1 | /* |
2 | * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org |
3 | * |
4 | * This software is provided 'as-is', without any express or implied |
5 | * warranty. In no event will the authors be held liable for any damages |
6 | * arising from the use of this software. |
7 | * Permission is granted to anyone to use this software for any purpose, |
8 | * including commercial applications, and to alter it and redistribute it |
9 | * freely, subject to the following restrictions: |
10 | * 1. The origin of this software must not be misrepresented; you must not |
11 | * claim that you wrote the original software. If you use this software |
12 | * in a product, an acknowledgment in the product documentation would be |
13 | * appreciated but is not required. |
14 | * 2. Altered source versions must be plainly marked as such, and must not be |
15 | * misrepresented as being the original software. |
16 | * 3. This notice may not be removed or altered from any source distribution. |
17 | */ |
18 | |
19 | #ifndef B2_MATH_H |
20 | #define B2_MATH_H |
21 | |
22 | #include <Box2D/Common/b2Settings.h> |
23 | #include <math.h> |
24 | |
25 | /// This function is used to ensure that a floating point number is not a NaN or infinity. |
26 | inline bool b2IsValid(float32 x) |
27 | { |
28 | int32 ix = *reinterpret_cast<int32*>(&x); |
29 | return (ix & 0x7f800000) != 0x7f800000; |
30 | } |
31 | |
32 | /// This is a approximate yet fast inverse square-root. |
33 | inline float32 b2InvSqrt(float32 x) |
34 | { |
35 | union |
36 | { |
37 | float32 x; |
38 | int32 i; |
39 | } convert; |
40 | |
41 | convert.x = x; |
42 | float32 xhalf = 0.5f * x; |
43 | convert.i = 0x5f3759df - (convert.i >> 1); |
44 | x = convert.x; |
45 | x = x * (1.5f - xhalf * x * x); |
46 | return x; |
47 | } |
48 | |
49 | #define b2Sqrt(x) sqrtf(x) |
50 | #define b2Atan2(y, x) atan2f(y, x) |
51 | |
52 | /// A 2D column vector. |
53 | struct b2Vec2 |
54 | { |
55 | /// Default constructor does nothing (for performance). |
56 | b2Vec2() {} |
57 | |
58 | /// Construct using coordinates. |
59 | b2Vec2(float32 x, float32 y) : x(x), y(y) {} |
60 | |
61 | /// Set this vector to all zeros. |
62 | void SetZero() { x = 0.0f; y = 0.0f; } |
63 | |
64 | /// Set this vector to some specified coordinates. |
65 | void Set(float32 x_, float32 y_) { x = x_; y = y_; } |
66 | |
67 | /// Negate this vector. |
68 | b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; } |
69 | |
70 | /// Read from and indexed element. |
71 | float32 operator () (int32 i) const |
72 | { |
73 | return (&x)[i]; |
74 | } |
75 | |
76 | /// Write to an indexed element. |
77 | float32& operator () (int32 i) |
78 | { |
79 | return (&x)[i]; |
80 | } |
81 | |
82 | /// Add a vector to this vector. |
83 | void operator += (const b2Vec2& v) |
84 | { |
85 | x += v.x; y += v.y; |
86 | } |
87 | |
88 | /// Subtract a vector from this vector. |
89 | void operator -= (const b2Vec2& v) |
90 | { |
91 | x -= v.x; y -= v.y; |
92 | } |
93 | |
94 | /// Multiply this vector by a scalar. |
95 | void operator *= (float32 a) |
96 | { |
97 | x *= a; y *= a; |
98 | } |
99 | |
100 | /// Get the length of this vector (the norm). |
101 | float32 Length() const |
102 | { |
103 | return b2Sqrt(x * x + y * y); |
104 | } |
105 | |
106 | /// Get the length squared. For performance, use this instead of |
107 | /// b2Vec2::Length (if possible). |
108 | float32 LengthSquared() const |
109 | { |
110 | return x * x + y * y; |
111 | } |
112 | |
113 | /// Convert this vector into a unit vector. Returns the length. |
114 | float32 Normalize() |
115 | { |
116 | float32 length = Length(); |
117 | if (length < b2_epsilon) |
118 | { |
119 | return 0.0f; |
120 | } |
121 | float32 invLength = 1.0f / length; |
122 | x *= invLength; |
123 | y *= invLength; |
124 | |
125 | return length; |
126 | } |
127 | |
128 | /// Does this vector contain finite coordinates? |
129 | bool IsValid() const |
130 | { |
131 | return b2IsValid(x) && b2IsValid(y); |
132 | } |
133 | |
134 | /// Get the skew vector such that dot(skew_vec, other) == cross(vec, other) |
135 | b2Vec2 Skew() const |
136 | { |
137 | return b2Vec2(-y, x); |
138 | } |
139 | |
140 | float32 x, y; |
141 | }; |
142 | |
143 | /// A 2D column vector with 3 elements. |
144 | struct b2Vec3 |
145 | { |
146 | /// Default constructor does nothing (for performance). |
147 | b2Vec3() {} |
148 | |
149 | /// Construct using coordinates. |
150 | b2Vec3(float32 x, float32 y, float32 z) : x(x), y(y), z(z) {} |
151 | |
152 | /// Set this vector to all zeros. |
153 | void SetZero() { x = 0.0f; y = 0.0f; z = 0.0f; } |
154 | |
155 | /// Set this vector to some specified coordinates. |
156 | void Set(float32 x_, float32 y_, float32 z_) { x = x_; y = y_; z = z_; } |
157 | |
158 | /// Negate this vector. |
159 | b2Vec3 operator -() const { b2Vec3 v; v.Set(-x, -y, -z); return v; } |
160 | |
161 | /// Add a vector to this vector. |
162 | void operator += (const b2Vec3& v) |
163 | { |
164 | x += v.x; y += v.y; z += v.z; |
165 | } |
166 | |
167 | /// Subtract a vector from this vector. |
168 | void operator -= (const b2Vec3& v) |
169 | { |
170 | x -= v.x; y -= v.y; z -= v.z; |
171 | } |
172 | |
173 | /// Multiply this vector by a scalar. |
174 | void operator *= (float32 s) |
175 | { |
176 | x *= s; y *= s; z *= s; |
177 | } |
178 | |
179 | float32 x, y, z; |
180 | }; |
181 | |
182 | /// A 2-by-2 matrix. Stored in column-major order. |
183 | struct b2Mat22 |
184 | { |
185 | /// The default constructor does nothing (for performance). |
186 | b2Mat22() {} |
187 | |
188 | /// Construct this matrix using columns. |
189 | b2Mat22(const b2Vec2& c1, const b2Vec2& c2) |
190 | { |
191 | ex = c1; |
192 | ey = c2; |
193 | } |
194 | |
195 | /// Construct this matrix using scalars. |
196 | b2Mat22(float32 a11, float32 a12, float32 a21, float32 a22) |
197 | { |
198 | ex.x = a11; ex.y = a21; |
199 | ey.x = a12; ey.y = a22; |
200 | } |
201 | |
202 | /// Initialize this matrix using columns. |
203 | void Set(const b2Vec2& c1, const b2Vec2& c2) |
204 | { |
205 | ex = c1; |
206 | ey = c2; |
207 | } |
208 | |
209 | /// Set this to the identity matrix. |
210 | void SetIdentity() |
211 | { |
212 | ex.x = 1.0f; ey.x = 0.0f; |
213 | ex.y = 0.0f; ey.y = 1.0f; |
214 | } |
215 | |
216 | /// Set this matrix to all zeros. |
217 | void SetZero() |
218 | { |
219 | ex.x = 0.0f; ey.x = 0.0f; |
220 | ex.y = 0.0f; ey.y = 0.0f; |
221 | } |
222 | |
223 | b2Mat22 GetInverse() const |
224 | { |
225 | float32 a = ex.x, b = ey.x, c = ex.y, d = ey.y; |
226 | b2Mat22 B; |
227 | float32 det = a * d - b * c; |
228 | if (det != 0.0f) |
229 | { |
230 | det = 1.0f / det; |
231 | } |
232 | B.ex.x = det * d; B.ey.x = -det * b; |
233 | B.ex.y = -det * c; B.ey.y = det * a; |
234 | return B; |
235 | } |
236 | |
237 | /// Solve A * x = b, where b is a column vector. This is more efficient |
238 | /// than computing the inverse in one-shot cases. |
239 | b2Vec2 Solve(const b2Vec2& b) const |
240 | { |
241 | float32 a11 = ex.x, a12 = ey.x, a21 = ex.y, a22 = ey.y; |
242 | float32 det = a11 * a22 - a12 * a21; |
243 | if (det != 0.0f) |
244 | { |
245 | det = 1.0f / det; |
246 | } |
247 | b2Vec2 x; |
248 | x.x = det * (a22 * b.x - a12 * b.y); |
249 | x.y = det * (a11 * b.y - a21 * b.x); |
250 | return x; |
251 | } |
252 | |
253 | b2Vec2 ex, ey; |
254 | }; |
255 | |
256 | /// A 3-by-3 matrix. Stored in column-major order. |
257 | struct b2Mat33 |
258 | { |
259 | /// The default constructor does nothing (for performance). |
260 | b2Mat33() {} |
261 | |
262 | /// Construct this matrix using columns. |
263 | b2Mat33(const b2Vec3& c1, const b2Vec3& c2, const b2Vec3& c3) |
264 | { |
265 | ex = c1; |
266 | ey = c2; |
267 | ez = c3; |
268 | } |
269 | |
270 | /// Set this matrix to all zeros. |
271 | void SetZero() |
272 | { |
273 | ex.SetZero(); |
274 | ey.SetZero(); |
275 | ez.SetZero(); |
276 | } |
277 | |
278 | /// Solve A * x = b, where b is a column vector. This is more efficient |
279 | /// than computing the inverse in one-shot cases. |
280 | b2Vec3 Solve33(const b2Vec3& b) const; |
281 | |
282 | /// Solve A * x = b, where b is a column vector. This is more efficient |
283 | /// than computing the inverse in one-shot cases. Solve only the upper |
284 | /// 2-by-2 matrix equation. |
285 | b2Vec2 Solve22(const b2Vec2& b) const; |
286 | |
287 | /// Get the inverse of this matrix as a 2-by-2. |
288 | /// Returns the zero matrix if singular. |
289 | void GetInverse22(b2Mat33* M) const; |
290 | |
291 | /// Get the symmetric inverse of this matrix as a 3-by-3. |
292 | /// Returns the zero matrix if singular. |
293 | void GetSymInverse33(b2Mat33* M) const; |
294 | |
295 | b2Vec3 ex, ey, ez; |
296 | }; |
297 | |
298 | /// Rotation |
299 | struct b2Rot |
300 | { |
301 | b2Rot() {} |
302 | |
303 | /// Initialize from an angle in radians |
304 | explicit b2Rot(float32 angle) |
305 | { |
306 | /// TODO_ERIN optimize |
307 | s = sinf(angle); |
308 | c = cosf(angle); |
309 | } |
310 | |
311 | /// Set using an angle in radians. |
312 | void Set(float32 angle) |
313 | { |
314 | /// TODO_ERIN optimize |
315 | s = sinf(angle); |
316 | c = cosf(angle); |
317 | } |
318 | |
319 | /// Set to the identity rotation |
320 | void SetIdentity() |
321 | { |
322 | s = 0.0f; |
323 | c = 1.0f; |
324 | } |
325 | |
326 | /// Get the angle in radians |
327 | float32 GetAngle() const |
328 | { |
329 | return b2Atan2(s, c); |
330 | } |
331 | |
332 | /// Get the x-axis |
333 | b2Vec2 GetXAxis() const |
334 | { |
335 | return b2Vec2(c, s); |
336 | } |
337 | |
338 | /// Get the u-axis |
339 | b2Vec2 GetYAxis() const |
340 | { |
341 | return b2Vec2(-s, c); |
342 | } |
343 | |
344 | /// Sine and cosine |
345 | float32 s, c; |
346 | }; |
347 | |
348 | /// A transform contains translation and rotation. It is used to represent |
349 | /// the position and orientation of rigid frames. |
350 | struct b2Transform |
351 | { |
352 | /// The default constructor does nothing. |
353 | b2Transform() {} |
354 | |
355 | /// Initialize using a position vector and a rotation. |
356 | b2Transform(const b2Vec2& position, const b2Rot& rotation) : p(position), q(rotation) {} |
357 | |
358 | /// Set this to the identity transform. |
359 | void SetIdentity() |
360 | { |
361 | p.SetZero(); |
362 | q.SetIdentity(); |
363 | } |
364 | |
365 | /// Set this based on the position and angle. |
366 | void Set(const b2Vec2& position, float32 angle) |
367 | { |
368 | p = position; |
369 | q.Set(angle); |
370 | } |
371 | |
372 | b2Vec2 p; |
373 | b2Rot q; |
374 | }; |
375 | |
376 | /// This describes the motion of a body/shape for TOI computation. |
377 | /// Shapes are defined with respect to the body origin, which may |
378 | /// no coincide with the center of mass. However, to support dynamics |
379 | /// we must interpolate the center of mass position. |
380 | struct b2Sweep |
381 | { |
382 | /// Get the interpolated transform at a specific time. |
383 | /// @param beta is a factor in [0,1], where 0 indicates alpha0. |
384 | void GetTransform(b2Transform* xfb, float32 beta) const; |
385 | |
386 | /// Advance the sweep forward, yielding a new initial state. |
387 | /// @param alpha the new initial time. |
388 | void Advance(float32 alpha); |
389 | |
390 | /// Normalize the angles. |
391 | void Normalize(); |
392 | |
393 | b2Vec2 localCenter; ///< local center of mass position |
394 | b2Vec2 c0, c; ///< center world positions |
395 | float32 a0, a; ///< world angles |
396 | |
397 | /// Fraction of the current time step in the range [0,1] |
398 | /// c0 and a0 are the positions at alpha0. |
399 | float32 alpha0; |
400 | }; |
401 | |
402 | /// Useful constant |
403 | extern const b2Vec2 b2Vec2_zero; |
404 | |
405 | /// Perform the dot product on two vectors. |
406 | inline float32 b2Dot(const b2Vec2& a, const b2Vec2& b) |
407 | { |
408 | return a.x * b.x + a.y * b.y; |
409 | } |
410 | |
411 | /// Perform the cross product on two vectors. In 2D this produces a scalar. |
412 | inline float32 b2Cross(const b2Vec2& a, const b2Vec2& b) |
413 | { |
414 | return a.x * b.y - a.y * b.x; |
415 | } |
416 | |
417 | /// Perform the cross product on a vector and a scalar. In 2D this produces |
418 | /// a vector. |
419 | inline b2Vec2 b2Cross(const b2Vec2& a, float32 s) |
420 | { |
421 | return b2Vec2(s * a.y, -s * a.x); |
422 | } |
423 | |
424 | /// Perform the cross product on a scalar and a vector. In 2D this produces |
425 | /// a vector. |
426 | inline b2Vec2 b2Cross(float32 s, const b2Vec2& a) |
427 | { |
428 | return b2Vec2(-s * a.y, s * a.x); |
429 | } |
430 | |
431 | /// Multiply a matrix times a vector. If a rotation matrix is provided, |
432 | /// then this transforms the vector from one frame to another. |
433 | inline b2Vec2 b2Mul(const b2Mat22& A, const b2Vec2& v) |
434 | { |
435 | return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y); |
436 | } |
437 | |
438 | /// Multiply a matrix transpose times a vector. If a rotation matrix is provided, |
439 | /// then this transforms the vector from one frame to another (inverse transform). |
440 | inline b2Vec2 b2MulT(const b2Mat22& A, const b2Vec2& v) |
441 | { |
442 | return b2Vec2(b2Dot(v, A.ex), b2Dot(v, A.ey)); |
443 | } |
444 | |
445 | /// Add two vectors component-wise. |
446 | inline b2Vec2 operator + (const b2Vec2& a, const b2Vec2& b) |
447 | { |
448 | return b2Vec2(a.x + b.x, a.y + b.y); |
449 | } |
450 | |
451 | /// Subtract two vectors component-wise. |
452 | inline b2Vec2 operator - (const b2Vec2& a, const b2Vec2& b) |
453 | { |
454 | return b2Vec2(a.x - b.x, a.y - b.y); |
455 | } |
456 | |
457 | inline b2Vec2 operator * (float32 s, const b2Vec2& a) |
458 | { |
459 | return b2Vec2(s * a.x, s * a.y); |
460 | } |
461 | |
462 | inline bool operator == (const b2Vec2& a, const b2Vec2& b) |
463 | { |
464 | return a.x == b.x && a.y == b.y; |
465 | } |
466 | |
467 | inline float32 b2Distance(const b2Vec2& a, const b2Vec2& b) |
468 | { |
469 | b2Vec2 c = a - b; |
470 | return c.Length(); |
471 | } |
472 | |
473 | inline float32 b2DistanceSquared(const b2Vec2& a, const b2Vec2& b) |
474 | { |
475 | b2Vec2 c = a - b; |
476 | return b2Dot(c, c); |
477 | } |
478 | |
479 | inline b2Vec3 operator * (float32 s, const b2Vec3& a) |
480 | { |
481 | return b2Vec3(s * a.x, s * a.y, s * a.z); |
482 | } |
483 | |
484 | /// Add two vectors component-wise. |
485 | inline b2Vec3 operator + (const b2Vec3& a, const b2Vec3& b) |
486 | { |
487 | return b2Vec3(a.x + b.x, a.y + b.y, a.z + b.z); |
488 | } |
489 | |
490 | /// Subtract two vectors component-wise. |
491 | inline b2Vec3 operator - (const b2Vec3& a, const b2Vec3& b) |
492 | { |
493 | return b2Vec3(a.x - b.x, a.y - b.y, a.z - b.z); |
494 | } |
495 | |
496 | /// Perform the dot product on two vectors. |
497 | inline float32 b2Dot(const b2Vec3& a, const b2Vec3& b) |
498 | { |
499 | return a.x * b.x + a.y * b.y + a.z * b.z; |
500 | } |
501 | |
502 | /// Perform the cross product on two vectors. |
503 | inline b2Vec3 b2Cross(const b2Vec3& a, const b2Vec3& b) |
504 | { |
505 | return b2Vec3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x); |
506 | } |
507 | |
508 | inline b2Mat22 operator + (const b2Mat22& A, const b2Mat22& B) |
509 | { |
510 | return b2Mat22(A.ex + B.ex, A.ey + B.ey); |
511 | } |
512 | |
513 | // A * B |
514 | inline b2Mat22 b2Mul(const b2Mat22& A, const b2Mat22& B) |
515 | { |
516 | return b2Mat22(b2Mul(A, B.ex), b2Mul(A, B.ey)); |
517 | } |
518 | |
519 | // A^T * B |
520 | inline b2Mat22 b2MulT(const b2Mat22& A, const b2Mat22& B) |
521 | { |
522 | b2Vec2 c1(b2Dot(A.ex, B.ex), b2Dot(A.ey, B.ex)); |
523 | b2Vec2 c2(b2Dot(A.ex, B.ey), b2Dot(A.ey, B.ey)); |
524 | return b2Mat22(c1, c2); |
525 | } |
526 | |
527 | /// Multiply a matrix times a vector. |
528 | inline b2Vec3 b2Mul(const b2Mat33& A, const b2Vec3& v) |
529 | { |
530 | return v.x * A.ex + v.y * A.ey + v.z * A.ez; |
531 | } |
532 | |
533 | /// Multiply a matrix times a vector. |
534 | inline b2Vec2 b2Mul22(const b2Mat33& A, const b2Vec2& v) |
535 | { |
536 | return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y); |
537 | } |
538 | |
539 | /// Multiply two rotations: q * r |
540 | inline b2Rot b2Mul(const b2Rot& q, const b2Rot& r) |
541 | { |
542 | // [qc -qs] * [rc -rs] = [qc*rc-qs*rs -qc*rs-qs*rc] |
543 | // [qs qc] [rs rc] [qs*rc+qc*rs -qs*rs+qc*rc] |
544 | // s = qs * rc + qc * rs |
545 | // c = qc * rc - qs * rs |
546 | b2Rot qr; |
547 | qr.s = q.s * r.c + q.c * r.s; |
548 | qr.c = q.c * r.c - q.s * r.s; |
549 | return qr; |
550 | } |
551 | |
552 | /// Transpose multiply two rotations: qT * r |
553 | inline b2Rot b2MulT(const b2Rot& q, const b2Rot& r) |
554 | { |
555 | // [ qc qs] * [rc -rs] = [qc*rc+qs*rs -qc*rs+qs*rc] |
556 | // [-qs qc] [rs rc] [-qs*rc+qc*rs qs*rs+qc*rc] |
557 | // s = qc * rs - qs * rc |
558 | // c = qc * rc + qs * rs |
559 | b2Rot qr; |
560 | qr.s = q.c * r.s - q.s * r.c; |
561 | qr.c = q.c * r.c + q.s * r.s; |
562 | return qr; |
563 | } |
564 | |
565 | /// Rotate a vector |
566 | inline b2Vec2 b2Mul(const b2Rot& q, const b2Vec2& v) |
567 | { |
568 | return b2Vec2(q.c * v.x - q.s * v.y, q.s * v.x + q.c * v.y); |
569 | } |
570 | |
571 | /// Inverse rotate a vector |
572 | inline b2Vec2 b2MulT(const b2Rot& q, const b2Vec2& v) |
573 | { |
574 | return b2Vec2(q.c * v.x + q.s * v.y, -q.s * v.x + q.c * v.y); |
575 | } |
576 | |
577 | inline b2Vec2 b2Mul(const b2Transform& T, const b2Vec2& v) |
578 | { |
579 | float32 x = (T.q.c * v.x - T.q.s * v.y) + T.p.x; |
580 | float32 y = (T.q.s * v.x + T.q.c * v.y) + T.p.y; |
581 | |
582 | return b2Vec2(x, y); |
583 | } |
584 | |
585 | inline b2Vec2 b2MulT(const b2Transform& T, const b2Vec2& v) |
586 | { |
587 | float32 px = v.x - T.p.x; |
588 | float32 py = v.y - T.p.y; |
589 | float32 x = (T.q.c * px + T.q.s * py); |
590 | float32 y = (-T.q.s * px + T.q.c * py); |
591 | |
592 | return b2Vec2(x, y); |
593 | } |
594 | |
595 | // v2 = A.q.Rot(B.q.Rot(v1) + B.p) + A.p |
596 | // = (A.q * B.q).Rot(v1) + A.q.Rot(B.p) + A.p |
597 | inline b2Transform b2Mul(const b2Transform& A, const b2Transform& B) |
598 | { |
599 | b2Transform C; |
600 | C.q = b2Mul(A.q, B.q); |
601 | C.p = b2Mul(A.q, B.p) + A.p; |
602 | return C; |
603 | } |
604 | |
605 | // v2 = A.q' * (B.q * v1 + B.p - A.p) |
606 | // = A.q' * B.q * v1 + A.q' * (B.p - A.p) |
607 | inline b2Transform b2MulT(const b2Transform& A, const b2Transform& B) |
608 | { |
609 | b2Transform C; |
610 | C.q = b2MulT(A.q, B.q); |
611 | C.p = b2MulT(A.q, B.p - A.p); |
612 | return C; |
613 | } |
614 | |
615 | template <typename T> |
616 | inline T b2Abs(T a) |
617 | { |
618 | return a > T(0) ? a : -a; |
619 | } |
620 | |
621 | inline b2Vec2 b2Abs(const b2Vec2& a) |
622 | { |
623 | return b2Vec2(b2Abs(a.x), b2Abs(a.y)); |
624 | } |
625 | |
626 | inline b2Mat22 b2Abs(const b2Mat22& A) |
627 | { |
628 | return b2Mat22(b2Abs(A.ex), b2Abs(A.ey)); |
629 | } |
630 | |
631 | template <typename T> |
632 | inline T b2Min(T a, T b) |
633 | { |
634 | return a < b ? a : b; |
635 | } |
636 | |
637 | inline b2Vec2 b2Min(const b2Vec2& a, const b2Vec2& b) |
638 | { |
639 | return b2Vec2(b2Min(a.x, b.x), b2Min(a.y, b.y)); |
640 | } |
641 | |
642 | template <typename T> |
643 | inline T b2Max(T a, T b) |
644 | { |
645 | return a > b ? a : b; |
646 | } |
647 | |
648 | inline b2Vec2 b2Max(const b2Vec2& a, const b2Vec2& b) |
649 | { |
650 | return b2Vec2(b2Max(a.x, b.x), b2Max(a.y, b.y)); |
651 | } |
652 | |
653 | template <typename T> |
654 | inline T b2Clamp(T a, T low, T high) |
655 | { |
656 | return b2Max(low, b2Min(a, high)); |
657 | } |
658 | |
659 | inline b2Vec2 b2Clamp(const b2Vec2& a, const b2Vec2& low, const b2Vec2& high) |
660 | { |
661 | return b2Max(low, b2Min(a, high)); |
662 | } |
663 | |
664 | template<typename T> inline void b2Swap(T& a, T& b) |
665 | { |
666 | T tmp = a; |
667 | a = b; |
668 | b = tmp; |
669 | } |
670 | |
671 | /// "Next Largest Power of 2 |
672 | /// Given a binary integer value x, the next largest power of 2 can be computed by a SWAR algorithm |
673 | /// that recursively "folds" the upper bits into the lower bits. This process yields a bit vector with |
674 | /// the same most significant 1 as x, but all 1's below it. Adding 1 to that value yields the next |
675 | /// largest power of 2. For a 32-bit value:" |
676 | inline uint32 b2NextPowerOfTwo(uint32 x) |
677 | { |
678 | x |= (x >> 1); |
679 | x |= (x >> 2); |
680 | x |= (x >> 4); |
681 | x |= (x >> 8); |
682 | x |= (x >> 16); |
683 | return x + 1; |
684 | } |
685 | |
686 | inline bool b2IsPowerOfTwo(uint32 x) |
687 | { |
688 | bool result = x > 0 && (x & (x - 1)) == 0; |
689 | return result; |
690 | } |
691 | |
692 | inline void b2Sweep::GetTransform(b2Transform* xf, float32 beta) const |
693 | { |
694 | xf->p = (1.0f - beta) * c0 + beta * c; |
695 | float32 angle = (1.0f - beta) * a0 + beta * a; |
696 | xf->q.Set(angle); |
697 | |
698 | // Shift to origin |
699 | xf->p -= b2Mul(xf->q, localCenter); |
700 | } |
701 | |
702 | inline void b2Sweep::Advance(float32 alpha) |
703 | { |
704 | b2Assert(alpha0 < 1.0f); |
705 | float32 beta = (alpha - alpha0) / (1.0f - alpha0); |
706 | c0 += beta * (c - c0); |
707 | a0 += beta * (a - a0); |
708 | alpha0 = alpha; |
709 | } |
710 | |
711 | /// Normalize an angle in radians to be between -pi and pi |
712 | inline void b2Sweep::Normalize() |
713 | { |
714 | float32 twoPi = 2.0f * b2_pi; |
715 | float32 d = twoPi * floorf(a0 / twoPi); |
716 | a0 -= d; |
717 | a -= d; |
718 | } |
719 | |
720 | #endif |
721 | |