| 1 | /** |
| 2 | * Copyright (c) 2006-2023 LOVE Development Team |
| 3 | * |
| 4 | * This software is provided 'as-is', without any express or implied |
| 5 | * warranty. In no event will the authors be held liable for any damages |
| 6 | * arising from the use of this software. |
| 7 | * |
| 8 | * Permission is granted to anyone to use this software for any purpose, |
| 9 | * including commercial applications, and to alter it and redistribute it |
| 10 | * freely, subject to the following restrictions: |
| 11 | * |
| 12 | * 1. The origin of this software must not be misrepresented; you must not |
| 13 | * claim that you wrote the original software. If you use this software |
| 14 | * in a product, an acknowledgment in the product documentation would be |
| 15 | * appreciated but is not required. |
| 16 | * 2. Altered source versions must be plainly marked as such, and must not be |
| 17 | * misrepresented as being the original software. |
| 18 | * 3. This notice may not be removed or altered from any source distribution. |
| 19 | **/ |
| 20 | |
| 21 | // LOVE |
| 22 | #include "Polyline.h" |
| 23 | #include "graphics/Graphics.h" |
| 24 | |
| 25 | // C++ |
| 26 | #include <algorithm> |
| 27 | |
| 28 | // treat adjacent segments with angles between their directions <5 degree as straight |
| 29 | static const float LINES_PARALLEL_EPS = 0.05f; |
| 30 | |
| 31 | namespace love |
| 32 | { |
| 33 | namespace graphics |
| 34 | { |
| 35 | |
| 36 | void Polyline::render(const Vector2 *coords, size_t count, size_t size_hint, float halfwidth, float pixel_size, bool draw_overdraw) |
| 37 | { |
| 38 | static std::vector<Vector2> anchors; |
| 39 | anchors.clear(); |
| 40 | anchors.reserve(size_hint); |
| 41 | |
| 42 | static std::vector<Vector2> normals; |
| 43 | normals.clear(); |
| 44 | normals.reserve(size_hint); |
| 45 | |
| 46 | // prepare vertex arrays |
| 47 | if (draw_overdraw) |
| 48 | halfwidth -= pixel_size * 0.3f; |
| 49 | |
| 50 | // compute sleeve |
| 51 | bool is_looping = (coords[0] == coords[count - 1]); |
| 52 | Vector2 segment; |
| 53 | if (!is_looping) // virtual starting point at second point mirrored on first point |
| 54 | segment = coords[1] - coords[0]; |
| 55 | else // virtual starting point at last vertex |
| 56 | segment = coords[0] - coords[count - 2]; |
| 57 | |
| 58 | float segmentLength = segment.getLength(); |
| 59 | Vector2 segmentNormal = segment.getNormal(halfwidth / segmentLength); |
| 60 | |
| 61 | Vector2 pointA, pointB(coords[0]); |
| 62 | for (size_t i = 0; i + 1 < count; i++) |
| 63 | { |
| 64 | pointA = pointB; |
| 65 | pointB = coords[i + 1]; |
| 66 | renderEdge(anchors, normals, segment, segmentLength, segmentNormal, pointA, pointB, halfwidth); |
| 67 | } |
| 68 | |
| 69 | pointA = pointB; |
| 70 | pointB = is_looping ? coords[1] : pointB + segment; |
| 71 | renderEdge(anchors, normals, segment, segmentLength, segmentNormal, pointA, pointB, halfwidth); |
| 72 | |
| 73 | vertex_count = normals.size(); |
| 74 | |
| 75 | size_t = 0; |
| 76 | |
| 77 | if (draw_overdraw) |
| 78 | { |
| 79 | calc_overdraw_vertex_count(is_looping); |
| 80 | |
| 81 | // When drawing overdraw lines using triangle strips, we want to add an |
| 82 | // extra degenerate triangle in between the core line and the overdraw |
| 83 | // line in order to break up the strip into two. This will let us draw |
| 84 | // everything in one draw call. |
| 85 | if (triangle_mode == vertex::TriangleIndexMode::STRIP) |
| 86 | extra_vertices = 2; |
| 87 | } |
| 88 | |
| 89 | // Use a single linear array for both the regular and overdraw vertices. |
| 90 | vertices = new Vector2[vertex_count + extra_vertices + overdraw_vertex_count]; |
| 91 | |
| 92 | for (size_t i = 0; i < vertex_count; ++i) |
| 93 | vertices[i] = anchors[i] + normals[i]; |
| 94 | |
| 95 | if (draw_overdraw) |
| 96 | { |
| 97 | overdraw = vertices + vertex_count + extra_vertices; |
| 98 | overdraw_vertex_start = vertex_count + extra_vertices; |
| 99 | render_overdraw(normals, pixel_size, is_looping); |
| 100 | } |
| 101 | |
| 102 | // Add the degenerate triangle strip. |
| 103 | if (extra_vertices) |
| 104 | { |
| 105 | vertices[vertex_count + 0] = vertices[vertex_count - 1]; |
| 106 | vertices[vertex_count + 1] = vertices[overdraw_vertex_start]; |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | void NoneJoinPolyline::renderEdge(std::vector<Vector2> &anchors, std::vector<Vector2> &normals, |
| 111 | Vector2 &segment, float &segmentLength, Vector2 &segmentNormal, |
| 112 | const Vector2 &pointA, const Vector2 &pointB, float halfWidth) |
| 113 | { |
| 114 | // ns1------ns2 |
| 115 | // | | |
| 116 | // q ------ r |
| 117 | // | | |
| 118 | // (-ns1)----(-ns2) |
| 119 | |
| 120 | anchors.push_back(pointA); |
| 121 | anchors.push_back(pointA); |
| 122 | normals.push_back(segmentNormal); |
| 123 | normals.push_back(-segmentNormal); |
| 124 | |
| 125 | segment = (pointB - pointA); |
| 126 | segmentLength = segment.getLength(); |
| 127 | segmentNormal = segment.getNormal(halfWidth / segmentLength); |
| 128 | |
| 129 | anchors.push_back(pointA); |
| 130 | anchors.push_back(pointA); |
| 131 | normals.push_back(segmentNormal); |
| 132 | normals.push_back(-segmentNormal); |
| 133 | } |
| 134 | |
| 135 | |
| 136 | /** Calculate line boundary points. |
| 137 | * |
| 138 | * Sketch: |
| 139 | * |
| 140 | * u1 |
| 141 | * -------------+---...___ |
| 142 | * | ```'''-- --- |
| 143 | * p- - - - - - q- - . _ _ | w/2 |
| 144 | * | ` ' ' r + |
| 145 | * -------------+---...___ | w/2 |
| 146 | * u2 ```'''-- --- |
| 147 | * |
| 148 | * u1 and u2 depend on four things: |
| 149 | * - the half line width w/2 |
| 150 | * - the previous line vertex p |
| 151 | * - the current line vertex q |
| 152 | * - the next line vertex r |
| 153 | * |
| 154 | * u1/u2 are the intersection points of the parallel lines to p-q and q-r, |
| 155 | * i.e. the point where |
| 156 | * |
| 157 | * (q + w/2 * ns) + lambda * (q - p) = (q + w/2 * nt) + mu * (r - q) (u1) |
| 158 | * (q - w/2 * ns) + lambda * (q - p) = (q - w/2 * nt) + mu * (r - q) (u2) |
| 159 | * |
| 160 | * with ns,nt being the normals on the segments s = p-q and t = q-r, |
| 161 | * |
| 162 | * ns = perp(s) / |s| |
| 163 | * nt = perp(t) / |t|. |
| 164 | * |
| 165 | * Using the linear equation system (similar for u2) |
| 166 | * |
| 167 | * q + w/2 * ns + lambda * s - (q + w/2 * nt + mu * t) = 0 (u1) |
| 168 | * <=> q-q + lambda * s - mu * t = (nt - ns) * w/2 |
| 169 | * <=> lambda * s - mu * t = (nt - ns) * w/2 |
| 170 | * |
| 171 | * the intersection points can be efficiently calculated using Cramer's rule. |
| 172 | */ |
| 173 | void MiterJoinPolyline::renderEdge(std::vector<Vector2> &anchors, std::vector<Vector2> &normals, |
| 174 | Vector2 &segment, float &segmentLength, Vector2 &segmentNormal, |
| 175 | const Vector2 &pointA, const Vector2 &pointB, float halfwidth) |
| 176 | { |
| 177 | Vector2 newSegment = (pointB - pointA); |
| 178 | float newSegmentLength = newSegment.getLength(); |
| 179 | if (newSegmentLength == 0.0f) |
| 180 | { |
| 181 | // degenerate segment, skip it |
| 182 | return; |
| 183 | } |
| 184 | |
| 185 | Vector2 newSegmentNormal = newSegment.getNormal(halfwidth / newSegmentLength); |
| 186 | |
| 187 | anchors.push_back(pointA); |
| 188 | anchors.push_back(pointA); |
| 189 | |
| 190 | float det = Vector2::cross(segment, newSegment); |
| 191 | if (fabs(det) / (segmentLength * newSegmentLength) < LINES_PARALLEL_EPS) |
| 192 | { |
| 193 | // lines parallel, compute as u1 = q + ns * w/2, u2 = q - ns * w/2 |
| 194 | normals.push_back(segmentNormal); |
| 195 | normals.push_back(-segmentNormal); |
| 196 | |
| 197 | if (Vector2::dot(segment, newSegment) < 0) |
| 198 | { |
| 199 | // line reverses direction; because the normal flips, the |
| 200 | // triangle strip would twist here, so insert a zero-size |
| 201 | // quad to contain the twist |
| 202 | // ____.___.____ |
| 203 | // | |\ /| | |
| 204 | // p q X q r |
| 205 | // |____|/ \|____| |
| 206 | anchors.push_back(pointA); |
| 207 | anchors.push_back(pointA); |
| 208 | normals.push_back(-segmentNormal); |
| 209 | normals.push_back(segmentNormal); |
| 210 | } |
| 211 | } |
| 212 | else |
| 213 | { |
| 214 | // cramers rule |
| 215 | float lambda = Vector2::cross((newSegmentNormal - segmentNormal), newSegment) / det; |
| 216 | Vector2 d = segmentNormal + segment * lambda; |
| 217 | normals.push_back(d); |
| 218 | normals.push_back(-d); |
| 219 | } |
| 220 | |
| 221 | segment = newSegment; |
| 222 | segmentNormal = newSegmentNormal; |
| 223 | segmentLength = newSegmentLength; |
| 224 | } |
| 225 | |
| 226 | /** Calculate line boundary points. |
| 227 | * |
| 228 | * Sketch: |
| 229 | * |
| 230 | * uh1___uh2 |
| 231 | * .' '. |
| 232 | * .' q '. |
| 233 | * .' ' ' '. |
| 234 | *.' ' .'. ' '. |
| 235 | * ' .' ul'. ' |
| 236 | * p .' '. r |
| 237 | * |
| 238 | * |
| 239 | * ul can be found as above, uh1 and uh2 are much simpler: |
| 240 | * |
| 241 | * uh1 = q + ns * w/2, uh2 = q + nt * w/2 |
| 242 | */ |
| 243 | void BevelJoinPolyline::renderEdge(std::vector<Vector2> &anchors, std::vector<Vector2> &normals, |
| 244 | Vector2 &segment, float &segmentLength, Vector2 &segmentNormal, |
| 245 | const Vector2 &pointA, const Vector2 &pointB, float halfWidth) |
| 246 | { |
| 247 | Vector2 newSegment = (pointB - pointA); |
| 248 | float newSegmentLength = newSegment.getLength(); |
| 249 | |
| 250 | float det = Vector2::cross(segment, newSegment); |
| 251 | if (fabs(det) / (segmentLength * newSegmentLength) < LINES_PARALLEL_EPS) |
| 252 | { |
| 253 | // lines parallel, compute as u1 = q + ns * w/2, u2 = q - ns * w/2 |
| 254 | Vector2 newSegmentNormal = newSegment.getNormal(halfWidth / newSegmentLength); |
| 255 | anchors.push_back(pointA); |
| 256 | anchors.push_back(pointA); |
| 257 | normals.push_back(segmentNormal); |
| 258 | normals.push_back(-segmentNormal); |
| 259 | |
| 260 | if (Vector2::dot(segment, newSegment) < 0) |
| 261 | { |
| 262 | // line reverses direction; same as for miter |
| 263 | anchors.push_back(pointA); |
| 264 | anchors.push_back(pointA); |
| 265 | normals.push_back(-segmentNormal); |
| 266 | normals.push_back(segmentNormal); |
| 267 | } |
| 268 | |
| 269 | segment = newSegment; |
| 270 | segmentLength = newSegmentLength; |
| 271 | segmentNormal = newSegmentNormal; |
| 272 | return; // early out |
| 273 | } |
| 274 | |
| 275 | // cramers rule |
| 276 | Vector2 newSegmentNormal = newSegment.getNormal(halfWidth / newSegmentLength); |
| 277 | float lambda = Vector2::cross((newSegmentNormal - segmentNormal), newSegment) / det; |
| 278 | Vector2 d = segmentNormal + segment * lambda; |
| 279 | |
| 280 | anchors.push_back(pointA); |
| 281 | anchors.push_back(pointA); |
| 282 | anchors.push_back(pointA); |
| 283 | anchors.push_back(pointA); |
| 284 | if (det > 0) // 'left' turn -> intersection on the top |
| 285 | { |
| 286 | normals.push_back(d); |
| 287 | normals.push_back(-segmentNormal); |
| 288 | normals.push_back(d); |
| 289 | normals.push_back(-newSegmentNormal); |
| 290 | } |
| 291 | else |
| 292 | { |
| 293 | normals.push_back(segmentNormal); |
| 294 | normals.push_back(-d); |
| 295 | normals.push_back(newSegmentNormal); |
| 296 | normals.push_back(-d); |
| 297 | } |
| 298 | segment = newSegment; |
| 299 | segmentLength = newSegmentLength; |
| 300 | segmentNormal = newSegmentNormal; |
| 301 | } |
| 302 | |
| 303 | void Polyline::calc_overdraw_vertex_count(bool is_looping) |
| 304 | { |
| 305 | overdraw_vertex_count = 2 * vertex_count + (is_looping ? 0 : 2); |
| 306 | } |
| 307 | |
| 308 | void Polyline::render_overdraw(const std::vector<Vector2> &normals, float pixel_size, bool is_looping) |
| 309 | { |
| 310 | // upper segment |
| 311 | for (size_t i = 0; i + 1 < vertex_count; i += 2) |
| 312 | { |
| 313 | overdraw[i] = vertices[i]; |
| 314 | overdraw[i+1] = vertices[i] + normals[i] * (pixel_size / normals[i].getLength()); |
| 315 | } |
| 316 | // lower segment |
| 317 | for (size_t i = 0; i + 1 < vertex_count; i += 2) |
| 318 | { |
| 319 | size_t k = vertex_count - i - 1; |
| 320 | overdraw[vertex_count + i] = vertices[k]; |
| 321 | overdraw[vertex_count + i+1] = vertices[k] + normals[k] * (pixel_size / normals[k].getLength()); |
| 322 | } |
| 323 | |
| 324 | // if not looping, the outer overdraw vertices need to be displaced |
| 325 | // to cover the line endings, i.e.: |
| 326 | // +- - - - //- - + +- - - - - //- - - + |
| 327 | // +-------//-----+ : +-------//-----+ : |
| 328 | // | core // line | --> : | core // line | : |
| 329 | // +-----//-------+ : +-----//-------+ : |
| 330 | // +- - //- - - - + +- - - //- - - - - + |
| 331 | if (!is_looping) |
| 332 | { |
| 333 | // left edge |
| 334 | Vector2 spacer = (overdraw[1] - overdraw[3]); |
| 335 | spacer.normalize(pixel_size); |
| 336 | overdraw[1] += spacer; |
| 337 | overdraw[overdraw_vertex_count - 3] += spacer; |
| 338 | |
| 339 | // right edge |
| 340 | spacer = (overdraw[vertex_count-1] - overdraw[vertex_count-3]); |
| 341 | spacer.normalize(pixel_size); |
| 342 | overdraw[vertex_count-1] += spacer; |
| 343 | overdraw[vertex_count+1] += spacer; |
| 344 | |
| 345 | // we need to draw two more triangles to close the |
| 346 | // overdraw at the line start. |
| 347 | overdraw[overdraw_vertex_count-2] = overdraw[0]; |
| 348 | overdraw[overdraw_vertex_count-1] = overdraw[1]; |
| 349 | } |
| 350 | } |
| 351 | |
| 352 | void NoneJoinPolyline::calc_overdraw_vertex_count(bool /*is_looping*/) |
| 353 | { |
| 354 | overdraw_vertex_count = 4 * (vertex_count-2); // less than ideal |
| 355 | } |
| 356 | |
| 357 | void NoneJoinPolyline::render_overdraw(const std::vector<Vector2> &/*normals*/, float pixel_size, bool /*is_looping*/) |
| 358 | { |
| 359 | for (size_t i = 2; i + 3 < vertex_count; i += 4) |
| 360 | { |
| 361 | // v0-v2 |
| 362 | // | / | <- main quad line |
| 363 | // v1-v3 |
| 364 | |
| 365 | Vector2 s = vertices[i+0] - vertices[i+2]; |
| 366 | Vector2 t = vertices[i+0] - vertices[i+1]; |
| 367 | s.normalize(pixel_size); |
| 368 | t.normalize(pixel_size); |
| 369 | |
| 370 | const size_t k = 4 * (i - 2); |
| 371 | |
| 372 | overdraw[k+0] = vertices[i+0]; |
| 373 | overdraw[k+1] = vertices[i+1]; |
| 374 | overdraw[k+2] = vertices[i+0] + s + t; |
| 375 | overdraw[k+3] = vertices[i+1] + s - t; |
| 376 | |
| 377 | overdraw[k+4] = vertices[i+1]; |
| 378 | overdraw[k+5] = vertices[i+3]; |
| 379 | overdraw[k+6] = vertices[i+1] + s - t; |
| 380 | overdraw[k+7] = vertices[i+3] - s - t; |
| 381 | |
| 382 | overdraw[k+ 8] = vertices[i+3]; |
| 383 | overdraw[k+ 9] = vertices[i+2]; |
| 384 | overdraw[k+10] = vertices[i+3] - s - t; |
| 385 | overdraw[k+11] = vertices[i+2] - s + t; |
| 386 | |
| 387 | overdraw[k+12] = vertices[i+2]; |
| 388 | overdraw[k+13] = vertices[i+0]; |
| 389 | overdraw[k+14] = vertices[i+2] - s + t; |
| 390 | overdraw[k+15] = vertices[i+0] + s + t; |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | Polyline::~Polyline() |
| 395 | { |
| 396 | if (vertices) |
| 397 | delete[] vertices; |
| 398 | } |
| 399 | |
| 400 | void Polyline::draw(love::graphics::Graphics *gfx) |
| 401 | { |
| 402 | const Matrix4 &t = gfx->getTransform(); |
| 403 | bool is2D = t.isAffine2DTransform(); |
| 404 | Color32 curcolor = toColor32(gfx->getColor()); |
| 405 | |
| 406 | int overdraw_start = (int) overdraw_vertex_start; |
| 407 | int overdraw_count = (int) overdraw_vertex_count; |
| 408 | |
| 409 | int total_vertex_count = (int) vertex_count; |
| 410 | if (overdraw) |
| 411 | total_vertex_count = overdraw_start + overdraw_count; |
| 412 | |
| 413 | // love's automatic batching can only deal with < 65k vertices per draw. |
| 414 | // uint16_max - 3 is evenly divisible by 6 (needed for quads mode). |
| 415 | int maxvertices = LOVE_UINT16_MAX - 3; |
| 416 | |
| 417 | int advance = maxvertices; |
| 418 | if (triangle_mode == vertex::TriangleIndexMode::STRIP) |
| 419 | advance -= 2; |
| 420 | |
| 421 | for (int vertex_start = 0; vertex_start < total_vertex_count; vertex_start += advance) |
| 422 | { |
| 423 | const Vector2 *verts = vertices + vertex_start; |
| 424 | |
| 425 | Graphics::StreamDrawCommand cmd; |
| 426 | cmd.formats[0] = vertex::getSinglePositionFormat(is2D); |
| 427 | cmd.formats[1] = vertex::CommonFormat::RGBAub; |
| 428 | cmd.indexMode = triangle_mode; |
| 429 | cmd.vertexCount = std::min(maxvertices, total_vertex_count - vertex_start); |
| 430 | |
| 431 | Graphics::StreamVertexData data = gfx->requestStreamDraw(cmd); |
| 432 | |
| 433 | if (is2D) |
| 434 | t.transformXY((Vector2 *) data.stream[0], verts, cmd.vertexCount); |
| 435 | else |
| 436 | t.transformXY0((Vector3 *) data.stream[0], verts, cmd.vertexCount); |
| 437 | |
| 438 | Color32 *colordata = (Color32 *) data.stream[1]; |
| 439 | |
| 440 | int draw_rough_count = std::min(cmd.vertexCount, (int) vertex_count - vertex_start); |
| 441 | |
| 442 | // Constant vertex color up to the overdraw vertices. |
| 443 | for (int i = 0; i < draw_rough_count; i++) |
| 444 | colordata[i] = curcolor; |
| 445 | |
| 446 | if (overdraw) |
| 447 | { |
| 448 | int draw_remaining_count = cmd.vertexCount - draw_rough_count; |
| 449 | |
| 450 | int draw_overdraw_begin = overdraw_start - vertex_start; |
| 451 | int draw_overdraw_end = draw_overdraw_begin + overdraw_count; |
| 452 | |
| 453 | draw_overdraw_begin = std::max(0, draw_overdraw_begin); |
| 454 | |
| 455 | int draw_overdraw_count = std::min(draw_remaining_count, draw_overdraw_end - draw_overdraw_begin); |
| 456 | |
| 457 | if (draw_overdraw_count > 0) |
| 458 | { |
| 459 | Color32 *colors = colordata + draw_overdraw_begin; |
| 460 | fill_color_array(curcolor, colors, draw_overdraw_count); |
| 461 | } |
| 462 | } |
| 463 | } |
| 464 | } |
| 465 | |
| 466 | void Polyline::fill_color_array(Color32 constant_color, Color32 *colors, int count) |
| 467 | { |
| 468 | for (int i = 0; i < count; ++i) |
| 469 | { |
| 470 | Color32 c = constant_color; |
| 471 | c.a *= (i+1) % 2; // avoids branching. equiv to if (i%2 == 1) c.a = 0; |
| 472 | colors[i] = c; |
| 473 | } |
| 474 | } |
| 475 | |
| 476 | void NoneJoinPolyline::fill_color_array(Color32 constant_color, Color32 *colors, int count) |
| 477 | { |
| 478 | for (int i = 0; i < count; ++i) |
| 479 | { |
| 480 | Color32 c = constant_color; |
| 481 | c.a *= (i & 3) < 2; // if (i % 4 == 2 || i % 4 == 3) c.a = 0 |
| 482 | colors[i] = c; |
| 483 | } |
| 484 | } |
| 485 | |
| 486 | } // graphics |
| 487 | } // love |
| 488 | |