| 1 | /* |
| 2 | * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org |
| 3 | * |
| 4 | * This software is provided 'as-is', without any express or implied |
| 5 | * warranty. In no event will the authors be held liable for any damages |
| 6 | * arising from the use of this software. |
| 7 | * Permission is granted to anyone to use this software for any purpose, |
| 8 | * including commercial applications, and to alter it and redistribute it |
| 9 | * freely, subject to the following restrictions: |
| 10 | * 1. The origin of this software must not be misrepresented; you must not |
| 11 | * claim that you wrote the original software. If you use this software |
| 12 | * in a product, an acknowledgment in the product documentation would be |
| 13 | * appreciated but is not required. |
| 14 | * 2. Altered source versions must be plainly marked as such, and must not be |
| 15 | * misrepresented as being the original software. |
| 16 | * 3. This notice may not be removed or altered from any source distribution. |
| 17 | */ |
| 18 | |
| 19 | #ifndef B2_MATH_H |
| 20 | #define B2_MATH_H |
| 21 | |
| 22 | #include <Box2D/Common/b2Settings.h> |
| 23 | #include <math.h> |
| 24 | |
| 25 | /// This function is used to ensure that a floating point number is not a NaN or infinity. |
| 26 | inline bool b2IsValid(float32 x) |
| 27 | { |
| 28 | int32 ix = *reinterpret_cast<int32*>(&x); |
| 29 | return (ix & 0x7f800000) != 0x7f800000; |
| 30 | } |
| 31 | |
| 32 | /// This is a approximate yet fast inverse square-root. |
| 33 | inline float32 b2InvSqrt(float32 x) |
| 34 | { |
| 35 | union |
| 36 | { |
| 37 | float32 x; |
| 38 | int32 i; |
| 39 | } convert; |
| 40 | |
| 41 | convert.x = x; |
| 42 | float32 xhalf = 0.5f * x; |
| 43 | convert.i = 0x5f3759df - (convert.i >> 1); |
| 44 | x = convert.x; |
| 45 | x = x * (1.5f - xhalf * x * x); |
| 46 | return x; |
| 47 | } |
| 48 | |
| 49 | #define b2Sqrt(x) sqrtf(x) |
| 50 | #define b2Atan2(y, x) atan2f(y, x) |
| 51 | |
| 52 | /// A 2D column vector. |
| 53 | struct b2Vec2 |
| 54 | { |
| 55 | /// Default constructor does nothing (for performance). |
| 56 | b2Vec2() {} |
| 57 | |
| 58 | /// Construct using coordinates. |
| 59 | b2Vec2(float32 x, float32 y) : x(x), y(y) {} |
| 60 | |
| 61 | /// Set this vector to all zeros. |
| 62 | void SetZero() { x = 0.0f; y = 0.0f; } |
| 63 | |
| 64 | /// Set this vector to some specified coordinates. |
| 65 | void Set(float32 x_, float32 y_) { x = x_; y = y_; } |
| 66 | |
| 67 | /// Negate this vector. |
| 68 | b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; } |
| 69 | |
| 70 | /// Read from and indexed element. |
| 71 | float32 operator () (int32 i) const |
| 72 | { |
| 73 | return (&x)[i]; |
| 74 | } |
| 75 | |
| 76 | /// Write to an indexed element. |
| 77 | float32& operator () (int32 i) |
| 78 | { |
| 79 | return (&x)[i]; |
| 80 | } |
| 81 | |
| 82 | /// Add a vector to this vector. |
| 83 | void operator += (const b2Vec2& v) |
| 84 | { |
| 85 | x += v.x; y += v.y; |
| 86 | } |
| 87 | |
| 88 | /// Subtract a vector from this vector. |
| 89 | void operator -= (const b2Vec2& v) |
| 90 | { |
| 91 | x -= v.x; y -= v.y; |
| 92 | } |
| 93 | |
| 94 | /// Multiply this vector by a scalar. |
| 95 | void operator *= (float32 a) |
| 96 | { |
| 97 | x *= a; y *= a; |
| 98 | } |
| 99 | |
| 100 | /// Get the length of this vector (the norm). |
| 101 | float32 Length() const |
| 102 | { |
| 103 | return b2Sqrt(x * x + y * y); |
| 104 | } |
| 105 | |
| 106 | /// Get the length squared. For performance, use this instead of |
| 107 | /// b2Vec2::Length (if possible). |
| 108 | float32 LengthSquared() const |
| 109 | { |
| 110 | return x * x + y * y; |
| 111 | } |
| 112 | |
| 113 | /// Convert this vector into a unit vector. Returns the length. |
| 114 | float32 Normalize() |
| 115 | { |
| 116 | float32 length = Length(); |
| 117 | if (length < b2_epsilon) |
| 118 | { |
| 119 | return 0.0f; |
| 120 | } |
| 121 | float32 invLength = 1.0f / length; |
| 122 | x *= invLength; |
| 123 | y *= invLength; |
| 124 | |
| 125 | return length; |
| 126 | } |
| 127 | |
| 128 | /// Does this vector contain finite coordinates? |
| 129 | bool IsValid() const |
| 130 | { |
| 131 | return b2IsValid(x) && b2IsValid(y); |
| 132 | } |
| 133 | |
| 134 | /// Get the skew vector such that dot(skew_vec, other) == cross(vec, other) |
| 135 | b2Vec2 Skew() const |
| 136 | { |
| 137 | return b2Vec2(-y, x); |
| 138 | } |
| 139 | |
| 140 | float32 x, y; |
| 141 | }; |
| 142 | |
| 143 | /// A 2D column vector with 3 elements. |
| 144 | struct b2Vec3 |
| 145 | { |
| 146 | /// Default constructor does nothing (for performance). |
| 147 | b2Vec3() {} |
| 148 | |
| 149 | /// Construct using coordinates. |
| 150 | b2Vec3(float32 x, float32 y, float32 z) : x(x), y(y), z(z) {} |
| 151 | |
| 152 | /// Set this vector to all zeros. |
| 153 | void SetZero() { x = 0.0f; y = 0.0f; z = 0.0f; } |
| 154 | |
| 155 | /// Set this vector to some specified coordinates. |
| 156 | void Set(float32 x_, float32 y_, float32 z_) { x = x_; y = y_; z = z_; } |
| 157 | |
| 158 | /// Negate this vector. |
| 159 | b2Vec3 operator -() const { b2Vec3 v; v.Set(-x, -y, -z); return v; } |
| 160 | |
| 161 | /// Add a vector to this vector. |
| 162 | void operator += (const b2Vec3& v) |
| 163 | { |
| 164 | x += v.x; y += v.y; z += v.z; |
| 165 | } |
| 166 | |
| 167 | /// Subtract a vector from this vector. |
| 168 | void operator -= (const b2Vec3& v) |
| 169 | { |
| 170 | x -= v.x; y -= v.y; z -= v.z; |
| 171 | } |
| 172 | |
| 173 | /// Multiply this vector by a scalar. |
| 174 | void operator *= (float32 s) |
| 175 | { |
| 176 | x *= s; y *= s; z *= s; |
| 177 | } |
| 178 | |
| 179 | float32 x, y, z; |
| 180 | }; |
| 181 | |
| 182 | /// A 2-by-2 matrix. Stored in column-major order. |
| 183 | struct b2Mat22 |
| 184 | { |
| 185 | /// The default constructor does nothing (for performance). |
| 186 | b2Mat22() {} |
| 187 | |
| 188 | /// Construct this matrix using columns. |
| 189 | b2Mat22(const b2Vec2& c1, const b2Vec2& c2) |
| 190 | { |
| 191 | ex = c1; |
| 192 | ey = c2; |
| 193 | } |
| 194 | |
| 195 | /// Construct this matrix using scalars. |
| 196 | b2Mat22(float32 a11, float32 a12, float32 a21, float32 a22) |
| 197 | { |
| 198 | ex.x = a11; ex.y = a21; |
| 199 | ey.x = a12; ey.y = a22; |
| 200 | } |
| 201 | |
| 202 | /// Initialize this matrix using columns. |
| 203 | void Set(const b2Vec2& c1, const b2Vec2& c2) |
| 204 | { |
| 205 | ex = c1; |
| 206 | ey = c2; |
| 207 | } |
| 208 | |
| 209 | /// Set this to the identity matrix. |
| 210 | void SetIdentity() |
| 211 | { |
| 212 | ex.x = 1.0f; ey.x = 0.0f; |
| 213 | ex.y = 0.0f; ey.y = 1.0f; |
| 214 | } |
| 215 | |
| 216 | /// Set this matrix to all zeros. |
| 217 | void SetZero() |
| 218 | { |
| 219 | ex.x = 0.0f; ey.x = 0.0f; |
| 220 | ex.y = 0.0f; ey.y = 0.0f; |
| 221 | } |
| 222 | |
| 223 | b2Mat22 GetInverse() const |
| 224 | { |
| 225 | float32 a = ex.x, b = ey.x, c = ex.y, d = ey.y; |
| 226 | b2Mat22 B; |
| 227 | float32 det = a * d - b * c; |
| 228 | if (det != 0.0f) |
| 229 | { |
| 230 | det = 1.0f / det; |
| 231 | } |
| 232 | B.ex.x = det * d; B.ey.x = -det * b; |
| 233 | B.ex.y = -det * c; B.ey.y = det * a; |
| 234 | return B; |
| 235 | } |
| 236 | |
| 237 | /// Solve A * x = b, where b is a column vector. This is more efficient |
| 238 | /// than computing the inverse in one-shot cases. |
| 239 | b2Vec2 Solve(const b2Vec2& b) const |
| 240 | { |
| 241 | float32 a11 = ex.x, a12 = ey.x, a21 = ex.y, a22 = ey.y; |
| 242 | float32 det = a11 * a22 - a12 * a21; |
| 243 | if (det != 0.0f) |
| 244 | { |
| 245 | det = 1.0f / det; |
| 246 | } |
| 247 | b2Vec2 x; |
| 248 | x.x = det * (a22 * b.x - a12 * b.y); |
| 249 | x.y = det * (a11 * b.y - a21 * b.x); |
| 250 | return x; |
| 251 | } |
| 252 | |
| 253 | b2Vec2 ex, ey; |
| 254 | }; |
| 255 | |
| 256 | /// A 3-by-3 matrix. Stored in column-major order. |
| 257 | struct b2Mat33 |
| 258 | { |
| 259 | /// The default constructor does nothing (for performance). |
| 260 | b2Mat33() {} |
| 261 | |
| 262 | /// Construct this matrix using columns. |
| 263 | b2Mat33(const b2Vec3& c1, const b2Vec3& c2, const b2Vec3& c3) |
| 264 | { |
| 265 | ex = c1; |
| 266 | ey = c2; |
| 267 | ez = c3; |
| 268 | } |
| 269 | |
| 270 | /// Set this matrix to all zeros. |
| 271 | void SetZero() |
| 272 | { |
| 273 | ex.SetZero(); |
| 274 | ey.SetZero(); |
| 275 | ez.SetZero(); |
| 276 | } |
| 277 | |
| 278 | /// Solve A * x = b, where b is a column vector. This is more efficient |
| 279 | /// than computing the inverse in one-shot cases. |
| 280 | b2Vec3 Solve33(const b2Vec3& b) const; |
| 281 | |
| 282 | /// Solve A * x = b, where b is a column vector. This is more efficient |
| 283 | /// than computing the inverse in one-shot cases. Solve only the upper |
| 284 | /// 2-by-2 matrix equation. |
| 285 | b2Vec2 Solve22(const b2Vec2& b) const; |
| 286 | |
| 287 | /// Get the inverse of this matrix as a 2-by-2. |
| 288 | /// Returns the zero matrix if singular. |
| 289 | void GetInverse22(b2Mat33* M) const; |
| 290 | |
| 291 | /// Get the symmetric inverse of this matrix as a 3-by-3. |
| 292 | /// Returns the zero matrix if singular. |
| 293 | void GetSymInverse33(b2Mat33* M) const; |
| 294 | |
| 295 | b2Vec3 ex, ey, ez; |
| 296 | }; |
| 297 | |
| 298 | /// Rotation |
| 299 | struct b2Rot |
| 300 | { |
| 301 | b2Rot() {} |
| 302 | |
| 303 | /// Initialize from an angle in radians |
| 304 | explicit b2Rot(float32 angle) |
| 305 | { |
| 306 | /// TODO_ERIN optimize |
| 307 | s = sinf(angle); |
| 308 | c = cosf(angle); |
| 309 | } |
| 310 | |
| 311 | /// Set using an angle in radians. |
| 312 | void Set(float32 angle) |
| 313 | { |
| 314 | /// TODO_ERIN optimize |
| 315 | s = sinf(angle); |
| 316 | c = cosf(angle); |
| 317 | } |
| 318 | |
| 319 | /// Set to the identity rotation |
| 320 | void SetIdentity() |
| 321 | { |
| 322 | s = 0.0f; |
| 323 | c = 1.0f; |
| 324 | } |
| 325 | |
| 326 | /// Get the angle in radians |
| 327 | float32 GetAngle() const |
| 328 | { |
| 329 | return b2Atan2(s, c); |
| 330 | } |
| 331 | |
| 332 | /// Get the x-axis |
| 333 | b2Vec2 GetXAxis() const |
| 334 | { |
| 335 | return b2Vec2(c, s); |
| 336 | } |
| 337 | |
| 338 | /// Get the u-axis |
| 339 | b2Vec2 GetYAxis() const |
| 340 | { |
| 341 | return b2Vec2(-s, c); |
| 342 | } |
| 343 | |
| 344 | /// Sine and cosine |
| 345 | float32 s, c; |
| 346 | }; |
| 347 | |
| 348 | /// A transform contains translation and rotation. It is used to represent |
| 349 | /// the position and orientation of rigid frames. |
| 350 | struct b2Transform |
| 351 | { |
| 352 | /// The default constructor does nothing. |
| 353 | b2Transform() {} |
| 354 | |
| 355 | /// Initialize using a position vector and a rotation. |
| 356 | b2Transform(const b2Vec2& position, const b2Rot& rotation) : p(position), q(rotation) {} |
| 357 | |
| 358 | /// Set this to the identity transform. |
| 359 | void SetIdentity() |
| 360 | { |
| 361 | p.SetZero(); |
| 362 | q.SetIdentity(); |
| 363 | } |
| 364 | |
| 365 | /// Set this based on the position and angle. |
| 366 | void Set(const b2Vec2& position, float32 angle) |
| 367 | { |
| 368 | p = position; |
| 369 | q.Set(angle); |
| 370 | } |
| 371 | |
| 372 | b2Vec2 p; |
| 373 | b2Rot q; |
| 374 | }; |
| 375 | |
| 376 | /// This describes the motion of a body/shape for TOI computation. |
| 377 | /// Shapes are defined with respect to the body origin, which may |
| 378 | /// no coincide with the center of mass. However, to support dynamics |
| 379 | /// we must interpolate the center of mass position. |
| 380 | struct b2Sweep |
| 381 | { |
| 382 | /// Get the interpolated transform at a specific time. |
| 383 | /// @param beta is a factor in [0,1], where 0 indicates alpha0. |
| 384 | void GetTransform(b2Transform* xfb, float32 beta) const; |
| 385 | |
| 386 | /// Advance the sweep forward, yielding a new initial state. |
| 387 | /// @param alpha the new initial time. |
| 388 | void Advance(float32 alpha); |
| 389 | |
| 390 | /// Normalize the angles. |
| 391 | void Normalize(); |
| 392 | |
| 393 | b2Vec2 localCenter; ///< local center of mass position |
| 394 | b2Vec2 c0, c; ///< center world positions |
| 395 | float32 a0, a; ///< world angles |
| 396 | |
| 397 | /// Fraction of the current time step in the range [0,1] |
| 398 | /// c0 and a0 are the positions at alpha0. |
| 399 | float32 alpha0; |
| 400 | }; |
| 401 | |
| 402 | /// Useful constant |
| 403 | extern const b2Vec2 b2Vec2_zero; |
| 404 | |
| 405 | /// Perform the dot product on two vectors. |
| 406 | inline float32 b2Dot(const b2Vec2& a, const b2Vec2& b) |
| 407 | { |
| 408 | return a.x * b.x + a.y * b.y; |
| 409 | } |
| 410 | |
| 411 | /// Perform the cross product on two vectors. In 2D this produces a scalar. |
| 412 | inline float32 b2Cross(const b2Vec2& a, const b2Vec2& b) |
| 413 | { |
| 414 | return a.x * b.y - a.y * b.x; |
| 415 | } |
| 416 | |
| 417 | /// Perform the cross product on a vector and a scalar. In 2D this produces |
| 418 | /// a vector. |
| 419 | inline b2Vec2 b2Cross(const b2Vec2& a, float32 s) |
| 420 | { |
| 421 | return b2Vec2(s * a.y, -s * a.x); |
| 422 | } |
| 423 | |
| 424 | /// Perform the cross product on a scalar and a vector. In 2D this produces |
| 425 | /// a vector. |
| 426 | inline b2Vec2 b2Cross(float32 s, const b2Vec2& a) |
| 427 | { |
| 428 | return b2Vec2(-s * a.y, s * a.x); |
| 429 | } |
| 430 | |
| 431 | /// Multiply a matrix times a vector. If a rotation matrix is provided, |
| 432 | /// then this transforms the vector from one frame to another. |
| 433 | inline b2Vec2 b2Mul(const b2Mat22& A, const b2Vec2& v) |
| 434 | { |
| 435 | return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y); |
| 436 | } |
| 437 | |
| 438 | /// Multiply a matrix transpose times a vector. If a rotation matrix is provided, |
| 439 | /// then this transforms the vector from one frame to another (inverse transform). |
| 440 | inline b2Vec2 b2MulT(const b2Mat22& A, const b2Vec2& v) |
| 441 | { |
| 442 | return b2Vec2(b2Dot(v, A.ex), b2Dot(v, A.ey)); |
| 443 | } |
| 444 | |
| 445 | /// Add two vectors component-wise. |
| 446 | inline b2Vec2 operator + (const b2Vec2& a, const b2Vec2& b) |
| 447 | { |
| 448 | return b2Vec2(a.x + b.x, a.y + b.y); |
| 449 | } |
| 450 | |
| 451 | /// Subtract two vectors component-wise. |
| 452 | inline b2Vec2 operator - (const b2Vec2& a, const b2Vec2& b) |
| 453 | { |
| 454 | return b2Vec2(a.x - b.x, a.y - b.y); |
| 455 | } |
| 456 | |
| 457 | inline b2Vec2 operator * (float32 s, const b2Vec2& a) |
| 458 | { |
| 459 | return b2Vec2(s * a.x, s * a.y); |
| 460 | } |
| 461 | |
| 462 | inline bool operator == (const b2Vec2& a, const b2Vec2& b) |
| 463 | { |
| 464 | return a.x == b.x && a.y == b.y; |
| 465 | } |
| 466 | |
| 467 | inline float32 b2Distance(const b2Vec2& a, const b2Vec2& b) |
| 468 | { |
| 469 | b2Vec2 c = a - b; |
| 470 | return c.Length(); |
| 471 | } |
| 472 | |
| 473 | inline float32 b2DistanceSquared(const b2Vec2& a, const b2Vec2& b) |
| 474 | { |
| 475 | b2Vec2 c = a - b; |
| 476 | return b2Dot(c, c); |
| 477 | } |
| 478 | |
| 479 | inline b2Vec3 operator * (float32 s, const b2Vec3& a) |
| 480 | { |
| 481 | return b2Vec3(s * a.x, s * a.y, s * a.z); |
| 482 | } |
| 483 | |
| 484 | /// Add two vectors component-wise. |
| 485 | inline b2Vec3 operator + (const b2Vec3& a, const b2Vec3& b) |
| 486 | { |
| 487 | return b2Vec3(a.x + b.x, a.y + b.y, a.z + b.z); |
| 488 | } |
| 489 | |
| 490 | /// Subtract two vectors component-wise. |
| 491 | inline b2Vec3 operator - (const b2Vec3& a, const b2Vec3& b) |
| 492 | { |
| 493 | return b2Vec3(a.x - b.x, a.y - b.y, a.z - b.z); |
| 494 | } |
| 495 | |
| 496 | /// Perform the dot product on two vectors. |
| 497 | inline float32 b2Dot(const b2Vec3& a, const b2Vec3& b) |
| 498 | { |
| 499 | return a.x * b.x + a.y * b.y + a.z * b.z; |
| 500 | } |
| 501 | |
| 502 | /// Perform the cross product on two vectors. |
| 503 | inline b2Vec3 b2Cross(const b2Vec3& a, const b2Vec3& b) |
| 504 | { |
| 505 | return b2Vec3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x); |
| 506 | } |
| 507 | |
| 508 | inline b2Mat22 operator + (const b2Mat22& A, const b2Mat22& B) |
| 509 | { |
| 510 | return b2Mat22(A.ex + B.ex, A.ey + B.ey); |
| 511 | } |
| 512 | |
| 513 | // A * B |
| 514 | inline b2Mat22 b2Mul(const b2Mat22& A, const b2Mat22& B) |
| 515 | { |
| 516 | return b2Mat22(b2Mul(A, B.ex), b2Mul(A, B.ey)); |
| 517 | } |
| 518 | |
| 519 | // A^T * B |
| 520 | inline b2Mat22 b2MulT(const b2Mat22& A, const b2Mat22& B) |
| 521 | { |
| 522 | b2Vec2 c1(b2Dot(A.ex, B.ex), b2Dot(A.ey, B.ex)); |
| 523 | b2Vec2 c2(b2Dot(A.ex, B.ey), b2Dot(A.ey, B.ey)); |
| 524 | return b2Mat22(c1, c2); |
| 525 | } |
| 526 | |
| 527 | /// Multiply a matrix times a vector. |
| 528 | inline b2Vec3 b2Mul(const b2Mat33& A, const b2Vec3& v) |
| 529 | { |
| 530 | return v.x * A.ex + v.y * A.ey + v.z * A.ez; |
| 531 | } |
| 532 | |
| 533 | /// Multiply a matrix times a vector. |
| 534 | inline b2Vec2 b2Mul22(const b2Mat33& A, const b2Vec2& v) |
| 535 | { |
| 536 | return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y); |
| 537 | } |
| 538 | |
| 539 | /// Multiply two rotations: q * r |
| 540 | inline b2Rot b2Mul(const b2Rot& q, const b2Rot& r) |
| 541 | { |
| 542 | // [qc -qs] * [rc -rs] = [qc*rc-qs*rs -qc*rs-qs*rc] |
| 543 | // [qs qc] [rs rc] [qs*rc+qc*rs -qs*rs+qc*rc] |
| 544 | // s = qs * rc + qc * rs |
| 545 | // c = qc * rc - qs * rs |
| 546 | b2Rot qr; |
| 547 | qr.s = q.s * r.c + q.c * r.s; |
| 548 | qr.c = q.c * r.c - q.s * r.s; |
| 549 | return qr; |
| 550 | } |
| 551 | |
| 552 | /// Transpose multiply two rotations: qT * r |
| 553 | inline b2Rot b2MulT(const b2Rot& q, const b2Rot& r) |
| 554 | { |
| 555 | // [ qc qs] * [rc -rs] = [qc*rc+qs*rs -qc*rs+qs*rc] |
| 556 | // [-qs qc] [rs rc] [-qs*rc+qc*rs qs*rs+qc*rc] |
| 557 | // s = qc * rs - qs * rc |
| 558 | // c = qc * rc + qs * rs |
| 559 | b2Rot qr; |
| 560 | qr.s = q.c * r.s - q.s * r.c; |
| 561 | qr.c = q.c * r.c + q.s * r.s; |
| 562 | return qr; |
| 563 | } |
| 564 | |
| 565 | /// Rotate a vector |
| 566 | inline b2Vec2 b2Mul(const b2Rot& q, const b2Vec2& v) |
| 567 | { |
| 568 | return b2Vec2(q.c * v.x - q.s * v.y, q.s * v.x + q.c * v.y); |
| 569 | } |
| 570 | |
| 571 | /// Inverse rotate a vector |
| 572 | inline b2Vec2 b2MulT(const b2Rot& q, const b2Vec2& v) |
| 573 | { |
| 574 | return b2Vec2(q.c * v.x + q.s * v.y, -q.s * v.x + q.c * v.y); |
| 575 | } |
| 576 | |
| 577 | inline b2Vec2 b2Mul(const b2Transform& T, const b2Vec2& v) |
| 578 | { |
| 579 | float32 x = (T.q.c * v.x - T.q.s * v.y) + T.p.x; |
| 580 | float32 y = (T.q.s * v.x + T.q.c * v.y) + T.p.y; |
| 581 | |
| 582 | return b2Vec2(x, y); |
| 583 | } |
| 584 | |
| 585 | inline b2Vec2 b2MulT(const b2Transform& T, const b2Vec2& v) |
| 586 | { |
| 587 | float32 px = v.x - T.p.x; |
| 588 | float32 py = v.y - T.p.y; |
| 589 | float32 x = (T.q.c * px + T.q.s * py); |
| 590 | float32 y = (-T.q.s * px + T.q.c * py); |
| 591 | |
| 592 | return b2Vec2(x, y); |
| 593 | } |
| 594 | |
| 595 | // v2 = A.q.Rot(B.q.Rot(v1) + B.p) + A.p |
| 596 | // = (A.q * B.q).Rot(v1) + A.q.Rot(B.p) + A.p |
| 597 | inline b2Transform b2Mul(const b2Transform& A, const b2Transform& B) |
| 598 | { |
| 599 | b2Transform C; |
| 600 | C.q = b2Mul(A.q, B.q); |
| 601 | C.p = b2Mul(A.q, B.p) + A.p; |
| 602 | return C; |
| 603 | } |
| 604 | |
| 605 | // v2 = A.q' * (B.q * v1 + B.p - A.p) |
| 606 | // = A.q' * B.q * v1 + A.q' * (B.p - A.p) |
| 607 | inline b2Transform b2MulT(const b2Transform& A, const b2Transform& B) |
| 608 | { |
| 609 | b2Transform C; |
| 610 | C.q = b2MulT(A.q, B.q); |
| 611 | C.p = b2MulT(A.q, B.p - A.p); |
| 612 | return C; |
| 613 | } |
| 614 | |
| 615 | template <typename T> |
| 616 | inline T b2Abs(T a) |
| 617 | { |
| 618 | return a > T(0) ? a : -a; |
| 619 | } |
| 620 | |
| 621 | inline b2Vec2 b2Abs(const b2Vec2& a) |
| 622 | { |
| 623 | return b2Vec2(b2Abs(a.x), b2Abs(a.y)); |
| 624 | } |
| 625 | |
| 626 | inline b2Mat22 b2Abs(const b2Mat22& A) |
| 627 | { |
| 628 | return b2Mat22(b2Abs(A.ex), b2Abs(A.ey)); |
| 629 | } |
| 630 | |
| 631 | template <typename T> |
| 632 | inline T b2Min(T a, T b) |
| 633 | { |
| 634 | return a < b ? a : b; |
| 635 | } |
| 636 | |
| 637 | inline b2Vec2 b2Min(const b2Vec2& a, const b2Vec2& b) |
| 638 | { |
| 639 | return b2Vec2(b2Min(a.x, b.x), b2Min(a.y, b.y)); |
| 640 | } |
| 641 | |
| 642 | template <typename T> |
| 643 | inline T b2Max(T a, T b) |
| 644 | { |
| 645 | return a > b ? a : b; |
| 646 | } |
| 647 | |
| 648 | inline b2Vec2 b2Max(const b2Vec2& a, const b2Vec2& b) |
| 649 | { |
| 650 | return b2Vec2(b2Max(a.x, b.x), b2Max(a.y, b.y)); |
| 651 | } |
| 652 | |
| 653 | template <typename T> |
| 654 | inline T b2Clamp(T a, T low, T high) |
| 655 | { |
| 656 | return b2Max(low, b2Min(a, high)); |
| 657 | } |
| 658 | |
| 659 | inline b2Vec2 b2Clamp(const b2Vec2& a, const b2Vec2& low, const b2Vec2& high) |
| 660 | { |
| 661 | return b2Max(low, b2Min(a, high)); |
| 662 | } |
| 663 | |
| 664 | template<typename T> inline void b2Swap(T& a, T& b) |
| 665 | { |
| 666 | T tmp = a; |
| 667 | a = b; |
| 668 | b = tmp; |
| 669 | } |
| 670 | |
| 671 | /// "Next Largest Power of 2 |
| 672 | /// Given a binary integer value x, the next largest power of 2 can be computed by a SWAR algorithm |
| 673 | /// that recursively "folds" the upper bits into the lower bits. This process yields a bit vector with |
| 674 | /// the same most significant 1 as x, but all 1's below it. Adding 1 to that value yields the next |
| 675 | /// largest power of 2. For a 32-bit value:" |
| 676 | inline uint32 b2NextPowerOfTwo(uint32 x) |
| 677 | { |
| 678 | x |= (x >> 1); |
| 679 | x |= (x >> 2); |
| 680 | x |= (x >> 4); |
| 681 | x |= (x >> 8); |
| 682 | x |= (x >> 16); |
| 683 | return x + 1; |
| 684 | } |
| 685 | |
| 686 | inline bool b2IsPowerOfTwo(uint32 x) |
| 687 | { |
| 688 | bool result = x > 0 && (x & (x - 1)) == 0; |
| 689 | return result; |
| 690 | } |
| 691 | |
| 692 | inline void b2Sweep::GetTransform(b2Transform* xf, float32 beta) const |
| 693 | { |
| 694 | xf->p = (1.0f - beta) * c0 + beta * c; |
| 695 | float32 angle = (1.0f - beta) * a0 + beta * a; |
| 696 | xf->q.Set(angle); |
| 697 | |
| 698 | // Shift to origin |
| 699 | xf->p -= b2Mul(xf->q, localCenter); |
| 700 | } |
| 701 | |
| 702 | inline void b2Sweep::Advance(float32 alpha) |
| 703 | { |
| 704 | b2Assert(alpha0 < 1.0f); |
| 705 | float32 beta = (alpha - alpha0) / (1.0f - alpha0); |
| 706 | c0 += beta * (c - c0); |
| 707 | a0 += beta * (a - a0); |
| 708 | alpha0 = alpha; |
| 709 | } |
| 710 | |
| 711 | /// Normalize an angle in radians to be between -pi and pi |
| 712 | inline void b2Sweep::Normalize() |
| 713 | { |
| 714 | float32 twoPi = 2.0f * b2_pi; |
| 715 | float32 d = twoPi * floorf(a0 / twoPi); |
| 716 | a0 -= d; |
| 717 | a -= d; |
| 718 | } |
| 719 | |
| 720 | #endif |
| 721 | |