |
1396 | } else { /* endFrame==1 => no need for another input buffer */ |
1397 | mtctx->inBuff.prefix = kNullRange; |
1398 | mtctx->frameEnded = endFrame; |
1399 | if (mtctx->nextJobID == 0) { |
1400 | /* single job exception : checksum is already calculated directly within worker thread */ |
1401 | mtctx->params.fParams.checksumFlag = 0; |
1402 | } } |
1403 | |
1404 | if ( (srcSize == 0) |
1405 | && (mtctx->nextJobID>0)/*single job must also write frame header*/ ) { |
1406 | DEBUGLOG(5, "ZSTDMT_createCompressionJob: creating a last empty block to end frame" ); |
1407 | assert(endOp == ZSTD_e_end); /* only possible case : need to end the frame with an empty last block */ |
1408 | ZSTDMT_writeLastEmptyBlock(mtctx->jobs + jobID); |
1409 | mtctx->nextJobID++; |
1410 | return 0; |
1411 | } |
1412 | } |
1413 | |
1414 | DEBUGLOG(5, "ZSTDMT_createCompressionJob: posting job %u : %u bytes (end:%u, jobNb == %u (mod:%u))" , |
1415 | mtctx->nextJobID, |
1416 | (U32)mtctx->jobs[jobID].src.size, |
1417 | mtctx->jobs[jobID].lastJob, |
1418 | mtctx->nextJobID, |
1419 | jobID); |
1420 | if (POOL_tryAdd(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[jobID])) { |
1421 | mtctx->nextJobID++; |
1422 | mtctx->jobReady = 0; |
1423 | } else { |
1424 | DEBUGLOG(5, "ZSTDMT_createCompressionJob: no worker available for job %u" , mtctx->nextJobID); |
1425 | mtctx->jobReady = 1; |
1426 | } |
1427 | return 0; |
1428 | } |
1429 | |
1430 | |
1431 | /*! ZSTDMT_flushProduced() : |
1432 | * flush whatever data has been produced but not yet flushed in current job. |
1433 | * move to next job if current one is fully flushed. |
1434 | * `output` : `pos` will be updated with amount of data flushed . |
1435 | * `blockToFlush` : if >0, the function will block and wait if there is no data available to flush . |
1436 | * @return : amount of data remaining within internal buffer, 0 if no more, 1 if unknown but > 0, or an error code */ |
1437 | static size_t ZSTDMT_flushProduced(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, unsigned blockToFlush, ZSTD_EndDirective end) |
1438 | { |
1439 | unsigned const wJobID = mtctx->doneJobID & mtctx->jobIDMask; |
1440 | DEBUGLOG(5, "ZSTDMT_flushProduced (blocking:%u , job %u <= %u)" , |
1441 | blockToFlush, mtctx->doneJobID, mtctx->nextJobID); |
1442 | assert(output->size >= output->pos); |
1443 | |
1444 | ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex); |
1445 | if ( blockToFlush |
1446 | && (mtctx->doneJobID < mtctx->nextJobID) ) { |
1447 | assert(mtctx->jobs[wJobID].dstFlushed <= mtctx->jobs[wJobID].cSize); |
1448 | while (mtctx->jobs[wJobID].dstFlushed == mtctx->jobs[wJobID].cSize) { /* nothing to flush */ |
1449 | if (mtctx->jobs[wJobID].consumed == mtctx->jobs[wJobID].src.size) { |
1450 | DEBUGLOG(5, "job %u is completely consumed (%u == %u) => don't wait for cond, there will be none" , |
1451 | mtctx->doneJobID, (U32)mtctx->jobs[wJobID].consumed, (U32)mtctx->jobs[wJobID].src.size); |
1452 | break; |
1453 | } |
1454 | DEBUGLOG(5, "waiting for something to flush from job %u (currently flushed: %u bytes)" , |
1455 | mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed); |
1456 | ZSTD_pthread_cond_wait(&mtctx->jobs[wJobID].job_cond, &mtctx->jobs[wJobID].job_mutex); /* block when nothing to flush but some to come */ |
1457 | } } |
1458 | |
1459 | /* try to flush something */ |
1460 | { size_t cSize = mtctx->jobs[wJobID].cSize; /* shared */ |
1461 | size_t const srcConsumed = mtctx->jobs[wJobID].consumed; /* shared */ |
1462 | size_t const srcSize = mtctx->jobs[wJobID].src.size; /* read-only, could be done after mutex lock, but no-declaration-after-statement */ |
1463 | ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); |
1464 | if (ZSTD_isError(cSize)) { |
1465 | DEBUGLOG(5, "ZSTDMT_flushProduced: job %u : compression error detected : %s" , |
1466 | mtctx->doneJobID, ZSTD_getErrorName(cSize)); |
1467 | ZSTDMT_waitForAllJobsCompleted(mtctx); |
1468 | ZSTDMT_releaseAllJobResources(mtctx); |
1469 | return cSize; |
1470 | } |
1471 | /* add frame checksum if necessary (can only happen once) */ |
1472 | assert(srcConsumed <= srcSize); |
1473 | if ( (srcConsumed == srcSize) /* job completed -> worker no longer active */ |
1474 | && mtctx->jobs[wJobID].frameChecksumNeeded ) { |
1475 | U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState); |
1476 | DEBUGLOG(4, "ZSTDMT_flushProduced: writing checksum : %08X \n" , checksum); |
1477 | MEM_writeLE32((char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].cSize, checksum); |
1478 | cSize += 4; |
1479 | mtctx->jobs[wJobID].cSize += 4; /* can write this shared value, as worker is no longer active */ |
1480 | mtctx->jobs[wJobID].frameChecksumNeeded = 0; |
1481 | } |
1482 | |
1483 | if (cSize > 0) { /* compression is ongoing or completed */ |
1484 | size_t const toFlush = MIN(cSize - mtctx->jobs[wJobID].dstFlushed, output->size - output->pos); |
1485 | DEBUGLOG(5, "ZSTDMT_flushProduced: Flushing %u bytes from job %u (completion:%u/%u, generated:%u)" , |
1486 | (U32)toFlush, mtctx->doneJobID, (U32)srcConsumed, (U32)srcSize, (U32)cSize); |
1487 | assert(mtctx->doneJobID < mtctx->nextJobID); |
1488 | assert(cSize >= mtctx->jobs[wJobID].dstFlushed); |
1489 | assert(mtctx->jobs[wJobID].dstBuff.start != NULL); |
1490 | if (toFlush > 0) { |
1491 | ZSTD_memcpy((char*)output->dst + output->pos, |
1492 | (const char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].dstFlushed, |
1493 | toFlush); |
1494 | } |
1495 | output->pos += toFlush; |
1496 | mtctx->jobs[wJobID].dstFlushed += toFlush; /* can write : this value is only used by mtctx */ |
1497 | |
1498 | if ( (srcConsumed == srcSize) /* job is completed */ |
1499 | && (mtctx->jobs[wJobID].dstFlushed == cSize) ) { /* output buffer fully flushed => free this job position */ |
1500 | DEBUGLOG(5, "Job %u completed (%u bytes), moving to next one" , |
1501 | mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed); |
1502 | ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[wJobID].dstBuff); |
1503 | DEBUGLOG(5, "dstBuffer released" ); |
1504 | mtctx->jobs[wJobID].dstBuff = g_nullBuffer; |
1505 | mtctx->jobs[wJobID].cSize = 0; /* ensure this job slot is considered "not started" in future check */ |
1506 | mtctx->consumed += srcSize; |
1507 | mtctx->produced += cSize; |
1508 | mtctx->doneJobID++; |
1509 | } } |
1510 | |
1511 | /* return value : how many bytes left in buffer ; fake it to 1 when unknown but >0 */ |
1512 | if (cSize > mtctx->jobs[wJobID].dstFlushed) return (cSize - mtctx->jobs[wJobID].dstFlushed); |
1513 | if (srcSize > srcConsumed) return 1; /* current job not completely compressed */ |
1514 | } |
1515 | if (mtctx->doneJobID < mtctx->nextJobID) return 1; /* some more jobs ongoing */ |
1516 | if (mtctx->jobReady) return 1; /* one job is ready to push, just not yet in the list */ |
1517 | if (mtctx->inBuff.filled > 0) return 1; /* input is not empty, and still needs to be converted into a job */ |
1518 | mtctx->allJobsCompleted = mtctx->frameEnded; /* all jobs are entirely flushed => if this one is last one, frame is completed */ |
1519 | if (end == ZSTD_e_end) return !mtctx->frameEnded; /* for ZSTD_e_end, question becomes : is frame completed ? instead of : are internal buffers fully flushed ? */ |
1520 | return 0; /* internal buffers fully flushed */ |
1521 | } |
1522 | |
1523 | /** |
1524 | * Returns the range of data used by the earliest job that is not yet complete. |
1525 | * If the data of the first job is broken up into two segments, we cover both |
1526 | * sections. |
1527 | */ |
1528 | static range_t ZSTDMT_getInputDataInUse(ZSTDMT_CCtx* mtctx) |
1529 | { |
1530 | unsigned const firstJobID = mtctx->doneJobID; |
1531 | unsigned const lastJobID = mtctx->nextJobID; |
1532 | unsigned jobID; |
1533 | |
1534 | for (jobID = firstJobID; jobID < lastJobID; ++jobID) { |
1535 | unsigned const wJobID = jobID & mtctx->jobIDMask; |
1536 | size_t consumed; |
1537 | |
1538 | ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex); |
1539 | consumed = mtctx->jobs[wJobID].consumed; |
1540 | ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); |
1541 | |
1542 | if (consumed < mtctx->jobs[wJobID].src.size) { |
1543 | range_t range = mtctx->jobs[wJobID].prefix; |
1544 | if (range.size == 0) { |
1545 | /* Empty prefix */ |
1546 | range = mtctx->jobs[wJobID].src; |
1547 | } |
1548 | /* Job source in multiple segments not supported yet */ |
1549 | assert(range.start <= mtctx->jobs[wJobID].src.start); |
1550 | return range; |
1551 | } |
1552 | } |
1553 | return kNullRange; |
1554 | } |
1555 | |
1556 | /** |
1557 | * Returns non-zero iff buffer and range overlap. |
1558 | */ |
1559 | static int ZSTDMT_isOverlapped(buffer_t buffer, range_t range) |
1560 | { |
1561 | BYTE const* const bufferStart = (BYTE const*)buffer.start; |
1562 | BYTE const* const rangeStart = (BYTE const*)range.start; |
1563 | |
1564 | if (rangeStart == NULL || bufferStart == NULL) |
1565 | return 0; |
1566 | |
1567 | { |
1568 | BYTE const* const bufferEnd = bufferStart + buffer.capacity; |
1569 | BYTE const* const rangeEnd = rangeStart + range.size; |
1570 | |
1571 | /* Empty ranges cannot overlap */ |
1572 | if (bufferStart == bufferEnd || rangeStart == rangeEnd) |
1573 | return 0; |
1574 | |
1575 | return bufferStart < rangeEnd && rangeStart < bufferEnd; |
1576 | } |
1577 | } |
1578 | |
1579 | static int ZSTDMT_doesOverlapWindow(buffer_t buffer, ZSTD_window_t window) |
1580 | { |
1581 | range_t extDict; |
1582 | range_t prefix; |
1583 | |
1584 | DEBUGLOG(5, "ZSTDMT_doesOverlapWindow" ); |
1585 | extDict.start = window.dictBase + window.lowLimit; |
1586 | extDict.size = window.dictLimit - window.lowLimit; |
1587 | |
1588 | prefix.start = window.base + window.dictLimit; |
1589 | prefix.size = window.nextSrc - (window.base + window.dictLimit); |
1590 | DEBUGLOG(5, "extDict [0x%zx, 0x%zx)" , |
1591 | (size_t)extDict.start, |
1592 | (size_t)extDict.start + extDict.size); |
1593 | DEBUGLOG(5, "prefix [0x%zx, 0x%zx)" , |
1594 | (size_t)prefix.start, |
1595 | (size_t)prefix.start + prefix.size); |
1596 | |
1597 | return ZSTDMT_isOverlapped(buffer, extDict) |
1598 | || ZSTDMT_isOverlapped(buffer, prefix); |
1599 | } |
1600 | |
1601 | static void ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx* mtctx, buffer_t buffer) |
1602 | { |
1603 | if (mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable) { |
1604 | ZSTD_pthread_mutex_t* mutex = &mtctx->serial.ldmWindowMutex; |
1605 | DEBUGLOG(5, "ZSTDMT_waitForLdmComplete" ); |
1606 | DEBUGLOG(5, "source [0x%zx, 0x%zx)" , |
1607 | (size_t)buffer.start, |
1608 | (size_t)buffer.start + buffer.capacity); |
1609 | ZSTD_PTHREAD_MUTEX_LOCK(mutex); |
1610 | while (ZSTDMT_doesOverlapWindow(buffer, mtctx->serial.ldmWindow)) { |
1611 | DEBUGLOG(5, "Waiting for LDM to finish..." ); |
1612 | ZSTD_pthread_cond_wait(&mtctx->serial.ldmWindowCond, mutex); |
1613 | } |
1614 | DEBUGLOG(6, "Done waiting for LDM to finish" ); |
1615 | ZSTD_pthread_mutex_unlock(mutex); |
1616 | } |
1617 | } |
1618 | |
1619 | /** |
1620 | * Attempts to set the inBuff to the next section to fill. |
1621 | * If any part of the new section is still in use we give up. |
1622 | * Returns non-zero if the buffer is filled. |
1623 | */ |
1624 | static int ZSTDMT_tryGetInputRange(ZSTDMT_CCtx* mtctx) |
1625 | { |
1626 | range_t const inUse = ZSTDMT_getInputDataInUse(mtctx); |
1627 | size_t const spaceLeft = mtctx->roundBuff.capacity - mtctx->roundBuff.pos; |
1628 | size_t const target = mtctx->targetSectionSize; |
1629 | buffer_t buffer; |
1630 | |
1631 | DEBUGLOG(5, "ZSTDMT_tryGetInputRange" ); |
1632 | assert(mtctx->inBuff.buffer.start == NULL); |
1633 | assert(mtctx->roundBuff.capacity >= target); |
1634 | |
1635 | if (spaceLeft < target) { |
1636 | /* ZSTD_invalidateRepCodes() doesn't work for extDict variants. |
1637 | * Simply copy the prefix to the beginning in that case. |
1638 | */ |
1639 | BYTE* const start = (BYTE*)mtctx->roundBuff.buffer; |
1640 | size_t const prefixSize = mtctx->inBuff.prefix.size; |
1641 | |
1642 | buffer.start = start; |
1643 | buffer.capacity = prefixSize; |
1644 | if (ZSTDMT_isOverlapped(buffer, inUse)) { |
1645 | DEBUGLOG(5, "Waiting for buffer..." ); |
1646 | return 0; |
1647 | } |
1648 | ZSTDMT_waitForLdmComplete(mtctx, buffer); |
1649 | ZSTD_memmove(start, mtctx->inBuff.prefix.start, prefixSize); |
1650 | mtctx->inBuff.prefix.start = start; |
1651 | mtctx->roundBuff.pos = prefixSize; |
1652 | } |
1653 | buffer.start = mtctx->roundBuff.buffer + mtctx->roundBuff.pos; |
1654 | buffer.capacity = target; |
1655 | |
1656 | if (ZSTDMT_isOverlapped(buffer, inUse)) { |
1657 | DEBUGLOG(5, "Waiting for buffer..." ); |
1658 | return 0; |
1659 | } |
1660 | assert(!ZSTDMT_isOverlapped(buffer, mtctx->inBuff.prefix)); |
1661 | |
1662 | ZSTDMT_waitForLdmComplete(mtctx, buffer); |
1663 | |
1664 | DEBUGLOG(5, "Using prefix range [%zx, %zx)" , |
1665 | (size_t)mtctx->inBuff.prefix.start, |
1666 | (size_t)mtctx->inBuff.prefix.start + mtctx->inBuff.prefix.size); |
1667 | DEBUGLOG(5, "Using source range [%zx, %zx)" , |
1668 | (size_t)buffer.start, |
1669 | (size_t)buffer.start + buffer.capacity); |
1670 | |
1671 | |
1672 | mtctx->inBuff.buffer = buffer; |
1673 | mtctx->inBuff.filled = 0; |
1674 | assert(mtctx->roundBuff.pos + buffer.capacity <= mtctx->roundBuff.capacity); |
1675 | return 1; |
1676 | } |
1677 | |
1678 | typedef struct { |
1679 | size_t toLoad; /* The number of bytes to load from the input. */ |
1680 | int flush; /* Boolean declaring if we must flush because we found a synchronization point. */ |
1681 | } syncPoint_t; |
1682 | |
1683 | /** |
1684 | * Searches through the input for a synchronization point. If one is found, we |
1685 | * will instruct the caller to flush, and return the number of bytes to load. |
1686 | * Otherwise, we will load as many bytes as possible and instruct the caller |
1687 | * to continue as normal. |
1688 | */ |
1689 | static syncPoint_t |
1690 | findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input) |
1691 | { |
1692 | BYTE const* const istart = (BYTE const*)input.src + input.pos; |
1693 | U64 const primePower = mtctx->rsync.primePower; |
1694 | U64 const hitMask = mtctx->rsync.hitMask; |
1695 | |
1696 | syncPoint_t syncPoint; |
1697 | U64 hash; |
1698 | BYTE const* prev; |
1699 | size_t pos; |
1700 | |
1701 | syncPoint.toLoad = MIN(input.size - input.pos, mtctx->targetSectionSize - mtctx->inBuff.filled); |
1702 | syncPoint.flush = 0; |
1703 | if (!mtctx->params.rsyncable) |
1704 | /* Rsync is disabled. */ |
1705 | return syncPoint; |
1706 | if (mtctx->inBuff.filled + input.size - input.pos < RSYNC_MIN_BLOCK_SIZE) |
1707 | /* We don't emit synchronization points if it would produce too small blocks. |
1708 | * We don't have enough input to find a synchronization point, so don't look. |
1709 | */ |
1710 | return syncPoint; |
1711 | if (mtctx->inBuff.filled + syncPoint.toLoad < RSYNC_LENGTH) |
1712 | /* Not enough to compute the hash. |
1713 | * We will miss any synchronization points in this RSYNC_LENGTH byte |
1714 | * window. However, since it depends only in the internal buffers, if the |
1715 | * state is already synchronized, we will remain synchronized. |
1716 | * Additionally, the probability that we miss a synchronization point is |
1717 | * low: RSYNC_LENGTH / targetSectionSize. |
1718 | */ |
1719 | return syncPoint; |
1720 | /* Initialize the loop variables. */ |
1721 | if (mtctx->inBuff.filled < RSYNC_MIN_BLOCK_SIZE) { |
1722 | /* We don't need to scan the first RSYNC_MIN_BLOCK_SIZE positions |
1723 | * because they can't possibly be a sync point. So we can start |
1724 | * part way through the input buffer. |
1725 | */ |
1726 | pos = RSYNC_MIN_BLOCK_SIZE - mtctx->inBuff.filled; |
1727 | if (pos >= RSYNC_LENGTH) { |
1728 | prev = istart + pos - RSYNC_LENGTH; |
1729 | hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH); |
1730 | } else { |
1731 | assert(mtctx->inBuff.filled >= RSYNC_LENGTH); |
1732 | prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH; |
1733 | hash = ZSTD_rollingHash_compute(prev + pos, (RSYNC_LENGTH - pos)); |
1734 | hash = ZSTD_rollingHash_append(hash, istart, pos); |
1735 | } |
1736 | } else { |
1737 | /* We have enough bytes buffered to initialize the hash, |
1738 | * and have processed enough bytes to find a sync point. |
1739 | * Start scanning at the beginning of the input. |
1740 | */ |
1741 | assert(mtctx->inBuff.filled >= RSYNC_MIN_BLOCK_SIZE); |
1742 | assert(RSYNC_MIN_BLOCK_SIZE >= RSYNC_LENGTH); |
1743 | pos = 0; |
1744 | prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH; |
1745 | hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH); |
1746 | if ((hash & hitMask) == hitMask) { |
1747 | /* We're already at a sync point so don't load any more until |
1748 | * we're able to flush this sync point. |
1749 | * This likely happened because the job table was full so we |
1750 | * couldn't add our job. |
1751 | */ |
1752 | syncPoint.toLoad = 0; |
1753 | syncPoint.flush = 1; |
1754 | return syncPoint; |
1755 | } |
1756 | } |
1757 | /* Starting with the hash of the previous RSYNC_LENGTH bytes, roll |
1758 | * through the input. If we hit a synchronization point, then cut the |
1759 | * job off, and tell the compressor to flush the job. Otherwise, load |
1760 | * all the bytes and continue as normal. |
1761 | * If we go too long without a synchronization point (targetSectionSize) |
1762 | * then a block will be emitted anyways, but this is okay, since if we |
1763 | * are already synchronized we will remain synchronized. |
1764 | */ |
1765 | assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash); |
1766 | for (; pos < syncPoint.toLoad; ++pos) { |
1767 | BYTE const toRemove = pos < RSYNC_LENGTH ? prev[pos] : istart[pos - RSYNC_LENGTH]; |
1768 | /* This assert is very expensive, and Debian compiles with asserts enabled. |
1769 | * So disable it for now. We can get similar coverage by checking it at the |
1770 | * beginning & end of the loop. |
1771 | * assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash); |
1772 | */ |
1773 | hash = ZSTD_rollingHash_rotate(hash, toRemove, istart[pos], primePower); |
1774 | assert(mtctx->inBuff.filled + pos >= RSYNC_MIN_BLOCK_SIZE); |
1775 | if ((hash & hitMask) == hitMask) { |
1776 | syncPoint.toLoad = pos + 1; |
1777 | syncPoint.flush = 1; |
1778 | ++pos; /* for assert */ |
1779 | break; |
1780 | } |
1781 | } |
1782 | assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash); |
1783 | return syncPoint; |
1784 | } |
1785 | |
1786 | size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx) |
1787 | { |
1788 | size_t hintInSize = mtctx->targetSectionSize - mtctx->inBuff.filled; |
1789 | if (hintInSize==0) hintInSize = mtctx->targetSectionSize; |
1790 | return hintInSize; |
1791 | } |
1792 | |
1793 | /** ZSTDMT_compressStream_generic() : |
1794 | * internal use only - exposed to be invoked from zstd_compress.c |
1795 | * assumption : output and input are valid (pos <= size) |
1796 | * @return : minimum amount of data remaining to flush, 0 if none */ |
1797 | size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx, |
1798 | ZSTD_outBuffer* output, |
1799 | ZSTD_inBuffer* input, |
1800 | ZSTD_EndDirective endOp) |
1801 | { |
1802 | unsigned forwardInputProgress = 0; |
1803 | DEBUGLOG(5, "ZSTDMT_compressStream_generic (endOp=%u, srcSize=%u)" , |
1804 | (U32)endOp, (U32)(input->size - input->pos)); |
1805 | assert(output->pos <= output->size); |
1806 | assert(input->pos <= input->size); |
1807 | |
1808 | if ((mtctx->frameEnded) && (endOp==ZSTD_e_continue)) { |
1809 | /* current frame being ended. Only flush/end are allowed */ |
1810 | return ERROR(stage_wrong); |
1811 | } |
1812 | |
1813 | /* fill input buffer */ |
1814 | if ( (!mtctx->jobReady) |
1815 | && (input->size > input->pos) ) { /* support NULL input */ |
1816 | if (mtctx->inBuff.buffer.start == NULL) { |
1817 | assert(mtctx->inBuff.filled == 0); /* Can't fill an empty buffer */ |
1818 | if (!ZSTDMT_tryGetInputRange(mtctx)) { |
1819 | /* It is only possible for this operation to fail if there are |
1820 | * still compression jobs ongoing. |
1821 | */ |
1822 | DEBUGLOG(5, "ZSTDMT_tryGetInputRange failed" ); |
1823 | assert(mtctx->doneJobID != mtctx->nextJobID); |
1824 | } else |
1825 | DEBUGLOG(5, "ZSTDMT_tryGetInputRange completed successfully : mtctx->inBuff.buffer.start = %p" , mtctx->inBuff.buffer.start); |
1826 | } |
1827 | if (mtctx->inBuff.buffer.start != NULL) { |
1828 | syncPoint_t const syncPoint = findSynchronizationPoint(mtctx, *input); |
1829 | if (syncPoint.flush && endOp == ZSTD_e_continue) { |
1830 | endOp = ZSTD_e_flush; |
1831 | } |
1832 | assert(mtctx->inBuff.buffer.capacity >= mtctx->targetSectionSize); |
1833 | DEBUGLOG(5, "ZSTDMT_compressStream_generic: adding %u bytes on top of %u to buffer of size %u" , |
1834 | (U32)syncPoint.toLoad, (U32)mtctx->inBuff.filled, (U32)mtctx->targetSectionSize); |
1835 | ZSTD_memcpy((char*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled, (const char*)input->src + input->pos, syncPoint.toLoad); |
1836 | input->pos += syncPoint.toLoad; |
1837 | mtctx->inBuff.filled += syncPoint.toLoad; |
1838 | forwardInputProgress = syncPoint.toLoad>0; |
1839 | } |
1840 | } |
1841 | if ((input->pos < input->size) && (endOp == ZSTD_e_end)) { |
1842 | /* Can't end yet because the input is not fully consumed. |
1843 | * We are in one of these cases: |
1844 | * - mtctx->inBuff is NULL & empty: we couldn't get an input buffer so don't create a new job. |
1845 | * - We filled the input buffer: flush this job but don't end the frame. |
1846 | * - We hit a synchronization point: flush this job but don't end the frame. |
1847 | */ |
1848 | assert(mtctx->inBuff.filled == 0 || mtctx->inBuff.filled == mtctx->targetSectionSize || mtctx->params.rsyncable); |
1849 | endOp = ZSTD_e_flush; |
1850 | } |
1851 | |
1852 | if ( (mtctx->jobReady) |
1853 | || (mtctx->inBuff.filled >= mtctx->targetSectionSize) /* filled enough : let's compress */ |
1854 | || ((endOp != ZSTD_e_continue) && (mtctx->inBuff.filled > 0)) /* something to flush : let's go */ |
1855 | || ((endOp == ZSTD_e_end) && (!mtctx->frameEnded)) ) { /* must finish the frame with a zero-size block */ |
1856 | size_t const jobSize = mtctx->inBuff.filled; |
1857 | assert(mtctx->inBuff.filled <= mtctx->targetSectionSize); |
1858 | FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, jobSize, endOp) , "" ); |
1859 | } |
1860 | |
1861 | /* check for potential compressed data ready to be flushed */ |
1862 | { size_t const remainingToFlush = ZSTDMT_flushProduced(mtctx, output, !forwardInputProgress, endOp); /* block if there was no forward input progress */ |
1863 | if (input->pos < input->size) return MAX(remainingToFlush, 1); /* input not consumed : do not end flush yet */ |
1864 | DEBUGLOG(5, "end of ZSTDMT_compressStream_generic: remainingToFlush = %u" , (U32)remainingToFlush); |
1865 | return remainingToFlush; |
1866 | } |
1867 | } |
1868 | |