1 | /* Copyright (c) 2005, 2017, Oracle and/or its affiliates. |
2 | Copyright (c) 2009, 2018, MariaDB |
3 | |
4 | This program is free software; you can redistribute it and/or modify |
5 | it under the terms of the GNU General Public License as published by |
6 | the Free Software Foundation; version 2 of the License. |
7 | |
8 | This program is distributed in the hope that it will be useful, |
9 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
10 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
11 | GNU General Public License for more details. |
12 | |
13 | You should have received a copy of the GNU General Public License |
14 | along with this program; if not, write to the Free Software |
15 | Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ |
16 | |
17 | /* |
18 | This file is a container for general functionality related |
19 | to partitioning introduced in MySQL version 5.1. It contains functionality |
20 | used by all handlers that support partitioning, such as |
21 | the partitioning handler itself and the NDB handler. |
22 | (Much of the code in this file has been split into partition_info.cc and |
23 | the header files partition_info.h + partition_element.h + sql_partition.h) |
24 | |
25 | The first version was written by Mikael Ronstrom 2004-2006. |
26 | Various parts of the optimizer code was written by Sergey Petrunia. |
27 | Code have been maintained by Mattias Jonsson. |
28 | The second version was written by Mikael Ronstrom 2006-2007 with some |
29 | final fixes for partition pruning in 2008-2009 with assistance from Sergey |
30 | Petrunia and Mattias Jonsson. |
31 | |
32 | The first version supports RANGE partitioning, LIST partitioning, HASH |
33 | partitioning and composite partitioning (hereafter called subpartitioning) |
34 | where each RANGE/LIST partitioning is HASH partitioned. The hash function |
35 | can either be supplied by the user or by only a list of fields (also |
36 | called KEY partitioning), where the MySQL server will use an internal |
37 | hash function. |
38 | There are quite a few defaults that can be used as well. |
39 | |
40 | The second version introduces a new variant of RANGE and LIST partitioning |
41 | which is often referred to as column lists in the code variables. This |
42 | enables a user to specify a set of columns and their concatenated value |
43 | as the partition value. By comparing the concatenation of these values |
44 | the proper partition can be choosen. |
45 | */ |
46 | |
47 | /* Some general useful functions */ |
48 | |
49 | #define MYSQL_LEX 1 |
50 | #include "mariadb.h" |
51 | #include "sql_priv.h" |
52 | #include "sql_partition.h" |
53 | #include "key.h" // key_restore |
54 | #include "sql_parse.h" // parse_sql |
55 | #include "sql_cache.h" // query_cache_invalidate3 |
56 | #include "lock.h" // mysql_lock_remove |
57 | #include "sql_show.h" // append_identifier |
58 | #include <m_ctype.h> |
59 | #include "transaction.h" |
60 | #include "debug_sync.h" |
61 | |
62 | #include "sql_base.h" // close_all_tables_for_name |
63 | #include "sql_table.h" // build_table_filename, |
64 | // build_table_shadow_filename, |
65 | // table_to_filename |
66 | // mysql_*_alter_copy_data |
67 | #include "opt_range.h" // store_key_image_to_rec |
68 | #include "sql_alter.h" // Alter_table_ctx |
69 | #include "sql_select.h" |
70 | #include "sql_tablespace.h" // check_tablespace_name |
71 | #include "tztime.h" // my_tz_OFFSET0 |
72 | |
73 | #include <algorithm> |
74 | using std::max; |
75 | using std::min; |
76 | |
77 | #ifdef WITH_PARTITION_STORAGE_ENGINE |
78 | #include "ha_partition.h" |
79 | |
80 | #define ERROR_INJECT_CRASH(code) \ |
81 | DBUG_EVALUATE_IF(code, (DBUG_SUICIDE(), 0), 0) |
82 | #define ERROR_INJECT_ERROR(code) \ |
83 | DBUG_EVALUATE_IF(code, (my_error(ER_UNKNOWN_ERROR, MYF(0)), TRUE), 0) |
84 | |
85 | /* |
86 | Partition related functions declarations and some static constants; |
87 | */ |
88 | static int get_partition_id_list_col(partition_info *, uint32 *, longlong *); |
89 | static int get_partition_id_list(partition_info *, uint32 *, longlong *); |
90 | static int get_partition_id_range_col(partition_info *, uint32 *, longlong *); |
91 | static int get_partition_id_range(partition_info *, uint32 *, longlong *); |
92 | static int vers_get_partition_id(partition_info *, uint32 *, longlong *); |
93 | static int get_part_id_charset_func_part(partition_info *, uint32 *, longlong *); |
94 | static int get_part_id_charset_func_subpart(partition_info *, uint32 *); |
95 | static int get_partition_id_hash_nosub(partition_info *, uint32 *, longlong *); |
96 | static int get_partition_id_key_nosub(partition_info *, uint32 *, longlong *); |
97 | static int get_partition_id_linear_hash_nosub(partition_info *, uint32 *, longlong *); |
98 | static int get_partition_id_linear_key_nosub(partition_info *, uint32 *, longlong *); |
99 | static int get_partition_id_with_sub(partition_info *, uint32 *, longlong *); |
100 | static int get_partition_id_hash_sub(partition_info *part_info, uint32 *part_id); |
101 | static int get_partition_id_key_sub(partition_info *part_info, uint32 *part_id); |
102 | static int get_partition_id_linear_hash_sub(partition_info *part_info, uint32 *part_id); |
103 | static int get_partition_id_linear_key_sub(partition_info *part_info, uint32 *part_id); |
104 | static uint32 get_next_partition_via_walking(PARTITION_ITERATOR*); |
105 | static void set_up_range_analysis_info(partition_info *part_info); |
106 | static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR*); |
107 | #endif |
108 | |
109 | uint32 get_next_partition_id_range(PARTITION_ITERATOR* part_iter); |
110 | uint32 get_next_partition_id_list(PARTITION_ITERATOR* part_iter); |
111 | |
112 | #ifdef WITH_PARTITION_STORAGE_ENGINE |
113 | static int get_part_iter_for_interval_via_mapping(partition_info *, bool, |
114 | uint32 *, uchar *, uchar *, uint, uint, uint, PARTITION_ITERATOR *); |
115 | static int get_part_iter_for_interval_cols_via_map(partition_info *, bool, |
116 | uint32 *, uchar *, uchar *, uint, uint, uint, PARTITION_ITERATOR *); |
117 | static int get_part_iter_for_interval_via_walking(partition_info *, bool, |
118 | uint32 *, uchar *, uchar *, uint, uint, uint, PARTITION_ITERATOR *); |
119 | static int cmp_rec_and_tuple(part_column_list_val *val, uint32 nvals_in_rec); |
120 | static int cmp_rec_and_tuple_prune(part_column_list_val *val, |
121 | uint32 n_vals_in_rec, |
122 | bool is_left_endpoint, |
123 | bool include_endpoint); |
124 | |
125 | /* |
126 | Convert constants in VALUES definition to the character set the |
127 | corresponding field uses. |
128 | |
129 | SYNOPSIS |
130 | convert_charset_partition_constant() |
131 | item Item to convert |
132 | cs Character set to convert to |
133 | |
134 | RETURN VALUE |
135 | NULL Error |
136 | item New converted item |
137 | */ |
138 | |
139 | Item* convert_charset_partition_constant(Item *item, CHARSET_INFO *cs) |
140 | { |
141 | THD *thd= current_thd; |
142 | Name_resolution_context *context= &thd->lex->current_select->context; |
143 | TABLE_LIST *save_list= context->table_list; |
144 | const char *save_where= thd->where; |
145 | |
146 | item= item->safe_charset_converter(thd, cs); |
147 | context->table_list= NULL; |
148 | thd->where= "convert character set partition constant" ; |
149 | if (!item || item->fix_fields(thd, (Item**)NULL)) |
150 | item= NULL; |
151 | thd->where= save_where; |
152 | context->table_list= save_list; |
153 | return item; |
154 | } |
155 | |
156 | |
157 | /** |
158 | A support function to check if a name is in a list of strings. |
159 | |
160 | @param name String searched for |
161 | @param list_names A list of names searched in |
162 | |
163 | @return True if if the name is in the list. |
164 | @retval true String found |
165 | @retval false String not found |
166 | */ |
167 | |
168 | static bool is_name_in_list(const char *name, List<const char> list_names) |
169 | { |
170 | List_iterator<const char> names_it(list_names); |
171 | uint num_names= list_names.elements; |
172 | uint i= 0; |
173 | |
174 | do |
175 | { |
176 | const char *list_name= names_it++; |
177 | if (!(my_strcasecmp(system_charset_info, name, list_name))) |
178 | return TRUE; |
179 | } while (++i < num_names); |
180 | return FALSE; |
181 | } |
182 | |
183 | |
184 | |
185 | /* |
186 | Set-up defaults for partitions. |
187 | |
188 | SYNOPSIS |
189 | partition_default_handling() |
190 | table Table object |
191 | part_info Partition info to set up |
192 | is_create_table_ind Is this part of a table creation |
193 | normalized_path Normalized path name of table and database |
194 | |
195 | RETURN VALUES |
196 | TRUE Error |
197 | FALSE Success |
198 | */ |
199 | |
200 | bool partition_default_handling(THD *thd, TABLE *table, partition_info *part_info, |
201 | bool is_create_table_ind, |
202 | const char *normalized_path) |
203 | { |
204 | DBUG_ENTER("partition_default_handling" ); |
205 | |
206 | if (!is_create_table_ind) |
207 | { |
208 | if (part_info->use_default_num_partitions) |
209 | { |
210 | if (table->file->get_no_parts(normalized_path, &part_info->num_parts)) |
211 | { |
212 | DBUG_RETURN(TRUE); |
213 | } |
214 | } |
215 | else if (part_info->is_sub_partitioned() && |
216 | part_info->use_default_num_subpartitions) |
217 | { |
218 | uint num_parts; |
219 | if (table->file->get_no_parts(normalized_path, &num_parts)) |
220 | { |
221 | DBUG_RETURN(TRUE); |
222 | } |
223 | DBUG_ASSERT(part_info->num_parts > 0); |
224 | DBUG_ASSERT((num_parts % part_info->num_parts) == 0); |
225 | part_info->num_subparts= num_parts / part_info->num_parts; |
226 | } |
227 | } |
228 | part_info->set_up_defaults_for_partitioning(thd, table->file, |
229 | NULL, 0U); |
230 | DBUG_RETURN(FALSE); |
231 | } |
232 | |
233 | |
234 | /* |
235 | A useful routine used by update/delete_row for partition handlers to |
236 | calculate the partition id. |
237 | |
238 | SYNOPSIS |
239 | get_part_for_buf() |
240 | buf Buffer of old record |
241 | rec0 Reference to table->record[0] |
242 | part_info Reference to partition information |
243 | out:part_id The returned partition id to delete from |
244 | |
245 | RETURN VALUE |
246 | 0 Success |
247 | > 0 Error code |
248 | |
249 | DESCRIPTION |
250 | Dependent on whether buf is not record[0] we need to prepare the |
251 | fields. Then we call the function pointer get_partition_id to |
252 | calculate the partition id. |
253 | */ |
254 | |
255 | int get_part_for_buf(const uchar *buf, const uchar *rec0, |
256 | partition_info *part_info, uint32 *part_id) |
257 | { |
258 | int error; |
259 | longlong func_value; |
260 | DBUG_ENTER("get_part_for_buf" ); |
261 | |
262 | if (buf == rec0) |
263 | { |
264 | error= part_info->get_partition_id(part_info, part_id, &func_value); |
265 | if (unlikely((error))) |
266 | goto err; |
267 | DBUG_PRINT("info" , ("Partition %d" , *part_id)); |
268 | } |
269 | else |
270 | { |
271 | Field **part_field_array= part_info->full_part_field_array; |
272 | part_info->table->move_fields(part_field_array, buf, rec0); |
273 | error= part_info->get_partition_id(part_info, part_id, &func_value); |
274 | part_info->table->move_fields(part_field_array, rec0, buf); |
275 | if (unlikely(error)) |
276 | goto err; |
277 | DBUG_PRINT("info" , ("Partition %d (path2)" , *part_id)); |
278 | } |
279 | DBUG_RETURN(0); |
280 | err: |
281 | part_info->err_value= func_value; |
282 | DBUG_RETURN(error); |
283 | } |
284 | |
285 | |
286 | /* |
287 | This method is used to set-up both partition and subpartitioning |
288 | field array and used for all types of partitioning. |
289 | It is part of the logic around fix_partition_func. |
290 | |
291 | SYNOPSIS |
292 | set_up_field_array() |
293 | table TABLE object for which partition fields are set-up |
294 | sub_part Is the table subpartitioned as well |
295 | |
296 | RETURN VALUE |
297 | TRUE Error, some field didn't meet requirements |
298 | FALSE Ok, partition field array set-up |
299 | |
300 | DESCRIPTION |
301 | |
302 | A great number of functions below here is part of the fix_partition_func |
303 | method. It is used to set up the partition structures for execution from |
304 | openfrm. It is called at the end of the openfrm when the table struct has |
305 | been set-up apart from the partition information. |
306 | It involves: |
307 | 1) Setting arrays of fields for the partition functions. |
308 | 2) Setting up binary search array for LIST partitioning |
309 | 3) Setting up array for binary search for RANGE partitioning |
310 | 4) Setting up key_map's to assist in quick evaluation whether one |
311 | can deduce anything from a given index of what partition to use |
312 | 5) Checking whether a set of partitions can be derived from a range on |
313 | a field in the partition function. |
314 | As part of doing this there is also a great number of error controls. |
315 | This is actually the place where most of the things are checked for |
316 | partition information when creating a table. |
317 | Things that are checked includes |
318 | 1) All fields of partition function in Primary keys and unique indexes |
319 | (if not supported) |
320 | |
321 | |
322 | Create an array of partition fields (NULL terminated). Before this method |
323 | is called fix_fields or find_table_in_sef has been called to set |
324 | GET_FIXED_FIELDS_FLAG on all fields that are part of the partition |
325 | function. |
326 | */ |
327 | |
328 | static bool set_up_field_array(THD *thd, TABLE *table, |
329 | bool is_sub_part) |
330 | { |
331 | Field **ptr, *field, **field_array; |
332 | uint num_fields= 0; |
333 | uint size_field_array; |
334 | uint i= 0; |
335 | uint inx; |
336 | partition_info *part_info= table->part_info; |
337 | int result= FALSE; |
338 | DBUG_ENTER("set_up_field_array" ); |
339 | |
340 | ptr= table->field; |
341 | while ((field= *(ptr++))) |
342 | { |
343 | if (field->flags & GET_FIXED_FIELDS_FLAG) |
344 | num_fields++; |
345 | } |
346 | if (unlikely(num_fields > MAX_REF_PARTS)) |
347 | { |
348 | char *err_str; |
349 | if (is_sub_part) |
350 | err_str= (char*)"subpartition function" ; |
351 | else |
352 | err_str= (char*)"partition function" ; |
353 | my_error(ER_TOO_MANY_PARTITION_FUNC_FIELDS_ERROR, MYF(0), err_str); |
354 | DBUG_RETURN(TRUE); |
355 | } |
356 | if (num_fields == 0) |
357 | { |
358 | /* |
359 | We are using hidden key as partitioning field |
360 | */ |
361 | DBUG_ASSERT(!is_sub_part); |
362 | DBUG_RETURN(FALSE); |
363 | } |
364 | size_field_array= (num_fields+1)*sizeof(Field*); |
365 | field_array= (Field**) thd->calloc(size_field_array); |
366 | if (unlikely(!field_array)) |
367 | DBUG_RETURN(TRUE); |
368 | |
369 | ptr= table->field; |
370 | while ((field= *(ptr++))) |
371 | { |
372 | if (field->flags & GET_FIXED_FIELDS_FLAG) |
373 | { |
374 | field->flags&= ~GET_FIXED_FIELDS_FLAG; |
375 | field->flags|= FIELD_IN_PART_FUNC_FLAG; |
376 | if (likely(!result)) |
377 | { |
378 | if (!is_sub_part && part_info->column_list) |
379 | { |
380 | List_iterator<const char> it(part_info->part_field_list); |
381 | const char *field_name; |
382 | |
383 | DBUG_ASSERT(num_fields == part_info->part_field_list.elements); |
384 | inx= 0; |
385 | do |
386 | { |
387 | field_name= it++; |
388 | if (!my_strcasecmp(system_charset_info, |
389 | field_name, |
390 | field->field_name.str)) |
391 | break; |
392 | } while (++inx < num_fields); |
393 | if (inx == num_fields) |
394 | { |
395 | /* |
396 | Should not occur since it should already been checked in either |
397 | add_column_list_values, handle_list_of_fields, |
398 | check_partition_info etc. |
399 | */ |
400 | DBUG_ASSERT(0); |
401 | my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0)); |
402 | result= TRUE; |
403 | continue; |
404 | } |
405 | } |
406 | else |
407 | inx= i; |
408 | field_array[inx]= field; |
409 | i++; |
410 | |
411 | /* |
412 | We check that the fields are proper. It is required for each |
413 | field in a partition function to: |
414 | 1) Not be a BLOB of any type |
415 | A BLOB takes too long time to evaluate so we don't want it for |
416 | performance reasons. |
417 | */ |
418 | |
419 | if (unlikely(field->flags & BLOB_FLAG)) |
420 | { |
421 | my_error(ER_BLOB_FIELD_IN_PART_FUNC_ERROR, MYF(0)); |
422 | result= TRUE; |
423 | } |
424 | } |
425 | } |
426 | } |
427 | field_array[num_fields]= 0; |
428 | if (!is_sub_part) |
429 | { |
430 | part_info->part_field_array= field_array; |
431 | part_info->num_part_fields= num_fields; |
432 | } |
433 | else |
434 | { |
435 | part_info->subpart_field_array= field_array; |
436 | part_info->num_subpart_fields= num_fields; |
437 | } |
438 | DBUG_RETURN(result); |
439 | } |
440 | |
441 | |
442 | |
443 | /* |
444 | Create a field array including all fields of both the partitioning and the |
445 | subpartitioning functions. |
446 | |
447 | SYNOPSIS |
448 | create_full_part_field_array() |
449 | thd Thread handle |
450 | table TABLE object for which partition fields are set-up |
451 | part_info Reference to partitioning data structure |
452 | |
453 | RETURN VALUE |
454 | TRUE Memory allocation of field array failed |
455 | FALSE Ok |
456 | |
457 | DESCRIPTION |
458 | If there is no subpartitioning then the same array is used as for the |
459 | partitioning. Otherwise a new array is built up using the flag |
460 | FIELD_IN_PART_FUNC in the field object. |
461 | This function is called from fix_partition_func |
462 | */ |
463 | |
464 | static bool create_full_part_field_array(THD *thd, TABLE *table, |
465 | partition_info *part_info) |
466 | { |
467 | bool result= FALSE; |
468 | Field **ptr; |
469 | my_bitmap_map *bitmap_buf; |
470 | DBUG_ENTER("create_full_part_field_array" ); |
471 | |
472 | if (!part_info->is_sub_partitioned()) |
473 | { |
474 | part_info->full_part_field_array= part_info->part_field_array; |
475 | part_info->num_full_part_fields= part_info->num_part_fields; |
476 | } |
477 | else |
478 | { |
479 | Field *field, **field_array; |
480 | uint num_part_fields=0, size_field_array; |
481 | ptr= table->field; |
482 | while ((field= *(ptr++))) |
483 | { |
484 | if (field->flags & FIELD_IN_PART_FUNC_FLAG) |
485 | num_part_fields++; |
486 | } |
487 | size_field_array= (num_part_fields+1)*sizeof(Field*); |
488 | field_array= (Field**) thd->calloc(size_field_array); |
489 | if (unlikely(!field_array)) |
490 | { |
491 | result= TRUE; |
492 | goto end; |
493 | } |
494 | num_part_fields= 0; |
495 | ptr= table->field; |
496 | while ((field= *(ptr++))) |
497 | { |
498 | if (field->flags & FIELD_IN_PART_FUNC_FLAG) |
499 | field_array[num_part_fields++]= field; |
500 | } |
501 | field_array[num_part_fields]=0; |
502 | part_info->full_part_field_array= field_array; |
503 | part_info->num_full_part_fields= num_part_fields; |
504 | } |
505 | |
506 | /* |
507 | Initialize the set of all fields used in partition and subpartition |
508 | expression. Required for testing of partition fields in write_set |
509 | when updating. We need to set all bits in read_set because the row |
510 | may need to be inserted in a different [sub]partition. |
511 | */ |
512 | if (!(bitmap_buf= (my_bitmap_map*) |
513 | thd->alloc(bitmap_buffer_size(table->s->fields)))) |
514 | { |
515 | result= TRUE; |
516 | goto end; |
517 | } |
518 | if (unlikely(my_bitmap_init(&part_info->full_part_field_set, bitmap_buf, |
519 | table->s->fields, FALSE))) |
520 | { |
521 | result= TRUE; |
522 | goto end; |
523 | } |
524 | /* |
525 | full_part_field_array may be NULL if storage engine supports native |
526 | partitioning. |
527 | */ |
528 | table->vcol_set= table->read_set= &part_info->full_part_field_set; |
529 | if ((ptr= part_info->full_part_field_array)) |
530 | for (; *ptr; ptr++) |
531 | { |
532 | if ((*ptr)->vcol_info) |
533 | table->mark_virtual_col(*ptr); |
534 | else |
535 | bitmap_fast_test_and_set(table->read_set, (*ptr)->field_index); |
536 | } |
537 | table->default_column_bitmaps(); |
538 | |
539 | end: |
540 | DBUG_RETURN(result); |
541 | } |
542 | |
543 | |
544 | /* |
545 | |
546 | Clear flag GET_FIXED_FIELDS_FLAG in all fields of a key previously set by |
547 | set_indicator_in_key_fields (always used in pairs). |
548 | |
549 | SYNOPSIS |
550 | clear_indicator_in_key_fields() |
551 | key_info Reference to find the key fields |
552 | |
553 | RETURN VALUE |
554 | NONE |
555 | |
556 | DESCRIPTION |
557 | These support routines is used to set/reset an indicator of all fields |
558 | in a certain key. It is used in conjunction with another support routine |
559 | that traverse all fields in the PF to find if all or some fields in the |
560 | PF is part of the key. This is used to check primary keys and unique |
561 | keys involve all fields in PF (unless supported) and to derive the |
562 | key_map's used to quickly decide whether the index can be used to |
563 | derive which partitions are needed to scan. |
564 | */ |
565 | |
566 | static void clear_indicator_in_key_fields(KEY *key_info) |
567 | { |
568 | KEY_PART_INFO *key_part; |
569 | uint key_parts= key_info->user_defined_key_parts, i; |
570 | for (i= 0, key_part=key_info->key_part; i < key_parts; i++, key_part++) |
571 | key_part->field->flags&= (~GET_FIXED_FIELDS_FLAG); |
572 | } |
573 | |
574 | |
575 | /* |
576 | Set flag GET_FIXED_FIELDS_FLAG in all fields of a key. |
577 | |
578 | SYNOPSIS |
579 | set_indicator_in_key_fields |
580 | key_info Reference to find the key fields |
581 | |
582 | RETURN VALUE |
583 | NONE |
584 | */ |
585 | |
586 | static void set_indicator_in_key_fields(KEY *key_info) |
587 | { |
588 | KEY_PART_INFO *key_part; |
589 | uint key_parts= key_info->user_defined_key_parts, i; |
590 | for (i= 0, key_part=key_info->key_part; i < key_parts; i++, key_part++) |
591 | key_part->field->flags|= GET_FIXED_FIELDS_FLAG; |
592 | } |
593 | |
594 | |
595 | /* |
596 | Check if all or some fields in partition field array is part of a key |
597 | previously used to tag key fields. |
598 | |
599 | SYNOPSIS |
600 | check_fields_in_PF() |
601 | ptr Partition field array |
602 | out:all_fields Is all fields of partition field array used in key |
603 | out:some_fields Is some fields of partition field array used in key |
604 | |
605 | RETURN VALUE |
606 | all_fields, some_fields |
607 | */ |
608 | |
609 | static void check_fields_in_PF(Field **ptr, bool *all_fields, |
610 | bool *some_fields) |
611 | { |
612 | DBUG_ENTER("check_fields_in_PF" ); |
613 | |
614 | *all_fields= TRUE; |
615 | *some_fields= FALSE; |
616 | if ((!ptr) || !(*ptr)) |
617 | { |
618 | *all_fields= FALSE; |
619 | DBUG_VOID_RETURN; |
620 | } |
621 | do |
622 | { |
623 | /* Check if the field of the PF is part of the current key investigated */ |
624 | if ((*ptr)->flags & GET_FIXED_FIELDS_FLAG) |
625 | *some_fields= TRUE; |
626 | else |
627 | *all_fields= FALSE; |
628 | } while (*(++ptr)); |
629 | DBUG_VOID_RETURN; |
630 | } |
631 | |
632 | |
633 | /* |
634 | Clear flag GET_FIXED_FIELDS_FLAG in all fields of the table. |
635 | This routine is used for error handling purposes. |
636 | |
637 | SYNOPSIS |
638 | clear_field_flag() |
639 | table TABLE object for which partition fields are set-up |
640 | |
641 | RETURN VALUE |
642 | NONE |
643 | */ |
644 | |
645 | static void clear_field_flag(TABLE *table) |
646 | { |
647 | Field **ptr; |
648 | DBUG_ENTER("clear_field_flag" ); |
649 | |
650 | for (ptr= table->field; *ptr; ptr++) |
651 | (*ptr)->flags&= (~GET_FIXED_FIELDS_FLAG); |
652 | DBUG_VOID_RETURN; |
653 | } |
654 | |
655 | |
656 | /* |
657 | find_field_in_table_sef finds the field given its name. All fields get |
658 | GET_FIXED_FIELDS_FLAG set. |
659 | |
660 | SYNOPSIS |
661 | handle_list_of_fields() |
662 | it A list of field names for the partition function |
663 | table TABLE object for which partition fields are set-up |
664 | part_info Reference to partitioning data structure |
665 | sub_part Is the table subpartitioned as well |
666 | |
667 | RETURN VALUE |
668 | TRUE Fields in list of fields not part of table |
669 | FALSE All fields ok and array created |
670 | |
671 | DESCRIPTION |
672 | This routine sets-up the partition field array for KEY partitioning, it |
673 | also verifies that all fields in the list of fields is actually a part of |
674 | the table. |
675 | |
676 | */ |
677 | |
678 | |
679 | static bool handle_list_of_fields(THD *thd, List_iterator<const char> it, |
680 | TABLE *table, |
681 | partition_info *part_info, |
682 | bool is_sub_part) |
683 | { |
684 | Field *field; |
685 | bool result; |
686 | const char *field_name; |
687 | bool is_list_empty= TRUE; |
688 | DBUG_ENTER("handle_list_of_fields" ); |
689 | |
690 | while ((field_name= it++)) |
691 | { |
692 | is_list_empty= FALSE; |
693 | field= find_field_in_table_sef(table, field_name); |
694 | if (likely(field != 0)) |
695 | field->flags|= GET_FIXED_FIELDS_FLAG; |
696 | else |
697 | { |
698 | my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0)); |
699 | clear_field_flag(table); |
700 | result= TRUE; |
701 | goto end; |
702 | } |
703 | } |
704 | if (is_list_empty && part_info->part_type == HASH_PARTITION) |
705 | { |
706 | uint primary_key= table->s->primary_key; |
707 | if (primary_key != MAX_KEY) |
708 | { |
709 | uint num_key_parts= table->key_info[primary_key].user_defined_key_parts, i; |
710 | /* |
711 | In the case of an empty list we use primary key as partition key. |
712 | */ |
713 | for (i= 0; i < num_key_parts; i++) |
714 | { |
715 | Field *field= table->key_info[primary_key].key_part[i].field; |
716 | field->flags|= GET_FIXED_FIELDS_FLAG; |
717 | } |
718 | } |
719 | else |
720 | { |
721 | if (table->s->db_type()->partition_flags && |
722 | (table->s->db_type()->partition_flags() & HA_USE_AUTO_PARTITION) && |
723 | (table->s->db_type()->partition_flags() & HA_CAN_PARTITION)) |
724 | { |
725 | /* |
726 | This engine can handle automatic partitioning and there is no |
727 | primary key. In this case we rely on that the engine handles |
728 | partitioning based on a hidden key. Thus we allocate no |
729 | array for partitioning fields. |
730 | */ |
731 | DBUG_RETURN(FALSE); |
732 | } |
733 | else |
734 | { |
735 | my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0)); |
736 | DBUG_RETURN(TRUE); |
737 | } |
738 | } |
739 | } |
740 | result= set_up_field_array(thd, table, is_sub_part); |
741 | end: |
742 | DBUG_RETURN(result); |
743 | } |
744 | |
745 | |
746 | /* |
747 | Support function to check if all VALUES * (expression) is of the |
748 | right sign (no signed constants when unsigned partition function) |
749 | |
750 | SYNOPSIS |
751 | check_signed_flag() |
752 | part_info Partition info object |
753 | |
754 | RETURN VALUES |
755 | 0 No errors due to sign errors |
756 | >0 Sign error |
757 | */ |
758 | |
759 | int check_signed_flag(partition_info *part_info) |
760 | { |
761 | int error= 0; |
762 | uint i= 0; |
763 | if (part_info->part_type != HASH_PARTITION && |
764 | part_info->part_expr->unsigned_flag) |
765 | { |
766 | List_iterator<partition_element> part_it(part_info->partitions); |
767 | do |
768 | { |
769 | partition_element *part_elem= part_it++; |
770 | |
771 | if (part_elem->signed_flag) |
772 | { |
773 | my_error(ER_PARTITION_CONST_DOMAIN_ERROR, MYF(0)); |
774 | error= ER_PARTITION_CONST_DOMAIN_ERROR; |
775 | break; |
776 | } |
777 | } while (++i < part_info->num_parts); |
778 | } |
779 | return error; |
780 | } |
781 | |
782 | /* |
783 | init_lex_with_single_table and end_lex_with_single_table |
784 | are now in sql_lex.cc |
785 | */ |
786 | |
787 | /* |
788 | The function uses a new feature in fix_fields where the flag |
789 | GET_FIXED_FIELDS_FLAG is set for all fields in the item tree. |
790 | This field must always be reset before returning from the function |
791 | since it is used for other purposes as well. |
792 | |
793 | SYNOPSIS |
794 | fix_fields_part_func() |
795 | thd The thread object |
796 | func_expr The item tree reference of the partition function |
797 | table The table object |
798 | part_info Reference to partitioning data structure |
799 | is_sub_part Is the table subpartitioned as well |
800 | is_create_table_ind Indicator of whether openfrm was called as part of |
801 | CREATE or ALTER TABLE |
802 | |
803 | RETURN VALUE |
804 | TRUE An error occurred, something was wrong with the |
805 | partition function. |
806 | FALSE Ok, a partition field array was created |
807 | |
808 | DESCRIPTION |
809 | This function is used to build an array of partition fields for the |
810 | partitioning function and subpartitioning function. The partitioning |
811 | function is an item tree that must reference at least one field in the |
812 | table. This is checked first in the parser that the function doesn't |
813 | contain non-cacheable parts (like a random function) and by checking |
814 | here that the function isn't a constant function. |
815 | |
816 | Calculate the number of fields in the partition function. |
817 | Use it allocate memory for array of Field pointers. |
818 | Initialise array of field pointers. Use information set when |
819 | calling fix_fields and reset it immediately after. |
820 | The get_fields_in_item_tree activates setting of bit in flags |
821 | on the field object. |
822 | */ |
823 | |
824 | static bool fix_fields_part_func(THD *thd, Item* func_expr, TABLE *table, |
825 | bool is_sub_part, bool is_create_table_ind) |
826 | { |
827 | partition_info *part_info= table->part_info; |
828 | bool result= TRUE; |
829 | int error; |
830 | LEX *old_lex= thd->lex; |
831 | LEX lex; |
832 | DBUG_ENTER("fix_fields_part_func" ); |
833 | |
834 | if (init_lex_with_single_table(thd, table, &lex)) |
835 | goto end; |
836 | table->get_fields_in_item_tree= true; |
837 | |
838 | func_expr->walk(&Item::change_context_processor, 0, &lex.select_lex.context); |
839 | thd->where= "partition function" ; |
840 | /* |
841 | In execution we must avoid the use of thd->change_item_tree since |
842 | we might release memory before statement is completed. We do this |
843 | by temporarily setting the stmt_arena->mem_root to be the mem_root |
844 | of the table object, this also ensures that any memory allocated |
845 | during fix_fields will not be released at end of execution of this |
846 | statement. Thus the item tree will remain valid also in subsequent |
847 | executions of this table object. We do however not at the moment |
848 | support allocations during execution of val_int so any item class |
849 | that does this during val_int must be disallowed as partition |
850 | function. |
851 | SEE Bug #21658 |
852 | |
853 | This is a tricky call to prepare for since it can have a large number |
854 | of interesting side effects, both desirable and undesirable. |
855 | */ |
856 | { |
857 | const bool save_agg_field= thd->lex->current_select->non_agg_field_used(); |
858 | const bool save_agg_func= thd->lex->current_select->agg_func_used(); |
859 | const nesting_map saved_allow_sum_func= thd->lex->allow_sum_func; |
860 | thd->lex->allow_sum_func= 0; |
861 | |
862 | if (likely(!(error= func_expr->fix_fields(thd, (Item**)&func_expr)))) |
863 | func_expr->walk(&Item::post_fix_fields_part_expr_processor, 0, NULL); |
864 | |
865 | /* |
866 | Restore agg_field/agg_func and allow_sum_func, |
867 | fix_fields should not affect mysql_select later, see Bug#46923. |
868 | */ |
869 | thd->lex->current_select->set_non_agg_field_used(save_agg_field); |
870 | thd->lex->current_select->set_agg_func_used(save_agg_func); |
871 | thd->lex->allow_sum_func= saved_allow_sum_func; |
872 | } |
873 | if (unlikely(error)) |
874 | { |
875 | DBUG_PRINT("info" , ("Field in partition function not part of table" )); |
876 | clear_field_flag(table); |
877 | goto end; |
878 | } |
879 | if (unlikely(func_expr->const_item())) |
880 | { |
881 | my_error(ER_WRONG_EXPR_IN_PARTITION_FUNC_ERROR, MYF(0)); |
882 | clear_field_flag(table); |
883 | goto end; |
884 | } |
885 | |
886 | /* |
887 | We don't allow creating partitions with expressions with non matching |
888 | arguments as a (sub)partitioning function, |
889 | but we want to allow such expressions when opening existing tables for |
890 | easier maintenance. This exception should be deprecated at some point |
891 | in future so that we always throw an error. |
892 | */ |
893 | if (func_expr->walk(&Item::check_valid_arguments_processor, 0, NULL)) |
894 | { |
895 | if (is_create_table_ind) |
896 | { |
897 | my_error(ER_WRONG_EXPR_IN_PARTITION_FUNC_ERROR, MYF(0)); |
898 | goto end; |
899 | } |
900 | else |
901 | push_warning(thd, Sql_condition::WARN_LEVEL_WARN, |
902 | ER_WRONG_EXPR_IN_PARTITION_FUNC_ERROR, |
903 | ER_THD(thd, ER_WRONG_EXPR_IN_PARTITION_FUNC_ERROR)); |
904 | } |
905 | |
906 | if (unlikely((!is_sub_part) && (error= check_signed_flag(part_info)))) |
907 | goto end; |
908 | result= set_up_field_array(thd, table, is_sub_part); |
909 | end: |
910 | end_lex_with_single_table(thd, table, old_lex); |
911 | func_expr->walk(&Item::change_context_processor, 0, 0); |
912 | DBUG_RETURN(result); |
913 | } |
914 | |
915 | |
916 | /* |
917 | Check that the primary key contains all partition fields if defined |
918 | |
919 | SYNOPSIS |
920 | check_primary_key() |
921 | table TABLE object for which partition fields are set-up |
922 | |
923 | RETURN VALUES |
924 | TRUE Not all fields in partitioning function was part |
925 | of primary key |
926 | FALSE Ok, all fields of partitioning function were part |
927 | of primary key |
928 | |
929 | DESCRIPTION |
930 | This function verifies that if there is a primary key that it contains |
931 | all the fields of the partition function. |
932 | This is a temporary limitation that will hopefully be removed after a |
933 | while. |
934 | */ |
935 | |
936 | static bool check_primary_key(TABLE *table) |
937 | { |
938 | uint primary_key= table->s->primary_key; |
939 | bool all_fields, some_fields; |
940 | bool result= FALSE; |
941 | DBUG_ENTER("check_primary_key" ); |
942 | |
943 | if (primary_key < MAX_KEY) |
944 | { |
945 | set_indicator_in_key_fields(table->key_info+primary_key); |
946 | check_fields_in_PF(table->part_info->full_part_field_array, |
947 | &all_fields, &some_fields); |
948 | clear_indicator_in_key_fields(table->key_info+primary_key); |
949 | if (unlikely(!all_fields)) |
950 | { |
951 | my_error(ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF,MYF(0),"PRIMARY KEY" ); |
952 | result= TRUE; |
953 | } |
954 | } |
955 | DBUG_RETURN(result); |
956 | } |
957 | |
958 | |
959 | /* |
960 | Check that unique keys contains all partition fields |
961 | |
962 | SYNOPSIS |
963 | check_unique_keys() |
964 | table TABLE object for which partition fields are set-up |
965 | |
966 | RETURN VALUES |
967 | TRUE Not all fields in partitioning function was part |
968 | of all unique keys |
969 | FALSE Ok, all fields of partitioning function were part |
970 | of unique keys |
971 | |
972 | DESCRIPTION |
973 | This function verifies that if there is a unique index that it contains |
974 | all the fields of the partition function. |
975 | This is a temporary limitation that will hopefully be removed after a |
976 | while. |
977 | */ |
978 | |
979 | static bool check_unique_keys(TABLE *table) |
980 | { |
981 | bool all_fields, some_fields; |
982 | bool result= FALSE; |
983 | uint keys= table->s->keys; |
984 | uint i; |
985 | DBUG_ENTER("check_unique_keys" ); |
986 | |
987 | for (i= 0; i < keys; i++) |
988 | { |
989 | if (table->key_info[i].flags & HA_NOSAME) //Unique index |
990 | { |
991 | set_indicator_in_key_fields(table->key_info+i); |
992 | check_fields_in_PF(table->part_info->full_part_field_array, |
993 | &all_fields, &some_fields); |
994 | clear_indicator_in_key_fields(table->key_info+i); |
995 | if (unlikely(!all_fields)) |
996 | { |
997 | my_error(ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF,MYF(0),"UNIQUE INDEX" ); |
998 | result= TRUE; |
999 | break; |
1000 | } |
1001 | } |
1002 | } |
1003 | DBUG_RETURN(result); |
1004 | } |
1005 | |
1006 | |
1007 | /* |
1008 | An important optimisation is whether a range on a field can select a subset |
1009 | of the partitions. |
1010 | A prerequisite for this to happen is that the PF is a growing function OR |
1011 | a shrinking function. |
1012 | This can never happen for a multi-dimensional PF. Thus this can only happen |
1013 | with PF with at most one field involved in the PF. |
1014 | The idea is that if the function is a growing function and you know that |
1015 | the field of the PF is 4 <= A <= 6 then we can convert this to a range |
1016 | in the PF instead by setting the range to PF(4) <= PF(A) <= PF(6). In the |
1017 | case of RANGE PARTITIONING and LIST PARTITIONING this can be used to |
1018 | calculate a set of partitions rather than scanning all of them. |
1019 | Thus the following prerequisites are there to check if sets of partitions |
1020 | can be found. |
1021 | 1) Only possible for RANGE and LIST partitioning (not for subpartitioning) |
1022 | 2) Only possible if PF only contains 1 field |
1023 | 3) Possible if PF is a growing function of the field |
1024 | 4) Possible if PF is a shrinking function of the field |
1025 | OBSERVATION: |
1026 | 1) IF f1(A) is a growing function AND f2(A) is a growing function THEN |
1027 | f1(A) + f2(A) is a growing function |
1028 | f1(A) * f2(A) is a growing function if f1(A) >= 0 and f2(A) >= 0 |
1029 | 2) IF f1(A) is a growing function and f2(A) is a shrinking function THEN |
1030 | f1(A) / f2(A) is a growing function if f1(A) >= 0 and f2(A) > 0 |
1031 | 3) IF A is a growing function then a function f(A) that removes the |
1032 | least significant portion of A is a growing function |
1033 | E.g. DATE(datetime) is a growing function |
1034 | MONTH(datetime) is not a growing/shrinking function |
1035 | 4) IF f1(A) is a growing function and f2(A) is a growing function THEN |
1036 | f1(f2(A)) and f2(f1(A)) are also growing functions |
1037 | 5) IF f1(A) is a shrinking function and f2(A) is a growing function THEN |
1038 | f1(f2(A)) is a shrinking function and f2(f1(A)) is a shrinking function |
1039 | 6) f1(A) = A is a growing function |
1040 | 7) f1(A) = A*a + b (where a and b are constants) is a growing function |
1041 | |
1042 | By analysing the item tree of the PF we can use these deducements and |
1043 | derive whether the PF is a growing function or a shrinking function or |
1044 | neither of it. |
1045 | |
1046 | If the PF is range capable then a flag is set on the table object |
1047 | indicating this to notify that we can use also ranges on the field |
1048 | of the PF to deduce a set of partitions if the fields of the PF were |
1049 | not all fully bound. |
1050 | |
1051 | SYNOPSIS |
1052 | check_range_capable_PF() |
1053 | table TABLE object for which partition fields are set-up |
1054 | |
1055 | DESCRIPTION |
1056 | Support for this is not implemented yet. |
1057 | */ |
1058 | |
1059 | void check_range_capable_PF(TABLE *table) |
1060 | { |
1061 | DBUG_ENTER("check_range_capable_PF" ); |
1062 | |
1063 | DBUG_VOID_RETURN; |
1064 | } |
1065 | |
1066 | |
1067 | /** |
1068 | Set up partition bitmaps |
1069 | |
1070 | @param thd Thread object |
1071 | @param part_info Reference to partitioning data structure |
1072 | |
1073 | @return Operation status |
1074 | @retval TRUE Memory allocation failure |
1075 | @retval FALSE Success |
1076 | |
1077 | Allocate memory for bitmaps of the partitioned table |
1078 | and initialise it. |
1079 | */ |
1080 | |
1081 | static bool set_up_partition_bitmaps(THD *thd, partition_info *part_info) |
1082 | { |
1083 | uint32 *bitmap_buf; |
1084 | uint bitmap_bits= part_info->num_subparts? |
1085 | (part_info->num_subparts* part_info->num_parts): |
1086 | part_info->num_parts; |
1087 | uint bitmap_bytes= bitmap_buffer_size(bitmap_bits); |
1088 | DBUG_ENTER("set_up_partition_bitmaps" ); |
1089 | |
1090 | DBUG_ASSERT(!part_info->bitmaps_are_initialized); |
1091 | |
1092 | /* Allocate for both read and lock_partitions */ |
1093 | if (unlikely(!(bitmap_buf= |
1094 | (uint32*) alloc_root(&part_info->table->mem_root, |
1095 | bitmap_bytes * 2)))) |
1096 | DBUG_RETURN(TRUE); |
1097 | |
1098 | my_bitmap_init(&part_info->read_partitions, bitmap_buf, bitmap_bits, FALSE); |
1099 | /* Use the second half of the allocated buffer for lock_partitions */ |
1100 | my_bitmap_init(&part_info->lock_partitions, bitmap_buf + (bitmap_bytes / 4), |
1101 | bitmap_bits, FALSE); |
1102 | part_info->bitmaps_are_initialized= TRUE; |
1103 | part_info->set_partition_bitmaps(NULL); |
1104 | DBUG_RETURN(FALSE); |
1105 | } |
1106 | |
1107 | |
1108 | /* |
1109 | Set up partition key maps |
1110 | |
1111 | SYNOPSIS |
1112 | set_up_partition_key_maps() |
1113 | table TABLE object for which partition fields are set-up |
1114 | part_info Reference to partitioning data structure |
1115 | |
1116 | RETURN VALUES |
1117 | None |
1118 | |
1119 | DESCRIPTION |
1120 | This function sets up a couple of key maps to be able to quickly check |
1121 | if an index ever can be used to deduce the partition fields or even |
1122 | a part of the fields of the partition function. |
1123 | We set up the following key_map's. |
1124 | PF = Partition Function |
1125 | 1) All fields of the PF is set even by equal on the first fields in the |
1126 | key |
1127 | 2) All fields of the PF is set if all fields of the key is set |
1128 | 3) At least one field in the PF is set if all fields is set |
1129 | 4) At least one field in the PF is part of the key |
1130 | */ |
1131 | |
1132 | static void set_up_partition_key_maps(TABLE *table, |
1133 | partition_info *part_info) |
1134 | { |
1135 | uint keys= table->s->keys; |
1136 | uint i; |
1137 | bool all_fields, some_fields; |
1138 | DBUG_ENTER("set_up_partition_key_maps" ); |
1139 | |
1140 | part_info->all_fields_in_PF.clear_all(); |
1141 | part_info->all_fields_in_PPF.clear_all(); |
1142 | part_info->all_fields_in_SPF.clear_all(); |
1143 | part_info->some_fields_in_PF.clear_all(); |
1144 | for (i= 0; i < keys; i++) |
1145 | { |
1146 | set_indicator_in_key_fields(table->key_info+i); |
1147 | check_fields_in_PF(part_info->full_part_field_array, |
1148 | &all_fields, &some_fields); |
1149 | if (all_fields) |
1150 | part_info->all_fields_in_PF.set_bit(i); |
1151 | if (some_fields) |
1152 | part_info->some_fields_in_PF.set_bit(i); |
1153 | if (part_info->is_sub_partitioned()) |
1154 | { |
1155 | check_fields_in_PF(part_info->part_field_array, |
1156 | &all_fields, &some_fields); |
1157 | if (all_fields) |
1158 | part_info->all_fields_in_PPF.set_bit(i); |
1159 | check_fields_in_PF(part_info->subpart_field_array, |
1160 | &all_fields, &some_fields); |
1161 | if (all_fields) |
1162 | part_info->all_fields_in_SPF.set_bit(i); |
1163 | } |
1164 | clear_indicator_in_key_fields(table->key_info+i); |
1165 | } |
1166 | DBUG_VOID_RETURN; |
1167 | } |
1168 | |
1169 | static bool check_no_constants(THD *, partition_info*) |
1170 | { |
1171 | return FALSE; |
1172 | } |
1173 | |
1174 | /* |
1175 | Support routines for check_list_constants used by qsort to sort the |
1176 | constant list expressions. One routine for integers and one for |
1177 | column lists. |
1178 | |
1179 | SYNOPSIS |
1180 | list_part_cmp() |
1181 | a First list constant to compare with |
1182 | b Second list constant to compare with |
1183 | |
1184 | RETURN VALUE |
1185 | +1 a > b |
1186 | 0 a == b |
1187 | -1 a < b |
1188 | */ |
1189 | |
1190 | extern "C" |
1191 | int partition_info_list_part_cmp(const void* a, const void* b) |
1192 | { |
1193 | longlong a1= ((LIST_PART_ENTRY*)a)->list_value; |
1194 | longlong b1= ((LIST_PART_ENTRY*)b)->list_value; |
1195 | if (a1 < b1) |
1196 | return -1; |
1197 | else if (a1 > b1) |
1198 | return +1; |
1199 | else |
1200 | return 0; |
1201 | } |
1202 | |
1203 | |
1204 | /* |
1205 | Compare two lists of column values in RANGE/LIST partitioning |
1206 | SYNOPSIS |
1207 | partition_info_compare_column_values() |
1208 | first First column list argument |
1209 | second Second column list argument |
1210 | RETURN VALUES |
1211 | 0 Equal |
1212 | -1 First argument is smaller |
1213 | +1 First argument is larger |
1214 | */ |
1215 | |
1216 | extern "C" |
1217 | int partition_info_compare_column_values(const void *first_arg, |
1218 | const void *second_arg) |
1219 | { |
1220 | const part_column_list_val *first= (part_column_list_val*)first_arg; |
1221 | const part_column_list_val *second= (part_column_list_val*)second_arg; |
1222 | partition_info *part_info= first->part_info; |
1223 | Field **field; |
1224 | |
1225 | for (field= part_info->part_field_array; *field; |
1226 | field++, first++, second++) |
1227 | { |
1228 | if (first->max_value || second->max_value) |
1229 | { |
1230 | if (first->max_value && second->max_value) |
1231 | return 0; |
1232 | if (second->max_value) |
1233 | return -1; |
1234 | else |
1235 | return +1; |
1236 | } |
1237 | if (first->null_value || second->null_value) |
1238 | { |
1239 | if (first->null_value && second->null_value) |
1240 | continue; |
1241 | if (second->null_value) |
1242 | return +1; |
1243 | else |
1244 | return -1; |
1245 | } |
1246 | int res= (*field)->cmp((const uchar*)first->column_value, |
1247 | (const uchar*)second->column_value); |
1248 | if (res) |
1249 | return res; |
1250 | } |
1251 | return 0; |
1252 | } |
1253 | |
1254 | |
1255 | /* |
1256 | This routine allocates an array for all range constants to achieve a fast |
1257 | check what partition a certain value belongs to. At the same time it does |
1258 | also check that the range constants are defined in increasing order and |
1259 | that the expressions are constant integer expressions. |
1260 | |
1261 | SYNOPSIS |
1262 | check_range_constants() |
1263 | thd Thread object |
1264 | |
1265 | RETURN VALUE |
1266 | TRUE An error occurred during creation of range constants |
1267 | FALSE Successful creation of range constant mapping |
1268 | |
1269 | DESCRIPTION |
1270 | This routine is called from check_partition_info to get a quick error |
1271 | before we came too far into the CREATE TABLE process. It is also called |
1272 | from fix_partition_func every time we open the .frm file. It is only |
1273 | called for RANGE PARTITIONed tables. |
1274 | */ |
1275 | |
1276 | static bool check_range_constants(THD *thd, partition_info *part_info) |
1277 | { |
1278 | partition_element* part_def; |
1279 | bool first= TRUE; |
1280 | uint i; |
1281 | List_iterator<partition_element> it(part_info->partitions); |
1282 | bool result= TRUE; |
1283 | DBUG_ENTER("check_range_constants" ); |
1284 | DBUG_PRINT("enter" , ("RANGE with %d parts, column_list = %u" , |
1285 | part_info->num_parts, part_info->column_list)); |
1286 | |
1287 | if (part_info->column_list) |
1288 | { |
1289 | part_column_list_val *loc_range_col_array; |
1290 | part_column_list_val *UNINIT_VAR(current_largest_col_val); |
1291 | uint num_column_values= part_info->part_field_list.elements; |
1292 | uint size_entries= sizeof(part_column_list_val) * num_column_values; |
1293 | part_info->range_col_array= (part_column_list_val*) |
1294 | thd->calloc(part_info->num_parts * size_entries); |
1295 | if (unlikely(part_info->range_col_array == NULL)) |
1296 | goto end; |
1297 | |
1298 | loc_range_col_array= part_info->range_col_array; |
1299 | i= 0; |
1300 | do |
1301 | { |
1302 | part_def= it++; |
1303 | { |
1304 | List_iterator<part_elem_value> list_val_it(part_def->list_val_list); |
1305 | part_elem_value *range_val= list_val_it++; |
1306 | part_column_list_val *col_val= range_val->col_val_array; |
1307 | |
1308 | if (part_info->fix_column_value_functions(thd, range_val, i)) |
1309 | goto end; |
1310 | memcpy(loc_range_col_array, (const void*)col_val, size_entries); |
1311 | loc_range_col_array+= num_column_values; |
1312 | if (!first) |
1313 | { |
1314 | if (partition_info_compare_column_values(current_largest_col_val, |
1315 | col_val) >= 0) |
1316 | goto range_not_increasing_error; |
1317 | } |
1318 | current_largest_col_val= col_val; |
1319 | } |
1320 | first= FALSE; |
1321 | } while (++i < part_info->num_parts); |
1322 | } |
1323 | else |
1324 | { |
1325 | longlong UNINIT_VAR(current_largest); |
1326 | longlong part_range_value; |
1327 | bool signed_flag= !part_info->part_expr->unsigned_flag; |
1328 | |
1329 | part_info->range_int_array= (longlong*) |
1330 | thd->alloc(part_info->num_parts * sizeof(longlong)); |
1331 | if (unlikely(part_info->range_int_array == NULL)) |
1332 | goto end; |
1333 | |
1334 | i= 0; |
1335 | do |
1336 | { |
1337 | part_def= it++; |
1338 | if ((i != part_info->num_parts - 1) || !part_info->defined_max_value) |
1339 | { |
1340 | part_range_value= part_def->range_value; |
1341 | if (!signed_flag) |
1342 | part_range_value-= 0x8000000000000000ULL; |
1343 | } |
1344 | else |
1345 | part_range_value= LONGLONG_MAX; |
1346 | |
1347 | if (!first) |
1348 | { |
1349 | if (current_largest > part_range_value || |
1350 | (current_largest == part_range_value && |
1351 | (part_range_value < LONGLONG_MAX || |
1352 | i != part_info->num_parts - 1 || |
1353 | !part_info->defined_max_value))) |
1354 | goto range_not_increasing_error; |
1355 | } |
1356 | part_info->range_int_array[i]= part_range_value; |
1357 | current_largest= part_range_value; |
1358 | first= FALSE; |
1359 | } while (++i < part_info->num_parts); |
1360 | } |
1361 | result= FALSE; |
1362 | end: |
1363 | DBUG_RETURN(result); |
1364 | |
1365 | range_not_increasing_error: |
1366 | my_error(ER_RANGE_NOT_INCREASING_ERROR, MYF(0)); |
1367 | goto end; |
1368 | } |
1369 | |
1370 | |
1371 | /* |
1372 | This routine allocates an array for all list constants to achieve a fast |
1373 | check what partition a certain value belongs to. At the same time it does |
1374 | also check that there are no duplicates among the list constants and that |
1375 | that the list expressions are constant integer expressions. |
1376 | |
1377 | SYNOPSIS |
1378 | check_list_constants() |
1379 | thd Thread object |
1380 | |
1381 | RETURN VALUE |
1382 | TRUE An error occurred during creation of list constants |
1383 | FALSE Successful creation of list constant mapping |
1384 | |
1385 | DESCRIPTION |
1386 | This routine is called from check_partition_info to get a quick error |
1387 | before we came too far into the CREATE TABLE process. It is also called |
1388 | from fix_partition_func every time we open the .frm file. It is only |
1389 | called for LIST PARTITIONed tables. |
1390 | */ |
1391 | |
1392 | static bool check_list_constants(THD *thd, partition_info *part_info) |
1393 | { |
1394 | uint i, size_entries, num_column_values; |
1395 | uint list_index= 0; |
1396 | part_elem_value *list_value; |
1397 | bool result= TRUE; |
1398 | longlong type_add, calc_value; |
1399 | void *curr_value; |
1400 | void *UNINIT_VAR(prev_value); |
1401 | partition_element* part_def; |
1402 | bool found_null= FALSE; |
1403 | qsort_cmp compare_func; |
1404 | void *ptr; |
1405 | List_iterator<partition_element> list_func_it(part_info->partitions); |
1406 | DBUG_ENTER("check_list_constants" ); |
1407 | |
1408 | DBUG_ASSERT(part_info->part_type == LIST_PARTITION); |
1409 | |
1410 | part_info->num_list_values= 0; |
1411 | /* |
1412 | We begin by calculating the number of list values that have been |
1413 | defined in the first step. |
1414 | |
1415 | We use this number to allocate a properly sized array of structs |
1416 | to keep the partition id and the value to use in that partition. |
1417 | In the second traversal we assign them values in the struct array. |
1418 | |
1419 | Finally we sort the array of structs in order of values to enable |
1420 | a quick binary search for the proper value to discover the |
1421 | partition id. |
1422 | After sorting the array we check that there are no duplicates in the |
1423 | list. |
1424 | */ |
1425 | |
1426 | i= 0; |
1427 | do |
1428 | { |
1429 | part_def= list_func_it++; |
1430 | if (part_def->has_null_value) |
1431 | { |
1432 | if (found_null) |
1433 | { |
1434 | my_error(ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR, MYF(0)); |
1435 | goto end; |
1436 | } |
1437 | part_info->has_null_value= TRUE; |
1438 | part_info->has_null_part_id= i; |
1439 | found_null= TRUE; |
1440 | } |
1441 | part_info->num_list_values+= part_def->list_val_list.elements; |
1442 | } while (++i < part_info->num_parts); |
1443 | list_func_it.rewind(); |
1444 | num_column_values= part_info->part_field_list.elements; |
1445 | size_entries= part_info->column_list ? |
1446 | (num_column_values * sizeof(part_column_list_val)) : |
1447 | sizeof(LIST_PART_ENTRY); |
1448 | if (!(ptr= thd->calloc((part_info->num_list_values+1) * size_entries))) |
1449 | goto end; |
1450 | if (part_info->column_list) |
1451 | { |
1452 | part_column_list_val *loc_list_col_array; |
1453 | loc_list_col_array= (part_column_list_val*)ptr; |
1454 | part_info->list_col_array= (part_column_list_val*)ptr; |
1455 | compare_func= partition_info_compare_column_values; |
1456 | i= 0; |
1457 | do |
1458 | { |
1459 | part_def= list_func_it++; |
1460 | if (part_def->max_value) |
1461 | { |
1462 | // DEFAULT is not a real value so let's exclude it from sorting. |
1463 | DBUG_ASSERT(part_info->num_list_values); |
1464 | part_info->num_list_values--; |
1465 | continue; |
1466 | } |
1467 | List_iterator<part_elem_value> list_val_it2(part_def->list_val_list); |
1468 | while ((list_value= list_val_it2++)) |
1469 | { |
1470 | part_column_list_val *col_val= list_value->col_val_array; |
1471 | if (part_info->fix_column_value_functions(thd, list_value, i)) |
1472 | DBUG_RETURN(result); |
1473 | memcpy(loc_list_col_array, (const void*)col_val, size_entries); |
1474 | loc_list_col_array+= num_column_values; |
1475 | } |
1476 | } while (++i < part_info->num_parts); |
1477 | } |
1478 | else |
1479 | { |
1480 | compare_func= partition_info_list_part_cmp; |
1481 | part_info->list_array= (LIST_PART_ENTRY*)ptr; |
1482 | i= 0; |
1483 | /* |
1484 | Fix to be able to reuse signed sort functions also for unsigned |
1485 | partition functions. |
1486 | */ |
1487 | type_add= (longlong)(part_info->part_expr->unsigned_flag ? |
1488 | 0x8000000000000000ULL : |
1489 | 0ULL); |
1490 | |
1491 | do |
1492 | { |
1493 | part_def= list_func_it++; |
1494 | if (part_def->max_value) |
1495 | { |
1496 | // DEFAULT is not a real value so let's exclude it from sorting. |
1497 | DBUG_ASSERT(part_info->num_list_values); |
1498 | part_info->num_list_values--; |
1499 | continue; |
1500 | } |
1501 | List_iterator<part_elem_value> list_val_it2(part_def->list_val_list); |
1502 | while ((list_value= list_val_it2++)) |
1503 | { |
1504 | calc_value= list_value->value - type_add; |
1505 | part_info->list_array[list_index].list_value= calc_value; |
1506 | part_info->list_array[list_index++].partition_id= i; |
1507 | } |
1508 | } while (++i < part_info->num_parts); |
1509 | } |
1510 | DBUG_ASSERT(part_info->fixed); |
1511 | if (part_info->num_list_values) |
1512 | { |
1513 | bool first= TRUE; |
1514 | /* |
1515 | list_array and list_col_array are unions, so this works for both |
1516 | variants of LIST partitioning. |
1517 | */ |
1518 | my_qsort(part_info->list_array, part_info->num_list_values, size_entries, |
1519 | compare_func); |
1520 | |
1521 | i= 0; |
1522 | do |
1523 | { |
1524 | DBUG_ASSERT(i < part_info->num_list_values); |
1525 | curr_value= part_info->column_list |
1526 | ? (void*)&part_info->list_col_array[num_column_values * i] |
1527 | : (void*)&part_info->list_array[i]; |
1528 | if (likely(first || compare_func(curr_value, prev_value))) |
1529 | { |
1530 | prev_value= curr_value; |
1531 | first= FALSE; |
1532 | } |
1533 | else |
1534 | { |
1535 | my_error(ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR, MYF(0)); |
1536 | goto end; |
1537 | } |
1538 | } while (++i < part_info->num_list_values); |
1539 | } |
1540 | result= FALSE; |
1541 | end: |
1542 | DBUG_RETURN(result); |
1543 | } |
1544 | |
1545 | |
1546 | /* Set partition boundaries when rotating by INTERVAL */ |
1547 | static bool check_vers_constants(THD *thd, partition_info *part_info) |
1548 | { |
1549 | uint hist_parts= part_info->num_parts - 1; |
1550 | Vers_part_info *vers_info= part_info->vers_info; |
1551 | vers_info->hist_part= part_info->partitions.head(); |
1552 | vers_info->now_part= part_info->partitions.elem(hist_parts); |
1553 | |
1554 | if (!vers_info->interval.is_set()) |
1555 | return 0; |
1556 | |
1557 | part_info->range_int_array= |
1558 | (longlong*) thd->alloc(hist_parts * sizeof(longlong)); |
1559 | |
1560 | MYSQL_TIME ltime; |
1561 | List_iterator<partition_element> it(part_info->partitions); |
1562 | partition_element *el; |
1563 | my_tz_OFFSET0->gmt_sec_to_TIME(<ime, vers_info->interval.start); |
1564 | while ((el= it++)->id < hist_parts) |
1565 | { |
1566 | if (date_add_interval(<ime, vers_info->interval.type, |
1567 | vers_info->interval.step)) |
1568 | goto err; |
1569 | uint error= 0; |
1570 | part_info->range_int_array[el->id]= el->range_value= |
1571 | my_tz_OFFSET0->TIME_to_gmt_sec(<ime, &error); |
1572 | if (error) |
1573 | goto err; |
1574 | if (vers_info->hist_part->range_value <= thd->query_start()) |
1575 | vers_info->hist_part= el; |
1576 | } |
1577 | return 0; |
1578 | err: |
1579 | my_error(ER_DATA_OUT_OF_RANGE, MYF(0), "TIMESTAMP" , "INTERVAL" ); |
1580 | return 1; |
1581 | } |
1582 | |
1583 | |
1584 | /* |
1585 | Set up function pointers for partition function |
1586 | |
1587 | SYNOPSIS |
1588 | set_up_partition_func_pointers() |
1589 | part_info Reference to partitioning data structure |
1590 | |
1591 | RETURN VALUE |
1592 | NONE |
1593 | |
1594 | DESCRIPTION |
1595 | Set-up all function pointers for calculation of partition id, |
1596 | subpartition id and the upper part in subpartitioning. This is to speed up |
1597 | execution of get_partition_id which is executed once every record to be |
1598 | written and deleted and twice for updates. |
1599 | */ |
1600 | |
1601 | static void set_up_partition_func_pointers(partition_info *part_info) |
1602 | { |
1603 | DBUG_ENTER("set_up_partition_func_pointers" ); |
1604 | |
1605 | if (part_info->is_sub_partitioned()) |
1606 | { |
1607 | part_info->get_partition_id= get_partition_id_with_sub; |
1608 | if (part_info->part_type == RANGE_PARTITION) |
1609 | { |
1610 | if (part_info->column_list) |
1611 | part_info->get_part_partition_id= get_partition_id_range_col; |
1612 | else |
1613 | part_info->get_part_partition_id= get_partition_id_range; |
1614 | if (part_info->list_of_subpart_fields) |
1615 | { |
1616 | if (part_info->linear_hash_ind) |
1617 | part_info->get_subpartition_id= get_partition_id_linear_key_sub; |
1618 | else |
1619 | part_info->get_subpartition_id= get_partition_id_key_sub; |
1620 | } |
1621 | else |
1622 | { |
1623 | if (part_info->linear_hash_ind) |
1624 | part_info->get_subpartition_id= get_partition_id_linear_hash_sub; |
1625 | else |
1626 | part_info->get_subpartition_id= get_partition_id_hash_sub; |
1627 | } |
1628 | } |
1629 | else if (part_info->part_type == VERSIONING_PARTITION) |
1630 | { |
1631 | part_info->get_part_partition_id= vers_get_partition_id; |
1632 | if (part_info->list_of_subpart_fields) |
1633 | { |
1634 | if (part_info->linear_hash_ind) |
1635 | part_info->get_subpartition_id= get_partition_id_linear_key_sub; |
1636 | else |
1637 | part_info->get_subpartition_id= get_partition_id_key_sub; |
1638 | } |
1639 | else |
1640 | { |
1641 | if (part_info->linear_hash_ind) |
1642 | part_info->get_subpartition_id= get_partition_id_linear_hash_sub; |
1643 | else |
1644 | part_info->get_subpartition_id= get_partition_id_hash_sub; |
1645 | } |
1646 | } |
1647 | else /* LIST Partitioning */ |
1648 | { |
1649 | if (part_info->column_list) |
1650 | part_info->get_part_partition_id= get_partition_id_list_col; |
1651 | else |
1652 | part_info->get_part_partition_id= get_partition_id_list; |
1653 | if (part_info->list_of_subpart_fields) |
1654 | { |
1655 | if (part_info->linear_hash_ind) |
1656 | part_info->get_subpartition_id= get_partition_id_linear_key_sub; |
1657 | else |
1658 | part_info->get_subpartition_id= get_partition_id_key_sub; |
1659 | } |
1660 | else |
1661 | { |
1662 | if (part_info->linear_hash_ind) |
1663 | part_info->get_subpartition_id= get_partition_id_linear_hash_sub; |
1664 | else |
1665 | part_info->get_subpartition_id= get_partition_id_hash_sub; |
1666 | } |
1667 | } |
1668 | } |
1669 | else /* No subpartitioning */ |
1670 | { |
1671 | part_info->get_part_partition_id= NULL; |
1672 | part_info->get_subpartition_id= NULL; |
1673 | if (part_info->part_type == RANGE_PARTITION) |
1674 | { |
1675 | if (part_info->column_list) |
1676 | part_info->get_partition_id= get_partition_id_range_col; |
1677 | else |
1678 | part_info->get_partition_id= get_partition_id_range; |
1679 | } |
1680 | else if (part_info->part_type == LIST_PARTITION) |
1681 | { |
1682 | if (part_info->column_list) |
1683 | part_info->get_partition_id= get_partition_id_list_col; |
1684 | else |
1685 | part_info->get_partition_id= get_partition_id_list; |
1686 | } |
1687 | else if (part_info->part_type == VERSIONING_PARTITION) |
1688 | { |
1689 | part_info->get_partition_id= vers_get_partition_id; |
1690 | } |
1691 | else /* HASH partitioning */ |
1692 | { |
1693 | if (part_info->list_of_part_fields) |
1694 | { |
1695 | if (part_info->linear_hash_ind) |
1696 | part_info->get_partition_id= get_partition_id_linear_key_nosub; |
1697 | else |
1698 | part_info->get_partition_id= get_partition_id_key_nosub; |
1699 | } |
1700 | else |
1701 | { |
1702 | if (part_info->linear_hash_ind) |
1703 | part_info->get_partition_id= get_partition_id_linear_hash_nosub; |
1704 | else |
1705 | part_info->get_partition_id= get_partition_id_hash_nosub; |
1706 | } |
1707 | } |
1708 | } |
1709 | /* |
1710 | We need special functions to handle character sets since they require copy |
1711 | of field pointers and restore afterwards. For subpartitioned tables we do |
1712 | the copy and restore individually on the part and subpart parts. For non- |
1713 | subpartitioned tables we use the same functions as used for the parts part |
1714 | of subpartioning. |
1715 | Thus for subpartitioned tables the get_partition_id is always |
1716 | get_partition_id_with_sub, even when character sets exists. |
1717 | */ |
1718 | if (part_info->part_charset_field_array) |
1719 | { |
1720 | if (part_info->is_sub_partitioned()) |
1721 | { |
1722 | DBUG_ASSERT(part_info->get_part_partition_id); |
1723 | if (!part_info->column_list) |
1724 | { |
1725 | part_info->get_part_partition_id_charset= |
1726 | part_info->get_part_partition_id; |
1727 | part_info->get_part_partition_id= get_part_id_charset_func_part; |
1728 | } |
1729 | } |
1730 | else |
1731 | { |
1732 | DBUG_ASSERT(part_info->get_partition_id); |
1733 | if (!part_info->column_list) |
1734 | { |
1735 | part_info->get_part_partition_id_charset= part_info->get_partition_id; |
1736 | part_info->get_part_partition_id= get_part_id_charset_func_part; |
1737 | } |
1738 | } |
1739 | } |
1740 | if (part_info->subpart_charset_field_array) |
1741 | { |
1742 | DBUG_ASSERT(part_info->get_subpartition_id); |
1743 | part_info->get_subpartition_id_charset= |
1744 | part_info->get_subpartition_id; |
1745 | part_info->get_subpartition_id= get_part_id_charset_func_subpart; |
1746 | } |
1747 | if (part_info->part_type == RANGE_PARTITION) |
1748 | part_info->check_constants= check_range_constants; |
1749 | else if (part_info->part_type == LIST_PARTITION) |
1750 | part_info->check_constants= check_list_constants; |
1751 | else if (part_info->part_type == VERSIONING_PARTITION) |
1752 | part_info->check_constants= check_vers_constants; |
1753 | else |
1754 | part_info->check_constants= check_no_constants; |
1755 | DBUG_VOID_RETURN; |
1756 | } |
1757 | |
1758 | |
1759 | /* |
1760 | For linear hashing we need a mask which is on the form 2**n - 1 where |
1761 | 2**n >= num_parts. Thus if num_parts is 6 then mask is 2**3 - 1 = 8 - 1 = 7. |
1762 | |
1763 | SYNOPSIS |
1764 | set_linear_hash_mask() |
1765 | part_info Reference to partitioning data structure |
1766 | num_parts Number of parts in linear hash partitioning |
1767 | |
1768 | RETURN VALUE |
1769 | NONE |
1770 | */ |
1771 | |
1772 | void set_linear_hash_mask(partition_info *part_info, uint num_parts) |
1773 | { |
1774 | uint mask; |
1775 | |
1776 | for (mask= 1; mask < num_parts; mask<<=1) |
1777 | ; |
1778 | part_info->linear_hash_mask= mask - 1; |
1779 | } |
1780 | |
1781 | |
1782 | /* |
1783 | This function calculates the partition id provided the result of the hash |
1784 | function using linear hashing parameters, mask and number of partitions. |
1785 | |
1786 | SYNOPSIS |
1787 | get_part_id_from_linear_hash() |
1788 | hash_value Hash value calculated by HASH function or KEY function |
1789 | mask Mask calculated previously by set_linear_hash_mask |
1790 | num_parts Number of partitions in HASH partitioned part |
1791 | |
1792 | RETURN VALUE |
1793 | part_id The calculated partition identity (starting at 0) |
1794 | |
1795 | DESCRIPTION |
1796 | The partition is calculated according to the theory of linear hashing. |
1797 | See e.g. Linear hashing: a new tool for file and table addressing, |
1798 | Reprinted from VLDB-80 in Readings Database Systems, 2nd ed, M. Stonebraker |
1799 | (ed.), Morgan Kaufmann 1994. |
1800 | */ |
1801 | |
1802 | static uint32 get_part_id_from_linear_hash(longlong hash_value, uint mask, |
1803 | uint num_parts) |
1804 | { |
1805 | uint32 part_id= (uint32)(hash_value & mask); |
1806 | |
1807 | if (part_id >= num_parts) |
1808 | { |
1809 | uint new_mask= ((mask + 1) >> 1) - 1; |
1810 | part_id= (uint32)(hash_value & new_mask); |
1811 | } |
1812 | return part_id; |
1813 | } |
1814 | |
1815 | |
1816 | /* |
1817 | Check if a particular field is in need of character set |
1818 | handling for partition functions. |
1819 | |
1820 | SYNOPSIS |
1821 | field_is_partition_charset() |
1822 | field The field to check |
1823 | |
1824 | RETURN VALUES |
1825 | FALSE Not in need of character set handling |
1826 | TRUE In need of character set handling |
1827 | */ |
1828 | |
1829 | bool field_is_partition_charset(Field *field) |
1830 | { |
1831 | if (!(field->type() == MYSQL_TYPE_STRING) && |
1832 | !(field->type() == MYSQL_TYPE_VARCHAR)) |
1833 | return FALSE; |
1834 | { |
1835 | CHARSET_INFO *cs= field->charset(); |
1836 | if (!(field->type() == MYSQL_TYPE_STRING) || |
1837 | !(cs->state & MY_CS_BINSORT)) |
1838 | return TRUE; |
1839 | return FALSE; |
1840 | } |
1841 | } |
1842 | |
1843 | |
1844 | /* |
1845 | Check that partition function doesn't contain any forbidden |
1846 | character sets and collations. |
1847 | |
1848 | SYNOPSIS |
1849 | check_part_func_fields() |
1850 | ptr Array of Field pointers |
1851 | ok_with_charsets Will we report allowed charset |
1852 | fields as ok |
1853 | RETURN VALUES |
1854 | FALSE Success |
1855 | TRUE Error |
1856 | |
1857 | DESCRIPTION |
1858 | We will check in this routine that the fields of the partition functions |
1859 | do not contain unallowed parts. It can also be used to check if there |
1860 | are fields that require special care by calling my_strnxfrm before |
1861 | calling the functions to calculate partition id. |
1862 | */ |
1863 | |
1864 | bool check_part_func_fields(Field **ptr, bool ok_with_charsets) |
1865 | { |
1866 | Field *field; |
1867 | DBUG_ENTER("check_part_func_fields" ); |
1868 | |
1869 | while ((field= *(ptr++))) |
1870 | { |
1871 | /* |
1872 | For CHAR/VARCHAR fields we need to take special precautions. |
1873 | Binary collation with CHAR is automatically supported. Other |
1874 | types need some kind of standardisation function handling |
1875 | */ |
1876 | if (field_is_partition_charset(field)) |
1877 | { |
1878 | CHARSET_INFO *cs= field->charset(); |
1879 | if (!ok_with_charsets || |
1880 | cs->mbmaxlen > 1 || |
1881 | cs->strxfrm_multiply > 1) |
1882 | { |
1883 | DBUG_RETURN(TRUE); |
1884 | } |
1885 | } |
1886 | } |
1887 | DBUG_RETURN(FALSE); |
1888 | } |
1889 | |
1890 | |
1891 | /* |
1892 | fix partition functions |
1893 | |
1894 | SYNOPSIS |
1895 | fix_partition_func() |
1896 | thd The thread object |
1897 | table TABLE object for which partition fields are set-up |
1898 | is_create_table_ind Indicator of whether openfrm was called as part of |
1899 | CREATE or ALTER TABLE |
1900 | |
1901 | RETURN VALUE |
1902 | TRUE Error |
1903 | FALSE Success |
1904 | |
1905 | DESCRIPTION |
1906 | The name parameter contains the full table name and is used to get the |
1907 | database name of the table which is used to set-up a correct |
1908 | TABLE_LIST object for use in fix_fields. |
1909 | |
1910 | NOTES |
1911 | This function is called as part of opening the table by opening the .frm |
1912 | file. It is a part of CREATE TABLE to do this so it is quite permissible |
1913 | that errors due to erroneus syntax isn't found until we come here. |
1914 | If the user has used a non-existing field in the table is one such example |
1915 | of an error that is not discovered until here. |
1916 | */ |
1917 | |
1918 | bool fix_partition_func(THD *thd, TABLE *table, bool is_create_table_ind) |
1919 | { |
1920 | bool result= TRUE; |
1921 | partition_info *part_info= table->part_info; |
1922 | enum_column_usage saved_column_usage= thd->column_usage; |
1923 | DBUG_ENTER("fix_partition_func" ); |
1924 | |
1925 | if (part_info->fixed) |
1926 | { |
1927 | DBUG_RETURN(FALSE); |
1928 | } |
1929 | thd->column_usage= COLUMNS_WRITE; |
1930 | DBUG_PRINT("info" , ("thd->column_usage: %d" , thd->column_usage)); |
1931 | |
1932 | if (!is_create_table_ind || |
1933 | thd->lex->sql_command != SQLCOM_CREATE_TABLE) |
1934 | { |
1935 | if (partition_default_handling(thd, table, part_info, |
1936 | is_create_table_ind, |
1937 | table->s->normalized_path.str)) |
1938 | { |
1939 | DBUG_RETURN(TRUE); |
1940 | } |
1941 | } |
1942 | if (part_info->is_sub_partitioned()) |
1943 | { |
1944 | DBUG_ASSERT(part_info->subpart_type == HASH_PARTITION); |
1945 | /* |
1946 | Subpartition is defined. We need to verify that subpartitioning |
1947 | function is correct. |
1948 | */ |
1949 | if (part_info->linear_hash_ind) |
1950 | set_linear_hash_mask(part_info, part_info->num_subparts); |
1951 | if (part_info->list_of_subpart_fields) |
1952 | { |
1953 | List_iterator<const char> it(part_info->subpart_field_list); |
1954 | if (unlikely(handle_list_of_fields(thd, it, table, part_info, TRUE))) |
1955 | goto end; |
1956 | } |
1957 | else |
1958 | { |
1959 | if (unlikely(fix_fields_part_func(thd, part_info->subpart_expr, |
1960 | table, TRUE, is_create_table_ind))) |
1961 | goto end; |
1962 | if (unlikely(part_info->subpart_expr->result_type() != INT_RESULT)) |
1963 | { |
1964 | part_info->report_part_expr_error(TRUE); |
1965 | goto end; |
1966 | } |
1967 | } |
1968 | } |
1969 | DBUG_ASSERT(part_info->part_type != NOT_A_PARTITION); |
1970 | DBUG_ASSERT(part_info->part_type != VERSIONING_PARTITION || part_info->column_list); |
1971 | /* |
1972 | Partition is defined. We need to verify that partitioning |
1973 | function is correct. |
1974 | */ |
1975 | set_up_partition_func_pointers(part_info); |
1976 | if (part_info->part_type == HASH_PARTITION) |
1977 | { |
1978 | if (part_info->linear_hash_ind) |
1979 | set_linear_hash_mask(part_info, part_info->num_parts); |
1980 | if (part_info->list_of_part_fields) |
1981 | { |
1982 | List_iterator<const char> it(part_info->part_field_list); |
1983 | if (unlikely(handle_list_of_fields(thd, it, table, part_info, FALSE))) |
1984 | goto end; |
1985 | } |
1986 | else |
1987 | { |
1988 | if (unlikely(fix_fields_part_func(thd, part_info->part_expr, |
1989 | table, FALSE, is_create_table_ind))) |
1990 | goto end; |
1991 | if (unlikely(part_info->part_expr->result_type() != INT_RESULT)) |
1992 | { |
1993 | part_info->report_part_expr_error(FALSE); |
1994 | goto end; |
1995 | } |
1996 | } |
1997 | part_info->fixed= TRUE; |
1998 | } |
1999 | else |
2000 | { |
2001 | if (part_info->column_list) |
2002 | { |
2003 | if (part_info->part_type == VERSIONING_PARTITION && |
2004 | part_info->vers_setup_expression(thd)) |
2005 | goto end; |
2006 | List_iterator<const char> it(part_info->part_field_list); |
2007 | if (unlikely(handle_list_of_fields(thd, it, table, part_info, FALSE))) |
2008 | goto end; |
2009 | } |
2010 | else |
2011 | { |
2012 | if (unlikely(fix_fields_part_func(thd, part_info->part_expr, |
2013 | table, FALSE, is_create_table_ind))) |
2014 | goto end; |
2015 | } |
2016 | part_info->fixed= TRUE; |
2017 | if (part_info->check_constants(thd, part_info)) |
2018 | goto end; |
2019 | if (unlikely(part_info->num_parts < 1)) |
2020 | { |
2021 | const char *error_str= part_info->part_type == LIST_PARTITION |
2022 | ? "LIST" : "RANGE" ; |
2023 | my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), error_str); |
2024 | goto end; |
2025 | } |
2026 | if (unlikely(!part_info->column_list && |
2027 | part_info->part_expr->result_type() != INT_RESULT)) |
2028 | { |
2029 | part_info->report_part_expr_error(FALSE); |
2030 | goto end; |
2031 | } |
2032 | } |
2033 | if (((part_info->part_type != HASH_PARTITION || |
2034 | part_info->list_of_part_fields == FALSE) && |
2035 | !part_info->column_list && |
2036 | check_part_func_fields(part_info->part_field_array, TRUE)) || |
2037 | (part_info->list_of_subpart_fields == FALSE && |
2038 | part_info->is_sub_partitioned() && |
2039 | check_part_func_fields(part_info->subpart_field_array, TRUE))) |
2040 | { |
2041 | /* |
2042 | Range/List/HASH (but not KEY) and not COLUMNS or HASH subpartitioning |
2043 | with columns in the partitioning expression using unallowed charset. |
2044 | */ |
2045 | my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0)); |
2046 | goto end; |
2047 | } |
2048 | if (unlikely(create_full_part_field_array(thd, table, part_info))) |
2049 | goto end; |
2050 | if (unlikely(check_primary_key(table))) |
2051 | goto end; |
2052 | if (unlikely((!(table->s->db_type()->partition_flags && |
2053 | (table->s->db_type()->partition_flags() & HA_CAN_PARTITION_UNIQUE))) && |
2054 | check_unique_keys(table))) |
2055 | goto end; |
2056 | if (unlikely(set_up_partition_bitmaps(thd, part_info))) |
2057 | goto end; |
2058 | if (unlikely(part_info->set_up_charset_field_preps(thd))) |
2059 | { |
2060 | my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0)); |
2061 | goto end; |
2062 | } |
2063 | if (unlikely(part_info->check_partition_field_length())) |
2064 | { |
2065 | my_error(ER_PARTITION_FIELDS_TOO_LONG, MYF(0)); |
2066 | goto end; |
2067 | } |
2068 | check_range_capable_PF(table); |
2069 | set_up_partition_key_maps(table, part_info); |
2070 | set_up_range_analysis_info(part_info); |
2071 | table->file->set_part_info(part_info); |
2072 | result= FALSE; |
2073 | end: |
2074 | thd->column_usage= saved_column_usage; |
2075 | DBUG_PRINT("info" , ("thd->column_usage: %d" , thd->column_usage)); |
2076 | DBUG_RETURN(result); |
2077 | } |
2078 | |
2079 | |
2080 | /* |
2081 | The code below is support routines for the reverse parsing of the |
2082 | partitioning syntax. This feature is very useful to generate syntax for |
2083 | all default values to avoid all default checking when opening the frm |
2084 | file. It is also used when altering the partitioning by use of various |
2085 | ALTER TABLE commands. Finally it is used for SHOW CREATE TABLES. |
2086 | */ |
2087 | |
2088 | static int add_part_field_list(THD *thd, String *str, List<const char> field_list) |
2089 | { |
2090 | int err= 0; |
2091 | const char *field_name; |
2092 | List_iterator<const char> part_it(field_list); |
2093 | |
2094 | err+= str->append('('); |
2095 | while ((field_name= part_it++)) |
2096 | { |
2097 | err+= append_identifier(thd, str, field_name, strlen(field_name)); |
2098 | err+= str->append(','); |
2099 | } |
2100 | if (field_list.elements) |
2101 | str->length(str->length()-1); |
2102 | err+= str->append(')'); |
2103 | return err; |
2104 | } |
2105 | |
2106 | /* |
2107 | Must escape strings in partitioned tables frm-files, |
2108 | parsing it later with mysql_unpack_partition will fail otherwise. |
2109 | */ |
2110 | |
2111 | static int add_keyword_string(String *str, const char *keyword, |
2112 | bool quoted, const char *keystr) |
2113 | { |
2114 | int err= str->append(' '); |
2115 | err+= str->append(keyword); |
2116 | |
2117 | str->append(STRING_WITH_LEN(" = " )); |
2118 | if (quoted) |
2119 | { |
2120 | err+= str->append('\''); |
2121 | err+= str->append_for_single_quote(keystr); |
2122 | err+= str->append('\''); |
2123 | } |
2124 | else |
2125 | err+= str->append(keystr); |
2126 | return err; |
2127 | } |
2128 | |
2129 | |
2130 | /** |
2131 | @brief Truncate the partition file name from a path it it exists. |
2132 | |
2133 | @note A partition file name will contian one or more '#' characters. |
2134 | One of the occurances of '#' will be either "#P#" or "#p#" depending |
2135 | on whether the storage engine has converted the filename to lower case. |
2136 | */ |
2137 | void truncate_partition_filename(char *path) |
2138 | { |
2139 | if (path) |
2140 | { |
2141 | char* last_slash= strrchr(path, FN_LIBCHAR); |
2142 | |
2143 | if (!last_slash) |
2144 | last_slash= strrchr(path, FN_LIBCHAR2); |
2145 | |
2146 | if (last_slash) |
2147 | { |
2148 | /* Look for a partition-type filename */ |
2149 | for (char* pound= strchr(last_slash, '#'); |
2150 | pound; pound = strchr(pound + 1, '#')) |
2151 | { |
2152 | if ((pound[1] == 'P' || pound[1] == 'p') && pound[2] == '#') |
2153 | { |
2154 | last_slash[0] = '\0'; /* truncate the file name */ |
2155 | break; |
2156 | } |
2157 | } |
2158 | } |
2159 | } |
2160 | } |
2161 | |
2162 | /** |
2163 | @brief Output a filepath. Similar to add_keyword_string except it |
2164 | also converts \ to / on Windows and skips the partition file name at |
2165 | the end if found. |
2166 | |
2167 | @note When Mysql sends a DATA DIRECTORY from SQL for partitions it does |
2168 | not use a file name, but it does for DATA DIRECTORY on a non-partitioned |
2169 | table. So when the storage engine is asked for the DATA DIRECTORY string |
2170 | after a restart through Handler::update_create_options(), the storage |
2171 | engine may include the filename. |
2172 | */ |
2173 | static int add_keyword_path(String *str, const char *keyword, |
2174 | const char *path) |
2175 | { |
2176 | char temp_path[FN_REFLEN]; |
2177 | strcpy(temp_path, path); |
2178 | #ifdef __WIN__ |
2179 | /* Convert \ to / to be able to create table on unix */ |
2180 | char *pos, *end; |
2181 | size_t length= strlen(temp_path); |
2182 | for (pos= temp_path, end= pos+length ; pos < end ; pos++) |
2183 | { |
2184 | if (*pos == '\\') |
2185 | *pos = '/'; |
2186 | } |
2187 | #endif |
2188 | |
2189 | /* |
2190 | If the partition file name with its "#P#" identifier |
2191 | is found after the last slash, truncate that filename. |
2192 | */ |
2193 | truncate_partition_filename(temp_path); |
2194 | |
2195 | return add_keyword_string(str, keyword, true, temp_path); |
2196 | } |
2197 | |
2198 | static int add_keyword_int(String *str, const char *keyword, longlong num) |
2199 | { |
2200 | int err= str->append(' '); |
2201 | err+= str->append(keyword); |
2202 | str->append(STRING_WITH_LEN(" = " )); |
2203 | return err + str->append_longlong(num); |
2204 | } |
2205 | |
2206 | static int add_partition_options(String *str, partition_element *p_elem) |
2207 | { |
2208 | int err= 0; |
2209 | |
2210 | if (p_elem->tablespace_name) |
2211 | err+= add_keyword_string(str,"TABLESPACE" , false, p_elem->tablespace_name); |
2212 | if (p_elem->nodegroup_id != UNDEF_NODEGROUP) |
2213 | err+= add_keyword_int(str,"NODEGROUP" ,(longlong)p_elem->nodegroup_id); |
2214 | if (p_elem->part_max_rows) |
2215 | err+= add_keyword_int(str,"MAX_ROWS" ,(longlong)p_elem->part_max_rows); |
2216 | if (p_elem->part_min_rows) |
2217 | err+= add_keyword_int(str,"MIN_ROWS" ,(longlong)p_elem->part_min_rows); |
2218 | if (!(current_thd->variables.sql_mode & MODE_NO_DIR_IN_CREATE)) |
2219 | { |
2220 | if (p_elem->data_file_name) |
2221 | err+= add_keyword_path(str, "DATA DIRECTORY" , p_elem->data_file_name); |
2222 | if (p_elem->index_file_name) |
2223 | err+= add_keyword_path(str, "INDEX DIRECTORY" , p_elem->index_file_name); |
2224 | } |
2225 | if (p_elem->part_comment) |
2226 | err+= add_keyword_string(str, "COMMENT" , true, p_elem->part_comment); |
2227 | if (p_elem->connect_string.length) |
2228 | err+= add_keyword_string(str, "CONNECTION" , true, |
2229 | p_elem->connect_string.str); |
2230 | err += add_keyword_string(str, "ENGINE" , false, |
2231 | ha_resolve_storage_engine_name(p_elem->engine_type)); |
2232 | return err; |
2233 | } |
2234 | |
2235 | |
2236 | /* |
2237 | Check partition fields for result type and if they need |
2238 | to check the character set. |
2239 | |
2240 | SYNOPSIS |
2241 | check_part_field() |
2242 | sql_type Type provided by user |
2243 | field_name Name of field, used for error handling |
2244 | result_type Out value: Result type of field |
2245 | need_cs_check Out value: Do we need character set check |
2246 | |
2247 | RETURN VALUES |
2248 | TRUE Error |
2249 | FALSE Ok |
2250 | */ |
2251 | |
2252 | static int check_part_field(enum_field_types sql_type, |
2253 | const char *field_name, |
2254 | Item_result *result_type, |
2255 | bool *need_cs_check) |
2256 | { |
2257 | if (sql_type >= MYSQL_TYPE_TINY_BLOB && |
2258 | sql_type <= MYSQL_TYPE_BLOB) |
2259 | { |
2260 | my_error(ER_BLOB_FIELD_IN_PART_FUNC_ERROR, MYF(0)); |
2261 | return TRUE; |
2262 | } |
2263 | switch (sql_type) |
2264 | { |
2265 | case MYSQL_TYPE_TINY: |
2266 | case MYSQL_TYPE_SHORT: |
2267 | case MYSQL_TYPE_LONG: |
2268 | case MYSQL_TYPE_LONGLONG: |
2269 | case MYSQL_TYPE_INT24: |
2270 | *result_type= INT_RESULT; |
2271 | *need_cs_check= FALSE; |
2272 | return FALSE; |
2273 | case MYSQL_TYPE_NEWDATE: |
2274 | case MYSQL_TYPE_DATE: |
2275 | case MYSQL_TYPE_TIME: |
2276 | case MYSQL_TYPE_DATETIME: |
2277 | case MYSQL_TYPE_TIME2: |
2278 | case MYSQL_TYPE_DATETIME2: |
2279 | *result_type= STRING_RESULT; |
2280 | *need_cs_check= TRUE; |
2281 | return FALSE; |
2282 | case MYSQL_TYPE_VARCHAR: |
2283 | case MYSQL_TYPE_STRING: |
2284 | case MYSQL_TYPE_VAR_STRING: |
2285 | *result_type= STRING_RESULT; |
2286 | *need_cs_check= TRUE; |
2287 | return FALSE; |
2288 | case MYSQL_TYPE_NEWDECIMAL: |
2289 | case MYSQL_TYPE_DECIMAL: |
2290 | case MYSQL_TYPE_TIMESTAMP: |
2291 | case MYSQL_TYPE_TIMESTAMP2: |
2292 | case MYSQL_TYPE_NULL: |
2293 | case MYSQL_TYPE_FLOAT: |
2294 | case MYSQL_TYPE_DOUBLE: |
2295 | case MYSQL_TYPE_BIT: |
2296 | case MYSQL_TYPE_ENUM: |
2297 | case MYSQL_TYPE_SET: |
2298 | case MYSQL_TYPE_GEOMETRY: |
2299 | goto error; |
2300 | default: |
2301 | goto error; |
2302 | } |
2303 | error: |
2304 | my_error(ER_FIELD_TYPE_NOT_ALLOWED_AS_PARTITION_FIELD, MYF(0), |
2305 | field_name); |
2306 | return TRUE; |
2307 | } |
2308 | |
2309 | |
2310 | /* |
2311 | Find the given field's Create_field object using name of field |
2312 | |
2313 | SYNOPSIS |
2314 | get_sql_field() |
2315 | field_name Field name |
2316 | alter_info Info from ALTER TABLE/CREATE TABLE |
2317 | |
2318 | RETURN VALUE |
2319 | sql_field Object filled in by parser about field |
2320 | NULL No field found |
2321 | */ |
2322 | |
2323 | static Create_field* get_sql_field(const char *field_name, |
2324 | Alter_info *alter_info) |
2325 | { |
2326 | List_iterator<Create_field> it(alter_info->create_list); |
2327 | Create_field *sql_field; |
2328 | DBUG_ENTER("get_sql_field" ); |
2329 | |
2330 | while ((sql_field= it++)) |
2331 | { |
2332 | if (!(my_strcasecmp(system_charset_info, |
2333 | sql_field->field_name.str, |
2334 | field_name))) |
2335 | { |
2336 | DBUG_RETURN(sql_field); |
2337 | } |
2338 | } |
2339 | DBUG_RETURN(NULL); |
2340 | } |
2341 | |
2342 | |
2343 | static int add_column_list_values(String *str, partition_info *part_info, |
2344 | part_elem_value *list_value, |
2345 | HA_CREATE_INFO *create_info, |
2346 | Alter_info *alter_info) |
2347 | { |
2348 | int err= 0; |
2349 | uint i; |
2350 | List_iterator<const char> it(part_info->part_field_list); |
2351 | uint num_elements= part_info->part_field_list.elements; |
2352 | bool use_parenthesis= (part_info->part_type == LIST_PARTITION && |
2353 | part_info->num_columns > 1U); |
2354 | |
2355 | if (use_parenthesis) |
2356 | err+= str->append('('); |
2357 | for (i= 0; i < num_elements; i++) |
2358 | { |
2359 | part_column_list_val *col_val= &list_value->col_val_array[i]; |
2360 | const char *field_name= it++; |
2361 | if (col_val->max_value) |
2362 | err+= str->append(STRING_WITH_LEN("MAXVALUE" )); |
2363 | else if (col_val->null_value) |
2364 | err+= str->append(STRING_WITH_LEN("NULL" )); |
2365 | else |
2366 | { |
2367 | Item *item_expr= col_val->item_expression; |
2368 | if (item_expr->null_value) |
2369 | err+= str->append(STRING_WITH_LEN("NULL" )); |
2370 | else |
2371 | { |
2372 | CHARSET_INFO *field_cs; |
2373 | bool need_cs_check= FALSE; |
2374 | Item_result result_type= STRING_RESULT; |
2375 | |
2376 | /* |
2377 | This function is called at a very early stage, even before |
2378 | we have prepared the sql_field objects. Thus we have to |
2379 | find the proper sql_field object and get the character set |
2380 | from that object. |
2381 | */ |
2382 | if (create_info) |
2383 | { |
2384 | Create_field *sql_field; |
2385 | |
2386 | if (!(sql_field= get_sql_field(field_name, |
2387 | alter_info))) |
2388 | { |
2389 | my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0)); |
2390 | return 1; |
2391 | } |
2392 | if (check_part_field(sql_field->real_field_type(), |
2393 | sql_field->field_name.str, |
2394 | &result_type, |
2395 | &need_cs_check)) |
2396 | return 1; |
2397 | if (need_cs_check) |
2398 | field_cs= get_sql_field_charset(sql_field, create_info); |
2399 | else |
2400 | field_cs= NULL; |
2401 | } |
2402 | else |
2403 | { |
2404 | Field *field= part_info->part_field_array[i]; |
2405 | result_type= field->result_type(); |
2406 | if (check_part_field(field->real_type(), |
2407 | field->field_name.str, |
2408 | &result_type, |
2409 | &need_cs_check)) |
2410 | return 1; |
2411 | DBUG_ASSERT(result_type == field->result_type()); |
2412 | if (need_cs_check) |
2413 | field_cs= field->charset(); |
2414 | else |
2415 | field_cs= NULL; |
2416 | } |
2417 | if (result_type != item_expr->result_type()) |
2418 | { |
2419 | my_error(ER_WRONG_TYPE_COLUMN_VALUE_ERROR, MYF(0)); |
2420 | return 1; |
2421 | } |
2422 | if (field_cs && field_cs != item_expr->collation.collation) |
2423 | { |
2424 | if (!(item_expr= convert_charset_partition_constant(item_expr, |
2425 | field_cs))) |
2426 | { |
2427 | my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0)); |
2428 | return 1; |
2429 | } |
2430 | } |
2431 | { |
2432 | StringBuffer<MAX_KEY_LENGTH> buf; |
2433 | String val_conv, *res; |
2434 | val_conv.set_charset(system_charset_info); |
2435 | res= item_expr->val_str(&buf); |
2436 | if (get_cs_converted_part_value_from_string(current_thd, |
2437 | item_expr, res, |
2438 | &val_conv, field_cs, |
2439 | (bool)(alter_info != NULL))) |
2440 | return 1; |
2441 | err+= str->append(val_conv); |
2442 | } |
2443 | } |
2444 | } |
2445 | if (i != (num_elements - 1)) |
2446 | err+= str->append(','); |
2447 | } |
2448 | if (use_parenthesis) |
2449 | err+= str->append(')'); |
2450 | return err; |
2451 | } |
2452 | |
2453 | static int add_partition_values(String *str, partition_info *part_info, |
2454 | partition_element *p_elem, |
2455 | HA_CREATE_INFO *create_info, |
2456 | Alter_info *alter_info) |
2457 | { |
2458 | int err= 0; |
2459 | |
2460 | if (part_info->part_type == RANGE_PARTITION) |
2461 | { |
2462 | err+= str->append(STRING_WITH_LEN(" VALUES LESS THAN " )); |
2463 | if (part_info->column_list) |
2464 | { |
2465 | List_iterator<part_elem_value> list_val_it(p_elem->list_val_list); |
2466 | part_elem_value *list_value= list_val_it++; |
2467 | err+= str->append('('); |
2468 | err+= add_column_list_values(str, part_info, list_value, |
2469 | create_info, alter_info); |
2470 | err+= str->append(')'); |
2471 | } |
2472 | else |
2473 | { |
2474 | if (!p_elem->max_value) |
2475 | { |
2476 | err+= str->append('('); |
2477 | if (p_elem->signed_flag) |
2478 | err+= str->append_longlong(p_elem->range_value); |
2479 | else |
2480 | err+= str->append_ulonglong(p_elem->range_value); |
2481 | err+= str->append(')'); |
2482 | } |
2483 | else |
2484 | err+= str->append(STRING_WITH_LEN("MAXVALUE" )); |
2485 | } |
2486 | } |
2487 | else if (part_info->part_type == LIST_PARTITION) |
2488 | { |
2489 | uint i; |
2490 | List_iterator<part_elem_value> list_val_it(p_elem->list_val_list); |
2491 | |
2492 | if (p_elem->max_value) |
2493 | { |
2494 | DBUG_ASSERT(part_info->defined_max_value || |
2495 | current_thd->lex->sql_command == SQLCOM_ALTER_TABLE); |
2496 | err+= str->append(STRING_WITH_LEN(" DEFAULT" )); |
2497 | return err; |
2498 | } |
2499 | |
2500 | err+= str->append(STRING_WITH_LEN(" VALUES IN " )); |
2501 | uint num_items= p_elem->list_val_list.elements; |
2502 | |
2503 | err+= str->append('('); |
2504 | if (p_elem->has_null_value) |
2505 | { |
2506 | err+= str->append(STRING_WITH_LEN("NULL" )); |
2507 | if (num_items == 0) |
2508 | { |
2509 | err+= str->append(')'); |
2510 | goto end; |
2511 | } |
2512 | err+= str->append(','); |
2513 | } |
2514 | i= 0; |
2515 | do |
2516 | { |
2517 | part_elem_value *list_value= list_val_it++; |
2518 | |
2519 | if (part_info->column_list) |
2520 | err+= add_column_list_values(str, part_info, list_value, |
2521 | create_info, alter_info); |
2522 | else |
2523 | { |
2524 | if (!list_value->unsigned_flag) |
2525 | err+= str->append_longlong(list_value->value); |
2526 | else |
2527 | err+= str->append_ulonglong(list_value->value); |
2528 | } |
2529 | if (i != (num_items-1)) |
2530 | err+= str->append(','); |
2531 | } while (++i < num_items); |
2532 | err+= str->append(')'); |
2533 | } |
2534 | else if (part_info->part_type == VERSIONING_PARTITION) |
2535 | { |
2536 | switch (p_elem->type()) |
2537 | { |
2538 | case partition_element::CURRENT: |
2539 | err+= str->append(STRING_WITH_LEN(" CURRENT" )); |
2540 | break; |
2541 | case partition_element::HISTORY: |
2542 | err+= str->append(STRING_WITH_LEN(" HISTORY" )); |
2543 | break; |
2544 | default: |
2545 | DBUG_ASSERT(0 && "wrong p_elem->type" ); |
2546 | } |
2547 | } |
2548 | end: |
2549 | return err; |
2550 | } |
2551 | |
2552 | |
2553 | /** |
2554 | Add 'KEY' word, with optional 'ALGORTIHM = N'. |
2555 | |
2556 | @param str String to write to. |
2557 | @param part_info partition_info holding the used key_algorithm |
2558 | |
2559 | @return Operation status. |
2560 | @retval 0 Success |
2561 | @retval != 0 Failure |
2562 | */ |
2563 | |
2564 | static int add_key_with_algorithm(String *str, partition_info *part_info) |
2565 | { |
2566 | int err= 0; |
2567 | err+= str->append(STRING_WITH_LEN("KEY " )); |
2568 | |
2569 | if (part_info->key_algorithm == partition_info::KEY_ALGORITHM_51) |
2570 | { |
2571 | err+= str->append(STRING_WITH_LEN("ALGORITHM = " )); |
2572 | err+= str->append_longlong(part_info->key_algorithm); |
2573 | err+= str->append(' '); |
2574 | } |
2575 | return err; |
2576 | } |
2577 | |
2578 | |
2579 | /* |
2580 | Generate the partition syntax from the partition data structure. |
2581 | Useful for support of generating defaults, SHOW CREATE TABLES |
2582 | and easy partition management. |
2583 | |
2584 | SYNOPSIS |
2585 | generate_partition_syntax() |
2586 | part_info The partitioning data structure |
2587 | buf_length A pointer to the returned buffer length |
2588 | show_partition_options Should we display partition options |
2589 | create_info Info generated by parser |
2590 | alter_info Info generated by parser |
2591 | |
2592 | RETURN VALUES |
2593 | NULL error |
2594 | buf, buf_length Buffer and its length |
2595 | |
2596 | DESCRIPTION |
2597 | Here we will generate the full syntax for the given command where all |
2598 | defaults have been expanded. By so doing the it is also possible to |
2599 | make lots of checks of correctness while at it. |
2600 | This could will also be reused for SHOW CREATE TABLES and also for all |
2601 | type ALTER TABLE commands focusing on changing the PARTITION structure |
2602 | in any fashion. |
2603 | |
2604 | The code is optimised for minimal code size since it is not used in any |
2605 | common queries. |
2606 | */ |
2607 | |
2608 | char *generate_partition_syntax(THD *thd, partition_info *part_info, |
2609 | uint *buf_length, |
2610 | bool show_partition_options, |
2611 | HA_CREATE_INFO *create_info, |
2612 | Alter_info *alter_info) |
2613 | { |
2614 | uint i,j, tot_num_parts, num_subparts; |
2615 | partition_element *part_elem; |
2616 | int err= 0; |
2617 | List_iterator<partition_element> part_it(part_info->partitions); |
2618 | StringBuffer<1024> str; |
2619 | DBUG_ENTER("generate_partition_syntax" ); |
2620 | |
2621 | err+= str.append(STRING_WITH_LEN(" PARTITION BY " )); |
2622 | switch (part_info->part_type) |
2623 | { |
2624 | case RANGE_PARTITION: |
2625 | err+= str.append(STRING_WITH_LEN("RANGE " )); |
2626 | break; |
2627 | case LIST_PARTITION: |
2628 | err+= str.append(STRING_WITH_LEN("LIST " )); |
2629 | break; |
2630 | case HASH_PARTITION: |
2631 | if (part_info->linear_hash_ind) |
2632 | err+= str.append(STRING_WITH_LEN("LINEAR " )); |
2633 | if (part_info->list_of_part_fields) |
2634 | { |
2635 | err+= add_key_with_algorithm(&str, part_info); |
2636 | err+= add_part_field_list(thd, &str, part_info->part_field_list); |
2637 | } |
2638 | else |
2639 | err+= str.append(STRING_WITH_LEN("HASH " )); |
2640 | break; |
2641 | case VERSIONING_PARTITION: |
2642 | err+= str.append(STRING_WITH_LEN("SYSTEM_TIME " )); |
2643 | break; |
2644 | default: |
2645 | DBUG_ASSERT(0); |
2646 | /* We really shouldn't get here, no use in continuing from here */ |
2647 | my_error(ER_OUT_OF_RESOURCES, MYF(ME_FATALERROR)); |
2648 | DBUG_RETURN(NULL); |
2649 | } |
2650 | if (part_info->part_type == VERSIONING_PARTITION) |
2651 | { |
2652 | Vers_part_info *vers_info= part_info->vers_info; |
2653 | DBUG_ASSERT(vers_info); |
2654 | if (vers_info->interval.is_set()) |
2655 | { |
2656 | err+= str.append(STRING_WITH_LEN("INTERVAL " )); |
2657 | err+= append_interval(&str, vers_info->interval.type, |
2658 | vers_info->interval.step); |
2659 | if (create_info) // not SHOW CREATE |
2660 | { |
2661 | err+= str.append(STRING_WITH_LEN(" STARTS " )); |
2662 | err+= str.append_ulonglong(vers_info->interval.start); |
2663 | } |
2664 | } |
2665 | if (vers_info->limit) |
2666 | { |
2667 | err+= str.append(STRING_WITH_LEN("LIMIT " )); |
2668 | err+= str.append_ulonglong(vers_info->limit); |
2669 | } |
2670 | } |
2671 | else if (part_info->part_expr) |
2672 | { |
2673 | err+= str.append('('); |
2674 | part_info->part_expr->print_for_table_def(&str); |
2675 | err+= str.append(')'); |
2676 | } |
2677 | else if (part_info->column_list) |
2678 | { |
2679 | err+= str.append(STRING_WITH_LEN(" COLUMNS" )); |
2680 | err+= add_part_field_list(thd, &str, part_info->part_field_list); |
2681 | } |
2682 | if ((!part_info->use_default_num_partitions) && |
2683 | part_info->use_default_partitions) |
2684 | { |
2685 | err+= str.append(STRING_WITH_LEN("\nPARTITIONS " )); |
2686 | err+= str.append_ulonglong(part_info->num_parts); |
2687 | } |
2688 | if (part_info->is_sub_partitioned()) |
2689 | { |
2690 | err+= str.append(STRING_WITH_LEN("\nSUBPARTITION BY " )); |
2691 | /* Must be hash partitioning for subpartitioning */ |
2692 | if (part_info->linear_hash_ind) |
2693 | err+= str.append(STRING_WITH_LEN("LINEAR " )); |
2694 | if (part_info->list_of_subpart_fields) |
2695 | { |
2696 | err+= add_key_with_algorithm(&str, part_info); |
2697 | err+= add_part_field_list(thd, &str, part_info->subpart_field_list); |
2698 | } |
2699 | else |
2700 | err+= str.append(STRING_WITH_LEN("HASH " )); |
2701 | if (part_info->subpart_expr) |
2702 | { |
2703 | err+= str.append('('); |
2704 | part_info->subpart_expr->print_for_table_def(&str); |
2705 | err+= str.append(')'); |
2706 | } |
2707 | if ((!part_info->use_default_num_subpartitions) && |
2708 | part_info->use_default_subpartitions) |
2709 | { |
2710 | err+= str.append(STRING_WITH_LEN("\nSUBPARTITIONS " )); |
2711 | err+= str.append_ulonglong(part_info->num_subparts); |
2712 | } |
2713 | } |
2714 | tot_num_parts= part_info->partitions.elements; |
2715 | num_subparts= part_info->num_subparts; |
2716 | |
2717 | if (!part_info->use_default_partitions) |
2718 | { |
2719 | bool first= TRUE; |
2720 | err+= str.append(STRING_WITH_LEN("\n(" )); |
2721 | i= 0; |
2722 | do |
2723 | { |
2724 | part_elem= part_it++; |
2725 | if (part_elem->part_state != PART_TO_BE_DROPPED && |
2726 | part_elem->part_state != PART_REORGED_DROPPED) |
2727 | { |
2728 | if (!first) |
2729 | err+= str.append(STRING_WITH_LEN(",\n " )); |
2730 | first= FALSE; |
2731 | err+= str.append(STRING_WITH_LEN("PARTITION " )); |
2732 | err+= append_identifier(thd, &str, part_elem->partition_name, |
2733 | strlen(part_elem->partition_name)); |
2734 | err+= add_partition_values(&str, part_info, part_elem, |
2735 | create_info, alter_info); |
2736 | if (!part_info->is_sub_partitioned() || |
2737 | part_info->use_default_subpartitions) |
2738 | { |
2739 | if (show_partition_options) |
2740 | err+= add_partition_options(&str, part_elem); |
2741 | } |
2742 | else |
2743 | { |
2744 | err+= str.append(STRING_WITH_LEN("\n (" )); |
2745 | List_iterator<partition_element> sub_it(part_elem->subpartitions); |
2746 | j= 0; |
2747 | do |
2748 | { |
2749 | part_elem= sub_it++; |
2750 | err+= str.append(STRING_WITH_LEN("SUBPARTITION " )); |
2751 | err+= append_identifier(thd, &str, part_elem->partition_name, |
2752 | strlen(part_elem->partition_name)); |
2753 | if (show_partition_options) |
2754 | err+= add_partition_options(&str, part_elem); |
2755 | if (j != (num_subparts-1)) |
2756 | err+= str.append(STRING_WITH_LEN(",\n " )); |
2757 | else |
2758 | err+= str.append(')'); |
2759 | } while (++j < num_subparts); |
2760 | } |
2761 | } |
2762 | if (i == (tot_num_parts-1)) |
2763 | err+= str.append(')'); |
2764 | } while (++i < tot_num_parts); |
2765 | } |
2766 | if (err) |
2767 | DBUG_RETURN(NULL); |
2768 | *buf_length= str.length(); |
2769 | DBUG_RETURN(thd->strmake(str.ptr(), str.length())); |
2770 | } |
2771 | |
2772 | |
2773 | /* |
2774 | Check if partition key fields are modified and if it can be handled by the |
2775 | underlying storage engine. |
2776 | |
2777 | SYNOPSIS |
2778 | partition_key_modified |
2779 | table TABLE object for which partition fields are set-up |
2780 | fields Bitmap representing fields to be modified |
2781 | |
2782 | RETURN VALUES |
2783 | TRUE Need special handling of UPDATE |
2784 | FALSE Normal UPDATE handling is ok |
2785 | */ |
2786 | |
2787 | bool partition_key_modified(TABLE *table, const MY_BITMAP *fields) |
2788 | { |
2789 | Field **fld; |
2790 | partition_info *part_info= table->part_info; |
2791 | DBUG_ENTER("partition_key_modified" ); |
2792 | |
2793 | if (!part_info) |
2794 | DBUG_RETURN(FALSE); |
2795 | if (table->s->db_type()->partition_flags && |
2796 | (table->s->db_type()->partition_flags() & HA_CAN_UPDATE_PARTITION_KEY)) |
2797 | DBUG_RETURN(FALSE); |
2798 | for (fld= part_info->full_part_field_array; *fld; fld++) |
2799 | if (bitmap_is_set(fields, (*fld)->field_index)) |
2800 | DBUG_RETURN(TRUE); |
2801 | DBUG_RETURN(FALSE); |
2802 | } |
2803 | |
2804 | |
2805 | /* |
2806 | A function to handle correct handling of NULL values in partition |
2807 | functions. |
2808 | SYNOPSIS |
2809 | part_val_int() |
2810 | item_expr The item expression to evaluate |
2811 | out:result The value of the partition function, |
2812 | LONGLONG_MIN if any null value in function |
2813 | RETURN VALUES |
2814 | TRUE Error in val_int() |
2815 | FALSE ok |
2816 | */ |
2817 | |
2818 | static inline int part_val_int(Item *item_expr, longlong *result) |
2819 | { |
2820 | *result= item_expr->val_int(); |
2821 | if (item_expr->null_value) |
2822 | { |
2823 | if (unlikely(current_thd->is_error())) |
2824 | return TRUE; |
2825 | *result= LONGLONG_MIN; |
2826 | } |
2827 | return FALSE; |
2828 | } |
2829 | |
2830 | |
2831 | /* |
2832 | The next set of functions are used to calculate the partition identity. |
2833 | A handler sets up a variable that corresponds to one of these functions |
2834 | to be able to quickly call it whenever the partition id needs to calculated |
2835 | based on the record in table->record[0] (or set up to fake that). |
2836 | There are 4 functions for hash partitioning and 2 for RANGE/LIST partitions. |
2837 | In addition there are 4 variants for RANGE subpartitioning and 4 variants |
2838 | for LIST subpartitioning thus in total there are 14 variants of this |
2839 | function. |
2840 | |
2841 | We have a set of support functions for these 14 variants. There are 4 |
2842 | variants of hash functions and there is a function for each. The KEY |
2843 | partitioning uses the function calculate_key_hash_value to calculate the hash |
2844 | value based on an array of fields. The linear hash variants uses the |
2845 | method get_part_id_from_linear_hash to get the partition id using the |
2846 | hash value and some parameters calculated from the number of partitions. |
2847 | */ |
2848 | |
2849 | /* |
2850 | A simple support function to calculate part_id given local part and |
2851 | sub part. |
2852 | |
2853 | SYNOPSIS |
2854 | get_part_id_for_sub() |
2855 | loc_part_id Local partition id |
2856 | sub_part_id Subpartition id |
2857 | num_subparts Number of subparts |
2858 | */ |
2859 | |
2860 | inline |
2861 | static uint32 get_part_id_for_sub(uint32 loc_part_id, uint32 sub_part_id, |
2862 | uint num_subparts) |
2863 | { |
2864 | return (uint32)((loc_part_id * num_subparts) + sub_part_id); |
2865 | } |
2866 | |
2867 | |
2868 | /* |
2869 | Calculate part_id for (SUB)PARTITION BY HASH |
2870 | |
2871 | SYNOPSIS |
2872 | get_part_id_hash() |
2873 | num_parts Number of hash partitions |
2874 | part_expr Item tree of hash function |
2875 | out:part_id The returned partition id |
2876 | out:func_value Value of hash function |
2877 | |
2878 | RETURN VALUE |
2879 | != 0 Error code |
2880 | FALSE Success |
2881 | */ |
2882 | |
2883 | static int get_part_id_hash(uint num_parts, |
2884 | Item *part_expr, |
2885 | uint32 *part_id, |
2886 | longlong *func_value) |
2887 | { |
2888 | longlong int_hash_id; |
2889 | DBUG_ENTER("get_part_id_hash" ); |
2890 | |
2891 | if (part_val_int(part_expr, func_value)) |
2892 | DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND); |
2893 | |
2894 | int_hash_id= *func_value % num_parts; |
2895 | |
2896 | *part_id= int_hash_id < 0 ? (uint32) -int_hash_id : (uint32) int_hash_id; |
2897 | DBUG_RETURN(FALSE); |
2898 | } |
2899 | |
2900 | |
2901 | /* |
2902 | Calculate part_id for (SUB)PARTITION BY LINEAR HASH |
2903 | |
2904 | SYNOPSIS |
2905 | get_part_id_linear_hash() |
2906 | part_info A reference to the partition_info struct where all the |
2907 | desired information is given |
2908 | num_parts Number of hash partitions |
2909 | part_expr Item tree of hash function |
2910 | out:part_id The returned partition id |
2911 | out:func_value Value of hash function |
2912 | |
2913 | RETURN VALUE |
2914 | != 0 Error code |
2915 | 0 OK |
2916 | */ |
2917 | |
2918 | static int get_part_id_linear_hash(partition_info *part_info, |
2919 | uint num_parts, |
2920 | Item *part_expr, |
2921 | uint32 *part_id, |
2922 | longlong *func_value) |
2923 | { |
2924 | DBUG_ENTER("get_part_id_linear_hash" ); |
2925 | |
2926 | if (part_val_int(part_expr, func_value)) |
2927 | DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND); |
2928 | |
2929 | *part_id= get_part_id_from_linear_hash(*func_value, |
2930 | part_info->linear_hash_mask, |
2931 | num_parts); |
2932 | DBUG_RETURN(FALSE); |
2933 | } |
2934 | |
2935 | |
2936 | /** |
2937 | Calculate part_id for (SUB)PARTITION BY KEY |
2938 | |
2939 | @param file Handler to storage engine |
2940 | @param field_array Array of fields for PARTTION KEY |
2941 | @param num_parts Number of KEY partitions |
2942 | @param func_value[out] Returns calculated hash value |
2943 | |
2944 | @return Calculated partition id |
2945 | */ |
2946 | |
2947 | inline |
2948 | static uint32 get_part_id_key(handler *file, |
2949 | Field **field_array, |
2950 | uint num_parts, |
2951 | longlong *func_value) |
2952 | { |
2953 | DBUG_ENTER("get_part_id_key" ); |
2954 | *func_value= ha_partition::calculate_key_hash_value(field_array); |
2955 | DBUG_RETURN((uint32) (*func_value % num_parts)); |
2956 | } |
2957 | |
2958 | |
2959 | /* |
2960 | Calculate part_id for (SUB)PARTITION BY LINEAR KEY |
2961 | |
2962 | SYNOPSIS |
2963 | get_part_id_linear_key() |
2964 | part_info A reference to the partition_info struct where all the |
2965 | desired information is given |
2966 | field_array Array of fields for PARTTION KEY |
2967 | num_parts Number of KEY partitions |
2968 | |
2969 | RETURN VALUE |
2970 | Calculated partition id |
2971 | */ |
2972 | |
2973 | inline |
2974 | static uint32 get_part_id_linear_key(partition_info *part_info, |
2975 | Field **field_array, |
2976 | uint num_parts, |
2977 | longlong *func_value) |
2978 | { |
2979 | DBUG_ENTER("get_part_id_linear_key" ); |
2980 | |
2981 | *func_value= ha_partition::calculate_key_hash_value(field_array); |
2982 | DBUG_RETURN(get_part_id_from_linear_hash(*func_value, |
2983 | part_info->linear_hash_mask, |
2984 | num_parts)); |
2985 | } |
2986 | |
2987 | /* |
2988 | Copy to field buffers and set up field pointers |
2989 | |
2990 | SYNOPSIS |
2991 | copy_to_part_field_buffers() |
2992 | ptr Array of fields to copy |
2993 | field_bufs Array of field buffers to copy to |
2994 | restore_ptr Array of pointers to restore to |
2995 | |
2996 | RETURN VALUES |
2997 | NONE |
2998 | DESCRIPTION |
2999 | This routine is used to take the data from field pointer, convert |
3000 | it to a standard format and store this format in a field buffer |
3001 | allocated for this purpose. Next the field pointers are moved to |
3002 | point to the field buffers. There is a separate to restore the |
3003 | field pointers after this call. |
3004 | */ |
3005 | |
3006 | static void copy_to_part_field_buffers(Field **ptr, |
3007 | uchar **field_bufs, |
3008 | uchar **restore_ptr) |
3009 | { |
3010 | Field *field; |
3011 | while ((field= *(ptr++))) |
3012 | { |
3013 | *restore_ptr= field->ptr; |
3014 | restore_ptr++; |
3015 | if (!field->maybe_null() || !field->is_null()) |
3016 | { |
3017 | CHARSET_INFO *cs= field->charset(); |
3018 | uint max_len= field->pack_length(); |
3019 | uint data_len= field->data_length(); |
3020 | uchar *field_buf= *field_bufs; |
3021 | /* |
3022 | We only use the field buffer for VARCHAR and CHAR strings |
3023 | which isn't of a binary collation. We also only use the |
3024 | field buffer for fields which are not currently NULL. |
3025 | The field buffer will store a normalised string. We use |
3026 | the strnxfrm method to normalise the string. |
3027 | */ |
3028 | if (field->type() == MYSQL_TYPE_VARCHAR) |
3029 | { |
3030 | uint len_bytes= ((Field_varstring*)field)->length_bytes; |
3031 | my_strnxfrm(cs, field_buf + len_bytes, max_len, |
3032 | field->ptr + len_bytes, data_len); |
3033 | if (len_bytes == 1) |
3034 | *field_buf= (uchar) data_len; |
3035 | else |
3036 | int2store(field_buf, data_len); |
3037 | } |
3038 | else |
3039 | { |
3040 | my_strnxfrm(cs, field_buf, max_len, |
3041 | field->ptr, max_len); |
3042 | } |
3043 | field->ptr= field_buf; |
3044 | } |
3045 | field_bufs++; |
3046 | } |
3047 | return; |
3048 | } |
3049 | |
3050 | /* |
3051 | Restore field pointers |
3052 | SYNOPSIS |
3053 | restore_part_field_pointers() |
3054 | ptr Array of fields to restore |
3055 | restore_ptr Array of field pointers to restore to |
3056 | |
3057 | RETURN VALUES |
3058 | */ |
3059 | |
3060 | static void restore_part_field_pointers(Field **ptr, uchar **restore_ptr) |
3061 | { |
3062 | Field *field; |
3063 | while ((field= *(ptr++))) |
3064 | { |
3065 | field->ptr= *restore_ptr; |
3066 | restore_ptr++; |
3067 | } |
3068 | return; |
3069 | } |
3070 | |
3071 | /* |
3072 | This function is used to calculate the partition id where all partition |
3073 | fields have been prepared to point to a record where the partition field |
3074 | values are bound. |
3075 | |
3076 | SYNOPSIS |
3077 | get_partition_id() |
3078 | part_info A reference to the partition_info struct where all the |
3079 | desired information is given |
3080 | out:part_id The partition id is returned through this pointer |
3081 | out:func_value Value of partition function (longlong) |
3082 | |
3083 | RETURN VALUE |
3084 | part_id Partition id of partition that would contain |
3085 | row with given values of PF-fields |
3086 | HA_ERR_NO_PARTITION_FOUND The fields of the partition function didn't |
3087 | fit into any partition and thus the values of |
3088 | the PF-fields are not allowed. |
3089 | |
3090 | DESCRIPTION |
3091 | A routine used from write_row, update_row and delete_row from any |
3092 | handler supporting partitioning. It is also a support routine for |
3093 | get_partition_set used to find the set of partitions needed to scan |
3094 | for a certain index scan or full table scan. |
3095 | |
3096 | It is actually 9 different variants of this function which are called |
3097 | through a function pointer. |
3098 | |
3099 | get_partition_id_list |
3100 | get_partition_id_list_col |
3101 | get_partition_id_range |
3102 | get_partition_id_range_col |
3103 | get_partition_id_hash_nosub |
3104 | get_partition_id_key_nosub |
3105 | get_partition_id_linear_hash_nosub |
3106 | get_partition_id_linear_key_nosub |
3107 | get_partition_id_with_sub |
3108 | */ |
3109 | |
3110 | /* |
3111 | This function is used to calculate the main partition to use in the case of |
3112 | subpartitioning and we don't know enough to get the partition identity in |
3113 | total. |
3114 | |
3115 | SYNOPSIS |
3116 | get_part_partition_id() |
3117 | part_info A reference to the partition_info struct where all the |
3118 | desired information is given |
3119 | out:part_id The partition id is returned through this pointer |
3120 | out:func_value The value calculated by partition function |
3121 | |
3122 | RETURN VALUE |
3123 | HA_ERR_NO_PARTITION_FOUND The fields of the partition function didn't |
3124 | fit into any partition and thus the values of |
3125 | the PF-fields are not allowed. |
3126 | 0 OK |
3127 | |
3128 | DESCRIPTION |
3129 | |
3130 | It is actually 8 different variants of this function which are called |
3131 | through a function pointer. |
3132 | |
3133 | get_partition_id_list |
3134 | get_partition_id_list_col |
3135 | get_partition_id_range |
3136 | get_partition_id_range_col |
3137 | get_partition_id_hash_nosub |
3138 | get_partition_id_key_nosub |
3139 | get_partition_id_linear_hash_nosub |
3140 | get_partition_id_linear_key_nosub |
3141 | */ |
3142 | |
3143 | static int get_part_id_charset_func_part(partition_info *part_info, |
3144 | uint32 *part_id, |
3145 | longlong *func_value) |
3146 | { |
3147 | int res; |
3148 | DBUG_ENTER("get_part_id_charset_func_part" ); |
3149 | |
3150 | copy_to_part_field_buffers(part_info->part_charset_field_array, |
3151 | part_info->part_field_buffers, |
3152 | part_info->restore_part_field_ptrs); |
3153 | res= part_info->get_part_partition_id_charset(part_info, |
3154 | part_id, func_value); |
3155 | restore_part_field_pointers(part_info->part_charset_field_array, |
3156 | part_info->restore_part_field_ptrs); |
3157 | DBUG_RETURN(res); |
3158 | } |
3159 | |
3160 | |
3161 | static int get_part_id_charset_func_subpart(partition_info *part_info, |
3162 | uint32 *part_id) |
3163 | { |
3164 | int res; |
3165 | DBUG_ENTER("get_part_id_charset_func_subpart" ); |
3166 | |
3167 | copy_to_part_field_buffers(part_info->subpart_charset_field_array, |
3168 | part_info->subpart_field_buffers, |
3169 | part_info->restore_subpart_field_ptrs); |
3170 | res= part_info->get_subpartition_id_charset(part_info, part_id); |
3171 | restore_part_field_pointers(part_info->subpart_charset_field_array, |
3172 | part_info->restore_subpart_field_ptrs); |
3173 | DBUG_RETURN(res); |
3174 | } |
3175 | |
3176 | int get_partition_id_list_col(partition_info *part_info, |
3177 | uint32 *part_id, |
3178 | longlong *func_value) |
3179 | { |
3180 | part_column_list_val *list_col_array= part_info->list_col_array; |
3181 | uint num_columns= part_info->part_field_list.elements; |
3182 | int list_index, cmp; |
3183 | int min_list_index= 0; |
3184 | int max_list_index= part_info->num_list_values - 1; |
3185 | DBUG_ENTER("get_partition_id_list_col" ); |
3186 | |
3187 | while (max_list_index >= min_list_index) |
3188 | { |
3189 | list_index= (max_list_index + min_list_index) >> 1; |
3190 | cmp= cmp_rec_and_tuple(list_col_array + list_index*num_columns, |
3191 | num_columns); |
3192 | if (cmp > 0) |
3193 | min_list_index= list_index + 1; |
3194 | else if (cmp < 0) |
3195 | { |
3196 | if (!list_index) |
3197 | goto notfound; |
3198 | max_list_index= list_index - 1; |
3199 | } |
3200 | else |
3201 | { |
3202 | *part_id= (uint32)list_col_array[list_index*num_columns].partition_id; |
3203 | DBUG_RETURN(0); |
3204 | } |
3205 | } |
3206 | notfound: |
3207 | if (part_info->defined_max_value) |
3208 | { |
3209 | *part_id= part_info->default_partition_id; |
3210 | DBUG_RETURN(0); |
3211 | } |
3212 | *part_id= 0; |
3213 | DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND); |
3214 | } |
3215 | |
3216 | |
3217 | int get_partition_id_list(partition_info *part_info, |
3218 | uint32 *part_id, |
3219 | longlong *func_value) |
3220 | { |
3221 | LIST_PART_ENTRY *list_array= part_info->list_array; |
3222 | int list_index; |
3223 | int min_list_index= 0; |
3224 | int max_list_index= part_info->num_list_values - 1; |
3225 | longlong part_func_value; |
3226 | int error= part_val_int(part_info->part_expr, &part_func_value); |
3227 | longlong list_value; |
3228 | bool unsigned_flag= part_info->part_expr->unsigned_flag; |
3229 | DBUG_ENTER("get_partition_id_list" ); |
3230 | |
3231 | if (error) |
3232 | goto notfound; |
3233 | |
3234 | if (part_info->part_expr->null_value) |
3235 | { |
3236 | if (part_info->has_null_value) |
3237 | { |
3238 | *part_id= part_info->has_null_part_id; |
3239 | DBUG_RETURN(0); |
3240 | } |
3241 | goto notfound; |
3242 | } |
3243 | *func_value= part_func_value; |
3244 | if (unsigned_flag) |
3245 | part_func_value-= 0x8000000000000000ULL; |
3246 | while (max_list_index >= min_list_index) |
3247 | { |
3248 | list_index= (max_list_index + min_list_index) >> 1; |
3249 | list_value= list_array[list_index].list_value; |
3250 | if (list_value < part_func_value) |
3251 | min_list_index= list_index + 1; |
3252 | else if (list_value > part_func_value) |
3253 | { |
3254 | if (!list_index) |
3255 | goto notfound; |
3256 | max_list_index= list_index - 1; |
3257 | } |
3258 | else |
3259 | { |
3260 | *part_id= (uint32)list_array[list_index].partition_id; |
3261 | DBUG_RETURN(0); |
3262 | } |
3263 | } |
3264 | notfound: |
3265 | if (part_info->defined_max_value) |
3266 | { |
3267 | *part_id= part_info->default_partition_id; |
3268 | DBUG_RETURN(0); |
3269 | } |
3270 | *part_id= 0; |
3271 | DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND); |
3272 | } |
3273 | |
3274 | |
3275 | uint32 get_partition_id_cols_list_for_endpoint(partition_info *part_info, |
3276 | bool left_endpoint, |
3277 | bool include_endpoint, |
3278 | uint32 nparts) |
3279 | { |
3280 | part_column_list_val *list_col_array= part_info->list_col_array; |
3281 | uint num_columns= part_info->part_field_list.elements; |
3282 | uint list_index; |
3283 | uint min_list_index= 0; |
3284 | int cmp; |
3285 | /* Notice that max_list_index = last_index + 1 here! */ |
3286 | uint max_list_index= part_info->num_list_values; |
3287 | DBUG_ENTER("get_partition_id_cols_list_for_endpoint" ); |
3288 | |
3289 | /* Find the matching partition (including taking endpoint into account). */ |
3290 | do |
3291 | { |
3292 | /* Midpoint, adjusted down, so it can never be >= max_list_index. */ |
3293 | list_index= (max_list_index + min_list_index) >> 1; |
3294 | cmp= cmp_rec_and_tuple_prune(list_col_array + list_index*num_columns, |
3295 | nparts, left_endpoint, include_endpoint); |
3296 | if (cmp > 0) |
3297 | { |
3298 | min_list_index= list_index + 1; |
3299 | } |
3300 | else |
3301 | { |
3302 | max_list_index= list_index; |
3303 | if (cmp == 0) |
3304 | break; |
3305 | } |
3306 | } while (max_list_index > min_list_index); |
3307 | list_index= max_list_index; |
3308 | |
3309 | /* Given value must be LESS THAN or EQUAL to the found partition. */ |
3310 | DBUG_ASSERT(list_index == part_info->num_list_values || |
3311 | (0 >= cmp_rec_and_tuple_prune(list_col_array + |
3312 | list_index*num_columns, |
3313 | nparts, left_endpoint, |
3314 | include_endpoint))); |
3315 | /* Given value must be GREATER THAN the previous partition. */ |
3316 | DBUG_ASSERT(list_index == 0 || |
3317 | (0 < cmp_rec_and_tuple_prune(list_col_array + |
3318 | (list_index - 1)*num_columns, |
3319 | nparts, left_endpoint, |
3320 | include_endpoint))); |
3321 | |
3322 | /* Include the right endpoint if not already passed end of array. */ |
3323 | if (!left_endpoint && include_endpoint && cmp == 0 && |
3324 | list_index < part_info->num_list_values) |
3325 | list_index++; |
3326 | |
3327 | DBUG_RETURN(list_index); |
3328 | } |
3329 | |
3330 | |
3331 | /** |
3332 | Find the sub-array part_info->list_array that corresponds to given interval. |
3333 | |
3334 | @param part_info Partitioning info (partitioning type must be LIST) |
3335 | @param left_endpoint TRUE - the interval is [a; +inf) or (a; +inf) |
3336 | FALSE - the interval is (-inf; a] or (-inf; a) |
3337 | @param include_endpoint TRUE iff the interval includes the endpoint |
3338 | |
3339 | This function finds the sub-array of part_info->list_array where values of |
3340 | list_array[idx].list_value are contained within the specifed interval. |
3341 | list_array is ordered by list_value, so |
3342 | 1. For [a; +inf) or (a; +inf)-type intervals (left_endpoint==TRUE), the |
3343 | sought sub-array starts at some index idx and continues till array end. |
3344 | The function returns first number idx, such that |
3345 | list_array[idx].list_value is contained within the passed interval. |
3346 | |
3347 | 2. For (-inf; a] or (-inf; a)-type intervals (left_endpoint==FALSE), the |
3348 | sought sub-array starts at array start and continues till some last |
3349 | index idx. |
3350 | The function returns first number idx, such that |
3351 | list_array[idx].list_value is NOT contained within the passed interval. |
3352 | If all array elements are contained, part_info->num_list_values is |
3353 | returned. |
3354 | |
3355 | @note The caller will call this function and then will run along the |
3356 | sub-array of list_array to collect partition ids. If the number of list |
3357 | values is significantly higher then number of partitions, this could be slow |
3358 | and we could invent some other approach. The "run over list array" part is |
3359 | already wrapped in a get_next()-like function. |
3360 | |
3361 | @return The index of corresponding sub-array of part_info->list_array. |
3362 | */ |
3363 | |
3364 | uint32 get_list_array_idx_for_endpoint_charset(partition_info *part_info, |
3365 | bool left_endpoint, |
3366 | bool include_endpoint) |
3367 | { |
3368 | uint32 res; |
3369 | copy_to_part_field_buffers(part_info->part_field_array, |
3370 | part_info->part_field_buffers, |
3371 | part_info->restore_part_field_ptrs); |
3372 | res= get_list_array_idx_for_endpoint(part_info, left_endpoint, |
3373 | include_endpoint); |
3374 | restore_part_field_pointers(part_info->part_field_array, |
3375 | part_info->restore_part_field_ptrs); |
3376 | return res; |
3377 | } |
3378 | |
3379 | uint32 get_list_array_idx_for_endpoint(partition_info *part_info, |
3380 | bool left_endpoint, |
3381 | bool include_endpoint) |
3382 | { |
3383 | LIST_PART_ENTRY *list_array= part_info->list_array; |
3384 | uint list_index; |
3385 | uint min_list_index= 0, max_list_index= part_info->num_list_values - 1; |
3386 | longlong list_value; |
3387 | /* Get the partitioning function value for the endpoint */ |
3388 | longlong part_func_value= |
3389 | part_info->part_expr->val_int_endpoint(left_endpoint, &include_endpoint); |
3390 | bool unsigned_flag= part_info->part_expr->unsigned_flag; |
3391 | DBUG_ENTER("get_list_array_idx_for_endpoint" ); |
3392 | |
3393 | if (part_info->part_expr->null_value) |
3394 | { |
3395 | /* |
3396 | Special handling for MONOTONIC functions that can return NULL for |
3397 | values that are comparable. I.e. |
3398 | '2000-00-00' can be compared to '2000-01-01' but TO_DAYS('2000-00-00') |
3399 | returns NULL which cannot be compared used <, >, <=, >= etc. |
3400 | |
3401 | Otherwise, just return the the first index (lowest value). |
3402 | */ |
3403 | enum_monotonicity_info monotonic; |
3404 | monotonic= part_info->part_expr->get_monotonicity_info(); |
3405 | if (monotonic != MONOTONIC_INCREASING_NOT_NULL && |
3406 | monotonic != MONOTONIC_STRICT_INCREASING_NOT_NULL) |
3407 | { |
3408 | /* F(col) can not return NULL, return index with lowest value */ |
3409 | DBUG_RETURN(0); |
3410 | } |
3411 | } |
3412 | |
3413 | if (unsigned_flag) |
3414 | part_func_value-= 0x8000000000000000ULL; |
3415 | DBUG_ASSERT(part_info->num_list_values); |
3416 | do |
3417 | { |
3418 | list_index= (max_list_index + min_list_index) >> 1; |
3419 | list_value= list_array[list_index].list_value; |
3420 | if (list_value < part_func_value) |
3421 | min_list_index= list_index + 1; |
3422 | else if (list_value > part_func_value) |
3423 | { |
3424 | if (!list_index) |
3425 | goto notfound; |
3426 | max_list_index= list_index - 1; |
3427 | } |
3428 | else |
3429 | { |
3430 | DBUG_RETURN(list_index + MY_TEST(left_endpoint ^ include_endpoint)); |
3431 | } |
3432 | } while (max_list_index >= min_list_index); |
3433 | notfound: |
3434 | if (list_value < part_func_value) |
3435 | list_index++; |
3436 | DBUG_RETURN(list_index); |
3437 | } |
3438 | |
3439 | |
3440 | int get_partition_id_range_col(partition_info *part_info, |
3441 | uint32 *part_id, |
3442 | longlong *func_value) |
3443 | { |
3444 | part_column_list_val *range_col_array= part_info->range_col_array; |
3445 | uint num_columns= part_info->part_field_list.elements; |
3446 | uint max_partition= part_info->num_parts - 1; |
3447 | uint min_part_id= 0; |
3448 | uint max_part_id= max_partition; |
3449 | uint loc_part_id; |
3450 | DBUG_ENTER("get_partition_id_range_col" ); |
3451 | |
3452 | while (max_part_id > min_part_id) |
3453 | { |
3454 | loc_part_id= (max_part_id + min_part_id + 1) >> 1; |
3455 | if (cmp_rec_and_tuple(range_col_array + loc_part_id*num_columns, |
3456 | num_columns) >= 0) |
3457 | min_part_id= loc_part_id + 1; |
3458 | else |
3459 | max_part_id= loc_part_id - 1; |
3460 | } |
3461 | loc_part_id= max_part_id; |
3462 | if (loc_part_id != max_partition) |
3463 | if (cmp_rec_and_tuple(range_col_array + loc_part_id*num_columns, |
3464 | num_columns) >= 0) |
3465 | loc_part_id++; |
3466 | *part_id= (uint32)loc_part_id; |
3467 | if (loc_part_id == max_partition && |
3468 | (cmp_rec_and_tuple(range_col_array + loc_part_id*num_columns, |
3469 | num_columns) >= 0)) |
3470 | DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND); |
3471 | |
3472 | DBUG_PRINT("exit" ,("partition: %d" , *part_id)); |
3473 | DBUG_RETURN(0); |
3474 | } |
3475 | |
3476 | |
3477 | int vers_get_partition_id(partition_info *part_info, uint32 *part_id, |
3478 | longlong *func_value) |
3479 | { |
3480 | DBUG_ENTER("vers_get_partition_id" ); |
3481 | Field *row_end= part_info->part_field_array[STAT_TRX_END]; |
3482 | Vers_part_info *vers_info= part_info->vers_info; |
3483 | |
3484 | if (row_end->is_max() || row_end->is_null()) |
3485 | *part_id= vers_info->now_part->id; |
3486 | else // row is historical |
3487 | { |
3488 | longlong *range_value= part_info->range_int_array; |
3489 | uint max_hist_id= part_info->num_parts - 2; |
3490 | uint min_hist_id= 0, loc_hist_id= vers_info->hist_part->id; |
3491 | ulong unused; |
3492 | my_time_t ts; |
3493 | |
3494 | if (!range_value) |
3495 | goto done; // fastpath |
3496 | |
3497 | ts= row_end->get_timestamp(&unused); |
3498 | if ((loc_hist_id == 0 || range_value[loc_hist_id - 1] < ts) && |
3499 | (loc_hist_id == max_hist_id || range_value[loc_hist_id] >= ts)) |
3500 | goto done; // fastpath |
3501 | |
3502 | while (max_hist_id > min_hist_id) |
3503 | { |
3504 | loc_hist_id= (max_hist_id + min_hist_id) / 2; |
3505 | if (range_value[loc_hist_id] <= ts) |
3506 | min_hist_id= loc_hist_id + 1; |
3507 | else |
3508 | max_hist_id= loc_hist_id; |
3509 | } |
3510 | loc_hist_id= max_hist_id; |
3511 | done: |
3512 | *part_id= (uint32)loc_hist_id; |
3513 | } |
3514 | DBUG_PRINT("exit" ,("partition: %d" , *part_id)); |
3515 | DBUG_RETURN(0); |
3516 | } |
3517 | |
3518 | |
3519 | int get_partition_id_range(partition_info *part_info, |
3520 | uint32 *part_id, |
3521 | longlong *func_value) |
3522 | { |
3523 | longlong *range_array= part_info->range_int_array; |
3524 | uint max_partition= part_info->num_parts - 1; |
3525 | uint min_part_id= 0; |
3526 | uint max_part_id= max_partition; |
3527 | uint loc_part_id; |
3528 | longlong part_func_value; |
3529 | int error= part_val_int(part_info->part_expr, &part_func_value); |
3530 | bool unsigned_flag= part_info->part_expr->unsigned_flag; |
3531 | DBUG_ENTER("get_partition_id_range" ); |
3532 | |
3533 | if (unlikely(error)) |
3534 | DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND); |
3535 | |
3536 | if (part_info->part_expr->null_value) |
3537 | { |
3538 | *part_id= 0; |
3539 | DBUG_RETURN(0); |
3540 | } |
3541 | *func_value= part_func_value; |
3542 | if (unsigned_flag) |
3543 | part_func_value-= 0x8000000000000000ULL; |
3544 | /* Search for the partition containing part_func_value */ |
3545 | while (max_part_id > min_part_id) |
3546 | { |
3547 | loc_part_id= (max_part_id + min_part_id) / 2; |
3548 | if (range_array[loc_part_id] <= part_func_value) |
3549 | min_part_id= loc_part_id + 1; |
3550 | else |
3551 | max_part_id= loc_part_id; |
3552 | } |
3553 | loc_part_id= max_part_id; |
3554 | *part_id= (uint32)loc_part_id; |
3555 | if (loc_part_id == max_partition && |
3556 | part_func_value >= range_array[loc_part_id] && |
3557 | !part_info->defined_max_value) |
3558 | DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND); |
3559 | |
3560 | DBUG_PRINT("exit" ,("partition: %d" , *part_id)); |
3561 | DBUG_RETURN(0); |
3562 | } |
3563 | |
3564 | |
3565 | /* |
3566 | Find the sub-array of part_info->range_int_array that covers given interval |
3567 | |
3568 | SYNOPSIS |
3569 | get_partition_id_range_for_endpoint() |
3570 | part_info Partitioning info (partitioning type must be RANGE) |
3571 | left_endpoint TRUE - the interval is [a; +inf) or (a; +inf) |
3572 | FALSE - the interval is (-inf; a] or (-inf; a). |
3573 | include_endpoint TRUE <=> the endpoint itself is included in the |
3574 | interval |
3575 | |
3576 | DESCRIPTION |
3577 | This function finds the sub-array of part_info->range_int_array where the |
3578 | elements have non-empty intersections with the given interval. |
3579 | |
3580 | A range_int_array element at index idx represents the interval |
3581 | |
3582 | [range_int_array[idx-1], range_int_array[idx]), |
3583 | |
3584 | intervals are disjoint and ordered by their right bound, so |
3585 | |
3586 | 1. For [a; +inf) or (a; +inf)-type intervals (left_endpoint==TRUE), the |
3587 | sought sub-array starts at some index idx and continues till array end. |
3588 | The function returns first number idx, such that the interval |
3589 | represented by range_int_array[idx] has non empty intersection with |
3590 | the passed interval. |
3591 | |
3592 | 2. For (-inf; a] or (-inf; a)-type intervals (left_endpoint==FALSE), the |
3593 | sought sub-array starts at array start and continues till some last |
3594 | index idx. |
3595 | The function returns first number idx, such that the interval |
3596 | represented by range_int_array[idx] has EMPTY intersection with the |
3597 | passed interval. |
3598 | If the interval represented by the last array element has non-empty |
3599 | intersection with the passed interval, part_info->num_parts is |
3600 | returned. |
3601 | |
3602 | RETURN |
3603 | The edge of corresponding part_info->range_int_array sub-array. |
3604 | */ |
3605 | |
3606 | static uint32 |
3607 | get_partition_id_range_for_endpoint_charset(partition_info *part_info, |
3608 | bool left_endpoint, |
3609 | bool include_endpoint) |
3610 | { |
3611 | uint32 res; |
3612 | copy_to_part_field_buffers(part_info->part_field_array, |
3613 | part_info->part_field_buffers, |
3614 | part_info->restore_part_field_ptrs); |
3615 | res= get_partition_id_range_for_endpoint(part_info, left_endpoint, |
3616 | include_endpoint); |
3617 | restore_part_field_pointers(part_info->part_field_array, |
3618 | part_info->restore_part_field_ptrs); |
3619 | return res; |
3620 | } |
3621 | |
3622 | uint32 get_partition_id_range_for_endpoint(partition_info *part_info, |
3623 | bool left_endpoint, |
3624 | bool include_endpoint) |
3625 | { |
3626 | longlong *range_array= part_info->range_int_array; |
3627 | longlong part_end_val; |
3628 | uint max_partition= part_info->num_parts - 1; |
3629 | uint min_part_id= 0, max_part_id= max_partition, loc_part_id; |
3630 | /* Get the partitioning function value for the endpoint */ |
3631 | longlong part_func_value= |
3632 | part_info->part_expr->val_int_endpoint(left_endpoint, &include_endpoint); |
3633 | |
3634 | bool unsigned_flag= part_info->part_expr->unsigned_flag; |
3635 | DBUG_ENTER("get_partition_id_range_for_endpoint" ); |
3636 | |
3637 | if (part_info->part_expr->null_value) |
3638 | { |
3639 | /* |
3640 | Special handling for MONOTONIC functions that can return NULL for |
3641 | values that are comparable. I.e. |
3642 | '2000-00-00' can be compared to '2000-01-01' but TO_DAYS('2000-00-00') |
3643 | returns NULL which cannot be compared used <, >, <=, >= etc. |
3644 | |
3645 | Otherwise, just return the first partition |
3646 | (may be included if not left endpoint) |
3647 | */ |
3648 | enum_monotonicity_info monotonic; |
3649 | monotonic= part_info->part_expr->get_monotonicity_info(); |
3650 | if (monotonic != MONOTONIC_INCREASING_NOT_NULL && |
3651 | monotonic != MONOTONIC_STRICT_INCREASING_NOT_NULL) |
3652 | { |
3653 | /* F(col) can not return NULL, return partition with lowest value */ |
3654 | if (!left_endpoint && include_endpoint) |
3655 | DBUG_RETURN(1); |
3656 | DBUG_RETURN(0); |
3657 | |
3658 | } |
3659 | } |
3660 | |
3661 | if (unsigned_flag) |
3662 | part_func_value-= 0x8000000000000000ULL; |
3663 | if (left_endpoint && !include_endpoint) |
3664 | part_func_value++; |
3665 | |
3666 | /* |
3667 | Search for the partition containing part_func_value |
3668 | (including the right endpoint). |
3669 | */ |
3670 | while (max_part_id > min_part_id) |
3671 | { |
3672 | loc_part_id= (max_part_id + min_part_id) / 2; |
3673 | if (range_array[loc_part_id] < part_func_value) |
3674 | min_part_id= loc_part_id + 1; |
3675 | else |
3676 | max_part_id= loc_part_id; |
3677 | } |
3678 | loc_part_id= max_part_id; |
3679 | |
3680 | /* Adjust for endpoints */ |
3681 | part_end_val= range_array[loc_part_id]; |
3682 | if (left_endpoint) |
3683 | { |
3684 | DBUG_ASSERT(part_func_value > part_end_val ? |
3685 | (loc_part_id == max_partition && |
3686 | !part_info->defined_max_value) : |
3687 | 1); |
3688 | /* |
3689 | In case of PARTITION p VALUES LESS THAN MAXVALUE |
3690 | the maximum value is in the current (last) partition. |
3691 | If value is equal or greater than the endpoint, |
3692 | the range starts from the next partition. |
3693 | */ |
3694 | if (part_func_value >= part_end_val && |
3695 | (loc_part_id < max_partition || !part_info->defined_max_value)) |
3696 | loc_part_id++; |
3697 | } |
3698 | else |
3699 | { |
3700 | /* if 'WHERE <= X' and partition is LESS THAN (X) include next partition */ |
3701 | if (include_endpoint && loc_part_id < max_partition && |
3702 | part_func_value == part_end_val) |
3703 | loc_part_id++; |
3704 | |
3705 | /* Right endpoint, set end after correct partition */ |
3706 | loc_part_id++; |
3707 | } |
3708 | DBUG_RETURN(loc_part_id); |
3709 | } |
3710 | |
3711 | |
3712 | int get_partition_id_hash_nosub(partition_info *part_info, |
3713 | uint32 *part_id, |
3714 | longlong *func_value) |
3715 | { |
3716 | return get_part_id_hash(part_info->num_parts, part_info->part_expr, |
3717 | part_id, func_value); |
3718 | } |
3719 | |
3720 | |
3721 | int get_partition_id_linear_hash_nosub(partition_info *part_info, |
3722 | uint32 *part_id, |
3723 | longlong *func_value) |
3724 | { |
3725 | return get_part_id_linear_hash(part_info, part_info->num_parts, |
3726 | part_info->part_expr, part_id, func_value); |
3727 | } |
3728 | |
3729 | |
3730 | int get_partition_id_key_nosub(partition_info *part_info, |
3731 | uint32 *part_id, |
3732 | longlong *func_value) |
3733 | { |
3734 | *part_id= get_part_id_key(part_info->table->file, |
3735 | part_info->part_field_array, |
3736 | part_info->num_parts, func_value); |
3737 | return 0; |
3738 | } |
3739 | |
3740 | |
3741 | int get_partition_id_linear_key_nosub(partition_info *part_info, |
3742 | uint32 *part_id, |
3743 | longlong *func_value) |
3744 | { |
3745 | *part_id= get_part_id_linear_key(part_info, |
3746 | part_info->part_field_array, |
3747 | part_info->num_parts, func_value); |
3748 | return 0; |
3749 | } |
3750 | |
3751 | |
3752 | int get_partition_id_with_sub(partition_info *part_info, |
3753 | uint32 *part_id, |
3754 | longlong *func_value) |
3755 | { |
3756 | uint32 loc_part_id, sub_part_id; |
3757 | uint num_subparts; |
3758 | int error; |
3759 | DBUG_ENTER("get_partition_id_with_sub" ); |
3760 | |
3761 | if (unlikely((error= part_info->get_part_partition_id(part_info, |
3762 | &loc_part_id, |
3763 | func_value)))) |
3764 | { |
3765 | DBUG_RETURN(error); |
3766 | } |
3767 | num_subparts= part_info->num_subparts; |
3768 | if (unlikely((error= part_info->get_subpartition_id(part_info, |
3769 | &sub_part_id)))) |
3770 | { |
3771 | DBUG_RETURN(error); |
3772 | } |
3773 | *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, num_subparts); |
3774 | DBUG_RETURN(0); |
3775 | } |
3776 | |
3777 | |
3778 | /* |
3779 | This function is used to calculate the subpartition id |
3780 | |
3781 | SYNOPSIS |
3782 | get_subpartition_id() |
3783 | part_info A reference to the partition_info struct where all the |
3784 | desired information is given |
3785 | |
3786 | RETURN VALUE |
3787 | part_id The subpartition identity |
3788 | |
3789 | DESCRIPTION |
3790 | A routine used in some SELECT's when only partial knowledge of the |
3791 | partitions is known. |
3792 | |
3793 | It is actually 4 different variants of this function which are called |
3794 | through a function pointer. |
3795 | |
3796 | get_partition_id_hash_sub |
3797 | get_partition_id_key_sub |
3798 | get_partition_id_linear_hash_sub |
3799 | get_partition_id_linear_key_sub |
3800 | */ |
3801 | |
3802 | int get_partition_id_hash_sub(partition_info *part_info, |
3803 | uint32 *part_id) |
3804 | { |
3805 | longlong func_value; |
3806 | return get_part_id_hash(part_info->num_subparts, part_info->subpart_expr, |
3807 | part_id, &func_value); |
3808 | } |
3809 | |
3810 | |
3811 | int get_partition_id_linear_hash_sub(partition_info *part_info, |
3812 | uint32 *part_id) |
3813 | { |
3814 | longlong func_value; |
3815 | return get_part_id_linear_hash(part_info, part_info->num_subparts, |
3816 | part_info->subpart_expr, part_id, |
3817 | &func_value); |
3818 | } |
3819 | |
3820 | |
3821 | int get_partition_id_key_sub(partition_info *part_info, |
3822 | uint32 *part_id) |
3823 | { |
3824 | longlong func_value; |
3825 | *part_id= get_part_id_key(part_info->table->file, |
3826 | part_info->subpart_field_array, |
3827 | part_info->num_subparts, &func_value); |
3828 | return FALSE; |
3829 | } |
3830 | |
3831 | |
3832 | int get_partition_id_linear_key_sub(partition_info *part_info, |
3833 | uint32 *part_id) |
3834 | { |
3835 | longlong func_value; |
3836 | *part_id= get_part_id_linear_key(part_info, |
3837 | part_info->subpart_field_array, |
3838 | part_info->num_subparts, &func_value); |
3839 | return FALSE; |
3840 | } |
3841 | |
3842 | |
3843 | /* |
3844 | Set an indicator on all partition fields that are set by the key |
3845 | |
3846 | SYNOPSIS |
3847 | set_PF_fields_in_key() |
3848 | key_info Information about the index |
3849 | key_length Length of key |
3850 | |
3851 | RETURN VALUE |
3852 | TRUE Found partition field set by key |
3853 | FALSE No partition field set by key |
3854 | */ |
3855 | |
3856 | static bool set_PF_fields_in_key(KEY *key_info, uint key_length) |
3857 | { |
3858 | KEY_PART_INFO *key_part; |
3859 | bool found_part_field= FALSE; |
3860 | DBUG_ENTER("set_PF_fields_in_key" ); |
3861 | |
3862 | for (key_part= key_info->key_part; (int)key_length > 0; key_part++) |
3863 | { |
3864 | if (key_part->null_bit) |
3865 | key_length--; |
3866 | if (key_part->type == HA_KEYTYPE_BIT) |
3867 | { |
3868 | if (((Field_bit*)key_part->field)->bit_len) |
3869 | key_length--; |
3870 | } |
3871 | if (key_part->key_part_flag & (HA_BLOB_PART + HA_VAR_LENGTH_PART)) |
3872 | { |
3873 | key_length-= HA_KEY_BLOB_LENGTH; |
3874 | } |
3875 | if (key_length < key_part->length) |
3876 | break; |
3877 | key_length-= key_part->length; |
3878 | if (key_part->field->flags & FIELD_IN_PART_FUNC_FLAG) |
3879 | { |
3880 | found_part_field= TRUE; |
3881 | key_part->field->flags|= GET_FIXED_FIELDS_FLAG; |
3882 | } |
3883 | } |
3884 | DBUG_RETURN(found_part_field); |
3885 | } |
3886 | |
3887 | |
3888 | /* |
3889 | We have found that at least one partition field was set by a key, now |
3890 | check if a partition function has all its fields bound or not. |
3891 | |
3892 | SYNOPSIS |
3893 | check_part_func_bound() |
3894 | ptr Array of fields NULL terminated (partition fields) |
3895 | |
3896 | RETURN VALUE |
3897 | TRUE All fields in partition function are set |
3898 | FALSE Not all fields in partition function are set |
3899 | */ |
3900 | |
3901 | static bool check_part_func_bound(Field **ptr) |
3902 | { |
3903 | bool result= TRUE; |
3904 | DBUG_ENTER("check_part_func_bound" ); |
3905 | |
3906 | for (; *ptr; ptr++) |
3907 | { |
3908 | if (!((*ptr)->flags & GET_FIXED_FIELDS_FLAG)) |
3909 | { |
3910 | result= FALSE; |
3911 | break; |
3912 | } |
3913 | } |
3914 | DBUG_RETURN(result); |
3915 | } |
3916 | |
3917 | |
3918 | /* |
3919 | Get the id of the subpartitioning part by using the key buffer of the |
3920 | index scan. |
3921 | |
3922 | SYNOPSIS |
3923 | get_sub_part_id_from_key() |
3924 | table The table object |
3925 | buf A buffer that can be used to evaluate the partition function |
3926 | key_info The index object |
3927 | key_spec A key_range containing key and key length |
3928 | out:part_id The returned partition id |
3929 | |
3930 | RETURN VALUES |
3931 | TRUE All fields in partition function are set |
3932 | FALSE Not all fields in partition function are set |
3933 | |
3934 | DESCRIPTION |
3935 | Use key buffer to set-up record in buf, move field pointers and |
3936 | get the partition identity and restore field pointers afterwards. |
3937 | */ |
3938 | |
3939 | static int get_sub_part_id_from_key(const TABLE *table,uchar *buf, |
3940 | KEY *key_info, |
3941 | const key_range *key_spec, |
3942 | uint32 *part_id) |
3943 | { |
3944 | uchar *rec0= table->record[0]; |
3945 | partition_info *part_info= table->part_info; |
3946 | int res; |
3947 | DBUG_ENTER("get_sub_part_id_from_key" ); |
3948 | |
3949 | key_restore(buf, (uchar*)key_spec->key, key_info, key_spec->length); |
3950 | if (likely(rec0 == buf)) |
3951 | { |
3952 | res= part_info->get_subpartition_id(part_info, part_id); |
3953 | } |
3954 | else |
3955 | { |
3956 | Field **part_field_array= part_info->subpart_field_array; |
3957 | part_info->table->move_fields(part_field_array, buf, rec0); |
3958 | res= part_info->get_subpartition_id(part_info, part_id); |
3959 | part_info->table->move_fields(part_field_array, rec0, buf); |
3960 | } |
3961 | DBUG_RETURN(res); |
3962 | } |
3963 | |
3964 | /* |
3965 | Get the id of the partitioning part by using the key buffer of the |
3966 | index scan. |
3967 | |
3968 | SYNOPSIS |
3969 | get_part_id_from_key() |
3970 | table The table object |
3971 | buf A buffer that can be used to evaluate the partition function |
3972 | key_info The index object |
3973 | key_spec A key_range containing key and key length |
3974 | out:part_id Partition to use |
3975 | |
3976 | RETURN VALUES |
3977 | TRUE Partition to use not found |
3978 | FALSE Ok, part_id indicates partition to use |
3979 | |
3980 | DESCRIPTION |
3981 | Use key buffer to set-up record in buf, move field pointers and |
3982 | get the partition identity and restore field pointers afterwards. |
3983 | */ |
3984 | |
3985 | bool get_part_id_from_key(const TABLE *table, uchar *buf, KEY *key_info, |
3986 | const key_range *key_spec, uint32 *part_id) |
3987 | { |
3988 | bool result; |
3989 | uchar *rec0= table->record[0]; |
3990 | partition_info *part_info= table->part_info; |
3991 | longlong func_value; |
3992 | DBUG_ENTER("get_part_id_from_key" ); |
3993 | |
3994 | key_restore(buf, (uchar*)key_spec->key, key_info, key_spec->length); |
3995 | if (likely(rec0 == buf)) |
3996 | { |
3997 | result= part_info->get_part_partition_id(part_info, part_id, |
3998 | &func_value); |
3999 | } |
4000 | else |
4001 | { |
4002 | Field **part_field_array= part_info->part_field_array; |
4003 | part_info->table->move_fields(part_field_array, buf, rec0); |
4004 | result= part_info->get_part_partition_id(part_info, part_id, |
4005 | &func_value); |
4006 | part_info->table->move_fields(part_field_array, rec0, buf); |
4007 | } |
4008 | DBUG_RETURN(result); |
4009 | } |
4010 | |
4011 | /* |
4012 | Get the partitioning id of the full PF by using the key buffer of the |
4013 | index scan. |
4014 | |
4015 | SYNOPSIS |
4016 | get_full_part_id_from_key() |
4017 | table The table object |
4018 | buf A buffer that is used to evaluate the partition function |
4019 | key_info The index object |
4020 | key_spec A key_range containing key and key length |
4021 | out:part_spec A partition id containing start part and end part |
4022 | |
4023 | RETURN VALUES |
4024 | part_spec |
4025 | No partitions to scan is indicated by end_part > start_part when returning |
4026 | |
4027 | DESCRIPTION |
4028 | Use key buffer to set-up record in buf, move field pointers if needed and |
4029 | get the partition identity and restore field pointers afterwards. |
4030 | */ |
4031 | |
4032 | void get_full_part_id_from_key(const TABLE *table, uchar *buf, |
4033 | KEY *key_info, |
4034 | const key_range *key_spec, |
4035 | part_id_range *part_spec) |
4036 | { |
4037 | bool result; |
4038 | partition_info *part_info= table->part_info; |
4039 | uchar *rec0= table->record[0]; |
4040 | longlong func_value; |
4041 | DBUG_ENTER("get_full_part_id_from_key" ); |
4042 | |
4043 | key_restore(buf, (uchar*)key_spec->key, key_info, key_spec->length); |
4044 | if (likely(rec0 == buf)) |
4045 | { |
4046 | result= part_info->get_partition_id(part_info, &part_spec->start_part, |
4047 | &func_value); |
4048 | } |
4049 | else |
4050 | { |
4051 | Field **part_field_array= part_info->full_part_field_array; |
4052 | part_info->table->move_fields(part_field_array, buf, rec0); |
4053 | result= part_info->get_partition_id(part_info, &part_spec->start_part, |
4054 | &func_value); |
4055 | part_info->table->move_fields(part_field_array, rec0, buf); |
4056 | } |
4057 | part_spec->end_part= part_spec->start_part; |
4058 | if (unlikely(result)) |
4059 | part_spec->start_part++; |
4060 | DBUG_VOID_RETURN; |
4061 | } |
4062 | |
4063 | |
4064 | /** |
4065 | @brief Verify that all rows in a table is in the given partition |
4066 | |
4067 | @param table Table which contains the data that will be checked if |
4068 | it is matching the partition definition. |
4069 | @param part_table Partitioned table containing the partition to check. |
4070 | @param part_id Which partition to match with. |
4071 | |
4072 | @return Operation status |
4073 | @retval TRUE Not all rows match the given partition |
4074 | @retval FALSE OK |
4075 | */ |
4076 | bool verify_data_with_partition(TABLE *table, TABLE *part_table, |
4077 | uint32 part_id) |
4078 | { |
4079 | uint32 found_part_id; |
4080 | longlong func_value; /* Unused */ |
4081 | handler *file; |
4082 | int error; |
4083 | uchar *old_rec; |
4084 | partition_info *part_info; |
4085 | DBUG_ENTER("verify_data_with_partition" ); |
4086 | DBUG_ASSERT(table && table->file && part_table && part_table->part_info && |
4087 | part_table->file); |
4088 | |
4089 | /* |
4090 | Verify all table rows. |
4091 | First implementation uses full scan + evaluates partition functions for |
4092 | every row. TODO: add optimization to use index if possible, see WL#5397. |
4093 | |
4094 | 1) Open both tables (already done) and set the row buffers to use |
4095 | the same buffer (to avoid copy). |
4096 | 2) Init rnd on table. |
4097 | 3) loop over all rows. |
4098 | 3.1) verify that partition_id on the row is correct. Break if error. |
4099 | */ |
4100 | file= table->file; |
4101 | part_info= part_table->part_info; |
4102 | bitmap_union(table->read_set, &part_info->full_part_field_set); |
4103 | old_rec= part_table->record[0]; |
4104 | part_table->record[0]= table->record[0]; |
4105 | part_info->table->move_fields(part_info->full_part_field_array, table->record[0], old_rec); |
4106 | if (unlikely(error= file->ha_rnd_init_with_error(TRUE))) |
4107 | goto err; |
4108 | |
4109 | do |
4110 | { |
4111 | if (unlikely((error= file->ha_rnd_next(table->record[0])))) |
4112 | { |
4113 | if (error == HA_ERR_END_OF_FILE) |
4114 | error= 0; |
4115 | else |
4116 | file->print_error(error, MYF(0)); |
4117 | break; |
4118 | } |
4119 | if (unlikely((error= part_info->get_partition_id(part_info, &found_part_id, |
4120 | &func_value)))) |
4121 | { |
4122 | part_table->file->print_error(error, MYF(0)); |
4123 | break; |
4124 | } |
4125 | DEBUG_SYNC(current_thd, "swap_partition_first_row_read" ); |
4126 | if (found_part_id != part_id) |
4127 | { |
4128 | my_error(ER_ROW_DOES_NOT_MATCH_PARTITION, MYF(0)); |
4129 | error= 1; |
4130 | break; |
4131 | } |
4132 | } while (TRUE); |
4133 | (void) file->ha_rnd_end(); |
4134 | err: |
4135 | part_info->table->move_fields(part_info->full_part_field_array, old_rec, |
4136 | table->record[0]); |
4137 | part_table->record[0]= old_rec; |
4138 | DBUG_RETURN(unlikely(error) ? TRUE : FALSE); |
4139 | } |
4140 | |
4141 | |
4142 | /* |
4143 | Prune the set of partitions to use in query |
4144 | |
4145 | SYNOPSIS |
4146 | prune_partition_set() |
4147 | table The table object |
4148 | out:part_spec Contains start part, end part |
4149 | |
4150 | DESCRIPTION |
4151 | This function is called to prune the range of partitions to scan by |
4152 | checking the read_partitions bitmap. |
4153 | If start_part > end_part at return it means no partition needs to be |
4154 | scanned. If start_part == end_part it always means a single partition |
4155 | needs to be scanned. |
4156 | |
4157 | RETURN VALUE |
4158 | part_spec |
4159 | */ |
4160 | void prune_partition_set(const TABLE *table, part_id_range *part_spec) |
4161 | { |
4162 | int last_partition= -1; |
4163 | uint i; |
4164 | partition_info *part_info= table->part_info; |
4165 | |
4166 | DBUG_ENTER("prune_partition_set" ); |
4167 | for (i= part_spec->start_part; i <= part_spec->end_part; i++) |
4168 | { |
4169 | if (bitmap_is_set(&(part_info->read_partitions), i)) |
4170 | { |
4171 | DBUG_PRINT("info" , ("Partition %d is set" , i)); |
4172 | if (last_partition == -1) |
4173 | /* First partition found in set and pruned bitmap */ |
4174 | part_spec->start_part= i; |
4175 | last_partition= i; |
4176 | } |
4177 | } |
4178 | if (last_partition == -1) |
4179 | /* No partition found in pruned bitmap */ |
4180 | part_spec->start_part= part_spec->end_part + 1; |
4181 | else //if (last_partition != -1) |
4182 | part_spec->end_part= last_partition; |
4183 | |
4184 | DBUG_VOID_RETURN; |
4185 | } |
4186 | |
4187 | /* |
4188 | Get the set of partitions to use in query. |
4189 | |
4190 | SYNOPSIS |
4191 | get_partition_set() |
4192 | table The table object |
4193 | buf A buffer that can be used to evaluate the partition function |
4194 | index The index of the key used, if MAX_KEY no index used |
4195 | key_spec A key_range containing key and key length |
4196 | out:part_spec Contains start part, end part and indicator if bitmap is |
4197 | used for which partitions to scan |
4198 | |
4199 | DESCRIPTION |
4200 | This function is called to discover which partitions to use in an index |
4201 | scan or a full table scan. |
4202 | It returns a range of partitions to scan. If there are holes in this |
4203 | range with partitions that are not needed to scan a bit array is used |
4204 | to signal which partitions to use and which not to use. |
4205 | If start_part > end_part at return it means no partition needs to be |
4206 | scanned. If start_part == end_part it always means a single partition |
4207 | needs to be scanned. |
4208 | |
4209 | RETURN VALUE |
4210 | part_spec |
4211 | */ |
4212 | void get_partition_set(const TABLE *table, uchar *buf, const uint index, |
4213 | const key_range *key_spec, part_id_range *part_spec) |
4214 | { |
4215 | partition_info *part_info= table->part_info; |
4216 | uint num_parts= part_info->get_tot_partitions(); |
4217 | uint i, part_id; |
4218 | uint sub_part= num_parts; |
4219 | uint32 part_part= num_parts; |
4220 | KEY *key_info= NULL; |
4221 | bool found_part_field= FALSE; |
4222 | DBUG_ENTER("get_partition_set" ); |
4223 | |
4224 | part_spec->start_part= 0; |
4225 | part_spec->end_part= num_parts - 1; |
4226 | if ((index < MAX_KEY) && |
4227 | key_spec && key_spec->flag == (uint)HA_READ_KEY_EXACT && |
4228 | part_info->some_fields_in_PF.is_set(index)) |
4229 | { |
4230 | key_info= table->key_info+index; |
4231 | /* |
4232 | The index can potentially provide at least one PF-field (field in the |
4233 | partition function). Thus it is interesting to continue our probe. |
4234 | */ |
4235 | if (key_spec->length == key_info->key_length) |
4236 | { |
4237 | /* |
4238 | The entire key is set so we can check whether we can immediately |
4239 | derive either the complete PF or if we can derive either |
4240 | the top PF or the subpartitioning PF. This can be established by |
4241 | checking precalculated bits on each index. |
4242 | */ |
4243 | if (part_info->all_fields_in_PF.is_set(index)) |
4244 | { |
4245 | /* |
4246 | We can derive the exact partition to use, no more than this one |
4247 | is needed. |
4248 | */ |
4249 | get_full_part_id_from_key(table,buf,key_info,key_spec,part_spec); |
4250 | /* |
4251 | Check if range can be adjusted by looking in read_partitions |
4252 | */ |
4253 | prune_partition_set(table, part_spec); |
4254 | DBUG_VOID_RETURN; |
4255 | } |
4256 | else if (part_info->is_sub_partitioned()) |
4257 | { |
4258 | if (part_info->all_fields_in_SPF.is_set(index)) |
4259 | { |
4260 | if (get_sub_part_id_from_key(table, buf, key_info, key_spec, &sub_part)) |
4261 | { |
4262 | part_spec->start_part= num_parts; |
4263 | DBUG_VOID_RETURN; |
4264 | } |
4265 | } |
4266 | else if (part_info->all_fields_in_PPF.is_set(index)) |
4267 | { |
4268 | if (get_part_id_from_key(table,buf,key_info, |
4269 | key_spec,(uint32*)&part_part)) |
4270 | { |
4271 | /* |
4272 | The value of the RANGE or LIST partitioning was outside of |
4273 | allowed values. Thus it is certain that the result of this |
4274 | scan will be empty. |
4275 | */ |
4276 | part_spec->start_part= num_parts; |
4277 | DBUG_VOID_RETURN; |
4278 | } |
4279 | } |
4280 | } |
4281 | } |
4282 | else |
4283 | { |
4284 | /* |
4285 | Set an indicator on all partition fields that are bound. |
4286 | If at least one PF-field was bound it pays off to check whether |
4287 | the PF or PPF or SPF has been bound. |
4288 | (PF = Partition Function, SPF = Subpartition Function and |
4289 | PPF = Partition Function part of subpartitioning) |
4290 | */ |
4291 | if ((found_part_field= set_PF_fields_in_key(key_info, |
4292 | key_spec->length))) |
4293 | { |
4294 | if (check_part_func_bound(part_info->full_part_field_array)) |
4295 | { |
4296 | /* |
4297 | We were able to bind all fields in the partition function even |
4298 | by using only a part of the key. Calculate the partition to use. |
4299 | */ |
4300 | get_full_part_id_from_key(table,buf,key_info,key_spec,part_spec); |
4301 | clear_indicator_in_key_fields(key_info); |
4302 | /* |
4303 | Check if range can be adjusted by looking in read_partitions |
4304 | */ |
4305 | prune_partition_set(table, part_spec); |
4306 | DBUG_VOID_RETURN; |
4307 | } |
4308 | else if (part_info->is_sub_partitioned()) |
4309 | { |
4310 | if (check_part_func_bound(part_info->subpart_field_array)) |
4311 | { |
4312 | if (get_sub_part_id_from_key(table, buf, key_info, key_spec, &sub_part)) |
4313 | { |
4314 | part_spec->start_part= num_parts; |
4315 | clear_indicator_in_key_fields(key_info); |
4316 | DBUG_VOID_RETURN; |
4317 | } |
4318 | } |
4319 | else if (check_part_func_bound(part_info->part_field_array)) |
4320 | { |
4321 | if (get_part_id_from_key(table,buf,key_info,key_spec,&part_part)) |
4322 | { |
4323 | part_spec->start_part= num_parts; |
4324 | clear_indicator_in_key_fields(key_info); |
4325 | DBUG_VOID_RETURN; |
4326 | } |
4327 | } |
4328 | } |
4329 | } |
4330 | } |
4331 | } |
4332 | { |
4333 | /* |
4334 | The next step is to analyse the table condition to see whether any |
4335 | information about which partitions to scan can be derived from there. |
4336 | Currently not implemented. |
4337 | */ |
4338 | } |
4339 | /* |
4340 | If we come here we have found a range of sorts we have either discovered |
4341 | nothing or we have discovered a range of partitions with possible holes |
4342 | in it. We need a bitvector to further the work here. |
4343 | */ |
4344 | if (!(part_part == num_parts && sub_part == num_parts)) |
4345 | { |
4346 | /* |
4347 | We can only arrive here if we are using subpartitioning. |
4348 | */ |
4349 | if (part_part != num_parts) |
4350 | { |
4351 | /* |
4352 | We know the top partition and need to scan all underlying |
4353 | subpartitions. This is a range without holes. |
4354 | */ |
4355 | DBUG_ASSERT(sub_part == num_parts); |
4356 | part_spec->start_part= part_part * part_info->num_subparts; |
4357 | part_spec->end_part= part_spec->start_part+part_info->num_subparts - 1; |
4358 | } |
4359 | else |
4360 | { |
4361 | DBUG_ASSERT(sub_part != num_parts); |
4362 | part_spec->start_part= sub_part; |
4363 | part_spec->end_part=sub_part+ |
4364 | (part_info->num_subparts*(part_info->num_parts-1)); |
4365 | for (i= 0, part_id= sub_part; i < part_info->num_parts; |
4366 | i++, part_id+= part_info->num_subparts) |
4367 | ; //Set bit part_id in bit array |
4368 | } |
4369 | } |
4370 | if (found_part_field) |
4371 | clear_indicator_in_key_fields(key_info); |
4372 | /* |
4373 | Check if range can be adjusted by looking in read_partitions |
4374 | */ |
4375 | prune_partition_set(table, part_spec); |
4376 | DBUG_VOID_RETURN; |
4377 | } |
4378 | |
4379 | /* |
4380 | If the table is partitioned we will read the partition info into the |
4381 | .frm file here. |
4382 | ------------------------------- |
4383 | | Fileinfo 64 bytes | |
4384 | ------------------------------- |
4385 | | Formnames 7 bytes | |
4386 | ------------------------------- |
4387 | | Not used 4021 bytes | |
4388 | ------------------------------- |
4389 | | Keyinfo + record | |
4390 | ------------------------------- |
4391 | | Padded to next multiple | |
4392 | | of IO_SIZE | |
4393 | ------------------------------- |
4394 | | Forminfo 288 bytes | |
4395 | ------------------------------- |
4396 | | Screen buffer, to make | |
4397 | |field names readable | |
4398 | ------------------------------- |
4399 | | Packed field info | |
4400 | |17 + 1 + strlen(field_name) | |
4401 | | + 1 end of file character | |
4402 | ------------------------------- |
4403 | | Partition info | |
4404 | ------------------------------- |
4405 | We provide the length of partition length in Fileinfo[55-58]. |
4406 | |
4407 | Read the partition syntax from the frm file and parse it to get the |
4408 | data structures of the partitioning. |
4409 | |
4410 | SYNOPSIS |
4411 | mysql_unpack_partition() |
4412 | thd Thread object |
4413 | part_buf Partition info from frm file |
4414 | part_info_len Length of partition syntax |
4415 | table Table object of partitioned table |
4416 | create_table_ind Is it called from CREATE TABLE |
4417 | default_db_type What is the default engine of the table |
4418 | work_part_info_used Flag is raised if we don't create new |
4419 | part_info, but used thd->work_part_info |
4420 | |
4421 | RETURN VALUE |
4422 | TRUE Error |
4423 | FALSE Sucess |
4424 | |
4425 | DESCRIPTION |
4426 | Read the partition syntax from the current position in the frm file. |
4427 | Initiate a LEX object, save the list of item tree objects to free after |
4428 | the query is done. Set-up partition info object such that parser knows |
4429 | it is called from internally. Call parser to create data structures |
4430 | (best possible recreation of item trees and so forth since there is no |
4431 | serialisation of these objects other than in parseable text format). |
4432 | We need to save the text of the partition functions since it is not |
4433 | possible to retrace this given an item tree. |
4434 | */ |
4435 | |
4436 | bool mysql_unpack_partition(THD *thd, |
4437 | char *part_buf, uint part_info_len, |
4438 | TABLE* table, bool is_create_table_ind, |
4439 | handlerton *default_db_type, |
4440 | bool *work_part_info_used) |
4441 | { |
4442 | bool result= TRUE; |
4443 | partition_info *part_info; |
4444 | CHARSET_INFO *old_character_set_client= thd->variables.character_set_client; |
4445 | LEX *old_lex= thd->lex; |
4446 | LEX lex; |
4447 | PSI_statement_locker *parent_locker= thd->m_statement_psi; |
4448 | DBUG_ENTER("mysql_unpack_partition" ); |
4449 | |
4450 | thd->variables.character_set_client= system_charset_info; |
4451 | |
4452 | Parser_state parser_state; |
4453 | if (unlikely(parser_state.init(thd, part_buf, part_info_len))) |
4454 | goto end; |
4455 | |
4456 | if (unlikely(init_lex_with_single_table(thd, table, &lex))) |
4457 | goto end; |
4458 | |
4459 | *work_part_info_used= FALSE; |
4460 | |
4461 | if (unlikely(!(lex.part_info= new partition_info()))) |
4462 | goto end; |
4463 | |
4464 | lex.part_info->table= table; /* Indicates MYSQLparse from this place */ |
4465 | part_info= lex.part_info; |
4466 | DBUG_PRINT("info" , ("Parse: %s" , part_buf)); |
4467 | |
4468 | thd->m_statement_psi= NULL; |
4469 | if (unlikely(parse_sql(thd, & parser_state, NULL)) || |
4470 | unlikely(part_info->fix_parser_data(thd))) |
4471 | { |
4472 | thd->free_items(); |
4473 | thd->m_statement_psi= parent_locker; |
4474 | goto end; |
4475 | } |
4476 | thd->m_statement_psi= parent_locker; |
4477 | /* |
4478 | The parsed syntax residing in the frm file can still contain defaults. |
4479 | The reason is that the frm file is sometimes saved outside of this |
4480 | MySQL Server and used in backup and restore of clusters or partitioned |
4481 | tables. It is not certain that the restore will restore exactly the |
4482 | same default partitioning. |
4483 | |
4484 | The easiest manner of handling this is to simply continue using the |
4485 | part_info we already built up during mysql_create_table if we are |
4486 | in the process of creating a table. If the table already exists we |
4487 | need to discover the number of partitions for the default parts. Since |
4488 | the handler object hasn't been created here yet we need to postpone this |
4489 | to the fix_partition_func method. |
4490 | */ |
4491 | |
4492 | DBUG_PRINT("info" , ("Successful parse" )); |
4493 | DBUG_PRINT("info" , ("default engine = %s, default_db_type = %s" , |
4494 | ha_resolve_storage_engine_name(part_info->default_engine_type), |
4495 | ha_resolve_storage_engine_name(default_db_type))); |
4496 | if (is_create_table_ind && old_lex->sql_command == SQLCOM_CREATE_TABLE) |
4497 | { |
4498 | /* |
4499 | When we come here we are doing a create table. In this case we |
4500 | have already done some preparatory work on the old part_info |
4501 | object. We don't really need this new partition_info object. |
4502 | Thus we go back to the old partition info object. |
4503 | We need to free any memory objects allocated on item_free_list |
4504 | by the parser since we are keeping the old info from the first |
4505 | parser call in CREATE TABLE. |
4506 | |
4507 | This table object can not be used any more. However, since |
4508 | this is CREATE TABLE, we know that it will be destroyed by the |
4509 | caller, and rely on that. |
4510 | */ |
4511 | thd->free_items(); |
4512 | part_info= thd->work_part_info; |
4513 | *work_part_info_used= true; |
4514 | } |
4515 | table->part_info= part_info; |
4516 | part_info->table= table; |
4517 | table->file->set_part_info(part_info); |
4518 | if (!part_info->default_engine_type) |
4519 | part_info->default_engine_type= default_db_type; |
4520 | DBUG_ASSERT(part_info->default_engine_type == default_db_type); |
4521 | DBUG_ASSERT(part_info->default_engine_type->db_type != DB_TYPE_UNKNOWN); |
4522 | DBUG_ASSERT(part_info->default_engine_type != partition_hton); |
4523 | result= FALSE; |
4524 | end: |
4525 | end_lex_with_single_table(thd, table, old_lex); |
4526 | thd->variables.character_set_client= old_character_set_client; |
4527 | DBUG_RETURN(result); |
4528 | } |
4529 | |
4530 | |
4531 | /* |
4532 | Set engine type on all partition element objects |
4533 | SYNOPSIS |
4534 | set_engine_all_partitions() |
4535 | part_info Partition info |
4536 | engine_type Handlerton reference of engine |
4537 | RETURN VALUES |
4538 | NONE |
4539 | */ |
4540 | |
4541 | static |
4542 | void |
4543 | set_engine_all_partitions(partition_info *part_info, |
4544 | handlerton *engine_type) |
4545 | { |
4546 | uint i= 0; |
4547 | List_iterator<partition_element> part_it(part_info->partitions); |
4548 | do |
4549 | { |
4550 | partition_element *part_elem= part_it++; |
4551 | |
4552 | part_elem->engine_type= engine_type; |
4553 | if (part_info->is_sub_partitioned()) |
4554 | { |
4555 | List_iterator<partition_element> sub_it(part_elem->subpartitions); |
4556 | uint j= 0; |
4557 | |
4558 | do |
4559 | { |
4560 | partition_element *sub_elem= sub_it++; |
4561 | |
4562 | sub_elem->engine_type= engine_type; |
4563 | } while (++j < part_info->num_subparts); |
4564 | } |
4565 | } while (++i < part_info->num_parts); |
4566 | } |
4567 | |
4568 | |
4569 | /** |
4570 | Support routine to handle the successful cases for partition management. |
4571 | |
4572 | @param thd Thread object |
4573 | @param copied Number of records copied |
4574 | @param deleted Number of records deleted |
4575 | @param table_list Table list with the one table in it |
4576 | |
4577 | @return Operation status |
4578 | @retval FALSE Success |
4579 | @retval TRUE Failure |
4580 | */ |
4581 | |
4582 | static int fast_end_partition(THD *thd, ulonglong copied, |
4583 | ulonglong deleted, |
4584 | TABLE_LIST *table_list) |
4585 | { |
4586 | char tmp_name[80]; |
4587 | DBUG_ENTER("fast_end_partition" ); |
4588 | |
4589 | thd->proc_info="end" ; |
4590 | |
4591 | query_cache_invalidate3(thd, table_list, 0); |
4592 | |
4593 | my_snprintf(tmp_name, sizeof(tmp_name), ER_THD(thd, ER_INSERT_INFO), |
4594 | (ulong) (copied + deleted), |
4595 | (ulong) deleted, |
4596 | (ulong) 0); |
4597 | my_ok(thd, (ha_rows) (copied+deleted),0L, tmp_name); |
4598 | DBUG_RETURN(FALSE); |
4599 | } |
4600 | |
4601 | |
4602 | /* |
4603 | We need to check if engine used by all partitions can handle |
4604 | partitioning natively. |
4605 | |
4606 | SYNOPSIS |
4607 | check_native_partitioned() |
4608 | create_info Create info in CREATE TABLE |
4609 | out:ret_val Return value |
4610 | part_info Partition info |
4611 | thd Thread object |
4612 | |
4613 | RETURN VALUES |
4614 | Value returned in bool ret_value |
4615 | TRUE Native partitioning supported by engine |
4616 | FALSE Need to use partition handler |
4617 | |
4618 | Return value from function |
4619 | TRUE Error |
4620 | FALSE Success |
4621 | */ |
4622 | |
4623 | static bool check_native_partitioned(HA_CREATE_INFO *create_info,bool *ret_val, |
4624 | partition_info *part_info, THD *thd) |
4625 | { |
4626 | bool table_engine_set; |
4627 | handlerton *engine_type= part_info->default_engine_type; |
4628 | handlerton *old_engine_type= engine_type; |
4629 | DBUG_ENTER("check_native_partitioned" ); |
4630 | |
4631 | if (create_info->used_fields & HA_CREATE_USED_ENGINE) |
4632 | { |
4633 | table_engine_set= TRUE; |
4634 | engine_type= create_info->db_type; |
4635 | } |
4636 | else |
4637 | { |
4638 | table_engine_set= FALSE; |
4639 | if (thd->lex->sql_command != SQLCOM_CREATE_TABLE) |
4640 | { |
4641 | table_engine_set= TRUE; |
4642 | DBUG_ASSERT(engine_type && engine_type != partition_hton); |
4643 | } |
4644 | } |
4645 | DBUG_PRINT("info" , ("engine_type = %s, table_engine_set = %u" , |
4646 | ha_resolve_storage_engine_name(engine_type), |
4647 | table_engine_set)); |
4648 | if (part_info->check_engine_mix(engine_type, table_engine_set)) |
4649 | goto error; |
4650 | |
4651 | /* |
4652 | All engines are of the same type. Check if this engine supports |
4653 | native partitioning. |
4654 | */ |
4655 | |
4656 | if (!engine_type) |
4657 | engine_type= old_engine_type; |
4658 | DBUG_PRINT("info" , ("engine_type = %s" , |
4659 | ha_resolve_storage_engine_name(engine_type))); |
4660 | if (engine_type->partition_flags && |
4661 | (engine_type->partition_flags() & HA_CAN_PARTITION)) |
4662 | { |
4663 | create_info->db_type= engine_type; |
4664 | DBUG_PRINT("info" , ("Changed to native partitioning" )); |
4665 | *ret_val= TRUE; |
4666 | } |
4667 | DBUG_RETURN(FALSE); |
4668 | error: |
4669 | /* |
4670 | Mixed engines not yet supported but when supported it will need |
4671 | the partition handler |
4672 | */ |
4673 | my_error(ER_MIX_HANDLER_ERROR, MYF(0)); |
4674 | *ret_val= FALSE; |
4675 | DBUG_RETURN(TRUE); |
4676 | } |
4677 | |
4678 | |
4679 | /** |
4680 | Sets which partitions to be used in the command. |
4681 | |
4682 | @param alter_info Alter_info pointer holding partition names and flags. |
4683 | @param tab_part_info partition_info holding all partitions. |
4684 | @param part_state Which state to set for the named partitions. |
4685 | |
4686 | @return Operation status |
4687 | @retval false Success |
4688 | @retval true Failure |
4689 | */ |
4690 | |
4691 | bool set_part_state(Alter_info *alter_info, partition_info *tab_part_info, |
4692 | enum partition_state part_state) |
4693 | { |
4694 | uint part_count= 0; |
4695 | uint num_parts_found= 0; |
4696 | List_iterator<partition_element> part_it(tab_part_info->partitions); |
4697 | |
4698 | do |
4699 | { |
4700 | partition_element *part_elem= part_it++; |
4701 | if ((alter_info->partition_flags & ALTER_PARTITION_ALL) || |
4702 | (is_name_in_list(part_elem->partition_name, |
4703 | alter_info->partition_names))) |
4704 | { |
4705 | /* |
4706 | Mark the partition. |
4707 | I.e mark the partition as a partition to be "changed" by |
4708 | analyzing/optimizing/rebuilding/checking/repairing/... |
4709 | */ |
4710 | num_parts_found++; |
4711 | part_elem->part_state= part_state; |
4712 | DBUG_PRINT("info" , ("Setting part_state to %u for partition %s" , |
4713 | part_state, part_elem->partition_name)); |
4714 | } |
4715 | else |
4716 | part_elem->part_state= PART_NORMAL; |
4717 | } while (++part_count < tab_part_info->num_parts); |
4718 | |
4719 | if (num_parts_found != alter_info->partition_names.elements && |
4720 | !(alter_info->partition_flags & ALTER_PARTITION_ALL)) |
4721 | { |
4722 | /* Not all given partitions found, revert and return failure */ |
4723 | part_it.rewind(); |
4724 | part_count= 0; |
4725 | do |
4726 | { |
4727 | partition_element *part_elem= part_it++; |
4728 | part_elem->part_state= PART_NORMAL; |
4729 | } while (++part_count < tab_part_info->num_parts); |
4730 | return true; |
4731 | } |
4732 | return false; |
4733 | } |
4734 | |
4735 | |
4736 | /** |
4737 | @brief Check if partition is exchangable with table by checking table options |
4738 | |
4739 | @param table_create_info Table options from table. |
4740 | @param part_elem All the info of the partition. |
4741 | |
4742 | @retval FALSE if they are equal, otherwise TRUE. |
4743 | |
4744 | @note Any differens that would cause a change in the frm file is prohibited. |
4745 | Such options as data_file_name, index_file_name, min_rows, max_rows etc. are |
4746 | not allowed to differ. But comment is allowed to differ. |
4747 | */ |
4748 | bool compare_partition_options(HA_CREATE_INFO *table_create_info, |
4749 | partition_element *part_elem) |
4750 | { |
4751 | #define MAX_COMPARE_PARTITION_OPTION_ERRORS 5 |
4752 | const char *option_diffs[MAX_COMPARE_PARTITION_OPTION_ERRORS + 1]; |
4753 | int i, errors= 0; |
4754 | DBUG_ENTER("compare_partition_options" ); |
4755 | |
4756 | /* |
4757 | Note that there are not yet any engine supporting tablespace together |
4758 | with partitioning. TODO: when there are, add compare. |
4759 | */ |
4760 | if (part_elem->tablespace_name || table_create_info->tablespace) |
4761 | option_diffs[errors++]= "TABLESPACE" ; |
4762 | if (part_elem->part_max_rows != table_create_info->max_rows) |
4763 | option_diffs[errors++]= "MAX_ROWS" ; |
4764 | if (part_elem->part_min_rows != table_create_info->min_rows) |
4765 | option_diffs[errors++]= "MIN_ROWS" ; |
4766 | |
4767 | for (i= 0; i < errors; i++) |
4768 | my_error(ER_PARTITION_EXCHANGE_DIFFERENT_OPTION, MYF(0), |
4769 | option_diffs[i]); |
4770 | DBUG_RETURN(errors != 0); |
4771 | } |
4772 | |
4773 | |
4774 | /* |
4775 | Prepare for ALTER TABLE of partition structure |
4776 | |
4777 | @param[in] thd Thread object |
4778 | @param[in] table Table object |
4779 | @param[in,out] alter_info Alter information |
4780 | @param[in,out] create_info Create info for CREATE TABLE |
4781 | @param[in] alter_ctx ALTER TABLE runtime context |
4782 | @param[out] partition_changed Boolean indicating whether partition changed |
4783 | @param[out] fast_alter_table Boolean indicating if fast partition alter is |
4784 | possible. |
4785 | |
4786 | @return Operation status |
4787 | @retval TRUE Error |
4788 | @retval FALSE Success |
4789 | |
4790 | @note |
4791 | This method handles all preparations for ALTER TABLE for partitioned |
4792 | tables. |
4793 | We need to handle both partition management command such as Add Partition |
4794 | and others here as well as an ALTER TABLE that completely changes the |
4795 | partitioning and yet others that don't change anything at all. We start |
4796 | by checking the partition management variants and then check the general |
4797 | change patterns. |
4798 | */ |
4799 | |
4800 | uint prep_alter_part_table(THD *thd, TABLE *table, Alter_info *alter_info, |
4801 | HA_CREATE_INFO *create_info, |
4802 | Alter_table_ctx *alter_ctx, |
4803 | bool *partition_changed, |
4804 | bool *fast_alter_table) |
4805 | { |
4806 | DBUG_ENTER("prep_alter_part_table" ); |
4807 | |
4808 | /* Foreign keys on partitioned tables are not supported, waits for WL#148 */ |
4809 | if (table->part_info && (alter_info->flags & (ALTER_ADD_FOREIGN_KEY | |
4810 | ALTER_DROP_FOREIGN_KEY))) |
4811 | { |
4812 | my_error(ER_FOREIGN_KEY_ON_PARTITIONED, MYF(0)); |
4813 | DBUG_RETURN(TRUE); |
4814 | } |
4815 | /* Remove partitioning on a not partitioned table is not possible */ |
4816 | if (!table->part_info && (alter_info->partition_flags & |
4817 | ALTER_PARTITION_REMOVE)) |
4818 | { |
4819 | my_error(ER_PARTITION_MGMT_ON_NONPARTITIONED, MYF(0)); |
4820 | DBUG_RETURN(TRUE); |
4821 | } |
4822 | |
4823 | partition_info *alt_part_info= thd->lex->part_info; |
4824 | /* |
4825 | This variable is TRUE in very special case when we add only DEFAULT |
4826 | partition to the existing table |
4827 | */ |
4828 | bool only_default_value_added= |
4829 | (alt_part_info && |
4830 | alt_part_info->current_partition && |
4831 | alt_part_info->current_partition->list_val_list.elements == 1 && |
4832 | alt_part_info->current_partition->list_val_list.head()-> |
4833 | added_items >= 1 && |
4834 | alt_part_info->current_partition->list_val_list.head()-> |
4835 | col_val_array[0].max_value) && |
4836 | alt_part_info->part_type == LIST_PARTITION && |
4837 | (alter_info->partition_flags & ALTER_PARTITION_ADD); |
4838 | if (only_default_value_added && |
4839 | !thd->lex->part_info->num_columns) |
4840 | thd->lex->part_info->num_columns= 1; // to make correct clone |
4841 | |
4842 | /* |
4843 | One of these is done in handle_if_exists_option(): |
4844 | thd->work_part_info= thd->lex->part_info; |
4845 | or |
4846 | thd->work_part_info= NULL; |
4847 | */ |
4848 | if (thd->work_part_info && |
4849 | !(thd->work_part_info= thd->work_part_info->get_clone(thd))) |
4850 | DBUG_RETURN(TRUE); |
4851 | |
4852 | /* ALTER_PARTITION_ADMIN is handled in mysql_admin_table */ |
4853 | DBUG_ASSERT(!(alter_info->partition_flags & ALTER_PARTITION_ADMIN)); |
4854 | |
4855 | partition_info *saved_part_info= NULL; |
4856 | |
4857 | if (alter_info->partition_flags & |
4858 | (ALTER_PARTITION_ADD | |
4859 | ALTER_PARTITION_DROP | |
4860 | ALTER_PARTITION_COALESCE | |
4861 | ALTER_PARTITION_REORGANIZE | |
4862 | ALTER_PARTITION_TABLE_REORG | |
4863 | ALTER_PARTITION_REBUILD)) |
4864 | { |
4865 | /* |
4866 | You can't add column when we are doing alter related to partition |
4867 | */ |
4868 | DBUG_EXECUTE_IF("test_pseudo_invisible" , { |
4869 | my_error(ER_INTERNAL_ERROR, MYF(0), "Don't to it with test_pseudo_invisible" ); |
4870 | DBUG_RETURN(1); |
4871 | }); |
4872 | DBUG_EXECUTE_IF("test_completely_invisible" , { |
4873 | my_error(ER_INTERNAL_ERROR, MYF(0), "Don't to it with test_completely_invisible" ); |
4874 | DBUG_RETURN(1); |
4875 | }); |
4876 | partition_info *tab_part_info; |
4877 | ulonglong flags= 0; |
4878 | bool is_last_partition_reorged= FALSE; |
4879 | part_elem_value *tab_max_elem_val= NULL; |
4880 | part_elem_value *alt_max_elem_val= NULL; |
4881 | longlong tab_max_range= 0, alt_max_range= 0; |
4882 | alt_part_info= thd->work_part_info; |
4883 | |
4884 | if (!table->part_info) |
4885 | { |
4886 | my_error(ER_PARTITION_MGMT_ON_NONPARTITIONED, MYF(0)); |
4887 | DBUG_RETURN(TRUE); |
4888 | } |
4889 | |
4890 | /* |
4891 | Open our intermediate table, we will operate on a temporary instance |
4892 | of the original table, to be able to skip copying all partitions. |
4893 | Open it as a copy of the original table, and modify its partition_info |
4894 | object to allow fast_alter_partition_table to perform the changes. |
4895 | */ |
4896 | DBUG_ASSERT(thd->mdl_context.is_lock_owner(MDL_key::TABLE, |
4897 | alter_ctx->db.str, |
4898 | alter_ctx->table_name.str, |
4899 | MDL_INTENTION_EXCLUSIVE)); |
4900 | |
4901 | tab_part_info= table->part_info; |
4902 | |
4903 | if (alter_info->partition_flags & ALTER_PARTITION_TABLE_REORG) |
4904 | { |
4905 | uint new_part_no, curr_part_no; |
4906 | /* |
4907 | 'ALTER TABLE t REORG PARTITION' only allowed with auto partition |
4908 | if default partitioning is used. |
4909 | */ |
4910 | |
4911 | if (tab_part_info->part_type != HASH_PARTITION || |
4912 | ((table->s->db_type()->partition_flags() & HA_USE_AUTO_PARTITION) && |
4913 | !tab_part_info->use_default_num_partitions) || |
4914 | ((!(table->s->db_type()->partition_flags() & HA_USE_AUTO_PARTITION)) && |
4915 | tab_part_info->use_default_num_partitions)) |
4916 | { |
4917 | my_error(ER_REORG_NO_PARAM_ERROR, MYF(0)); |
4918 | goto err; |
4919 | } |
4920 | new_part_no= table->file->get_default_no_partitions(create_info); |
4921 | curr_part_no= tab_part_info->num_parts; |
4922 | if (new_part_no == curr_part_no) |
4923 | { |
4924 | /* |
4925 | No change is needed, we will have the same number of partitions |
4926 | after the change as before. Thus we can reply ok immediately |
4927 | without any changes at all. |
4928 | */ |
4929 | flags= table->file->alter_table_flags(alter_info->flags); |
4930 | if (flags & (HA_FAST_CHANGE_PARTITION | HA_PARTITION_ONE_PHASE)) |
4931 | { |
4932 | *fast_alter_table= true; |
4933 | /* Force table re-open for consistency with the main case. */ |
4934 | table->m_needs_reopen= true; |
4935 | } |
4936 | else |
4937 | { |
4938 | /* |
4939 | Create copy of partition_info to avoid modifying original |
4940 | TABLE::part_info, to keep it safe for later use. |
4941 | */ |
4942 | if (!(tab_part_info= tab_part_info->get_clone(thd))) |
4943 | DBUG_RETURN(TRUE); |
4944 | } |
4945 | |
4946 | thd->work_part_info= tab_part_info; |
4947 | DBUG_RETURN(FALSE); |
4948 | } |
4949 | else if (new_part_no > curr_part_no) |
4950 | { |
4951 | /* |
4952 | We will add more partitions, we use the ADD PARTITION without |
4953 | setting the flag for no default number of partitions |
4954 | */ |
4955 | alter_info->partition_flags|= ALTER_PARTITION_ADD; |
4956 | thd->work_part_info->num_parts= new_part_no - curr_part_no; |
4957 | } |
4958 | else |
4959 | { |
4960 | /* |
4961 | We will remove hash partitions, we use the COALESCE PARTITION |
4962 | without setting the flag for no default number of partitions |
4963 | */ |
4964 | alter_info->partition_flags|= ALTER_PARTITION_COALESCE; |
4965 | alter_info->num_parts= curr_part_no - new_part_no; |
4966 | } |
4967 | } |
4968 | if (!(flags= table->file->alter_table_flags(alter_info->flags))) |
4969 | { |
4970 | my_error(ER_PARTITION_FUNCTION_FAILURE, MYF(0)); |
4971 | goto err; |
4972 | } |
4973 | if ((flags & (HA_FAST_CHANGE_PARTITION | HA_PARTITION_ONE_PHASE)) != 0) |
4974 | { |
4975 | /* |
4976 | "Fast" change of partitioning is supported in this case. |
4977 | We will change TABLE::part_info (as this is how we pass |
4978 | information to storage engine in this case), so the table |
4979 | must be reopened. |
4980 | */ |
4981 | *fast_alter_table= true; |
4982 | table->m_needs_reopen= true; |
4983 | } |
4984 | else |
4985 | { |
4986 | /* |
4987 | "Fast" changing of partitioning is not supported. Create |
4988 | a copy of TABLE::part_info object, so we can modify it safely. |
4989 | Modifying original TABLE::part_info will cause problems when |
4990 | we read data from old version of table using this TABLE object |
4991 | while copying them to new version of table. |
4992 | */ |
4993 | if (!(tab_part_info= tab_part_info->get_clone(thd))) |
4994 | DBUG_RETURN(TRUE); |
4995 | } |
4996 | DBUG_PRINT("info" , ("*fast_alter_table flags: 0x%llx" , flags)); |
4997 | if ((alter_info->partition_flags & ALTER_PARTITION_ADD) || |
4998 | (alter_info->partition_flags & ALTER_PARTITION_REORGANIZE)) |
4999 | { |
5000 | if (thd->work_part_info->part_type != tab_part_info->part_type) |
5001 | { |
5002 | if (thd->work_part_info->part_type == NOT_A_PARTITION) |
5003 | { |
5004 | if (tab_part_info->part_type == RANGE_PARTITION) |
5005 | { |
5006 | my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), "RANGE" ); |
5007 | goto err; |
5008 | } |
5009 | else if (tab_part_info->part_type == LIST_PARTITION) |
5010 | { |
5011 | my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), "LIST" ); |
5012 | goto err; |
5013 | } |
5014 | /* |
5015 | Hash partitions can be altered without parser finds out about |
5016 | that it is HASH partitioned. So no error here. |
5017 | */ |
5018 | } |
5019 | else |
5020 | { |
5021 | if (thd->work_part_info->part_type == RANGE_PARTITION) |
5022 | { |
5023 | my_error(ER_PARTITION_WRONG_VALUES_ERROR, MYF(0), |
5024 | "RANGE" , "LESS THAN" ); |
5025 | } |
5026 | else if (thd->work_part_info->part_type == LIST_PARTITION) |
5027 | { |
5028 | DBUG_ASSERT(thd->work_part_info->part_type == LIST_PARTITION); |
5029 | my_error(ER_PARTITION_WRONG_VALUES_ERROR, MYF(0), |
5030 | "LIST" , "IN" ); |
5031 | } |
5032 | else if (thd->work_part_info->part_type == VERSIONING_PARTITION) |
5033 | { |
5034 | my_error(ER_PARTITION_WRONG_TYPE, MYF(0), "SYSTEM_TIME" ); |
5035 | } |
5036 | else |
5037 | { |
5038 | DBUG_ASSERT(tab_part_info->part_type == RANGE_PARTITION || |
5039 | tab_part_info->part_type == LIST_PARTITION); |
5040 | (void) tab_part_info->error_if_requires_values(); |
5041 | } |
5042 | goto err; |
5043 | } |
5044 | } |
5045 | if ((tab_part_info->column_list && |
5046 | alt_part_info->num_columns != tab_part_info->num_columns && |
5047 | !only_default_value_added) || |
5048 | (!tab_part_info->column_list && |
5049 | (tab_part_info->part_type == RANGE_PARTITION || |
5050 | tab_part_info->part_type == LIST_PARTITION) && |
5051 | alt_part_info->num_columns != 1U && |
5052 | !only_default_value_added) || |
5053 | (!tab_part_info->column_list && |
5054 | tab_part_info->part_type == HASH_PARTITION && |
5055 | (alt_part_info->num_columns != 0))) |
5056 | { |
5057 | my_error(ER_PARTITION_COLUMN_LIST_ERROR, MYF(0)); |
5058 | goto err; |
5059 | } |
5060 | alt_part_info->column_list= tab_part_info->column_list; |
5061 | if (alt_part_info->fix_parser_data(thd)) |
5062 | { |
5063 | goto err; |
5064 | } |
5065 | } |
5066 | if (alter_info->partition_flags & ALTER_PARTITION_ADD) |
5067 | { |
5068 | if (*fast_alter_table && thd->locked_tables_mode) |
5069 | { |
5070 | MEM_ROOT *old_root= thd->mem_root; |
5071 | thd->mem_root= &thd->locked_tables_list.m_locked_tables_root; |
5072 | saved_part_info= tab_part_info->get_clone(thd); |
5073 | thd->mem_root= old_root; |
5074 | saved_part_info->read_partitions= tab_part_info->read_partitions; |
5075 | saved_part_info->lock_partitions= tab_part_info->lock_partitions; |
5076 | saved_part_info->bitmaps_are_initialized= tab_part_info->bitmaps_are_initialized; |
5077 | } |
5078 | /* |
5079 | We start by moving the new partitions to the list of temporary |
5080 | partitions. We will then check that the new partitions fit in the |
5081 | partitioning scheme as currently set-up. |
5082 | Partitions are always added at the end in ADD PARTITION. |
5083 | */ |
5084 | uint num_new_partitions= alt_part_info->num_parts; |
5085 | uint num_orig_partitions= tab_part_info->num_parts; |
5086 | uint check_total_partitions= num_new_partitions + num_orig_partitions; |
5087 | uint new_total_partitions= check_total_partitions; |
5088 | /* |
5089 | We allow quite a lot of values to be supplied by defaults, however we |
5090 | must know the number of new partitions in this case. |
5091 | */ |
5092 | if (thd->lex->no_write_to_binlog && |
5093 | tab_part_info->part_type != HASH_PARTITION && |
5094 | tab_part_info->part_type != VERSIONING_PARTITION) |
5095 | { |
5096 | my_error(ER_NO_BINLOG_ERROR, MYF(0)); |
5097 | goto err; |
5098 | } |
5099 | if (tab_part_info->defined_max_value && |
5100 | (tab_part_info->part_type == RANGE_PARTITION || |
5101 | alt_part_info->defined_max_value)) |
5102 | { |
5103 | my_error((tab_part_info->part_type == RANGE_PARTITION ? |
5104 | ER_PARTITION_MAXVALUE_ERROR : |
5105 | ER_PARTITION_DEFAULT_ERROR), MYF(0)); |
5106 | goto err; |
5107 | } |
5108 | if (num_new_partitions == 0) |
5109 | { |
5110 | my_error(ER_ADD_PARTITION_NO_NEW_PARTITION, MYF(0)); |
5111 | goto err; |
5112 | } |
5113 | if (tab_part_info->is_sub_partitioned()) |
5114 | { |
5115 | if (alt_part_info->num_subparts == 0) |
5116 | alt_part_info->num_subparts= tab_part_info->num_subparts; |
5117 | else if (alt_part_info->num_subparts != tab_part_info->num_subparts) |
5118 | { |
5119 | my_error(ER_ADD_PARTITION_SUBPART_ERROR, MYF(0)); |
5120 | goto err; |
5121 | } |
5122 | check_total_partitions= new_total_partitions* |
5123 | alt_part_info->num_subparts; |
5124 | } |
5125 | if (check_total_partitions > MAX_PARTITIONS) |
5126 | { |
5127 | my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0)); |
5128 | goto err; |
5129 | } |
5130 | alt_part_info->part_type= tab_part_info->part_type; |
5131 | alt_part_info->subpart_type= tab_part_info->subpart_type; |
5132 | if (alt_part_info->set_up_defaults_for_partitioning(thd, table->file, 0, |
5133 | tab_part_info->num_parts)) |
5134 | { |
5135 | goto err; |
5136 | } |
5137 | /* |
5138 | Handling of on-line cases: |
5139 | |
5140 | ADD PARTITION for RANGE/LIST PARTITIONING: |
5141 | ------------------------------------------ |
5142 | For range and list partitions add partition is simply adding a |
5143 | new empty partition to the table. If the handler support this we |
5144 | will use the simple method of doing this. The figure below shows |
5145 | an example of this and the states involved in making this change. |
5146 | |
5147 | Existing partitions New added partitions |
5148 | ------ ------ ------ ------ | ------ ------ |
5149 | | | | | | | | | | | | | | |
5150 | | p0 | | p1 | | p2 | | p3 | | | p4 | | p5 | |
5151 | ------ ------ ------ ------ | ------ ------ |
5152 | PART_NORMAL PART_NORMAL PART_NORMAL PART_NORMAL PART_TO_BE_ADDED*2 |
5153 | PART_NORMAL PART_NORMAL PART_NORMAL PART_NORMAL PART_IS_ADDED*2 |
5154 | |
5155 | The first line is the states before adding the new partitions and the |
5156 | second line is after the new partitions are added. All the partitions are |
5157 | in the partitions list, no partitions are placed in the temp_partitions |
5158 | list. |
5159 | |
5160 | ADD PARTITION for HASH PARTITIONING |
5161 | ----------------------------------- |
5162 | This little figure tries to show the various partitions involved when |
5163 | adding two new partitions to a linear hash based partitioned table with |
5164 | four partitions to start with, which lists are used and the states they |
5165 | pass through. Adding partitions to a normal hash based is similar except |
5166 | that it is always all the existing partitions that are reorganised not |
5167 | only a subset of them. |
5168 | |
5169 | Existing partitions New added partitions |
5170 | ------ ------ ------ ------ | ------ ------ |
5171 | | | | | | | | | | | | | | |
5172 | | p0 | | p1 | | p2 | | p3 | | | p4 | | p5 | |
5173 | ------ ------ ------ ------ | ------ ------ |
5174 | PART_CHANGED PART_CHANGED PART_NORMAL PART_NORMAL PART_TO_BE_ADDED |
5175 | PART_IS_CHANGED*2 PART_NORMAL PART_NORMAL PART_IS_ADDED |
5176 | PART_NORMAL PART_NORMAL PART_NORMAL PART_NORMAL PART_IS_ADDED |
5177 | |
5178 | Reorganised existing partitions |
5179 | ------ ------ |
5180 | | | | | |
5181 | | p0'| | p1'| |
5182 | ------ ------ |
5183 | |
5184 | p0 - p5 will be in the partitions list of partitions. |
5185 | p0' and p1' will actually not exist as separate objects, there presence can |
5186 | be deduced from the state of the partition and also the names of those |
5187 | partitions can be deduced this way. |
5188 | |
5189 | After adding the partitions and copying the partition data to p0', p1', |
5190 | p4 and p5 from p0 and p1 the states change to adapt for the new situation |
5191 | where p0 and p1 is dropped and replaced by p0' and p1' and the new p4 and |
5192 | p5 are in the table again. |
5193 | |
5194 | The first line above shows the states of the partitions before we start |
5195 | adding and copying partitions, the second after completing the adding |
5196 | and copying and finally the third line after also dropping the partitions |
5197 | that are reorganised. |
5198 | */ |
5199 | if (*fast_alter_table && tab_part_info->part_type == HASH_PARTITION) |
5200 | { |
5201 | uint part_no= 0, start_part= 1, start_sec_part= 1; |
5202 | uint end_part= 0, end_sec_part= 0; |
5203 | uint upper_2n= tab_part_info->linear_hash_mask + 1; |
5204 | uint lower_2n= upper_2n >> 1; |
5205 | bool all_parts= TRUE; |
5206 | if (tab_part_info->linear_hash_ind && num_new_partitions < upper_2n) |
5207 | { |
5208 | /* |
5209 | An analysis of which parts needs reorganisation shows that it is |
5210 | divided into two intervals. The first interval is those parts |
5211 | that are reorganised up until upper_2n - 1. From upper_2n and |
5212 | onwards it starts again from partition 0 and goes on until |
5213 | it reaches p(upper_2n - 1). If the last new partition reaches |
5214 | beyond upper_2n - 1 then the first interval will end with |
5215 | p(lower_2n - 1) and start with p(num_orig_partitions - lower_2n). |
5216 | If lower_2n partitions are added then p0 to p(lower_2n - 1) will |
5217 | be reorganised which means that the two interval becomes one |
5218 | interval at this point. Thus only when adding less than |
5219 | lower_2n partitions and going beyond a total of upper_2n we |
5220 | actually get two intervals. |
5221 | |
5222 | To exemplify this assume we have 6 partitions to start with and |
5223 | add 1, 2, 3, 5, 6, 7, 8, 9 partitions. |
5224 | The first to add after p5 is p6 = 110 in bit numbers. Thus we |
5225 | can see that 10 = p2 will be partition to reorganise if only one |
5226 | partition. |
5227 | If 2 partitions are added we reorganise [p2, p3]. Those two |
5228 | cases are covered by the second if part below. |
5229 | If 3 partitions are added we reorganise [p2, p3] U [p0,p0]. This |
5230 | part is covered by the else part below. |
5231 | If 5 partitions are added we get [p2,p3] U [p0, p2] = [p0, p3]. |
5232 | This is covered by the first if part where we need the max check |
5233 | to here use lower_2n - 1. |
5234 | If 7 partitions are added we get [p2,p3] U [p0, p4] = [p0, p4]. |
5235 | This is covered by the first if part but here we use the first |
5236 | calculated end_part. |
5237 | Finally with 9 new partitions we would also reorganise p6 if we |
5238 | used the method below but we cannot reorganise more partitions |
5239 | than what we had from the start and thus we simply set all_parts |
5240 | to TRUE. In this case we don't get into this if-part at all. |
5241 | */ |
5242 | all_parts= FALSE; |
5243 | if (num_new_partitions >= lower_2n) |
5244 | { |
5245 | /* |
5246 | In this case there is only one interval since the two intervals |
5247 | overlap and this starts from zero to last_part_no - upper_2n |
5248 | */ |
5249 | start_part= 0; |
5250 | end_part= new_total_partitions - (upper_2n + 1); |
5251 | end_part= max(lower_2n - 1, end_part); |
5252 | } |
5253 | else if (new_total_partitions <= upper_2n) |
5254 | { |
5255 | /* |
5256 | Also in this case there is only one interval since we are not |
5257 | going over a 2**n boundary |
5258 | */ |
5259 | start_part= num_orig_partitions - lower_2n; |
5260 | end_part= start_part + (num_new_partitions - 1); |
5261 | } |
5262 | else |
5263 | { |
5264 | /* We have two non-overlapping intervals since we are not |
5265 | passing a 2**n border and we have not at least lower_2n |
5266 | new parts that would ensure that the intervals become |
5267 | overlapping. |
5268 | */ |
5269 | start_part= num_orig_partitions - lower_2n; |
5270 | end_part= upper_2n - 1; |
5271 | start_sec_part= 0; |
5272 | end_sec_part= new_total_partitions - (upper_2n + 1); |
5273 | } |
5274 | } |
5275 | List_iterator<partition_element> tab_it(tab_part_info->partitions); |
5276 | part_no= 0; |
5277 | do |
5278 | { |
5279 | partition_element *p_elem= tab_it++; |
5280 | if (all_parts || |
5281 | (part_no >= start_part && part_no <= end_part) || |
5282 | (part_no >= start_sec_part && part_no <= end_sec_part)) |
5283 | { |
5284 | p_elem->part_state= PART_CHANGED; |
5285 | } |
5286 | } while (++part_no < num_orig_partitions); |
5287 | } |
5288 | /* |
5289 | Need to concatenate the lists here to make it possible to check the |
5290 | partition info for correctness using check_partition_info. |
5291 | For on-line add partition we set the state of this partition to |
5292 | PART_TO_BE_ADDED to ensure that it is known that it is not yet |
5293 | usable (becomes usable when partition is created and the switch of |
5294 | partition configuration is made. |
5295 | */ |
5296 | { |
5297 | partition_element *now_part= NULL; |
5298 | if (tab_part_info->part_type == VERSIONING_PARTITION) |
5299 | { |
5300 | List_iterator<partition_element> it(tab_part_info->partitions); |
5301 | partition_element *el; |
5302 | while ((el= it++)) |
5303 | { |
5304 | if (el->type() == partition_element::CURRENT) |
5305 | { |
5306 | it.remove(); |
5307 | now_part= el; |
5308 | } |
5309 | } |
5310 | if (*fast_alter_table && tab_part_info->vers_info->interval.is_set()) |
5311 | { |
5312 | partition_element *hist_part= tab_part_info->vers_info->hist_part; |
5313 | if (hist_part->range_value <= thd->query_start()) |
5314 | hist_part->part_state= PART_CHANGED; |
5315 | } |
5316 | } |
5317 | List_iterator<partition_element> alt_it(alt_part_info->partitions); |
5318 | uint part_count= 0; |
5319 | do |
5320 | { |
5321 | partition_element *part_elem= alt_it++; |
5322 | if (*fast_alter_table) |
5323 | part_elem->part_state= PART_TO_BE_ADDED; |
5324 | if (unlikely(tab_part_info->partitions.push_back(part_elem, |
5325 | thd->mem_root))) |
5326 | goto err; |
5327 | } while (++part_count < num_new_partitions); |
5328 | tab_part_info->num_parts+= num_new_partitions; |
5329 | if (tab_part_info->part_type == VERSIONING_PARTITION) |
5330 | { |
5331 | DBUG_ASSERT(now_part); |
5332 | if (unlikely(tab_part_info->partitions.push_back(now_part, |
5333 | thd->mem_root))) |
5334 | goto err; |
5335 | } |
5336 | } |
5337 | /* |
5338 | If we specify partitions explicitly we don't use defaults anymore. |
5339 | Using ADD PARTITION also means that we don't have the default number |
5340 | of partitions anymore. We use this code also for Table reorganisations |
5341 | and here we don't set any default flags to FALSE. |
5342 | */ |
5343 | if (!(alter_info->partition_flags & ALTER_PARTITION_TABLE_REORG)) |
5344 | { |
5345 | if (!alt_part_info->use_default_partitions) |
5346 | { |
5347 | DBUG_PRINT("info" , ("part_info: %p" , tab_part_info)); |
5348 | tab_part_info->use_default_partitions= FALSE; |
5349 | } |
5350 | tab_part_info->use_default_num_partitions= FALSE; |
5351 | tab_part_info->is_auto_partitioned= FALSE; |
5352 | } |
5353 | } |
5354 | else if (alter_info->partition_flags & ALTER_PARTITION_DROP) |
5355 | { |
5356 | /* |
5357 | Drop a partition from a range partition and list partitioning is |
5358 | always safe and can be made more or less immediate. It is necessary |
5359 | however to ensure that the partition to be removed is safely removed |
5360 | and that REPAIR TABLE can remove the partition if for some reason the |
5361 | command to drop the partition failed in the middle. |
5362 | */ |
5363 | uint part_count= 0; |
5364 | uint num_parts_dropped= alter_info->partition_names.elements; |
5365 | uint num_parts_found= 0; |
5366 | List_iterator<partition_element> part_it(tab_part_info->partitions); |
5367 | |
5368 | tab_part_info->is_auto_partitioned= FALSE; |
5369 | if (tab_part_info->part_type == VERSIONING_PARTITION) |
5370 | { |
5371 | if (num_parts_dropped >= tab_part_info->num_parts - 1) |
5372 | { |
5373 | DBUG_ASSERT(table && table->s && table->s->table_name.str); |
5374 | my_error(ER_VERS_WRONG_PARTS, MYF(0), table->s->table_name.str); |
5375 | goto err; |
5376 | } |
5377 | } |
5378 | else |
5379 | { |
5380 | if (!(tab_part_info->part_type == RANGE_PARTITION || |
5381 | tab_part_info->part_type == LIST_PARTITION)) |
5382 | { |
5383 | my_error(ER_ONLY_ON_RANGE_LIST_PARTITION, MYF(0), "DROP" ); |
5384 | goto err; |
5385 | } |
5386 | if (num_parts_dropped >= tab_part_info->num_parts) |
5387 | { |
5388 | my_error(ER_DROP_LAST_PARTITION, MYF(0)); |
5389 | goto err; |
5390 | } |
5391 | } |
5392 | do |
5393 | { |
5394 | partition_element *part_elem= part_it++; |
5395 | if (is_name_in_list(part_elem->partition_name, |
5396 | alter_info->partition_names)) |
5397 | { |
5398 | if (tab_part_info->part_type == VERSIONING_PARTITION) |
5399 | { |
5400 | if (part_elem->type() == partition_element::CURRENT) |
5401 | { |
5402 | my_error(ER_VERS_WRONG_PARTS, MYF(0), table->s->table_name.str); |
5403 | goto err; |
5404 | } |
5405 | if (tab_part_info->vers_info->interval.is_set()) |
5406 | { |
5407 | if (num_parts_found < part_count) |
5408 | { |
5409 | my_error(ER_VERS_DROP_PARTITION_INTERVAL, MYF(0)); |
5410 | goto err; |
5411 | } |
5412 | tab_part_info->vers_info->interval.start= |
5413 | (my_time_t)part_elem->range_value; |
5414 | } |
5415 | } |
5416 | /* |
5417 | Set state to indicate that the partition is to be dropped. |
5418 | */ |
5419 | num_parts_found++; |
5420 | part_elem->part_state= PART_TO_BE_DROPPED; |
5421 | } |
5422 | } while (++part_count < tab_part_info->num_parts); |
5423 | if (num_parts_found != num_parts_dropped) |
5424 | { |
5425 | my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), "DROP" ); |
5426 | goto err; |
5427 | } |
5428 | if (table->file->is_fk_defined_on_table_or_index(MAX_KEY)) |
5429 | { |
5430 | my_error(ER_ROW_IS_REFERENCED, MYF(0)); |
5431 | goto err; |
5432 | } |
5433 | tab_part_info->num_parts-= num_parts_dropped; |
5434 | } |
5435 | else if (alter_info->partition_flags & ALTER_PARTITION_REBUILD) |
5436 | { |
5437 | set_engine_all_partitions(tab_part_info, |
5438 | tab_part_info->default_engine_type); |
5439 | if (set_part_state(alter_info, tab_part_info, PART_CHANGED)) |
5440 | { |
5441 | my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), "REBUILD" ); |
5442 | goto err; |
5443 | } |
5444 | if (!(*fast_alter_table)) |
5445 | { |
5446 | table->file->print_error(HA_ERR_WRONG_COMMAND, MYF(0)); |
5447 | goto err; |
5448 | } |
5449 | } |
5450 | else if (alter_info->partition_flags & ALTER_PARTITION_COALESCE) |
5451 | { |
5452 | uint num_parts_coalesced= alter_info->num_parts; |
5453 | uint num_parts_remain= tab_part_info->num_parts - num_parts_coalesced; |
5454 | List_iterator<partition_element> part_it(tab_part_info->partitions); |
5455 | if (tab_part_info->part_type != HASH_PARTITION) |
5456 | { |
5457 | my_error(ER_COALESCE_ONLY_ON_HASH_PARTITION, MYF(0)); |
5458 | goto err; |
5459 | } |
5460 | if (num_parts_coalesced == 0) |
5461 | { |
5462 | my_error(ER_COALESCE_PARTITION_NO_PARTITION, MYF(0)); |
5463 | goto err; |
5464 | } |
5465 | if (num_parts_coalesced >= tab_part_info->num_parts) |
5466 | { |
5467 | my_error(ER_DROP_LAST_PARTITION, MYF(0)); |
5468 | goto err; |
5469 | } |
5470 | /* |
5471 | Online handling: |
5472 | COALESCE PARTITION: |
5473 | ------------------- |
5474 | The figure below shows the manner in which partitions are handled when |
5475 | performing an on-line coalesce partition and which states they go through |
5476 | at start, after adding and copying partitions and finally after dropping |
5477 | the partitions to drop. The figure shows an example using four partitions |
5478 | to start with, using linear hash and coalescing one partition (always the |
5479 | last partition). |
5480 | |
5481 | Using linear hash then all remaining partitions will have a new reorganised |
5482 | part. |
5483 | |
5484 | Existing partitions Coalesced partition |
5485 | ------ ------ ------ | ------ |
5486 | | | | | | | | | | |
5487 | | p0 | | p1 | | p2 | | | p3 | |
5488 | ------ ------ ------ | ------ |
5489 | PART_NORMAL PART_CHANGED PART_NORMAL PART_REORGED_DROPPED |
5490 | PART_NORMAL PART_IS_CHANGED PART_NORMAL PART_TO_BE_DROPPED |
5491 | PART_NORMAL PART_NORMAL PART_NORMAL PART_IS_DROPPED |
5492 | |
5493 | Reorganised existing partitions |
5494 | ------ |
5495 | | | |
5496 | | p1'| |
5497 | ------ |
5498 | |
5499 | p0 - p3 is in the partitions list. |
5500 | The p1' partition will actually not be in any list it is deduced from the |
5501 | state of p1. |
5502 | */ |
5503 | { |
5504 | uint part_count= 0, start_part= 1, start_sec_part= 1; |
5505 | uint end_part= 0, end_sec_part= 0; |
5506 | bool all_parts= TRUE; |
5507 | if (*fast_alter_table && |
5508 | tab_part_info->linear_hash_ind) |
5509 | { |
5510 | uint upper_2n= tab_part_info->linear_hash_mask + 1; |
5511 | uint lower_2n= upper_2n >> 1; |
5512 | all_parts= FALSE; |
5513 | if (num_parts_coalesced >= lower_2n) |
5514 | { |
5515 | all_parts= TRUE; |
5516 | } |
5517 | else if (num_parts_remain >= lower_2n) |
5518 | { |
5519 | end_part= tab_part_info->num_parts - (lower_2n + 1); |
5520 | start_part= num_parts_remain - lower_2n; |
5521 | } |
5522 | else |
5523 | { |
5524 | start_part= 0; |
5525 | end_part= tab_part_info->num_parts - (lower_2n + 1); |
5526 | end_sec_part= (lower_2n >> 1) - 1; |
5527 | start_sec_part= end_sec_part - (lower_2n - (num_parts_remain + 1)); |
5528 | } |
5529 | } |
5530 | do |
5531 | { |
5532 | partition_element *p_elem= part_it++; |
5533 | if (*fast_alter_table && |
5534 | (all_parts || |
5535 | (part_count >= start_part && part_count <= end_part) || |
5536 | (part_count >= start_sec_part && part_count <= end_sec_part))) |
5537 | p_elem->part_state= PART_CHANGED; |
5538 | if (++part_count > num_parts_remain) |
5539 | { |
5540 | if (*fast_alter_table) |
5541 | p_elem->part_state= PART_REORGED_DROPPED; |
5542 | else |
5543 | part_it.remove(); |
5544 | } |
5545 | } while (part_count < tab_part_info->num_parts); |
5546 | tab_part_info->num_parts= num_parts_remain; |
5547 | } |
5548 | if (!(alter_info->partition_flags & ALTER_PARTITION_TABLE_REORG)) |
5549 | { |
5550 | tab_part_info->use_default_num_partitions= FALSE; |
5551 | tab_part_info->is_auto_partitioned= FALSE; |
5552 | } |
5553 | } |
5554 | else if (alter_info->partition_flags & ALTER_PARTITION_REORGANIZE) |
5555 | { |
5556 | /* |
5557 | Reorganise partitions takes a number of partitions that are next |
5558 | to each other (at least for RANGE PARTITIONS) and then uses those |
5559 | to create a set of new partitions. So data is copied from those |
5560 | partitions into the new set of partitions. Those new partitions |
5561 | can have more values in the LIST value specifications or less both |
5562 | are allowed. The ranges can be different but since they are |
5563 | changing a set of consecutive partitions they must cover the same |
5564 | range as those changed from. |
5565 | This command can be used on RANGE and LIST partitions. |
5566 | */ |
5567 | uint num_parts_reorged= alter_info->partition_names.elements; |
5568 | uint num_parts_new= thd->work_part_info->partitions.elements; |
5569 | uint check_total_partitions; |
5570 | |
5571 | tab_part_info->is_auto_partitioned= FALSE; |
5572 | if (num_parts_reorged > tab_part_info->num_parts) |
5573 | { |
5574 | my_error(ER_REORG_PARTITION_NOT_EXIST, MYF(0)); |
5575 | goto err; |
5576 | } |
5577 | if (!(tab_part_info->part_type == RANGE_PARTITION || |
5578 | tab_part_info->part_type == LIST_PARTITION) && |
5579 | (num_parts_new != num_parts_reorged)) |
5580 | { |
5581 | my_error(ER_REORG_HASH_ONLY_ON_SAME_NO, MYF(0)); |
5582 | goto err; |
5583 | } |
5584 | if (tab_part_info->is_sub_partitioned() && |
5585 | alt_part_info->num_subparts && |
5586 | alt_part_info->num_subparts != tab_part_info->num_subparts) |
5587 | { |
5588 | my_error(ER_PARTITION_WRONG_NO_SUBPART_ERROR, MYF(0)); |
5589 | goto err; |
5590 | } |
5591 | check_total_partitions= tab_part_info->num_parts + num_parts_new; |
5592 | check_total_partitions-= num_parts_reorged; |
5593 | if (check_total_partitions > MAX_PARTITIONS) |
5594 | { |
5595 | my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0)); |
5596 | goto err; |
5597 | } |
5598 | alt_part_info->part_type= tab_part_info->part_type; |
5599 | alt_part_info->subpart_type= tab_part_info->subpart_type; |
5600 | alt_part_info->num_subparts= tab_part_info->num_subparts; |
5601 | DBUG_ASSERT(!alt_part_info->use_default_partitions); |
5602 | /* We specified partitions explicitly so don't use defaults anymore. */ |
5603 | tab_part_info->use_default_partitions= FALSE; |
5604 | if (alt_part_info->set_up_defaults_for_partitioning(thd, table->file, 0, |
5605 | 0)) |
5606 | { |
5607 | goto err; |
5608 | } |
5609 | /* |
5610 | Online handling: |
5611 | REORGANIZE PARTITION: |
5612 | --------------------- |
5613 | The figure exemplifies the handling of partitions, their state changes and |
5614 | how they are organised. It exemplifies four partitions where two of the |
5615 | partitions are reorganised (p1 and p2) into two new partitions (p4 and p5). |
5616 | The reason of this change could be to change range limits, change list |
5617 | values or for hash partitions simply reorganise the partition which could |
5618 | also involve moving them to new disks or new node groups (MySQL Cluster). |
5619 | |
5620 | Existing partitions |
5621 | ------ ------ ------ ------ |
5622 | | | | | | | | | |
5623 | | p0 | | p1 | | p2 | | p3 | |
5624 | ------ ------ ------ ------ |
5625 | PART_NORMAL PART_TO_BE_REORGED PART_NORMAL |
5626 | PART_NORMAL PART_TO_BE_DROPPED PART_NORMAL |
5627 | PART_NORMAL PART_IS_DROPPED PART_NORMAL |
5628 | |
5629 | Reorganised new partitions (replacing p1 and p2) |
5630 | ------ ------ |
5631 | | | | | |
5632 | | p4 | | p5 | |
5633 | ------ ------ |
5634 | PART_TO_BE_ADDED |
5635 | PART_IS_ADDED |
5636 | PART_IS_ADDED |
5637 | |
5638 | All unchanged partitions and the new partitions are in the partitions list |
5639 | in the order they will have when the change is completed. The reorganised |
5640 | partitions are placed in the temp_partitions list. PART_IS_ADDED is only a |
5641 | temporary state not written in the frm file. It is used to ensure we write |
5642 | the generated partition syntax in a correct manner. |
5643 | */ |
5644 | { |
5645 | List_iterator<partition_element> tab_it(tab_part_info->partitions); |
5646 | uint part_count= 0; |
5647 | bool found_first= FALSE; |
5648 | bool found_last= FALSE; |
5649 | uint drop_count= 0; |
5650 | do |
5651 | { |
5652 | partition_element *part_elem= tab_it++; |
5653 | is_last_partition_reorged= FALSE; |
5654 | if (is_name_in_list(part_elem->partition_name, |
5655 | alter_info->partition_names)) |
5656 | { |
5657 | is_last_partition_reorged= TRUE; |
5658 | drop_count++; |
5659 | if (tab_part_info->column_list) |
5660 | { |
5661 | List_iterator<part_elem_value> p(part_elem->list_val_list); |
5662 | tab_max_elem_val= p++; |
5663 | } |
5664 | else |
5665 | tab_max_range= part_elem->range_value; |
5666 | if (*fast_alter_table && |
5667 | unlikely(tab_part_info->temp_partitions. |
5668 | push_back(part_elem, thd->mem_root))) |
5669 | goto err; |
5670 | |
5671 | if (*fast_alter_table) |
5672 | part_elem->part_state= PART_TO_BE_REORGED; |
5673 | if (!found_first) |
5674 | { |
5675 | uint alt_part_count= 0; |
5676 | partition_element *alt_part_elem; |
5677 | List_iterator<partition_element> |
5678 | alt_it(alt_part_info->partitions); |
5679 | found_first= TRUE; |
5680 | do |
5681 | { |
5682 | alt_part_elem= alt_it++; |
5683 | if (tab_part_info->column_list) |
5684 | { |
5685 | List_iterator<part_elem_value> p(alt_part_elem->list_val_list); |
5686 | alt_max_elem_val= p++; |
5687 | } |
5688 | else |
5689 | alt_max_range= alt_part_elem->range_value; |
5690 | |
5691 | if (*fast_alter_table) |
5692 | alt_part_elem->part_state= PART_TO_BE_ADDED; |
5693 | if (alt_part_count == 0) |
5694 | tab_it.replace(alt_part_elem); |
5695 | else |
5696 | tab_it.after(alt_part_elem); |
5697 | } while (++alt_part_count < num_parts_new); |
5698 | } |
5699 | else if (found_last) |
5700 | { |
5701 | my_error(ER_CONSECUTIVE_REORG_PARTITIONS, MYF(0)); |
5702 | goto err; |
5703 | } |
5704 | else |
5705 | tab_it.remove(); |
5706 | } |
5707 | else |
5708 | { |
5709 | if (found_first) |
5710 | found_last= TRUE; |
5711 | } |
5712 | } while (++part_count < tab_part_info->num_parts); |
5713 | if (drop_count != num_parts_reorged) |
5714 | { |
5715 | my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), "REORGANIZE" ); |
5716 | goto err; |
5717 | } |
5718 | tab_part_info->num_parts= check_total_partitions; |
5719 | } |
5720 | } |
5721 | else |
5722 | { |
5723 | DBUG_ASSERT(FALSE); |
5724 | } |
5725 | *partition_changed= TRUE; |
5726 | thd->work_part_info= tab_part_info; |
5727 | if (alter_info->partition_flags & (ALTER_PARTITION_ADD | |
5728 | ALTER_PARTITION_REORGANIZE)) |
5729 | { |
5730 | if (tab_part_info->use_default_subpartitions && |
5731 | !alt_part_info->use_default_subpartitions) |
5732 | { |
5733 | tab_part_info->use_default_subpartitions= FALSE; |
5734 | tab_part_info->use_default_num_subpartitions= FALSE; |
5735 | } |
5736 | |
5737 | if (tab_part_info->check_partition_info(thd, (handlerton**)NULL, |
5738 | table->file, 0, alt_part_info)) |
5739 | { |
5740 | goto err; |
5741 | } |
5742 | /* |
5743 | The check below needs to be performed after check_partition_info |
5744 | since this function "fixes" the item trees of the new partitions |
5745 | to reorganize into |
5746 | */ |
5747 | if (alter_info->partition_flags == ALTER_PARTITION_REORGANIZE && |
5748 | tab_part_info->part_type == RANGE_PARTITION && |
5749 | ((is_last_partition_reorged && |
5750 | (tab_part_info->column_list ? |
5751 | (partition_info_compare_column_values( |
5752 | alt_max_elem_val->col_val_array, |
5753 | tab_max_elem_val->col_val_array) < 0) : |
5754 | alt_max_range < tab_max_range)) || |
5755 | (!is_last_partition_reorged && |
5756 | (tab_part_info->column_list ? |
5757 | (partition_info_compare_column_values( |
5758 | alt_max_elem_val->col_val_array, |
5759 | tab_max_elem_val->col_val_array) != 0) : |
5760 | alt_max_range != tab_max_range)))) |
5761 | { |
5762 | /* |
5763 | For range partitioning the total resulting range before and |
5764 | after the change must be the same except in one case. This is |
5765 | when the last partition is reorganised, in this case it is |
5766 | acceptable to increase the total range. |
5767 | The reason is that it is not allowed to have "holes" in the |
5768 | middle of the ranges and thus we should not allow to reorganise |
5769 | to create "holes". |
5770 | */ |
5771 | my_error(ER_REORG_OUTSIDE_RANGE, MYF(0)); |
5772 | goto err; |
5773 | } |
5774 | } |
5775 | } // ADD, DROP, COALESCE, REORGANIZE, TABLE_REORG, REBUILD |
5776 | else |
5777 | { |
5778 | /* |
5779 | When thd->lex->part_info has a reference to a partition_info the |
5780 | ALTER TABLE contained a definition of a partitioning. |
5781 | |
5782 | Case I: |
5783 | If there was a partition before and there is a new one defined. |
5784 | We use the new partitioning. The new partitioning is already |
5785 | defined in the correct variable so no work is needed to |
5786 | accomplish this. |
5787 | We do however need to update partition_changed to ensure that not |
5788 | only the frm file is changed in the ALTER TABLE command. |
5789 | |
5790 | Case IIa: |
5791 | There was a partitioning before and there is no new one defined. |
5792 | Also the user has not specified to remove partitioning explicitly. |
5793 | |
5794 | We use the old partitioning also for the new table. We do this |
5795 | by assigning the partition_info from the table loaded in |
5796 | open_table to the partition_info struct used by mysql_create_table |
5797 | later in this method. |
5798 | |
5799 | Case IIb: |
5800 | There was a partitioning before and there is no new one defined. |
5801 | The user has specified explicitly to remove partitioning |
5802 | |
5803 | Since the user has specified explicitly to remove partitioning |
5804 | we override the old partitioning info and create a new table using |
5805 | the specified engine. |
5806 | In this case the partition also is changed. |
5807 | |
5808 | Case III: |
5809 | There was no partitioning before altering the table, there is |
5810 | partitioning defined in the altered table. Use the new partitioning. |
5811 | No work needed since the partitioning info is already in the |
5812 | correct variable. |
5813 | |
5814 | In this case we discover one case where the new partitioning is using |
5815 | the same partition function as the default (PARTITION BY KEY or |
5816 | PARTITION BY LINEAR KEY with the list of fields equal to the primary |
5817 | key fields OR PARTITION BY [LINEAR] KEY() for tables without primary |
5818 | key) |
5819 | Also here partition has changed and thus a new table must be |
5820 | created. |
5821 | |
5822 | Case IV: |
5823 | There was no partitioning before and no partitioning defined. |
5824 | Obviously no work needed. |
5825 | */ |
5826 | partition_info *tab_part_info= table->part_info; |
5827 | |
5828 | if (tab_part_info) |
5829 | { |
5830 | if (alter_info->partition_flags & ALTER_PARTITION_REMOVE) |
5831 | { |
5832 | DBUG_PRINT("info" , ("Remove partitioning" )); |
5833 | if (!(create_info->used_fields & HA_CREATE_USED_ENGINE)) |
5834 | { |
5835 | DBUG_PRINT("info" , ("No explicit engine used" )); |
5836 | create_info->db_type= tab_part_info->default_engine_type; |
5837 | } |
5838 | DBUG_PRINT("info" , ("New engine type: %s" , |
5839 | ha_resolve_storage_engine_name(create_info->db_type))); |
5840 | thd->work_part_info= NULL; |
5841 | *partition_changed= TRUE; |
5842 | } |
5843 | else if (!thd->work_part_info) |
5844 | { |
5845 | /* |
5846 | Retain partitioning but possibly with a new storage engine |
5847 | beneath. |
5848 | |
5849 | Create a copy of TABLE::part_info to be able to modify it freely. |
5850 | */ |
5851 | if (!(tab_part_info= tab_part_info->get_clone(thd))) |
5852 | DBUG_RETURN(TRUE); |
5853 | thd->work_part_info= tab_part_info; |
5854 | if (create_info->used_fields & HA_CREATE_USED_ENGINE && |
5855 | create_info->db_type != tab_part_info->default_engine_type) |
5856 | { |
5857 | /* |
5858 | Make sure change of engine happens to all partitions. |
5859 | */ |
5860 | DBUG_PRINT("info" , ("partition changed" )); |
5861 | if (tab_part_info->is_auto_partitioned) |
5862 | { |
5863 | /* |
5864 | If the user originally didn't specify partitioning to be |
5865 | used we can remove it now. |
5866 | */ |
5867 | thd->work_part_info= NULL; |
5868 | } |
5869 | else |
5870 | { |
5871 | /* |
5872 | Ensure that all partitions have the proper engine set-up |
5873 | */ |
5874 | set_engine_all_partitions(thd->work_part_info, |
5875 | create_info->db_type); |
5876 | } |
5877 | *partition_changed= TRUE; |
5878 | } |
5879 | } |
5880 | } |
5881 | if (thd->work_part_info) |
5882 | { |
5883 | partition_info *part_info= thd->work_part_info; |
5884 | bool is_native_partitioned= FALSE; |
5885 | /* |
5886 | Need to cater for engine types that can handle partition without |
5887 | using the partition handler. |
5888 | */ |
5889 | if (part_info != tab_part_info) |
5890 | { |
5891 | if (part_info->fix_parser_data(thd)) |
5892 | { |
5893 | goto err; |
5894 | } |
5895 | /* |
5896 | Compare the old and new part_info. If only key_algorithm |
5897 | change is done, don't consider it as changed partitioning (to avoid |
5898 | rebuild). This is to handle KEY (numeric_cols) partitioned tables |
5899 | created in 5.1. For more info, see bug#14521864. |
5900 | */ |
5901 | if (alter_info->partition_flags != ALTER_PARTITION_INFO || |
5902 | !table->part_info || |
5903 | alter_info->requested_algorithm != |
5904 | Alter_info::ALTER_TABLE_ALGORITHM_INPLACE || |
5905 | !table->part_info->has_same_partitioning(part_info)) |
5906 | { |
5907 | DBUG_PRINT("info" , ("partition changed" )); |
5908 | *partition_changed= true; |
5909 | } |
5910 | } |
5911 | /* |
5912 | Set up partition default_engine_type either from the create_info |
5913 | or from the previus table |
5914 | */ |
5915 | if (create_info->used_fields & HA_CREATE_USED_ENGINE) |
5916 | part_info->default_engine_type= create_info->db_type; |
5917 | else |
5918 | { |
5919 | if (tab_part_info) |
5920 | part_info->default_engine_type= tab_part_info->default_engine_type; |
5921 | else |
5922 | part_info->default_engine_type= create_info->db_type; |
5923 | } |
5924 | DBUG_ASSERT(part_info->default_engine_type && |
5925 | part_info->default_engine_type != partition_hton); |
5926 | if (check_native_partitioned(create_info, &is_native_partitioned, |
5927 | part_info, thd)) |
5928 | { |
5929 | goto err; |
5930 | } |
5931 | if (!is_native_partitioned) |
5932 | { |
5933 | DBUG_ASSERT(create_info->db_type); |
5934 | create_info->db_type= partition_hton; |
5935 | } |
5936 | } |
5937 | } |
5938 | DBUG_RETURN(FALSE); |
5939 | err: |
5940 | *fast_alter_table= false; |
5941 | if (saved_part_info) |
5942 | table->part_info= saved_part_info; |
5943 | DBUG_RETURN(TRUE); |
5944 | } |
5945 | |
5946 | |
5947 | /* |
5948 | Change partitions, used to implement ALTER TABLE ADD/REORGANIZE/COALESCE |
5949 | partitions. This method is used to implement both single-phase and multi- |
5950 | phase implementations of ADD/REORGANIZE/COALESCE partitions. |
5951 | |
5952 | SYNOPSIS |
5953 | mysql_change_partitions() |
5954 | lpt Struct containing parameters |
5955 | |
5956 | RETURN VALUES |
5957 | TRUE Failure |
5958 | FALSE Success |
5959 | |
5960 | DESCRIPTION |
5961 | Request handler to add partitions as set in states of the partition |
5962 | |
5963 | Elements of the lpt parameters used: |
5964 | create_info Create information used to create partitions |
5965 | db Database name |
5966 | table_name Table name |
5967 | copied Output parameter where number of copied |
5968 | records are added |
5969 | deleted Output parameter where number of deleted |
5970 | records are added |
5971 | */ |
5972 | |
5973 | static bool mysql_change_partitions(ALTER_PARTITION_PARAM_TYPE *lpt) |
5974 | { |
5975 | char path[FN_REFLEN+1]; |
5976 | int error; |
5977 | handler *file= lpt->table->file; |
5978 | THD *thd= lpt->thd; |
5979 | DBUG_ENTER("mysql_change_partitions" ); |
5980 | |
5981 | build_table_filename(path, sizeof(path) - 1, lpt->db.str, lpt->table_name.str, "" , 0); |
5982 | |
5983 | if(mysql_trans_prepare_alter_copy_data(thd)) |
5984 | DBUG_RETURN(TRUE); |
5985 | |
5986 | /* TODO: test if bulk_insert would increase the performance */ |
5987 | |
5988 | if (unlikely((error= file->ha_change_partitions(lpt->create_info, path, |
5989 | &lpt->copied, |
5990 | &lpt->deleted, |
5991 | lpt->pack_frm_data, |
5992 | lpt->pack_frm_len)))) |
5993 | { |
5994 | file->print_error(error, MYF(error != ER_OUTOFMEMORY ? 0 : ME_FATALERROR)); |
5995 | } |
5996 | |
5997 | if (mysql_trans_commit_alter_copy_data(thd)) |
5998 | error= 1; /* The error has been reported */ |
5999 | |
6000 | DBUG_RETURN(MY_TEST(error)); |
6001 | } |
6002 | |
6003 | |
6004 | /* |
6005 | Rename partitions in an ALTER TABLE of partitions |
6006 | |
6007 | SYNOPSIS |
6008 | mysql_rename_partitions() |
6009 | lpt Struct containing parameters |
6010 | |
6011 | RETURN VALUES |
6012 | TRUE Failure |
6013 | FALSE Success |
6014 | |
6015 | DESCRIPTION |
6016 | Request handler to rename partitions as set in states of the partition |
6017 | |
6018 | Parameters used: |
6019 | db Database name |
6020 | table_name Table name |
6021 | */ |
6022 | |
6023 | static bool mysql_rename_partitions(ALTER_PARTITION_PARAM_TYPE *lpt) |
6024 | { |
6025 | char path[FN_REFLEN+1]; |
6026 | int error; |
6027 | DBUG_ENTER("mysql_rename_partitions" ); |
6028 | |
6029 | build_table_filename(path, sizeof(path) - 1, lpt->db.str, lpt->table_name.str, "" , 0); |
6030 | if (unlikely((error= lpt->table->file->ha_rename_partitions(path)))) |
6031 | { |
6032 | if (error != 1) |
6033 | lpt->table->file->print_error(error, MYF(0)); |
6034 | DBUG_RETURN(TRUE); |
6035 | } |
6036 | DBUG_RETURN(FALSE); |
6037 | } |
6038 | |
6039 | |
6040 | /* |
6041 | Drop partitions in an ALTER TABLE of partitions |
6042 | |
6043 | SYNOPSIS |
6044 | mysql_drop_partitions() |
6045 | lpt Struct containing parameters |
6046 | |
6047 | RETURN VALUES |
6048 | TRUE Failure |
6049 | FALSE Success |
6050 | DESCRIPTION |
6051 | Drop the partitions marked with PART_TO_BE_DROPPED state and remove |
6052 | those partitions from the list. |
6053 | |
6054 | Parameters used: |
6055 | table Table object |
6056 | db Database name |
6057 | table_name Table name |
6058 | */ |
6059 | |
6060 | static bool mysql_drop_partitions(ALTER_PARTITION_PARAM_TYPE *lpt) |
6061 | { |
6062 | char path[FN_REFLEN+1]; |
6063 | partition_info *part_info= lpt->table->part_info; |
6064 | List_iterator<partition_element> part_it(part_info->partitions); |
6065 | uint i= 0; |
6066 | uint remove_count= 0; |
6067 | int error; |
6068 | DBUG_ENTER("mysql_drop_partitions" ); |
6069 | |
6070 | DBUG_ASSERT(lpt->thd->mdl_context.is_lock_owner(MDL_key::TABLE, |
6071 | lpt->table->s->db.str, |
6072 | lpt->table->s->table_name.str, |
6073 | MDL_EXCLUSIVE)); |
6074 | |
6075 | build_table_filename(path, sizeof(path) - 1, lpt->db.str, lpt->table_name.str, "" , 0); |
6076 | if ((error= lpt->table->file->ha_drop_partitions(path))) |
6077 | { |
6078 | lpt->table->file->print_error(error, MYF(0)); |
6079 | DBUG_RETURN(TRUE); |
6080 | } |
6081 | do |
6082 | { |
6083 | partition_element *part_elem= part_it++; |
6084 | if (part_elem->part_state == PART_IS_DROPPED) |
6085 | { |
6086 | part_it.remove(); |
6087 | remove_count++; |
6088 | } |
6089 | } while (++i < part_info->num_parts); |
6090 | part_info->num_parts-= remove_count; |
6091 | DBUG_RETURN(FALSE); |
6092 | } |
6093 | |
6094 | |
6095 | /* |
6096 | Insert log entry into list |
6097 | SYNOPSIS |
6098 | insert_part_info_log_entry_list() |
6099 | log_entry |
6100 | RETURN VALUES |
6101 | NONE |
6102 | */ |
6103 | |
6104 | static void insert_part_info_log_entry_list(partition_info *part_info, |
6105 | DDL_LOG_MEMORY_ENTRY *log_entry) |
6106 | { |
6107 | log_entry->next_active_log_entry= part_info->first_log_entry; |
6108 | part_info->first_log_entry= log_entry; |
6109 | } |
6110 | |
6111 | |
6112 | /* |
6113 | Release all log entries for this partition info struct |
6114 | SYNOPSIS |
6115 | release_part_info_log_entries() |
6116 | first_log_entry First log entry in list to release |
6117 | RETURN VALUES |
6118 | NONE |
6119 | */ |
6120 | |
6121 | static void release_part_info_log_entries(DDL_LOG_MEMORY_ENTRY *log_entry) |
6122 | { |
6123 | DBUG_ENTER("release_part_info_log_entries" ); |
6124 | |
6125 | while (log_entry) |
6126 | { |
6127 | release_ddl_log_memory_entry(log_entry); |
6128 | log_entry= log_entry->next_active_log_entry; |
6129 | } |
6130 | DBUG_VOID_RETURN; |
6131 | } |
6132 | |
6133 | |
6134 | /* |
6135 | Log an delete/rename frm file |
6136 | SYNOPSIS |
6137 | write_log_replace_delete_frm() |
6138 | lpt Struct for parameters |
6139 | next_entry Next reference to use in log record |
6140 | from_path Name to rename from |
6141 | to_path Name to rename to |
6142 | replace_flag TRUE if replace, else delete |
6143 | RETURN VALUES |
6144 | TRUE Error |
6145 | FALSE Success |
6146 | DESCRIPTION |
6147 | Support routine that writes a replace or delete of an frm file into the |
6148 | ddl log. It also inserts an entry that keeps track of used space into |
6149 | the partition info object |
6150 | */ |
6151 | |
6152 | static bool write_log_replace_delete_frm(ALTER_PARTITION_PARAM_TYPE *lpt, |
6153 | uint next_entry, |
6154 | const char *from_path, |
6155 | const char *to_path, |
6156 | bool replace_flag) |
6157 | { |
6158 | DDL_LOG_ENTRY ddl_log_entry; |
6159 | DDL_LOG_MEMORY_ENTRY *log_entry; |
6160 | DBUG_ENTER("write_log_replace_delete_frm" ); |
6161 | |
6162 | if (replace_flag) |
6163 | ddl_log_entry.action_type= DDL_LOG_REPLACE_ACTION; |
6164 | else |
6165 | ddl_log_entry.action_type= DDL_LOG_DELETE_ACTION; |
6166 | ddl_log_entry.next_entry= next_entry; |
6167 | ddl_log_entry.handler_name= reg_ext; |
6168 | ddl_log_entry.name= to_path; |
6169 | if (replace_flag) |
6170 | ddl_log_entry.from_name= from_path; |
6171 | if (write_ddl_log_entry(&ddl_log_entry, &log_entry)) |
6172 | { |
6173 | DBUG_RETURN(TRUE); |
6174 | } |
6175 | insert_part_info_log_entry_list(lpt->part_info, log_entry); |
6176 | DBUG_RETURN(FALSE); |
6177 | } |
6178 | |
6179 | |
6180 | /* |
6181 | Log final partition changes in change partition |
6182 | SYNOPSIS |
6183 | write_log_changed_partitions() |
6184 | lpt Struct containing parameters |
6185 | RETURN VALUES |
6186 | TRUE Error |
6187 | FALSE Success |
6188 | DESCRIPTION |
6189 | This code is used to perform safe ADD PARTITION for HASH partitions |
6190 | and COALESCE for HASH partitions and REORGANIZE for any type of |
6191 | partitions. |
6192 | We prepare entries for all partitions except the reorganised partitions |
6193 | in REORGANIZE partition, those are handled by |
6194 | write_log_dropped_partitions. For those partitions that are replaced |
6195 | special care is needed to ensure that this is performed correctly and |
6196 | this requires a two-phased approach with this log as a helper for this. |
6197 | |
6198 | This code is closely intertwined with the code in rename_partitions in |
6199 | the partition handler. |
6200 | */ |
6201 | |
6202 | static bool write_log_changed_partitions(ALTER_PARTITION_PARAM_TYPE *lpt, |
6203 | uint *next_entry, const char *path) |
6204 | { |
6205 | DDL_LOG_ENTRY ddl_log_entry; |
6206 | partition_info *part_info= lpt->part_info; |
6207 | DDL_LOG_MEMORY_ENTRY *log_entry; |
6208 | char tmp_path[FN_REFLEN + 1]; |
6209 | char normal_path[FN_REFLEN + 1]; |
6210 | List_iterator<partition_element> part_it(part_info->partitions); |
6211 | uint temp_partitions= part_info->temp_partitions.elements; |
6212 | uint num_elements= part_info->partitions.elements; |
6213 | uint i= 0; |
6214 | DBUG_ENTER("write_log_changed_partitions" ); |
6215 | |
6216 | do |
6217 | { |
6218 | partition_element *part_elem= part_it++; |
6219 | if (part_elem->part_state == PART_IS_CHANGED || |
6220 | (part_elem->part_state == PART_IS_ADDED && temp_partitions)) |
6221 | { |
6222 | if (part_info->is_sub_partitioned()) |
6223 | { |
6224 | List_iterator<partition_element> sub_it(part_elem->subpartitions); |
6225 | uint num_subparts= part_info->num_subparts; |
6226 | uint j= 0; |
6227 | do |
6228 | { |
6229 | partition_element *sub_elem= sub_it++; |
6230 | ddl_log_entry.next_entry= *next_entry; |
6231 | ddl_log_entry.handler_name= |
6232 | ha_resolve_storage_engine_name(sub_elem->engine_type); |
6233 | if (create_subpartition_name(tmp_path, sizeof(tmp_path), path, |
6234 | part_elem->partition_name, |
6235 | sub_elem->partition_name, |
6236 | TEMP_PART_NAME) || |
6237 | create_subpartition_name(normal_path, sizeof(normal_path), path, |
6238 | part_elem->partition_name, |
6239 | sub_elem->partition_name, |
6240 | NORMAL_PART_NAME)) |
6241 | DBUG_RETURN(TRUE); |
6242 | ddl_log_entry.name= normal_path; |
6243 | ddl_log_entry.from_name= tmp_path; |
6244 | if (part_elem->part_state == PART_IS_CHANGED) |
6245 | ddl_log_entry.action_type= DDL_LOG_REPLACE_ACTION; |
6246 | else |
6247 | ddl_log_entry.action_type= DDL_LOG_RENAME_ACTION; |
6248 | if (write_ddl_log_entry(&ddl_log_entry, &log_entry)) |
6249 | { |
6250 | DBUG_RETURN(TRUE); |
6251 | } |
6252 | *next_entry= log_entry->entry_pos; |
6253 | sub_elem->log_entry= log_entry; |
6254 | insert_part_info_log_entry_list(part_info, log_entry); |
6255 | } while (++j < num_subparts); |
6256 | } |
6257 | else |
6258 | { |
6259 | ddl_log_entry.next_entry= *next_entry; |
6260 | ddl_log_entry.handler_name= |
6261 | ha_resolve_storage_engine_name(part_elem->engine_type); |
6262 | if (create_partition_name(tmp_path, sizeof(tmp_path), path, |
6263 | part_elem->partition_name, TEMP_PART_NAME, |
6264 | TRUE) || |
6265 | create_partition_name(normal_path, sizeof(normal_path), path, |
6266 | part_elem->partition_name, NORMAL_PART_NAME, |
6267 | TRUE)) |
6268 | DBUG_RETURN(TRUE); |
6269 | ddl_log_entry.name= normal_path; |
6270 | ddl_log_entry.from_name= tmp_path; |
6271 | if (part_elem->part_state == PART_IS_CHANGED) |
6272 | ddl_log_entry.action_type= DDL_LOG_REPLACE_ACTION; |
6273 | else |
6274 | ddl_log_entry.action_type= DDL_LOG_RENAME_ACTION; |
6275 | if (write_ddl_log_entry(&ddl_log_entry, &log_entry)) |
6276 | { |
6277 | DBUG_RETURN(TRUE); |
6278 | } |
6279 | *next_entry= log_entry->entry_pos; |
6280 | part_elem->log_entry= log_entry; |
6281 | insert_part_info_log_entry_list(part_info, log_entry); |
6282 | } |
6283 | } |
6284 | } while (++i < num_elements); |
6285 | DBUG_RETURN(FALSE); |
6286 | } |
6287 | |
6288 | |
6289 | /* |
6290 | Log dropped partitions |
6291 | SYNOPSIS |
6292 | write_log_dropped_partitions() |
6293 | lpt Struct containing parameters |
6294 | RETURN VALUES |
6295 | TRUE Error |
6296 | FALSE Success |
6297 | */ |
6298 | |
6299 | static bool write_log_dropped_partitions(ALTER_PARTITION_PARAM_TYPE *lpt, |
6300 | uint *next_entry, |
6301 | const char *path, |
6302 | bool temp_list) |
6303 | { |
6304 | DDL_LOG_ENTRY ddl_log_entry; |
6305 | partition_info *part_info= lpt->part_info; |
6306 | DDL_LOG_MEMORY_ENTRY *log_entry; |
6307 | char tmp_path[FN_REFLEN + 1]; |
6308 | List_iterator<partition_element> part_it(part_info->partitions); |
6309 | List_iterator<partition_element> temp_it(part_info->temp_partitions); |
6310 | uint num_temp_partitions= part_info->temp_partitions.elements; |
6311 | uint num_elements= part_info->partitions.elements; |
6312 | DBUG_ENTER("write_log_dropped_partitions" ); |
6313 | |
6314 | ddl_log_entry.action_type= DDL_LOG_DELETE_ACTION; |
6315 | if (temp_list) |
6316 | num_elements= num_temp_partitions; |
6317 | while (num_elements--) |
6318 | { |
6319 | partition_element *part_elem; |
6320 | if (temp_list) |
6321 | part_elem= temp_it++; |
6322 | else |
6323 | part_elem= part_it++; |
6324 | if (part_elem->part_state == PART_TO_BE_DROPPED || |
6325 | part_elem->part_state == PART_TO_BE_ADDED || |
6326 | part_elem->part_state == PART_CHANGED) |
6327 | { |
6328 | uint name_variant; |
6329 | if (part_elem->part_state == PART_CHANGED || |
6330 | (part_elem->part_state == PART_TO_BE_ADDED && |
6331 | num_temp_partitions)) |
6332 | name_variant= TEMP_PART_NAME; |
6333 | else |
6334 | name_variant= NORMAL_PART_NAME; |
6335 | if (part_info->is_sub_partitioned()) |
6336 | { |
6337 | List_iterator<partition_element> sub_it(part_elem->subpartitions); |
6338 | uint num_subparts= part_info->num_subparts; |
6339 | uint j= 0; |
6340 | do |
6341 | { |
6342 | partition_element *sub_elem= sub_it++; |
6343 | ddl_log_entry.next_entry= *next_entry; |
6344 | ddl_log_entry.handler_name= |
6345 | ha_resolve_storage_engine_name(sub_elem->engine_type); |
6346 | if (create_subpartition_name(tmp_path, sizeof(tmp_path), path, |
6347 | part_elem->partition_name, |
6348 | sub_elem->partition_name, name_variant)) |
6349 | DBUG_RETURN(TRUE); |
6350 | ddl_log_entry.name= tmp_path; |
6351 | if (write_ddl_log_entry(&ddl_log_entry, &log_entry)) |
6352 | { |
6353 | DBUG_RETURN(TRUE); |
6354 | } |
6355 | *next_entry= log_entry->entry_pos; |
6356 | sub_elem->log_entry= log_entry; |
6357 | insert_part_info_log_entry_list(part_info, log_entry); |
6358 | } while (++j < num_subparts); |
6359 | } |
6360 | else |
6361 | { |
6362 | ddl_log_entry.next_entry= *next_entry; |
6363 | ddl_log_entry.handler_name= |
6364 | ha_resolve_storage_engine_name(part_elem->engine_type); |
6365 | if (create_partition_name(tmp_path, sizeof(tmp_path), path, |
6366 | part_elem->partition_name, name_variant, |
6367 | TRUE)) |
6368 | DBUG_RETURN(TRUE); |
6369 | ddl_log_entry.name= tmp_path; |
6370 | if (write_ddl_log_entry(&ddl_log_entry, &log_entry)) |
6371 | { |
6372 | DBUG_RETURN(TRUE); |
6373 | } |
6374 | *next_entry= log_entry->entry_pos; |
6375 | part_elem->log_entry= log_entry; |
6376 | insert_part_info_log_entry_list(part_info, log_entry); |
6377 | } |
6378 | } |
6379 | } |
6380 | DBUG_RETURN(FALSE); |
6381 | } |
6382 | |
6383 | |
6384 | /* |
6385 | Set execute log entry in ddl log for this partitioned table |
6386 | SYNOPSIS |
6387 | set_part_info_exec_log_entry() |
6388 | part_info Partition info object |
6389 | exec_log_entry Log entry |
6390 | RETURN VALUES |
6391 | NONE |
6392 | */ |
6393 | |
6394 | static void set_part_info_exec_log_entry(partition_info *part_info, |
6395 | DDL_LOG_MEMORY_ENTRY *exec_log_entry) |
6396 | { |
6397 | part_info->exec_log_entry= exec_log_entry; |
6398 | exec_log_entry->next_active_log_entry= NULL; |
6399 | } |
6400 | |
6401 | |
6402 | /* |
6403 | Write the log entry to ensure that the shadow frm file is removed at |
6404 | crash. |
6405 | SYNOPSIS |
6406 | write_log_drop_shadow_frm() |
6407 | lpt Struct containing parameters |
6408 | install_frm Should we log action to install shadow frm or should |
6409 | the action be to remove the shadow frm file. |
6410 | RETURN VALUES |
6411 | TRUE Error |
6412 | FALSE Success |
6413 | DESCRIPTION |
6414 | Prepare an entry to the ddl log indicating a drop/install of the shadow frm |
6415 | file and its corresponding handler file. |
6416 | */ |
6417 | |
6418 | static bool write_log_drop_shadow_frm(ALTER_PARTITION_PARAM_TYPE *lpt) |
6419 | { |
6420 | partition_info *part_info= lpt->part_info; |
6421 | DDL_LOG_MEMORY_ENTRY *log_entry; |
6422 | DDL_LOG_MEMORY_ENTRY *exec_log_entry= NULL; |
6423 | char shadow_path[FN_REFLEN + 1]; |
6424 | DBUG_ENTER("write_log_drop_shadow_frm" ); |
6425 | |
6426 | build_table_shadow_filename(shadow_path, sizeof(shadow_path) - 1, lpt); |
6427 | mysql_mutex_lock(&LOCK_gdl); |
6428 | if (write_log_replace_delete_frm(lpt, 0UL, NULL, |
6429 | (const char*)shadow_path, FALSE)) |
6430 | goto error; |
6431 | log_entry= part_info->first_log_entry; |
6432 | if (write_execute_ddl_log_entry(log_entry->entry_pos, |
6433 | FALSE, &exec_log_entry)) |
6434 | goto error; |
6435 | mysql_mutex_unlock(&LOCK_gdl); |
6436 | set_part_info_exec_log_entry(part_info, exec_log_entry); |
6437 | DBUG_RETURN(FALSE); |
6438 | |
6439 | error: |
6440 | release_part_info_log_entries(part_info->first_log_entry); |
6441 | mysql_mutex_unlock(&LOCK_gdl); |
6442 | part_info->first_log_entry= NULL; |
6443 | my_error(ER_DDL_LOG_ERROR, MYF(0)); |
6444 | DBUG_RETURN(TRUE); |
6445 | } |
6446 | |
6447 | |
6448 | /* |
6449 | Log renaming of shadow frm to real frm name and dropping of old frm |
6450 | SYNOPSIS |
6451 | write_log_rename_frm() |
6452 | lpt Struct containing parameters |
6453 | RETURN VALUES |
6454 | TRUE Error |
6455 | FALSE Success |
6456 | DESCRIPTION |
6457 | Prepare an entry to ensure that we complete the renaming of the frm |
6458 | file if failure occurs in the middle of the rename process. |
6459 | */ |
6460 | |
6461 | static bool write_log_rename_frm(ALTER_PARTITION_PARAM_TYPE *lpt) |
6462 | { |
6463 | partition_info *part_info= lpt->part_info; |
6464 | DDL_LOG_MEMORY_ENTRY *log_entry; |
6465 | DDL_LOG_MEMORY_ENTRY *exec_log_entry= part_info->exec_log_entry; |
6466 | char path[FN_REFLEN + 1]; |
6467 | char shadow_path[FN_REFLEN + 1]; |
6468 | DDL_LOG_MEMORY_ENTRY *old_first_log_entry= part_info->first_log_entry; |
6469 | DBUG_ENTER("write_log_rename_frm" ); |
6470 | |
6471 | part_info->first_log_entry= NULL; |
6472 | build_table_filename(path, sizeof(path) - 1, lpt->db.str, lpt->table_name.str, "" , 0); |
6473 | build_table_shadow_filename(shadow_path, sizeof(shadow_path) - 1, lpt); |
6474 | mysql_mutex_lock(&LOCK_gdl); |
6475 | if (write_log_replace_delete_frm(lpt, 0UL, shadow_path, path, TRUE)) |
6476 | goto error; |
6477 | log_entry= part_info->first_log_entry; |
6478 | part_info->frm_log_entry= log_entry; |
6479 | if (write_execute_ddl_log_entry(log_entry->entry_pos, |
6480 | FALSE, &exec_log_entry)) |
6481 | goto error; |
6482 | release_part_info_log_entries(old_first_log_entry); |
6483 | mysql_mutex_unlock(&LOCK_gdl); |
6484 | DBUG_RETURN(FALSE); |
6485 | |
6486 | error: |
6487 | release_part_info_log_entries(part_info->first_log_entry); |
6488 | mysql_mutex_unlock(&LOCK_gdl); |
6489 | part_info->first_log_entry= old_first_log_entry; |
6490 | part_info->frm_log_entry= NULL; |
6491 | my_error(ER_DDL_LOG_ERROR, MYF(0)); |
6492 | DBUG_RETURN(TRUE); |
6493 | } |
6494 | |
6495 | |
6496 | /* |
6497 | Write the log entries to ensure that the drop partition command is completed |
6498 | even in the presence of a crash. |
6499 | |
6500 | SYNOPSIS |
6501 | write_log_drop_partition() |
6502 | lpt Struct containing parameters |
6503 | RETURN VALUES |
6504 | TRUE Error |
6505 | FALSE Success |
6506 | DESCRIPTION |
6507 | Prepare entries to the ddl log indicating all partitions to drop and to |
6508 | install the shadow frm file and remove the old frm file. |
6509 | */ |
6510 | |
6511 | static bool write_log_drop_partition(ALTER_PARTITION_PARAM_TYPE *lpt) |
6512 | { |
6513 | partition_info *part_info= lpt->part_info; |
6514 | DDL_LOG_MEMORY_ENTRY *log_entry; |
6515 | DDL_LOG_MEMORY_ENTRY *exec_log_entry= part_info->exec_log_entry; |
6516 | char tmp_path[FN_REFLEN + 1]; |
6517 | char path[FN_REFLEN + 1]; |
6518 | uint next_entry= 0; |
6519 | DDL_LOG_MEMORY_ENTRY *old_first_log_entry= part_info->first_log_entry; |
6520 | DBUG_ENTER("write_log_drop_partition" ); |
6521 | |
6522 | part_info->first_log_entry= NULL; |
6523 | build_table_filename(path, sizeof(path) - 1, lpt->db.str, lpt->table_name.str, "" , 0); |
6524 | build_table_shadow_filename(tmp_path, sizeof(tmp_path) - 1, lpt); |
6525 | mysql_mutex_lock(&LOCK_gdl); |
6526 | if (write_log_dropped_partitions(lpt, &next_entry, (const char*)path, |
6527 | FALSE)) |
6528 | goto error; |
6529 | if (write_log_replace_delete_frm(lpt, next_entry, (const char*)tmp_path, |
6530 | (const char*)path, TRUE)) |
6531 | goto error; |
6532 | log_entry= part_info->first_log_entry; |
6533 | part_info->frm_log_entry= log_entry; |
6534 | if (write_execute_ddl_log_entry(log_entry->entry_pos, |
6535 | FALSE, &exec_log_entry)) |
6536 | goto error; |
6537 | release_part_info_log_entries(old_first_log_entry); |
6538 | mysql_mutex_unlock(&LOCK_gdl); |
6539 | DBUG_RETURN(FALSE); |
6540 | |
6541 | error: |
6542 | release_part_info_log_entries(part_info->first_log_entry); |
6543 | mysql_mutex_unlock(&LOCK_gdl); |
6544 | part_info->first_log_entry= old_first_log_entry; |
6545 | part_info->frm_log_entry= NULL; |
6546 | my_error(ER_DDL_LOG_ERROR, MYF(0)); |
6547 | DBUG_RETURN(TRUE); |
6548 | } |
6549 | |
6550 | |
6551 | /* |
6552 | Write the log entries to ensure that the add partition command is not |
6553 | executed at all if a crash before it has completed |
6554 | |
6555 | SYNOPSIS |
6556 | write_log_add_change_partition() |
6557 | lpt Struct containing parameters |
6558 | RETURN VALUES |
6559 | TRUE Error |
6560 | FALSE Success |
6561 | DESCRIPTION |
6562 | Prepare entries to the ddl log indicating all partitions to drop and to |
6563 | remove the shadow frm file. |
6564 | We always inject entries backwards in the list in the ddl log since we |
6565 | don't know the entry position until we have written it. |
6566 | */ |
6567 | |
6568 | static bool write_log_add_change_partition(ALTER_PARTITION_PARAM_TYPE *lpt) |
6569 | { |
6570 | partition_info *part_info= lpt->part_info; |
6571 | DDL_LOG_MEMORY_ENTRY *log_entry; |
6572 | DDL_LOG_MEMORY_ENTRY *exec_log_entry= part_info->exec_log_entry; |
6573 | char tmp_path[FN_REFLEN + 1]; |
6574 | char path[FN_REFLEN + 1]; |
6575 | uint next_entry= 0; |
6576 | DDL_LOG_MEMORY_ENTRY *old_first_log_entry= part_info->first_log_entry; |
6577 | /* write_log_drop_shadow_frm(lpt) must have been run first */ |
6578 | DBUG_ASSERT(old_first_log_entry); |
6579 | DBUG_ENTER("write_log_add_change_partition" ); |
6580 | |
6581 | build_table_filename(path, sizeof(path) - 1, lpt->db.str, lpt->table_name.str, "" , 0); |
6582 | build_table_shadow_filename(tmp_path, sizeof(tmp_path) - 1, lpt); |
6583 | mysql_mutex_lock(&LOCK_gdl); |
6584 | |
6585 | /* Relink the previous drop shadow frm entry */ |
6586 | if (old_first_log_entry) |
6587 | next_entry= old_first_log_entry->entry_pos; |
6588 | if (write_log_dropped_partitions(lpt, &next_entry, (const char*)path, |
6589 | FALSE)) |
6590 | goto error; |
6591 | log_entry= part_info->first_log_entry; |
6592 | |
6593 | if (write_execute_ddl_log_entry(log_entry->entry_pos, |
6594 | FALSE, |
6595 | /* Reuse the old execute ddl_log_entry */ |
6596 | &exec_log_entry)) |
6597 | goto error; |
6598 | mysql_mutex_unlock(&LOCK_gdl); |
6599 | set_part_info_exec_log_entry(part_info, exec_log_entry); |
6600 | DBUG_RETURN(FALSE); |
6601 | |
6602 | error: |
6603 | release_part_info_log_entries(part_info->first_log_entry); |
6604 | mysql_mutex_unlock(&LOCK_gdl); |
6605 | part_info->first_log_entry= old_first_log_entry; |
6606 | my_error(ER_DDL_LOG_ERROR, MYF(0)); |
6607 | DBUG_RETURN(TRUE); |
6608 | } |
6609 | |
6610 | |
6611 | /* |
6612 | Write description of how to complete the operation after first phase of |
6613 | change partitions. |
6614 | |
6615 | SYNOPSIS |
6616 | write_log_final_change_partition() |
6617 | lpt Struct containing parameters |
6618 | RETURN VALUES |
6619 | TRUE Error |
6620 | FALSE Success |
6621 | DESCRIPTION |
6622 | We will write log entries that specify to |
6623 | 1) Install the shadow frm file. |
6624 | 2) Remove all partitions reorganized. (To be able to reorganize a partition |
6625 | to the same name. Like in REORGANIZE p0 INTO (p0, p1), |
6626 | so that the later rename from the new p0-temporary name to p0 don't |
6627 | fail because the partition already exists. |
6628 | 3) Rename others to reflect the new naming scheme. |
6629 | |
6630 | Note that it is written in the ddl log in reverse. |
6631 | */ |
6632 | |
6633 | static bool write_log_final_change_partition(ALTER_PARTITION_PARAM_TYPE *lpt) |
6634 | { |
6635 | partition_info *part_info= lpt->part_info; |
6636 | DDL_LOG_MEMORY_ENTRY *log_entry; |
6637 | DDL_LOG_MEMORY_ENTRY *exec_log_entry= part_info->exec_log_entry; |
6638 | char path[FN_REFLEN + 1]; |
6639 | char shadow_path[FN_REFLEN + 1]; |
6640 | DDL_LOG_MEMORY_ENTRY *old_first_log_entry= part_info->first_log_entry; |
6641 | uint next_entry= 0; |
6642 | DBUG_ENTER("write_log_final_change_partition" ); |
6643 | |
6644 | /* |
6645 | Do not link any previous log entry. |
6646 | Replace the revert operations with forced retry operations. |
6647 | */ |
6648 | part_info->first_log_entry= NULL; |
6649 | build_table_filename(path, sizeof(path) - 1, lpt->db.str, lpt->table_name.str, "" , 0); |
6650 | build_table_shadow_filename(shadow_path, sizeof(shadow_path) - 1, lpt); |
6651 | mysql_mutex_lock(&LOCK_gdl); |
6652 | if (write_log_changed_partitions(lpt, &next_entry, (const char*)path)) |
6653 | goto error; |
6654 | if (write_log_dropped_partitions(lpt, &next_entry, (const char*)path, |
6655 | lpt->alter_info->partition_flags & |
6656 | ALTER_PARTITION_REORGANIZE)) |
6657 | goto error; |
6658 | if (write_log_replace_delete_frm(lpt, next_entry, shadow_path, path, TRUE)) |
6659 | goto error; |
6660 | log_entry= part_info->first_log_entry; |
6661 | part_info->frm_log_entry= log_entry; |
6662 | /* Overwrite the revert execute log entry with this retry execute entry */ |
6663 | if (write_execute_ddl_log_entry(log_entry->entry_pos, |
6664 | FALSE, &exec_log_entry)) |
6665 | goto error; |
6666 | release_part_info_log_entries(old_first_log_entry); |
6667 | mysql_mutex_unlock(&LOCK_gdl); |
6668 | DBUG_RETURN(FALSE); |
6669 | |
6670 | error: |
6671 | release_part_info_log_entries(part_info->first_log_entry); |
6672 | mysql_mutex_unlock(&LOCK_gdl); |
6673 | part_info->first_log_entry= old_first_log_entry; |
6674 | part_info->frm_log_entry= NULL; |
6675 | my_error(ER_DDL_LOG_ERROR, MYF(0)); |
6676 | DBUG_RETURN(TRUE); |
6677 | } |
6678 | |
6679 | |
6680 | /* |
6681 | Remove entry from ddl log and release resources for others to use |
6682 | |
6683 | SYNOPSIS |
6684 | write_log_completed() |
6685 | lpt Struct containing parameters |
6686 | RETURN VALUES |
6687 | TRUE Error |
6688 | FALSE Success |
6689 | */ |
6690 | |
6691 | static void write_log_completed(ALTER_PARTITION_PARAM_TYPE *lpt, |
6692 | bool dont_crash) |
6693 | { |
6694 | partition_info *part_info= lpt->part_info; |
6695 | DDL_LOG_MEMORY_ENTRY *log_entry= part_info->exec_log_entry; |
6696 | DBUG_ENTER("write_log_completed" ); |
6697 | |
6698 | DBUG_ASSERT(log_entry); |
6699 | mysql_mutex_lock(&LOCK_gdl); |
6700 | if (write_execute_ddl_log_entry(0UL, TRUE, &log_entry)) |
6701 | { |
6702 | /* |
6703 | Failed to write, Bad... |
6704 | We have completed the operation but have log records to REMOVE |
6705 | stuff that shouldn't be removed. What clever things could one do |
6706 | here? An error output was written to the error output by the |
6707 | above method so we don't do anything here. |
6708 | */ |
6709 | ; |
6710 | } |
6711 | release_part_info_log_entries(part_info->first_log_entry); |
6712 | release_part_info_log_entries(part_info->exec_log_entry); |
6713 | mysql_mutex_unlock(&LOCK_gdl); |
6714 | part_info->exec_log_entry= NULL; |
6715 | part_info->first_log_entry= NULL; |
6716 | DBUG_VOID_RETURN; |
6717 | } |
6718 | |
6719 | |
6720 | /* |
6721 | Release all log entries |
6722 | SYNOPSIS |
6723 | release_log_entries() |
6724 | part_info Partition info struct |
6725 | RETURN VALUES |
6726 | NONE |
6727 | */ |
6728 | |
6729 | static void release_log_entries(partition_info *part_info) |
6730 | { |
6731 | mysql_mutex_lock(&LOCK_gdl); |
6732 | release_part_info_log_entries(part_info->first_log_entry); |
6733 | release_part_info_log_entries(part_info->exec_log_entry); |
6734 | mysql_mutex_unlock(&LOCK_gdl); |
6735 | part_info->first_log_entry= NULL; |
6736 | part_info->exec_log_entry= NULL; |
6737 | } |
6738 | |
6739 | |
6740 | /* |
6741 | Final part of partition changes to handle things when under |
6742 | LOCK TABLES. |
6743 | SYNPOSIS |
6744 | alter_partition_lock_handling() |
6745 | lpt Struct carrying parameters |
6746 | RETURN VALUES |
6747 | NONE |
6748 | */ |
6749 | static void alter_partition_lock_handling(ALTER_PARTITION_PARAM_TYPE *lpt) |
6750 | { |
6751 | THD *thd= lpt->thd; |
6752 | |
6753 | if (lpt->table) |
6754 | { |
6755 | /* |
6756 | Remove all instances of the table and its locks and other resources. |
6757 | */ |
6758 | close_all_tables_for_name(thd, lpt->table->s, HA_EXTRA_NOT_USED, NULL); |
6759 | } |
6760 | lpt->table= 0; |
6761 | lpt->table_list->table= 0; |
6762 | if (thd->locked_tables_mode) |
6763 | { |
6764 | Diagnostics_area *stmt_da= NULL; |
6765 | Diagnostics_area tmp_stmt_da(true); |
6766 | |
6767 | if (unlikely(thd->is_error())) |
6768 | { |
6769 | /* reopen might fail if we have a previous error, use a temporary da. */ |
6770 | stmt_da= thd->get_stmt_da(); |
6771 | thd->set_stmt_da(&tmp_stmt_da); |
6772 | } |
6773 | |
6774 | if (unlikely(thd->locked_tables_list.reopen_tables(thd, false))) |
6775 | sql_print_warning("We failed to reacquire LOCKs in ALTER TABLE" ); |
6776 | |
6777 | if (stmt_da) |
6778 | thd->set_stmt_da(stmt_da); |
6779 | } |
6780 | } |
6781 | |
6782 | |
6783 | /** |
6784 | Unlock and close table before renaming and dropping partitions. |
6785 | |
6786 | @param lpt Struct carrying parameters |
6787 | |
6788 | @return Always 0. |
6789 | */ |
6790 | |
6791 | static int alter_close_table(ALTER_PARTITION_PARAM_TYPE *lpt) |
6792 | { |
6793 | DBUG_ENTER("alter_close_table" ); |
6794 | |
6795 | if (lpt->table->db_stat) |
6796 | { |
6797 | mysql_lock_remove(lpt->thd, lpt->thd->lock, lpt->table); |
6798 | lpt->table->file->ha_close(); |
6799 | lpt->table->db_stat= 0; // Mark file closed |
6800 | } |
6801 | DBUG_RETURN(0); |
6802 | } |
6803 | |
6804 | |
6805 | /** |
6806 | Handle errors for ALTER TABLE for partitioning. |
6807 | |
6808 | @param lpt Struct carrying parameters |
6809 | @param action_completed The action must be completed, NOT reverted |
6810 | @param drop_partition Partitions has not been dropped yet |
6811 | @param frm_install The shadow frm-file has not yet been installed |
6812 | @param close_table Table is still open, close it before reverting |
6813 | */ |
6814 | |
6815 | void handle_alter_part_error(ALTER_PARTITION_PARAM_TYPE *lpt, |
6816 | bool action_completed, |
6817 | bool drop_partition, |
6818 | bool frm_install, |
6819 | bool close_table) |
6820 | { |
6821 | partition_info *part_info= lpt->part_info; |
6822 | THD *thd= lpt->thd; |
6823 | TABLE *table= lpt->table; |
6824 | DBUG_ENTER("handle_alter_part_error" ); |
6825 | DBUG_ASSERT(table->m_needs_reopen); |
6826 | |
6827 | if (close_table) |
6828 | { |
6829 | /* |
6830 | All instances of this table needs to be closed. |
6831 | Better to do that here, than leave the cleaning up to others. |
6832 | Aquire EXCLUSIVE mdl lock if not already aquired. |
6833 | */ |
6834 | if (!thd->mdl_context.is_lock_owner(MDL_key::TABLE, lpt->db.str, |
6835 | lpt->table_name.str, |
6836 | MDL_EXCLUSIVE)) |
6837 | { |
6838 | if (wait_while_table_is_used(thd, table, HA_EXTRA_FORCE_REOPEN)) |
6839 | { |
6840 | /* At least remove this instance on failure */ |
6841 | goto err_exclusive_lock; |
6842 | } |
6843 | } |
6844 | /* Ensure the share is destroyed and reopened. */ |
6845 | if (part_info) |
6846 | part_info= part_info->get_clone(thd); |
6847 | close_all_tables_for_name(thd, table->s, HA_EXTRA_NOT_USED, NULL); |
6848 | } |
6849 | else |
6850 | { |
6851 | err_exclusive_lock: |
6852 | /* |
6853 | Temporarily remove it from the locked table list, so that it will get |
6854 | reopened. |
6855 | */ |
6856 | thd->locked_tables_list.unlink_from_list(thd, |
6857 | table->pos_in_locked_tables, |
6858 | false); |
6859 | /* |
6860 | Make sure that the table is unlocked, closed and removed from |
6861 | the table cache. |
6862 | */ |
6863 | mysql_lock_remove(thd, thd->lock, table); |
6864 | if (part_info) |
6865 | part_info= part_info->get_clone(thd); |
6866 | close_thread_table(thd, &thd->open_tables); |
6867 | lpt->table_list->table= NULL; |
6868 | } |
6869 | |
6870 | if (part_info->first_log_entry && |
6871 | execute_ddl_log_entry(thd, part_info->first_log_entry->entry_pos)) |
6872 | { |
6873 | /* |
6874 | We couldn't recover from error, most likely manual interaction |
6875 | is required. |
6876 | */ |
6877 | write_log_completed(lpt, FALSE); |
6878 | release_log_entries(part_info); |
6879 | if (!action_completed) |
6880 | { |
6881 | if (drop_partition) |
6882 | { |
6883 | /* Table is still ok, but we left a shadow frm file behind. */ |
6884 | push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN, 1, |
6885 | "%s %s" , |
6886 | "Operation was unsuccessful, table is still intact," , |
6887 | "but it is possible that a shadow frm file was left behind" ); |
6888 | } |
6889 | else |
6890 | { |
6891 | push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN, 1, |
6892 | "%s %s %s %s" , |
6893 | "Operation was unsuccessful, table is still intact," , |
6894 | "but it is possible that a shadow frm file was left behind." , |
6895 | "It is also possible that temporary partitions are left behind," , |
6896 | "these could be empty or more or less filled with records" ); |
6897 | } |
6898 | } |
6899 | else |
6900 | { |
6901 | if (frm_install) |
6902 | { |
6903 | /* |
6904 | Failed during install of shadow frm file, table isn't intact |
6905 | and dropped partitions are still there |
6906 | */ |
6907 | push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN, 1, |
6908 | "%s %s %s" , |
6909 | "Failed during alter of partitions, table is no longer intact." , |
6910 | "The frm file is in an unknown state, and a backup" , |
6911 | "is required." ); |
6912 | } |
6913 | else if (drop_partition) |
6914 | { |
6915 | /* |
6916 | Table is ok, we have switched to new table but left dropped |
6917 | partitions still in their places. We remove the log records and |
6918 | ask the user to perform the action manually. We remove the log |
6919 | records and ask the user to perform the action manually. |
6920 | */ |
6921 | push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN, 1, |
6922 | "%s %s" , |
6923 | "Failed during drop of partitions, table is intact." , |
6924 | "Manual drop of remaining partitions is required" ); |
6925 | } |
6926 | else |
6927 | { |
6928 | /* |
6929 | We failed during renaming of partitions. The table is most |
6930 | certainly in a very bad state so we give user warning and disable |
6931 | the table by writing an ancient frm version into it. |
6932 | */ |
6933 | push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN, 1, |
6934 | "%s %s %s" , |
6935 | "Failed during renaming of partitions. We are now in a position" , |
6936 | "where table is not reusable" , |
6937 | "Table is disabled by writing ancient frm file version into it" ); |
6938 | } |
6939 | } |
6940 | } |
6941 | else |
6942 | { |
6943 | release_log_entries(part_info); |
6944 | if (!action_completed) |
6945 | { |
6946 | /* |
6947 | We hit an error before things were completed but managed |
6948 | to recover from the error. An error occurred and we have |
6949 | restored things to original so no need for further action. |
6950 | */ |
6951 | ; |
6952 | } |
6953 | else |
6954 | { |
6955 | /* |
6956 | We hit an error after we had completed most of the operation |
6957 | and were successful in a second attempt so the operation |
6958 | actually is successful now. We need to issue a warning that |
6959 | even though we reported an error the operation was successfully |
6960 | completed. |
6961 | */ |
6962 | push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN, 1,"%s %s" , |
6963 | "Operation was successfully completed by failure handling," , |
6964 | "after failure of normal operation" ); |
6965 | } |
6966 | } |
6967 | |
6968 | if (thd->locked_tables_mode) |
6969 | { |
6970 | Diagnostics_area *stmt_da= NULL; |
6971 | Diagnostics_area tmp_stmt_da(true); |
6972 | |
6973 | if (unlikely(thd->is_error())) |
6974 | { |
6975 | /* reopen might fail if we have a previous error, use a temporary da. */ |
6976 | stmt_da= thd->get_stmt_da(); |
6977 | thd->set_stmt_da(&tmp_stmt_da); |
6978 | } |
6979 | |
6980 | if (unlikely(thd->locked_tables_list.reopen_tables(thd, false))) |
6981 | sql_print_warning("We failed to reacquire LOCKs in ALTER TABLE" ); |
6982 | |
6983 | if (stmt_da) |
6984 | thd->set_stmt_da(stmt_da); |
6985 | } |
6986 | |
6987 | DBUG_VOID_RETURN; |
6988 | } |
6989 | |
6990 | |
6991 | /** |
6992 | Downgrade an exclusive MDL lock if under LOCK TABLE. |
6993 | |
6994 | If we don't downgrade the lock, it will not be downgraded or released |
6995 | until the table is unlocked, resulting in blocking other threads using |
6996 | the table. |
6997 | */ |
6998 | |
6999 | static void downgrade_mdl_if_lock_tables_mode(THD *thd, MDL_ticket *ticket, |
7000 | enum_mdl_type type) |
7001 | { |
7002 | if (thd->locked_tables_mode) |
7003 | ticket->downgrade_lock(type); |
7004 | } |
7005 | |
7006 | |
7007 | /** |
7008 | Actually perform the change requested by ALTER TABLE of partitions |
7009 | previously prepared. |
7010 | |
7011 | @param thd Thread object |
7012 | @param table Original table object with new part_info |
7013 | @param alter_info ALTER TABLE info |
7014 | @param create_info Create info for CREATE TABLE |
7015 | @param table_list List of the table involved |
7016 | @param db Database name of new table |
7017 | @param table_name Table name of new table |
7018 | |
7019 | @return Operation status |
7020 | @retval TRUE Error |
7021 | @retval FALSE Success |
7022 | |
7023 | @note |
7024 | Perform all ALTER TABLE operations for partitioned tables that can be |
7025 | performed fast without a full copy of the original table. |
7026 | */ |
7027 | |
7028 | uint fast_alter_partition_table(THD *thd, TABLE *table, |
7029 | Alter_info *alter_info, |
7030 | HA_CREATE_INFO *create_info, |
7031 | TABLE_LIST *table_list, |
7032 | const LEX_CSTRING *db, |
7033 | const LEX_CSTRING *table_name) |
7034 | { |
7035 | /* Set-up struct used to write frm files */ |
7036 | partition_info *part_info; |
7037 | ALTER_PARTITION_PARAM_TYPE lpt_obj; |
7038 | ALTER_PARTITION_PARAM_TYPE *lpt= &lpt_obj; |
7039 | bool action_completed= FALSE; |
7040 | bool close_table_on_failure= FALSE; |
7041 | bool frm_install= FALSE; |
7042 | MDL_ticket *mdl_ticket= table->mdl_ticket; |
7043 | DBUG_ENTER("fast_alter_partition_table" ); |
7044 | DBUG_ASSERT(table->m_needs_reopen); |
7045 | |
7046 | part_info= table->part_info; |
7047 | lpt->thd= thd; |
7048 | lpt->table_list= table_list; |
7049 | lpt->part_info= part_info; |
7050 | lpt->alter_info= alter_info; |
7051 | lpt->create_info= create_info; |
7052 | lpt->db_options= create_info->table_options_with_row_type(); |
7053 | lpt->table= table; |
7054 | lpt->key_info_buffer= 0; |
7055 | lpt->key_count= 0; |
7056 | lpt->db= *db; |
7057 | lpt->table_name= *table_name; |
7058 | lpt->copied= 0; |
7059 | lpt->deleted= 0; |
7060 | lpt->pack_frm_data= NULL; |
7061 | lpt->pack_frm_len= 0; |
7062 | |
7063 | if (table->file->alter_table_flags(alter_info->flags) & |
7064 | HA_PARTITION_ONE_PHASE) |
7065 | { |
7066 | /* |
7067 | In the case where the engine supports one phase online partition |
7068 | changes it is not necessary to have any exclusive locks. The |
7069 | correctness is upheld instead by transactions being aborted if they |
7070 | access the table after its partition definition has changed (if they |
7071 | are still using the old partition definition). |
7072 | |
7073 | The handler is in this case responsible to ensure that all users |
7074 | start using the new frm file after it has changed. To implement |
7075 | one phase it is necessary for the handler to have the master copy |
7076 | of the frm file and use discovery mechanisms to renew it. Thus |
7077 | write frm will write the frm, pack the new frm and finally |
7078 | the frm is deleted and the discovery mechanisms will either restore |
7079 | back to the old or installing the new after the change is activated. |
7080 | |
7081 | Thus all open tables will be discovered that they are old, if not |
7082 | earlier as soon as they try an operation using the old table. One |
7083 | should ensure that this is checked already when opening a table, |
7084 | even if it is found in the cache of open tables. |
7085 | |
7086 | change_partitions will perform all operations and it is the duty of |
7087 | the handler to ensure that the frm files in the system gets updated |
7088 | in synch with the changes made and if an error occurs that a proper |
7089 | error handling is done. |
7090 | |
7091 | If the MySQL Server crashes at this moment but the handler succeeds |
7092 | in performing the change then the binlog is not written for the |
7093 | change. There is no way to solve this as long as the binlog is not |
7094 | transactional and even then it is hard to solve it completely. |
7095 | |
7096 | The first approach here was to downgrade locks. Now a different approach |
7097 | is decided upon. The idea is that the handler will have access to the |
7098 | Alter_info when store_lock arrives with TL_WRITE_ALLOW_READ. So if the |
7099 | handler knows that this functionality can be handled with a lower lock |
7100 | level it will set the lock level to TL_WRITE_ALLOW_WRITE immediately. |
7101 | Thus the need to downgrade the lock disappears. |
7102 | 1) Write the new frm, pack it and then delete it |
7103 | 2) Perform the change within the handler |
7104 | */ |
7105 | if (mysql_write_frm(lpt, WFRM_WRITE_SHADOW) || |
7106 | mysql_change_partitions(lpt)) |
7107 | { |
7108 | goto err; |
7109 | } |
7110 | } |
7111 | else if (alter_info->partition_flags & ALTER_PARTITION_DROP) |
7112 | { |
7113 | /* |
7114 | Now after all checks and setting state on dropped partitions we can |
7115 | start the actual dropping of the partitions. |
7116 | |
7117 | Drop partition is actually two things happening. The first is that |
7118 | a lot of records are deleted. The second is that the behaviour of |
7119 | subsequent updates and writes and deletes will change. The delete |
7120 | part can be handled without any particular high lock level by |
7121 | transactional engines whereas non-transactional engines need to |
7122 | ensure that this change is done with an exclusive lock on the table. |
7123 | The second part, the change of partitioning does however require |
7124 | an exclusive lock to install the new partitioning as one atomic |
7125 | operation. If this is not the case, it is possible for two |
7126 | transactions to see the change in a different order than their |
7127 | serialisation order. Thus we need an exclusive lock for both |
7128 | transactional and non-transactional engines. |
7129 | |
7130 | For LIST partitions it could be possible to avoid the exclusive lock |
7131 | (and for RANGE partitions if they didn't rearrange range definitions |
7132 | after a DROP PARTITION) if one ensured that failed accesses to the |
7133 | dropped partitions was aborted for sure (thus only possible for |
7134 | transactional engines). |
7135 | |
7136 | 0) Write an entry that removes the shadow frm file if crash occurs |
7137 | 1) Write the new frm file as a shadow frm |
7138 | 2) Get an exclusive metadata lock on the table (waits for all active |
7139 | transactions using this table). This ensures that we |
7140 | can release all other locks on the table and since no one can open |
7141 | the table, there can be no new threads accessing the table. They |
7142 | will be hanging on this exclusive lock. |
7143 | 3) Write the ddl log to ensure that the operation is completed |
7144 | even in the presence of a MySQL Server crash (the log is executed |
7145 | before any other threads are started, so there are no locking issues). |
7146 | 4) Close the table that have already been opened but didn't stumble on |
7147 | the abort locked previously. This is done as part of the |
7148 | alter_close_table call. |
7149 | 5) Write the bin log |
7150 | Unfortunately the writing of the binlog is not synchronised with |
7151 | other logging activities. So no matter in which order the binlog |
7152 | is written compared to other activities there will always be cases |
7153 | where crashes make strange things occur. In this placement it can |
7154 | happen that the ALTER TABLE DROP PARTITION gets performed in the |
7155 | master but not in the slaves if we have a crash, after writing the |
7156 | ddl log but before writing the binlog. A solution to this would |
7157 | require writing the statement first in the ddl log and then |
7158 | when recovering from the crash read the binlog and insert it into |
7159 | the binlog if not written already. |
7160 | 6) Install the previously written shadow frm file |
7161 | 7) Prepare handlers for drop of partitions |
7162 | 8) Drop the partitions |
7163 | 9) Remove entries from ddl log |
7164 | 10) Reopen table if under lock tables |
7165 | 11) Complete query |
7166 | |
7167 | We insert Error injections at all places where it could be interesting |
7168 | to test if recovery is properly done. |
7169 | */ |
7170 | if (write_log_drop_shadow_frm(lpt) || |
7171 | ERROR_INJECT_CRASH("crash_drop_partition_1" ) || |
7172 | ERROR_INJECT_ERROR("fail_drop_partition_1" ) || |
7173 | mysql_write_frm(lpt, WFRM_WRITE_SHADOW) || |
7174 | ERROR_INJECT_CRASH("crash_drop_partition_2" ) || |
7175 | ERROR_INJECT_ERROR("fail_drop_partition_2" ) || |
7176 | wait_while_table_is_used(thd, table, HA_EXTRA_NOT_USED) || |
7177 | ERROR_INJECT_CRASH("crash_drop_partition_3" ) || |
7178 | ERROR_INJECT_ERROR("fail_drop_partition_3" ) || |
7179 | (close_table_on_failure= TRUE, FALSE) || |
7180 | write_log_drop_partition(lpt) || |
7181 | (action_completed= TRUE, FALSE) || |
7182 | ERROR_INJECT_CRASH("crash_drop_partition_4" ) || |
7183 | ERROR_INJECT_ERROR("fail_drop_partition_4" ) || |
7184 | alter_close_table(lpt) || |
7185 | (close_table_on_failure= FALSE, FALSE) || |
7186 | ERROR_INJECT_CRASH("crash_drop_partition_5" ) || |
7187 | ERROR_INJECT_ERROR("fail_drop_partition_5" ) || |
7188 | ((!thd->lex->no_write_to_binlog) && |
7189 | (write_bin_log(thd, FALSE, |
7190 | thd->query(), thd->query_length()), FALSE)) || |
7191 | ERROR_INJECT_CRASH("crash_drop_partition_6" ) || |
7192 | ERROR_INJECT_ERROR("fail_drop_partition_6" ) || |
7193 | (frm_install= TRUE, FALSE) || |
7194 | mysql_write_frm(lpt, WFRM_INSTALL_SHADOW) || |
7195 | (frm_install= FALSE, FALSE) || |
7196 | ERROR_INJECT_CRASH("crash_drop_partition_7" ) || |
7197 | ERROR_INJECT_ERROR("fail_drop_partition_7" ) || |
7198 | mysql_drop_partitions(lpt) || |
7199 | ERROR_INJECT_CRASH("crash_drop_partition_8" ) || |
7200 | ERROR_INJECT_ERROR("fail_drop_partition_8" ) || |
7201 | (write_log_completed(lpt, FALSE), FALSE) || |
7202 | ERROR_INJECT_CRASH("crash_drop_partition_9" ) || |
7203 | ERROR_INJECT_ERROR("fail_drop_partition_9" ) || |
7204 | (alter_partition_lock_handling(lpt), FALSE)) |
7205 | { |
7206 | handle_alter_part_error(lpt, action_completed, TRUE, frm_install, |
7207 | close_table_on_failure); |
7208 | goto err; |
7209 | } |
7210 | } |
7211 | else if ((alter_info->partition_flags & ALTER_PARTITION_ADD) && |
7212 | (part_info->part_type == RANGE_PARTITION || |
7213 | part_info->part_type == LIST_PARTITION)) |
7214 | { |
7215 | /* |
7216 | ADD RANGE/LIST PARTITIONS |
7217 | In this case there are no tuples removed and no tuples are added. |
7218 | Thus the operation is merely adding a new partition. Thus it is |
7219 | necessary to perform the change as an atomic operation. Otherwise |
7220 | someone reading without seeing the new partition could potentially |
7221 | miss updates made by a transaction serialised before it that are |
7222 | inserted into the new partition. |
7223 | |
7224 | 0) Write an entry that removes the shadow frm file if crash occurs |
7225 | 1) Write the new frm file as a shadow frm file |
7226 | 2) Get an exclusive metadata lock on the table (waits for all active |
7227 | transactions using this table). This ensures that we |
7228 | can release all other locks on the table and since no one can open |
7229 | the table, there can be no new threads accessing the table. They |
7230 | will be hanging on this exclusive lock. |
7231 | 3) Write an entry to remove the new parttions if crash occurs |
7232 | 4) Add the new partitions. |
7233 | 5) Close all instances of the table and remove them from the table cache. |
7234 | 6) Write binlog |
7235 | 7) Now the change is completed except for the installation of the |
7236 | new frm file. We thus write an action in the log to change to |
7237 | the shadow frm file |
7238 | 8) Install the new frm file of the table where the partitions are |
7239 | added to the table. |
7240 | 9) Remove entries from ddl log |
7241 | 10)Reopen tables if under lock tables |
7242 | 11)Complete query |
7243 | */ |
7244 | if (write_log_drop_shadow_frm(lpt) || |
7245 | ERROR_INJECT_CRASH("crash_add_partition_1" ) || |
7246 | ERROR_INJECT_ERROR("fail_add_partition_1" ) || |
7247 | mysql_write_frm(lpt, WFRM_WRITE_SHADOW) || |
7248 | ERROR_INJECT_CRASH("crash_add_partition_2" ) || |
7249 | ERROR_INJECT_ERROR("fail_add_partition_2" ) || |
7250 | wait_while_table_is_used(thd, table, HA_EXTRA_NOT_USED) || |
7251 | ERROR_INJECT_CRASH("crash_add_partition_3" ) || |
7252 | ERROR_INJECT_ERROR("fail_add_partition_3" ) || |
7253 | (close_table_on_failure= TRUE, FALSE) || |
7254 | write_log_add_change_partition(lpt) || |
7255 | ERROR_INJECT_CRASH("crash_add_partition_4" ) || |
7256 | ERROR_INJECT_ERROR("fail_add_partition_4" ) || |
7257 | mysql_change_partitions(lpt) || |
7258 | ERROR_INJECT_CRASH("crash_add_partition_5" ) || |
7259 | ERROR_INJECT_ERROR("fail_add_partition_5" ) || |
7260 | (close_table_on_failure= FALSE, FALSE) || |
7261 | alter_close_table(lpt) || |
7262 | ERROR_INJECT_CRASH("crash_add_partition_6" ) || |
7263 | ERROR_INJECT_ERROR("fail_add_partition_6" ) || |
7264 | ((!thd->lex->no_write_to_binlog) && |
7265 | (write_bin_log(thd, FALSE, |
7266 | thd->query(), thd->query_length()), FALSE)) || |
7267 | ERROR_INJECT_CRASH("crash_add_partition_7" ) || |
7268 | ERROR_INJECT_ERROR("fail_add_partition_7" ) || |
7269 | write_log_rename_frm(lpt) || |
7270 | (action_completed= TRUE, FALSE) || |
7271 | ERROR_INJECT_CRASH("crash_add_partition_8" ) || |
7272 | ERROR_INJECT_ERROR("fail_add_partition_8" ) || |
7273 | (frm_install= TRUE, FALSE) || |
7274 | mysql_write_frm(lpt, WFRM_INSTALL_SHADOW) || |
7275 | (frm_install= FALSE, FALSE) || |
7276 | ERROR_INJECT_CRASH("crash_add_partition_9" ) || |
7277 | ERROR_INJECT_ERROR("fail_add_partition_9" ) || |
7278 | (write_log_completed(lpt, FALSE), FALSE) || |
7279 | ERROR_INJECT_CRASH("crash_add_partition_10" ) || |
7280 | ERROR_INJECT_ERROR("fail_add_partition_10" ) || |
7281 | (alter_partition_lock_handling(lpt), FALSE)) |
7282 | { |
7283 | handle_alter_part_error(lpt, action_completed, FALSE, frm_install, |
7284 | close_table_on_failure); |
7285 | goto err; |
7286 | } |
7287 | } |
7288 | else |
7289 | { |
7290 | /* |
7291 | ADD HASH PARTITION/ |
7292 | COALESCE PARTITION/ |
7293 | REBUILD PARTITION/ |
7294 | REORGANIZE PARTITION |
7295 | |
7296 | In this case all records are still around after the change although |
7297 | possibly organised into new partitions, thus by ensuring that all |
7298 | updates go to both the old and the new partitioning scheme we can |
7299 | actually perform this operation lock-free. The only exception to |
7300 | this is when REORGANIZE PARTITION adds/drops ranges. In this case |
7301 | there needs to be an exclusive lock during the time when the range |
7302 | changes occur. |
7303 | This is only possible if the handler can ensure double-write for a |
7304 | period. The double write will ensure that it doesn't matter where the |
7305 | data is read from since both places are updated for writes. If such |
7306 | double writing is not performed then it is necessary to perform the |
7307 | change with the usual exclusive lock. With double writes it is even |
7308 | possible to perform writes in parallel with the reorganisation of |
7309 | partitions. |
7310 | |
7311 | Without double write procedure we get the following procedure. |
7312 | The only difference with using double write is that we can downgrade |
7313 | the lock to TL_WRITE_ALLOW_WRITE. Double write in this case only |
7314 | double writes from old to new. If we had double writing in both |
7315 | directions we could perform the change completely without exclusive |
7316 | lock for HASH partitions. |
7317 | Handlers that perform double writing during the copy phase can actually |
7318 | use a lower lock level. This can be handled inside store_lock in the |
7319 | respective handler. |
7320 | |
7321 | 0) Write an entry that removes the shadow frm file if crash occurs. |
7322 | 1) Write the shadow frm file of new partitioning. |
7323 | 2) Log such that temporary partitions added in change phase are |
7324 | removed in a crash situation. |
7325 | 3) Add the new partitions. |
7326 | Copy from the reorganised partitions to the new partitions. |
7327 | 4) Get an exclusive metadata lock on the table (waits for all active |
7328 | transactions using this table). This ensures that we |
7329 | can release all other locks on the table and since no one can open |
7330 | the table, there can be no new threads accessing the table. They |
7331 | will be hanging on this exclusive lock. |
7332 | 5) Close the table. |
7333 | 6) Log that operation is completed and log all complete actions |
7334 | needed to complete operation from here. |
7335 | 7) Write bin log. |
7336 | 8) Prepare handlers for rename and delete of partitions. |
7337 | 9) Rename and drop the reorged partitions such that they are no |
7338 | longer used and rename those added to their real new names. |
7339 | 10) Install the shadow frm file. |
7340 | 11) Reopen the table if under lock tables. |
7341 | 12) Complete query. |
7342 | */ |
7343 | if (write_log_drop_shadow_frm(lpt) || |
7344 | ERROR_INJECT_CRASH("crash_change_partition_1" ) || |
7345 | ERROR_INJECT_ERROR("fail_change_partition_1" ) || |
7346 | mysql_write_frm(lpt, WFRM_WRITE_SHADOW) || |
7347 | ERROR_INJECT_CRASH("crash_change_partition_2" ) || |
7348 | ERROR_INJECT_ERROR("fail_change_partition_2" ) || |
7349 | (close_table_on_failure= TRUE, FALSE) || |
7350 | write_log_add_change_partition(lpt) || |
7351 | ERROR_INJECT_CRASH("crash_change_partition_3" ) || |
7352 | ERROR_INJECT_ERROR("fail_change_partition_3" ) || |
7353 | mysql_change_partitions(lpt) || |
7354 | ERROR_INJECT_CRASH("crash_change_partition_4" ) || |
7355 | ERROR_INJECT_ERROR("fail_change_partition_4" ) || |
7356 | wait_while_table_is_used(thd, table, HA_EXTRA_NOT_USED) || |
7357 | ERROR_INJECT_CRASH("crash_change_partition_5" ) || |
7358 | ERROR_INJECT_ERROR("fail_change_partition_5" ) || |
7359 | alter_close_table(lpt) || |
7360 | (close_table_on_failure= FALSE, FALSE) || |
7361 | ERROR_INJECT_CRASH("crash_change_partition_6" ) || |
7362 | ERROR_INJECT_ERROR("fail_change_partition_6" ) || |
7363 | write_log_final_change_partition(lpt) || |
7364 | (action_completed= TRUE, FALSE) || |
7365 | ERROR_INJECT_CRASH("crash_change_partition_7" ) || |
7366 | ERROR_INJECT_ERROR("fail_change_partition_7" ) || |
7367 | ((!thd->lex->no_write_to_binlog) && |
7368 | (write_bin_log(thd, FALSE, |
7369 | thd->query(), thd->query_length()), FALSE)) || |
7370 | ERROR_INJECT_CRASH("crash_change_partition_8" ) || |
7371 | ERROR_INJECT_ERROR("fail_change_partition_8" ) || |
7372 | ((frm_install= TRUE), FALSE) || |
7373 | mysql_write_frm(lpt, WFRM_INSTALL_SHADOW) || |
7374 | (frm_install= FALSE, FALSE) || |
7375 | ERROR_INJECT_CRASH("crash_change_partition_9" ) || |
7376 | ERROR_INJECT_ERROR("fail_change_partition_9" ) || |
7377 | mysql_drop_partitions(lpt) || |
7378 | ERROR_INJECT_CRASH("crash_change_partition_10" ) || |
7379 | ERROR_INJECT_ERROR("fail_change_partition_10" ) || |
7380 | mysql_rename_partitions(lpt) || |
7381 | ERROR_INJECT_CRASH("crash_change_partition_11" ) || |
7382 | ERROR_INJECT_ERROR("fail_change_partition_11" ) || |
7383 | (write_log_completed(lpt, FALSE), FALSE) || |
7384 | ERROR_INJECT_CRASH("crash_change_partition_12" ) || |
7385 | ERROR_INJECT_ERROR("fail_change_partition_12" ) || |
7386 | (alter_partition_lock_handling(lpt), FALSE)) |
7387 | { |
7388 | handle_alter_part_error(lpt, action_completed, FALSE, frm_install, |
7389 | close_table_on_failure); |
7390 | goto err; |
7391 | } |
7392 | } |
7393 | downgrade_mdl_if_lock_tables_mode(thd, mdl_ticket, MDL_SHARED_NO_READ_WRITE); |
7394 | /* |
7395 | A final step is to write the query to the binlog and send ok to the |
7396 | user |
7397 | */ |
7398 | DBUG_RETURN(fast_end_partition(thd, lpt->copied, lpt->deleted, table_list)); |
7399 | err: |
7400 | downgrade_mdl_if_lock_tables_mode(thd, mdl_ticket, MDL_SHARED_NO_READ_WRITE); |
7401 | DBUG_RETURN(TRUE); |
7402 | } |
7403 | #endif |
7404 | |
7405 | |
7406 | /* |
7407 | Prepare for calling val_int on partition function by setting fields to |
7408 | point to the record where the values of the PF-fields are stored. |
7409 | |
7410 | SYNOPSIS |
7411 | set_field_ptr() |
7412 | ptr Array of fields to change ptr |
7413 | new_buf New record pointer |
7414 | old_buf Old record pointer |
7415 | |
7416 | DESCRIPTION |
7417 | Set ptr in field objects of field array to refer to new_buf record |
7418 | instead of previously old_buf. Used before calling val_int and after |
7419 | it is used to restore pointers to table->record[0]. |
7420 | This routine is placed outside of partition code since it can be useful |
7421 | also for other programs. |
7422 | */ |
7423 | |
7424 | void set_field_ptr(Field **ptr, const uchar *new_buf, |
7425 | const uchar *old_buf) |
7426 | { |
7427 | my_ptrdiff_t diff= (new_buf - old_buf); |
7428 | DBUG_ENTER("set_field_ptr" ); |
7429 | |
7430 | do |
7431 | { |
7432 | (*ptr)->move_field_offset(diff); |
7433 | } while (*(++ptr)); |
7434 | DBUG_VOID_RETURN; |
7435 | } |
7436 | |
7437 | |
7438 | /* |
7439 | Prepare for calling val_int on partition function by setting fields to |
7440 | point to the record where the values of the PF-fields are stored. |
7441 | This variant works on a key_part reference. |
7442 | It is not required that all fields are NOT NULL fields. |
7443 | |
7444 | SYNOPSIS |
7445 | set_key_field_ptr() |
7446 | key_info key info with a set of fields to change ptr |
7447 | new_buf New record pointer |
7448 | old_buf Old record pointer |
7449 | |
7450 | DESCRIPTION |
7451 | Set ptr in field objects of field array to refer to new_buf record |
7452 | instead of previously old_buf. Used before calling val_int and after |
7453 | it is used to restore pointers to table->record[0]. |
7454 | This routine is placed outside of partition code since it can be useful |
7455 | also for other programs. |
7456 | */ |
7457 | |
7458 | void set_key_field_ptr(KEY *key_info, const uchar *new_buf, |
7459 | const uchar *old_buf) |
7460 | { |
7461 | KEY_PART_INFO *key_part= key_info->key_part; |
7462 | uint key_parts= key_info->user_defined_key_parts; |
7463 | uint i= 0; |
7464 | my_ptrdiff_t diff= (new_buf - old_buf); |
7465 | DBUG_ENTER("set_key_field_ptr" ); |
7466 | |
7467 | do |
7468 | { |
7469 | key_part->field->move_field_offset(diff); |
7470 | key_part++; |
7471 | } while (++i < key_parts); |
7472 | DBUG_VOID_RETURN; |
7473 | } |
7474 | |
7475 | |
7476 | /** |
7477 | Append all fields in read_set to string |
7478 | |
7479 | @param[in,out] str String to append to. |
7480 | @param[in] row Row to append. |
7481 | @param[in] table Table containing read_set and fields for the row. |
7482 | */ |
7483 | void append_row_to_str(String &str, const uchar *row, TABLE *table) |
7484 | { |
7485 | Field **fields, **field_ptr; |
7486 | const uchar *rec; |
7487 | uint num_fields= bitmap_bits_set(table->read_set); |
7488 | uint curr_field_index= 0; |
7489 | bool is_rec0= !row || row == table->record[0]; |
7490 | if (!row) |
7491 | rec= table->record[0]; |
7492 | else |
7493 | rec= row; |
7494 | |
7495 | /* Create a new array of all read fields. */ |
7496 | fields= (Field**) my_malloc(sizeof(void*) * (num_fields + 1), |
7497 | MYF(0)); |
7498 | if (!fields) |
7499 | return; |
7500 | fields[num_fields]= NULL; |
7501 | for (field_ptr= table->field; |
7502 | *field_ptr; |
7503 | field_ptr++) |
7504 | { |
7505 | if (!bitmap_is_set(table->read_set, (*field_ptr)->field_index)) |
7506 | continue; |
7507 | fields[curr_field_index++]= *field_ptr; |
7508 | } |
7509 | |
7510 | |
7511 | if (!is_rec0) |
7512 | set_field_ptr(fields, rec, table->record[0]); |
7513 | |
7514 | for (field_ptr= fields; |
7515 | *field_ptr; |
7516 | field_ptr++) |
7517 | { |
7518 | Field *field= *field_ptr; |
7519 | str.append(" " ); |
7520 | str.append(&field->field_name); |
7521 | str.append(":" ); |
7522 | field_unpack(&str, field, rec, 0, false); |
7523 | } |
7524 | |
7525 | if (!is_rec0) |
7526 | set_field_ptr(fields, table->record[0], rec); |
7527 | my_free(fields); |
7528 | } |
7529 | |
7530 | |
7531 | #ifdef WITH_PARTITION_STORAGE_ENGINE |
7532 | /** |
7533 | Return comma-separated list of used partitions in the provided given string. |
7534 | |
7535 | @param mem_root Where to allocate following list |
7536 | @param part_info Partitioning info |
7537 | @param[out] parts The resulting list of string to fill |
7538 | @param[out] used_partitions_list result list to fill |
7539 | |
7540 | Generate a list of used partitions (from bits in part_info->read_partitions |
7541 | bitmap), and store it into the provided String object. |
7542 | |
7543 | @note |
7544 | The produced string must not be longer then MAX_PARTITIONS * (1 + FN_LEN). |
7545 | In case of UPDATE, only the partitions read is given, not the partitions |
7546 | that was written or locked. |
7547 | */ |
7548 | |
7549 | void make_used_partitions_str(MEM_ROOT *alloc, |
7550 | partition_info *part_info, |
7551 | String *parts_str, |
7552 | String_list &used_partitions_list) |
7553 | { |
7554 | parts_str->length(0); |
7555 | partition_element *pe; |
7556 | uint partition_id= 0; |
7557 | List_iterator<partition_element> it(part_info->partitions); |
7558 | |
7559 | if (part_info->is_sub_partitioned()) |
7560 | { |
7561 | partition_element *head_pe; |
7562 | while ((head_pe= it++)) |
7563 | { |
7564 | List_iterator<partition_element> it2(head_pe->subpartitions); |
7565 | while ((pe= it2++)) |
7566 | { |
7567 | if (bitmap_is_set(&part_info->read_partitions, partition_id)) |
7568 | { |
7569 | if (parts_str->length()) |
7570 | parts_str->append(','); |
7571 | uint index= parts_str->length(); |
7572 | parts_str->append(head_pe->partition_name, |
7573 | strlen(head_pe->partition_name), |
7574 | system_charset_info); |
7575 | parts_str->append('_'); |
7576 | parts_str->append(pe->partition_name, |
7577 | strlen(pe->partition_name), |
7578 | system_charset_info); |
7579 | used_partitions_list.append_str(alloc, parts_str->ptr() + index); |
7580 | } |
7581 | partition_id++; |
7582 | } |
7583 | } |
7584 | } |
7585 | else |
7586 | { |
7587 | while ((pe= it++)) |
7588 | { |
7589 | if (bitmap_is_set(&part_info->read_partitions, partition_id)) |
7590 | { |
7591 | if (parts_str->length()) |
7592 | parts_str->append(','); |
7593 | used_partitions_list.append_str(alloc, pe->partition_name); |
7594 | parts_str->append(pe->partition_name, strlen(pe->partition_name), |
7595 | system_charset_info); |
7596 | } |
7597 | partition_id++; |
7598 | } |
7599 | } |
7600 | } |
7601 | #endif |
7602 | |
7603 | /**************************************************************************** |
7604 | * Partition interval analysis support |
7605 | ***************************************************************************/ |
7606 | |
7607 | /* |
7608 | Setup partition_info::* members related to partitioning range analysis |
7609 | |
7610 | SYNOPSIS |
7611 | set_up_partition_func_pointers() |
7612 | part_info Partitioning info structure |
7613 | |
7614 | DESCRIPTION |
7615 | Assuming that passed partition_info structure already has correct values |
7616 | for members that specify [sub]partitioning type, table fields, and |
7617 | functions, set up partition_info::* members that are related to |
7618 | Partitioning Interval Analysis (see get_partitions_in_range_iter for its |
7619 | definition) |
7620 | |
7621 | IMPLEMENTATION |
7622 | There are three available interval analyzer functions: |
7623 | (1) get_part_iter_for_interval_via_mapping |
7624 | (2) get_part_iter_for_interval_cols_via_map |
7625 | (3) get_part_iter_for_interval_via_walking |
7626 | |
7627 | They all have limited applicability: |
7628 | (1) is applicable for "PARTITION BY <RANGE|LIST>(func(t.field))", where |
7629 | func is a monotonic function. |
7630 | |
7631 | (2) is applicable for "PARTITION BY <RANGE|LIST> COLUMNS (field_list) |
7632 | |
7633 | (3) is applicable for |
7634 | "[SUB]PARTITION BY <any-partitioning-type>(any_func(t.integer_field))" |
7635 | |
7636 | If both (1) and (3) are applicable, (1) is preferred over (3). |
7637 | |
7638 | This function sets part_info::get_part_iter_for_interval according to |
7639 | this criteria, and also sets some auxilary fields that the function |
7640 | uses. |
7641 | */ |
7642 | #ifdef WITH_PARTITION_STORAGE_ENGINE |
7643 | static void set_up_range_analysis_info(partition_info *part_info) |
7644 | { |
7645 | /* Set the catch-all default */ |
7646 | part_info->get_part_iter_for_interval= NULL; |
7647 | part_info->get_subpart_iter_for_interval= NULL; |
7648 | |
7649 | /* |
7650 | Check if get_part_iter_for_interval_via_mapping() can be used for |
7651 | partitioning |
7652 | */ |
7653 | switch (part_info->part_type) { |
7654 | case RANGE_PARTITION: |
7655 | case LIST_PARTITION: |
7656 | if (!part_info->column_list) |
7657 | { |
7658 | if (part_info->part_expr->get_monotonicity_info() != NON_MONOTONIC) |
7659 | { |
7660 | part_info->get_part_iter_for_interval= |
7661 | get_part_iter_for_interval_via_mapping; |
7662 | goto setup_subparts; |
7663 | } |
7664 | } |
7665 | else |
7666 | { |
7667 | part_info->get_part_iter_for_interval= |
7668 | get_part_iter_for_interval_cols_via_map; |
7669 | goto setup_subparts; |
7670 | } |
7671 | default: |
7672 | ; |
7673 | } |
7674 | |
7675 | /* |
7676 | Check if get_part_iter_for_interval_via_walking() can be used for |
7677 | partitioning |
7678 | */ |
7679 | if (part_info->num_part_fields == 1) |
7680 | { |
7681 | Field *field= part_info->part_field_array[0]; |
7682 | switch (field->type()) { |
7683 | case MYSQL_TYPE_TINY: |
7684 | case MYSQL_TYPE_SHORT: |
7685 | case MYSQL_TYPE_INT24: |
7686 | case MYSQL_TYPE_LONG: |
7687 | case MYSQL_TYPE_LONGLONG: |
7688 | part_info->get_part_iter_for_interval= |
7689 | get_part_iter_for_interval_via_walking; |
7690 | break; |
7691 | default: |
7692 | ; |
7693 | } |
7694 | } |
7695 | |
7696 | setup_subparts: |
7697 | /* |
7698 | Check if get_part_iter_for_interval_via_walking() can be used for |
7699 | subpartitioning |
7700 | */ |
7701 | if (part_info->num_subpart_fields == 1) |
7702 | { |
7703 | Field *field= part_info->subpart_field_array[0]; |
7704 | switch (field->type()) { |
7705 | case MYSQL_TYPE_TINY: |
7706 | case MYSQL_TYPE_SHORT: |
7707 | case MYSQL_TYPE_LONG: |
7708 | case MYSQL_TYPE_LONGLONG: |
7709 | part_info->get_subpart_iter_for_interval= |
7710 | get_part_iter_for_interval_via_walking; |
7711 | break; |
7712 | default: |
7713 | ; |
7714 | } |
7715 | } |
7716 | } |
7717 | |
7718 | |
7719 | /* |
7720 | This function takes a memory of packed fields in opt-range format |
7721 | and stores it in record format. To avoid having to worry about how |
7722 | the length of fields are calculated in opt-range format we send |
7723 | an array of lengths used for each field in store_length_array. |
7724 | |
7725 | SYNOPSIS |
7726 | store_tuple_to_record() |
7727 | pfield Field array |
7728 | store_length_array Array of field lengths |
7729 | value Memory where fields are stored |
7730 | value_end End of memory |
7731 | |
7732 | RETURN VALUE |
7733 | nparts Number of fields assigned |
7734 | */ |
7735 | uint32 store_tuple_to_record(Field **pfield, |
7736 | uint32 *store_length_array, |
7737 | uchar *value, |
7738 | uchar *value_end) |
7739 | { |
7740 | /* This function is inspired by store_key_image_rec. */ |
7741 | uint32 nparts= 0; |
7742 | uchar *loc_value; |
7743 | while (value < value_end) |
7744 | { |
7745 | loc_value= value; |
7746 | if ((*pfield)->real_maybe_null()) |
7747 | { |
7748 | if (*loc_value) |
7749 | (*pfield)->set_null(); |
7750 | else |
7751 | (*pfield)->set_notnull(); |
7752 | loc_value++; |
7753 | } |
7754 | uint len= (*pfield)->pack_length(); |
7755 | (*pfield)->set_key_image(loc_value, len); |
7756 | value+= *store_length_array; |
7757 | store_length_array++; |
7758 | nparts++; |
7759 | pfield++; |
7760 | } |
7761 | return nparts; |
7762 | } |
7763 | |
7764 | /** |
7765 | RANGE(columns) partitioning: compare partition value bound and probe tuple. |
7766 | |
7767 | @param val Partition column values. |
7768 | @param nvals_in_rec Number of (prefix) fields to compare. |
7769 | |
7770 | @return Less than/Equal to/Greater than 0 if the record is L/E/G than val. |
7771 | |
7772 | @note The partition value bound is always a full tuple (but may include the |
7773 | MAXVALUE special value). The probe tuple may be a prefix of partitioning |
7774 | tuple. |
7775 | */ |
7776 | |
7777 | static int cmp_rec_and_tuple(part_column_list_val *val, uint32 nvals_in_rec) |
7778 | { |
7779 | partition_info *part_info= val->part_info; |
7780 | Field **field= part_info->part_field_array; |
7781 | Field **fields_end= field + nvals_in_rec; |
7782 | int res; |
7783 | |
7784 | for (; field != fields_end; field++, val++) |
7785 | { |
7786 | if (val->max_value) |
7787 | return -1; |
7788 | if ((*field)->is_null()) |
7789 | { |
7790 | if (val->null_value) |
7791 | continue; |
7792 | return -1; |
7793 | } |
7794 | if (val->null_value) |
7795 | return +1; |
7796 | res= (*field)->cmp((const uchar*)val->column_value); |
7797 | if (res) |
7798 | return res; |
7799 | } |
7800 | return 0; |
7801 | } |
7802 | |
7803 | |
7804 | /** |
7805 | Compare record and columns partition tuple including endpoint handling. |
7806 | |
7807 | @param val Columns partition tuple |
7808 | @param n_vals_in_rec Number of columns to compare |
7809 | @param is_left_endpoint True if left endpoint (part_tuple < rec or |
7810 | part_tuple <= rec) |
7811 | @param include_endpoint If endpoint is included (part_tuple <= rec or |
7812 | rec <= part_tuple) |
7813 | |
7814 | @return Less than/Equal to/Greater than 0 if the record is L/E/G than |
7815 | the partition tuple. |
7816 | |
7817 | @see get_list_array_idx_for_endpoint() and |
7818 | get_partition_id_range_for_endpoint(). |
7819 | */ |
7820 | |
7821 | static int cmp_rec_and_tuple_prune(part_column_list_val *val, |
7822 | uint32 n_vals_in_rec, |
7823 | bool is_left_endpoint, |
7824 | bool include_endpoint) |
7825 | { |
7826 | int cmp; |
7827 | Field **field; |
7828 | if ((cmp= cmp_rec_and_tuple(val, n_vals_in_rec))) |
7829 | return cmp; |
7830 | field= val->part_info->part_field_array + n_vals_in_rec; |
7831 | if (!(*field)) |
7832 | { |
7833 | /* Full match. Only equal if including endpoint. */ |
7834 | if (include_endpoint) |
7835 | return 0; |
7836 | |
7837 | if (is_left_endpoint) |
7838 | return +4; /* Start of range, part_tuple < rec, return higher. */ |
7839 | return -4; /* End of range, rec < part_tupe, return lesser. */ |
7840 | } |
7841 | /* |
7842 | The prefix is equal and there are more partition columns to compare. |
7843 | |
7844 | If including left endpoint or not including right endpoint |
7845 | then the record is considered lesser compared to the partition. |
7846 | |
7847 | i.e: |
7848 | part(10, x) <= rec(10, unknown) and rec(10, unknown) < part(10, x) |
7849 | part <= rec -> lesser (i.e. this or previous partitions) |
7850 | rec < part -> lesser (i.e. this or previous partitions) |
7851 | */ |
7852 | if (is_left_endpoint == include_endpoint) |
7853 | return -2; |
7854 | |
7855 | /* |
7856 | If right endpoint and the first additional partition value |
7857 | is MAXVALUE, then the record is lesser. |
7858 | */ |
7859 | if (!is_left_endpoint && (val + n_vals_in_rec)->max_value) |
7860 | return -3; |
7861 | |
7862 | /* |
7863 | Otherwise the record is considered greater. |
7864 | |
7865 | rec <= part -> greater (i.e. does not match this partition, seek higher). |
7866 | part < rec -> greater (i.e. does not match this partition, seek higher). |
7867 | */ |
7868 | return 2; |
7869 | } |
7870 | |
7871 | |
7872 | typedef uint32 (*get_endpoint_func)(partition_info*, bool left_endpoint, |
7873 | bool include_endpoint); |
7874 | |
7875 | typedef uint32 (*get_col_endpoint_func)(partition_info*, bool left_endpoint, |
7876 | bool include_endpoint, |
7877 | uint32 num_parts); |
7878 | |
7879 | /** |
7880 | Get partition for RANGE COLUMNS endpoint. |
7881 | |
7882 | @param part_info Partitioning metadata. |
7883 | @param is_left_endpoint True if left endpoint (const <=/< cols) |
7884 | @param include_endpoint True if range includes the endpoint (<=/>=) |
7885 | @param nparts Total number of partitions |
7886 | |
7887 | @return Partition id of matching partition. |
7888 | |
7889 | @see get_partition_id_cols_list_for_endpoint and |
7890 | get_partition_id_range_for_endpoint. |
7891 | */ |
7892 | |
7893 | uint32 get_partition_id_cols_range_for_endpoint(partition_info *part_info, |
7894 | bool is_left_endpoint, |
7895 | bool include_endpoint, |
7896 | uint32 nparts) |
7897 | { |
7898 | uint min_part_id= 0, max_part_id= part_info->num_parts, loc_part_id; |
7899 | part_column_list_val *range_col_array= part_info->range_col_array; |
7900 | uint num_columns= part_info->part_field_list.elements; |
7901 | DBUG_ENTER("get_partition_id_cols_range_for_endpoint" ); |
7902 | |
7903 | /* Find the matching partition (including taking endpoint into account). */ |
7904 | do |
7905 | { |
7906 | /* Midpoint, adjusted down, so it can never be > last partition. */ |
7907 | loc_part_id= (max_part_id + min_part_id) >> 1; |
7908 | if (0 <= cmp_rec_and_tuple_prune(range_col_array + |
7909 | loc_part_id * num_columns, |
7910 | nparts, |
7911 | is_left_endpoint, |
7912 | include_endpoint)) |
7913 | min_part_id= loc_part_id + 1; |
7914 | else |
7915 | max_part_id= loc_part_id; |
7916 | } while (max_part_id > min_part_id); |
7917 | loc_part_id= max_part_id; |
7918 | |
7919 | /* Given value must be LESS THAN the found partition. */ |
7920 | DBUG_ASSERT(loc_part_id == part_info->num_parts || |
7921 | (0 > cmp_rec_and_tuple_prune(range_col_array + |
7922 | loc_part_id * num_columns, |
7923 | nparts, is_left_endpoint, |
7924 | include_endpoint))); |
7925 | /* Given value must be GREATER THAN or EQUAL to the previous partition. */ |
7926 | DBUG_ASSERT(loc_part_id == 0 || |
7927 | (0 <= cmp_rec_and_tuple_prune(range_col_array + |
7928 | (loc_part_id - 1) * num_columns, |
7929 | nparts, is_left_endpoint, |
7930 | include_endpoint))); |
7931 | |
7932 | if (!is_left_endpoint) |
7933 | { |
7934 | /* Set the end after this partition if not already after the last. */ |
7935 | if (loc_part_id < part_info->num_parts) |
7936 | loc_part_id++; |
7937 | } |
7938 | DBUG_RETURN(loc_part_id); |
7939 | } |
7940 | |
7941 | |
7942 | static int get_part_iter_for_interval_cols_via_map(partition_info *part_info, |
7943 | bool is_subpart, uint32 *store_length_array, |
7944 | uchar *min_value, uchar *max_value, |
7945 | uint min_len, uint max_len, |
7946 | uint flags, PARTITION_ITERATOR *part_iter) |
7947 | { |
7948 | bool can_match_multiple_values; |
7949 | uint32 nparts; |
7950 | get_col_endpoint_func UNINIT_VAR(get_col_endpoint); |
7951 | uint full_length= 0; |
7952 | DBUG_ENTER("get_part_iter_for_interval_cols_via_map" ); |
7953 | |
7954 | if (part_info->part_type == RANGE_PARTITION || part_info->part_type == VERSIONING_PARTITION) |
7955 | { |
7956 | get_col_endpoint= get_partition_id_cols_range_for_endpoint; |
7957 | part_iter->get_next= get_next_partition_id_range; |
7958 | } |
7959 | else if (part_info->part_type == LIST_PARTITION) |
7960 | { |
7961 | if (part_info->has_default_partititon() && |
7962 | part_info->num_parts == 1) |
7963 | DBUG_RETURN(-1); //only DEFAULT partition |
7964 | get_col_endpoint= get_partition_id_cols_list_for_endpoint; |
7965 | part_iter->get_next= get_next_partition_id_list; |
7966 | part_iter->part_info= part_info; |
7967 | DBUG_ASSERT(part_info->num_list_values); |
7968 | } |
7969 | else |
7970 | assert(0); |
7971 | |
7972 | for (uint32 i= 0; i < part_info->num_columns; i++) |
7973 | full_length+= store_length_array[i]; |
7974 | |
7975 | can_match_multiple_values= ((flags & |
7976 | (NO_MIN_RANGE | NO_MAX_RANGE | NEAR_MIN | |
7977 | NEAR_MAX)) || |
7978 | (min_len != max_len) || |
7979 | (min_len != full_length) || |
7980 | memcmp(min_value, max_value, min_len)); |
7981 | DBUG_ASSERT(can_match_multiple_values || (flags & EQ_RANGE) || flags == 0); |
7982 | if (can_match_multiple_values && part_info->has_default_partititon()) |
7983 | part_iter->ret_default_part= part_iter->ret_default_part_orig= TRUE; |
7984 | |
7985 | if (flags & NO_MIN_RANGE) |
7986 | part_iter->part_nums.start= part_iter->part_nums.cur= 0; |
7987 | else |
7988 | { |
7989 | // Copy from min_value to record |
7990 | nparts= store_tuple_to_record(part_info->part_field_array, |
7991 | store_length_array, |
7992 | min_value, |
7993 | min_value + min_len); |
7994 | part_iter->part_nums.start= part_iter->part_nums.cur= |
7995 | get_col_endpoint(part_info, TRUE, !(flags & NEAR_MIN), |
7996 | nparts); |
7997 | } |
7998 | if (flags & NO_MAX_RANGE) |
7999 | { |
8000 | if (part_info->part_type == RANGE_PARTITION || part_info->part_type == VERSIONING_PARTITION) |
8001 | part_iter->part_nums.end= part_info->num_parts; |
8002 | else /* LIST_PARTITION */ |
8003 | { |
8004 | DBUG_ASSERT(part_info->part_type == LIST_PARTITION); |
8005 | part_iter->part_nums.end= part_info->num_list_values; |
8006 | } |
8007 | } |
8008 | else |
8009 | { |
8010 | // Copy from max_value to record |
8011 | nparts= store_tuple_to_record(part_info->part_field_array, |
8012 | store_length_array, |
8013 | max_value, |
8014 | max_value + max_len); |
8015 | part_iter->part_nums.end= get_col_endpoint(part_info, FALSE, |
8016 | !(flags & NEAR_MAX), |
8017 | nparts); |
8018 | } |
8019 | if (part_iter->part_nums.start == part_iter->part_nums.end) |
8020 | { |
8021 | // No matching partition found. |
8022 | if (part_info->has_default_partititon()) |
8023 | { |
8024 | part_iter->ret_default_part= part_iter->ret_default_part_orig= TRUE; |
8025 | DBUG_RETURN(1); |
8026 | } |
8027 | DBUG_RETURN(0); |
8028 | } |
8029 | DBUG_RETURN(1); |
8030 | } |
8031 | |
8032 | |
8033 | /** |
8034 | Partitioning Interval Analysis: Initialize the iterator for "mapping" case |
8035 | |
8036 | @param part_info Partition info |
8037 | @param is_subpart TRUE - act for subpartitioning |
8038 | FALSE - act for partitioning |
8039 | @param store_length_array Ignored. |
8040 | @param min_value minimum field value, in opt_range key format. |
8041 | @param max_value minimum field value, in opt_range key format. |
8042 | @param min_len Ignored. |
8043 | @param max_len Ignored. |
8044 | @param flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE, |
8045 | NO_MAX_RANGE. |
8046 | @param part_iter Iterator structure to be initialized |
8047 | |
8048 | @details Initialize partition set iterator to walk over the interval in |
8049 | ordered-array-of-partitions (for RANGE partitioning) or |
8050 | ordered-array-of-list-constants (for LIST partitioning) space. |
8051 | |
8052 | This function is used when partitioning is done by |
8053 | <RANGE|LIST>(ascending_func(t.field)), and we can map an interval in |
8054 | t.field space into a sub-array of partition_info::range_int_array or |
8055 | partition_info::list_array (see get_partition_id_range_for_endpoint, |
8056 | get_list_array_idx_for_endpoint for details). |
8057 | |
8058 | The function performs this interval mapping, and sets the iterator to |
8059 | traverse the sub-array and return appropriate partitions. |
8060 | |
8061 | @return Status of iterator |
8062 | @retval 0 No matching partitions (iterator not initialized) |
8063 | @retval 1 Ok, iterator intialized for traversal of matching partitions. |
8064 | @retval -1 All partitions would match (iterator not initialized) |
8065 | */ |
8066 | |
8067 | static int get_part_iter_for_interval_via_mapping(partition_info *part_info, |
8068 | bool is_subpart, |
8069 | uint32 *store_length_array, /* ignored */ |
8070 | uchar *min_value, uchar *max_value, |
8071 | uint min_len, uint max_len, /* ignored */ |
8072 | uint flags, PARTITION_ITERATOR *part_iter) |
8073 | { |
8074 | Field *field= part_info->part_field_array[0]; |
8075 | uint32 UNINIT_VAR(max_endpoint_val); |
8076 | get_endpoint_func UNINIT_VAR(get_endpoint); |
8077 | bool can_match_multiple_values; /* is not '=' */ |
8078 | uint field_len= field->pack_length_in_rec(); |
8079 | MYSQL_TIME start_date; |
8080 | bool check_zero_dates= false; |
8081 | bool zero_in_start_date= true; |
8082 | DBUG_ENTER("get_part_iter_for_interval_via_mapping" ); |
8083 | DBUG_ASSERT(!is_subpart); |
8084 | (void) store_length_array; |
8085 | (void)min_len; |
8086 | (void)max_len; |
8087 | part_iter->ret_null_part= part_iter->ret_null_part_orig= FALSE; |
8088 | part_iter->ret_default_part= part_iter->ret_default_part_orig= FALSE; |
8089 | |
8090 | if (part_info->part_type == RANGE_PARTITION) |
8091 | { |
8092 | if (part_info->part_charset_field_array) |
8093 | get_endpoint= get_partition_id_range_for_endpoint_charset; |
8094 | else |
8095 | get_endpoint= get_partition_id_range_for_endpoint; |
8096 | max_endpoint_val= part_info->num_parts; |
8097 | part_iter->get_next= get_next_partition_id_range; |
8098 | } |
8099 | else if (part_info->part_type == LIST_PARTITION) |
8100 | { |
8101 | |
8102 | if (part_info->part_charset_field_array) |
8103 | get_endpoint= get_list_array_idx_for_endpoint_charset; |
8104 | else |
8105 | get_endpoint= get_list_array_idx_for_endpoint; |
8106 | max_endpoint_val= part_info->num_list_values; |
8107 | part_iter->get_next= get_next_partition_id_list; |
8108 | part_iter->part_info= part_info; |
8109 | if (max_endpoint_val == 0) |
8110 | { |
8111 | /* |
8112 | We handle this special case without optimisations since it is |
8113 | of little practical value but causes a great number of complex |
8114 | checks later in the code. |
8115 | */ |
8116 | part_iter->part_nums.start= part_iter->part_nums.end= 0; |
8117 | part_iter->part_nums.cur= 0; |
8118 | part_iter->ret_null_part= part_iter->ret_null_part_orig= TRUE; |
8119 | DBUG_RETURN(-1); |
8120 | } |
8121 | } |
8122 | else |
8123 | MY_ASSERT_UNREACHABLE(); |
8124 | |
8125 | can_match_multiple_values= ((flags & |
8126 | (NO_MIN_RANGE | NO_MAX_RANGE | NEAR_MIN | |
8127 | NEAR_MAX)) || |
8128 | memcmp(min_value, max_value, field_len)); |
8129 | DBUG_ASSERT(can_match_multiple_values || (flags & EQ_RANGE) || flags == 0); |
8130 | if (can_match_multiple_values && part_info->has_default_partititon()) |
8131 | part_iter->ret_default_part= part_iter->ret_default_part_orig= TRUE; |
8132 | if (can_match_multiple_values && |
8133 | (part_info->part_type == RANGE_PARTITION || |
8134 | part_info->has_null_value)) |
8135 | { |
8136 | /* Range scan on RANGE or LIST partitioned table */ |
8137 | enum_monotonicity_info monotonic; |
8138 | monotonic= part_info->part_expr->get_monotonicity_info(); |
8139 | if (monotonic == MONOTONIC_INCREASING_NOT_NULL || |
8140 | monotonic == MONOTONIC_STRICT_INCREASING_NOT_NULL) |
8141 | { |
8142 | /* col is NOT NULL, but F(col) can return NULL, add NULL partition */ |
8143 | part_iter->ret_null_part= part_iter->ret_null_part_orig= TRUE; |
8144 | check_zero_dates= true; |
8145 | } |
8146 | } |
8147 | |
8148 | /* |
8149 | Find minimum: Do special handling if the interval has left bound in form |
8150 | " NULL <= X ": |
8151 | */ |
8152 | if (field->real_maybe_null() && part_info->has_null_value && |
8153 | !(flags & (NO_MIN_RANGE | NEAR_MIN)) && *min_value) |
8154 | { |
8155 | part_iter->ret_null_part= part_iter->ret_null_part_orig= TRUE; |
8156 | part_iter->part_nums.start= part_iter->part_nums.cur= 0; |
8157 | if (!(flags & NO_MAX_RANGE) && *max_value) |
8158 | { |
8159 | /* The right bound is X <= NULL, i.e. it is a "X IS NULL" interval */ |
8160 | part_iter->part_nums.end= 0; |
8161 | /* |
8162 | It is something like select * from tbl where col IS NULL |
8163 | and we have partition with NULL to catch it, so we do not need |
8164 | DEFAULT partition |
8165 | */ |
8166 | part_iter->ret_default_part= part_iter->ret_default_part_orig= FALSE; |
8167 | DBUG_RETURN(1); |
8168 | } |
8169 | } |
8170 | else |
8171 | { |
8172 | if (flags & NO_MIN_RANGE) |
8173 | part_iter->part_nums.start= part_iter->part_nums.cur= 0; |
8174 | else |
8175 | { |
8176 | /* |
8177 | Store the interval edge in the record buffer, and call the |
8178 | function that maps the edge in table-field space to an edge |
8179 | in ordered-set-of-partitions (for RANGE partitioning) or |
8180 | index-in-ordered-array-of-list-constants (for LIST) space. |
8181 | */ |
8182 | store_key_image_to_rec(field, min_value, field_len); |
8183 | bool include_endp= !MY_TEST(flags & NEAR_MIN); |
8184 | part_iter->part_nums.start= get_endpoint(part_info, 1, include_endp); |
8185 | if (!can_match_multiple_values && part_info->part_expr->null_value) |
8186 | { |
8187 | /* col = x and F(x) = NULL -> only search NULL partition */ |
8188 | part_iter->part_nums.cur= part_iter->part_nums.start= 0; |
8189 | part_iter->part_nums.end= 0; |
8190 | /* |
8191 | if NULL partition exists: |
8192 | for RANGE it is the first partition (always exists); |
8193 | for LIST should be indicator that it is present |
8194 | */ |
8195 | if (part_info->part_type == RANGE_PARTITION || |
8196 | part_info->has_null_value) |
8197 | { |
8198 | part_iter->ret_null_part= part_iter->ret_null_part_orig= TRUE; |
8199 | DBUG_RETURN(1); |
8200 | } |
8201 | // If no NULL partition look up in DEFAULT or there is no such value |
8202 | goto not_found; |
8203 | } |
8204 | part_iter->part_nums.cur= part_iter->part_nums.start; |
8205 | if (check_zero_dates && !part_info->part_expr->null_value) |
8206 | { |
8207 | if (!(flags & NO_MAX_RANGE) && |
8208 | (field->type() == MYSQL_TYPE_DATE || |
8209 | field->type() == MYSQL_TYPE_DATETIME)) |
8210 | { |
8211 | /* Monotonic, but return NULL for dates with zeros in month/day. */ |
8212 | zero_in_start_date= field->get_date(&start_date, 0); |
8213 | DBUG_PRINT("info" , ("zero start %u %04d-%02d-%02d" , |
8214 | zero_in_start_date, start_date.year, |
8215 | start_date.month, start_date.day)); |
8216 | } |
8217 | } |
8218 | if (part_iter->part_nums.start == max_endpoint_val) |
8219 | goto not_found; |
8220 | } |
8221 | } |
8222 | |
8223 | /* Find maximum, do the same as above but for right interval bound */ |
8224 | if (flags & NO_MAX_RANGE) |
8225 | part_iter->part_nums.end= max_endpoint_val; |
8226 | else |
8227 | { |
8228 | store_key_image_to_rec(field, max_value, field_len); |
8229 | bool include_endp= !MY_TEST(flags & NEAR_MAX); |
8230 | part_iter->part_nums.end= get_endpoint(part_info, 0, include_endp); |
8231 | if (check_zero_dates && |
8232 | !zero_in_start_date && |
8233 | !part_info->part_expr->null_value) |
8234 | { |
8235 | MYSQL_TIME end_date; |
8236 | bool zero_in_end_date= field->get_date(&end_date, 0); |
8237 | /* |
8238 | This is an optimization for TO_DAYS()/TO_SECONDS() to avoid scanning |
8239 | the NULL partition for ranges that cannot include a date with 0 as |
8240 | month/day. |
8241 | */ |
8242 | DBUG_PRINT("info" , ("zero end %u %04d-%02d-%02d" , |
8243 | zero_in_end_date, |
8244 | end_date.year, end_date.month, end_date.day)); |
8245 | DBUG_ASSERT(!memcmp(((Item_func*) part_info->part_expr)->func_name(), |
8246 | "to_days" , 7) || |
8247 | !memcmp(((Item_func*) part_info->part_expr)->func_name(), |
8248 | "to_seconds" , 10)); |
8249 | if (!zero_in_end_date && |
8250 | start_date.month == end_date.month && |
8251 | start_date.year == end_date.year) |
8252 | part_iter->ret_null_part= part_iter->ret_null_part_orig= false; |
8253 | } |
8254 | if (part_iter->part_nums.start >= part_iter->part_nums.end && |
8255 | !part_iter->ret_null_part) |
8256 | goto not_found; |
8257 | } |
8258 | DBUG_RETURN(1); /* Ok, iterator initialized */ |
8259 | |
8260 | not_found: |
8261 | if (part_info->has_default_partititon()) |
8262 | { |
8263 | part_iter->ret_default_part= part_iter->ret_default_part_orig= TRUE; |
8264 | DBUG_RETURN(1); |
8265 | } |
8266 | DBUG_RETURN(0); /* No partitions */ |
8267 | } |
8268 | |
8269 | |
8270 | /* See get_part_iter_for_interval_via_walking for definition of what this is */ |
8271 | #define MAX_RANGE_TO_WALK 32 |
8272 | |
8273 | |
8274 | /* |
8275 | Partitioning Interval Analysis: Initialize iterator to walk field interval |
8276 | |
8277 | SYNOPSIS |
8278 | get_part_iter_for_interval_via_walking() |
8279 | part_info Partition info |
8280 | is_subpart TRUE - act for subpartitioning |
8281 | FALSE - act for partitioning |
8282 | min_value minimum field value, in opt_range key format. |
8283 | max_value minimum field value, in opt_range key format. |
8284 | flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE, |
8285 | NO_MAX_RANGE. |
8286 | part_iter Iterator structure to be initialized |
8287 | |
8288 | DESCRIPTION |
8289 | Initialize partition set iterator to walk over interval in integer field |
8290 | space. That is, for "const1 <=? t.field <=? const2" interval, initialize |
8291 | the iterator to return a set of [sub]partitions obtained with the |
8292 | following procedure: |
8293 | get partition id for t.field = const1, return it |
8294 | get partition id for t.field = const1+1, return it |
8295 | ... t.field = const1+2, ... |
8296 | ... ... ... |
8297 | ... t.field = const2 ... |
8298 | |
8299 | IMPLEMENTATION |
8300 | See get_partitions_in_range_iter for general description of interval |
8301 | analysis. We support walking over the following intervals: |
8302 | "t.field IS NULL" |
8303 | "c1 <=? t.field <=? c2", where c1 and c2 are finite. |
8304 | Intervals with +inf/-inf, and [NULL, c1] interval can be processed but |
8305 | that is more tricky and I don't have time to do it right now. |
8306 | |
8307 | RETURN |
8308 | 0 - No matching partitions, iterator not initialized |
8309 | 1 - Some partitions would match, iterator intialized for traversing them |
8310 | -1 - All partitions would match, iterator not initialized |
8311 | */ |
8312 | |
8313 | static int get_part_iter_for_interval_via_walking(partition_info *part_info, |
8314 | bool is_subpart, |
8315 | uint32 *store_length_array, /* ignored */ |
8316 | uchar *min_value, uchar *max_value, |
8317 | uint min_len, uint max_len, /* ignored */ |
8318 | uint flags, PARTITION_ITERATOR *part_iter) |
8319 | { |
8320 | Field *field; |
8321 | uint total_parts; |
8322 | partition_iter_func get_next_func; |
8323 | DBUG_ENTER("get_part_iter_for_interval_via_walking" ); |
8324 | (void)store_length_array; |
8325 | (void)min_len; |
8326 | (void)max_len; |
8327 | |
8328 | part_iter->ret_null_part= part_iter->ret_null_part_orig= FALSE; |
8329 | part_iter->ret_default_part= part_iter->ret_default_part_orig= FALSE; |
8330 | |
8331 | if (is_subpart) |
8332 | { |
8333 | field= part_info->subpart_field_array[0]; |
8334 | total_parts= part_info->num_subparts; |
8335 | get_next_func= get_next_subpartition_via_walking; |
8336 | } |
8337 | else |
8338 | { |
8339 | field= part_info->part_field_array[0]; |
8340 | total_parts= part_info->num_parts; |
8341 | get_next_func= get_next_partition_via_walking; |
8342 | } |
8343 | |
8344 | /* Handle the "t.field IS NULL" interval, it is a special case */ |
8345 | if (field->real_maybe_null() && !(flags & (NO_MIN_RANGE | NO_MAX_RANGE)) && |
8346 | *min_value && *max_value) |
8347 | { |
8348 | /* |
8349 | We don't have a part_iter->get_next() function that would find which |
8350 | partition "t.field IS NULL" belongs to, so find partition that contains |
8351 | NULL right here, and return an iterator over singleton set. |
8352 | */ |
8353 | uint32 part_id; |
8354 | field->set_null(); |
8355 | if (is_subpart) |
8356 | { |
8357 | if (!part_info->get_subpartition_id(part_info, &part_id)) |
8358 | { |
8359 | init_single_partition_iterator(part_id, part_iter); |
8360 | DBUG_RETURN(1); /* Ok, iterator initialized */ |
8361 | } |
8362 | } |
8363 | else |
8364 | { |
8365 | longlong dummy; |
8366 | int res= part_info->is_sub_partitioned() ? |
8367 | part_info->get_part_partition_id(part_info, &part_id, |
8368 | &dummy): |
8369 | part_info->get_partition_id(part_info, &part_id, &dummy); |
8370 | if (!res) |
8371 | { |
8372 | init_single_partition_iterator(part_id, part_iter); |
8373 | DBUG_RETURN(1); /* Ok, iterator initialized */ |
8374 | } |
8375 | } |
8376 | DBUG_RETURN(0); /* No partitions match */ |
8377 | } |
8378 | |
8379 | if ((field->real_maybe_null() && |
8380 | ((!(flags & NO_MIN_RANGE) && *min_value) || // NULL <? X |
8381 | (!(flags & NO_MAX_RANGE) && *max_value))) || // X <? NULL |
8382 | (flags & (NO_MIN_RANGE | NO_MAX_RANGE))) // -inf at any bound |
8383 | { |
8384 | DBUG_RETURN(-1); /* Can't handle this interval, have to use all partitions */ |
8385 | } |
8386 | |
8387 | /* Get integers for left and right interval bound */ |
8388 | longlong a, b; |
8389 | uint len= field->pack_length_in_rec(); |
8390 | store_key_image_to_rec(field, min_value, len); |
8391 | a= field->val_int(); |
8392 | |
8393 | store_key_image_to_rec(field, max_value, len); |
8394 | b= field->val_int(); |
8395 | |
8396 | /* |
8397 | Handle a special case where the distance between interval bounds is |
8398 | exactly 4G-1. This interval is too big for range walking, and if it is an |
8399 | (x,y]-type interval then the following "b +=..." code will convert it to |
8400 | an empty interval by "wrapping around" a + 4G-1 + 1 = a. |
8401 | */ |
8402 | if ((ulonglong)b - (ulonglong)a == ~0ULL) |
8403 | DBUG_RETURN(-1); |
8404 | |
8405 | a+= MY_TEST(flags & NEAR_MIN); |
8406 | b+= MY_TEST(!(flags & NEAR_MAX)); |
8407 | ulonglong n_values= b - a; |
8408 | |
8409 | /* |
8410 | Will it pay off to enumerate all values in the [a..b] range and evaluate |
8411 | the partitioning function for every value? It depends on |
8412 | 1. whether we'll be able to infer that some partitions are not used |
8413 | 2. if time savings from not scanning these partitions will be greater |
8414 | than time spent in enumeration. |
8415 | We will assume that the cost of accessing one extra partition is greater |
8416 | than the cost of evaluating the partitioning function O(#partitions). |
8417 | This means we should jump at any chance to eliminate a partition, which |
8418 | gives us this logic: |
8419 | |
8420 | Do the enumeration if |
8421 | - the number of values to enumerate is comparable to the number of |
8422 | partitions, or |
8423 | - there are not many values to enumerate. |
8424 | */ |
8425 | if ((n_values > 2*total_parts) && n_values > MAX_RANGE_TO_WALK) |
8426 | DBUG_RETURN(-1); |
8427 | |
8428 | part_iter->field_vals.start= part_iter->field_vals.cur= a; |
8429 | part_iter->field_vals.end= b; |
8430 | part_iter->part_info= part_info; |
8431 | part_iter->get_next= get_next_func; |
8432 | DBUG_RETURN(1); |
8433 | } |
8434 | |
8435 | |
8436 | /* |
8437 | PARTITION_ITERATOR::get_next implementation: enumerate partitions in range |
8438 | |
8439 | SYNOPSIS |
8440 | get_next_partition_id_range() |
8441 | part_iter Partition set iterator structure |
8442 | |
8443 | DESCRIPTION |
8444 | This is implementation of PARTITION_ITERATOR::get_next() that returns |
8445 | [sub]partition ids in [min_partition_id, max_partition_id] range. |
8446 | The function conforms to partition_iter_func type. |
8447 | |
8448 | RETURN |
8449 | partition id |
8450 | NOT_A_PARTITION_ID if there are no more partitions |
8451 | */ |
8452 | |
8453 | uint32 get_next_partition_id_range(PARTITION_ITERATOR* part_iter) |
8454 | { |
8455 | if (part_iter->part_nums.cur >= part_iter->part_nums.end) |
8456 | { |
8457 | if (part_iter->ret_null_part) |
8458 | { |
8459 | part_iter->ret_null_part= FALSE; |
8460 | return 0; /* NULL always in first range partition */ |
8461 | } |
8462 | // we do not have default partition in RANGE partitioning |
8463 | DBUG_ASSERT(!part_iter->ret_default_part); |
8464 | |
8465 | part_iter->part_nums.cur= part_iter->part_nums.start; |
8466 | part_iter->ret_null_part= part_iter->ret_null_part_orig; |
8467 | return NOT_A_PARTITION_ID; |
8468 | } |
8469 | else |
8470 | return part_iter->part_nums.cur++; |
8471 | } |
8472 | |
8473 | |
8474 | /* |
8475 | PARTITION_ITERATOR::get_next implementation for LIST partitioning |
8476 | |
8477 | SYNOPSIS |
8478 | get_next_partition_id_list() |
8479 | part_iter Partition set iterator structure |
8480 | |
8481 | DESCRIPTION |
8482 | This implementation of PARTITION_ITERATOR::get_next() is special for |
8483 | LIST partitioning: it enumerates partition ids in |
8484 | part_info->list_array[i] (list_col_array[i*cols] for COLUMNS LIST |
8485 | partitioning) where i runs over [min_idx, max_idx] interval. |
8486 | The function conforms to partition_iter_func type. |
8487 | |
8488 | RETURN |
8489 | partition id |
8490 | NOT_A_PARTITION_ID if there are no more partitions |
8491 | */ |
8492 | |
8493 | uint32 get_next_partition_id_list(PARTITION_ITERATOR *part_iter) |
8494 | { |
8495 | if (part_iter->part_nums.cur >= part_iter->part_nums.end) |
8496 | { |
8497 | if (part_iter->ret_null_part) |
8498 | { |
8499 | part_iter->ret_null_part= FALSE; |
8500 | return part_iter->part_info->has_null_part_id; |
8501 | } |
8502 | if (part_iter->ret_default_part) |
8503 | { |
8504 | part_iter->ret_default_part= FALSE; |
8505 | return part_iter->part_info->default_partition_id; |
8506 | } |
8507 | /* Reset partition for next read */ |
8508 | part_iter->part_nums.cur= part_iter->part_nums.start; |
8509 | part_iter->ret_null_part= part_iter->ret_null_part_orig; |
8510 | part_iter->ret_default_part= part_iter->ret_default_part_orig; |
8511 | return NOT_A_PARTITION_ID; |
8512 | } |
8513 | else |
8514 | { |
8515 | partition_info *part_info= part_iter->part_info; |
8516 | uint32 num_part= part_iter->part_nums.cur++; |
8517 | if (part_info->column_list) |
8518 | { |
8519 | uint num_columns= part_info->part_field_list.elements; |
8520 | return part_info->list_col_array[num_part*num_columns].partition_id; |
8521 | } |
8522 | return part_info->list_array[num_part].partition_id; |
8523 | } |
8524 | } |
8525 | |
8526 | |
8527 | /* |
8528 | PARTITION_ITERATOR::get_next implementation: walk over field-space interval |
8529 | |
8530 | SYNOPSIS |
8531 | get_next_partition_via_walking() |
8532 | part_iter Partitioning iterator |
8533 | |
8534 | DESCRIPTION |
8535 | This implementation of PARTITION_ITERATOR::get_next() returns ids of |
8536 | partitions that contain records with partitioning field value within |
8537 | [start_val, end_val] interval. |
8538 | The function conforms to partition_iter_func type. |
8539 | |
8540 | RETURN |
8541 | partition id |
8542 | NOT_A_PARTITION_ID if there are no more partitioning. |
8543 | */ |
8544 | |
8545 | static uint32 get_next_partition_via_walking(PARTITION_ITERATOR *part_iter) |
8546 | { |
8547 | uint32 part_id; |
8548 | Field *field= part_iter->part_info->part_field_array[0]; |
8549 | while (part_iter->field_vals.cur != part_iter->field_vals.end) |
8550 | { |
8551 | longlong dummy; |
8552 | field->store(part_iter->field_vals.cur++, field->flags & UNSIGNED_FLAG); |
8553 | if ((part_iter->part_info->is_sub_partitioned() && |
8554 | !part_iter->part_info->get_part_partition_id(part_iter->part_info, |
8555 | &part_id, &dummy)) || |
8556 | !part_iter->part_info->get_partition_id(part_iter->part_info, |
8557 | &part_id, &dummy)) |
8558 | return part_id; |
8559 | } |
8560 | part_iter->field_vals.cur= part_iter->field_vals.start; |
8561 | return NOT_A_PARTITION_ID; |
8562 | } |
8563 | |
8564 | |
8565 | /* Same as get_next_partition_via_walking, but for subpartitions */ |
8566 | |
8567 | static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR *part_iter) |
8568 | { |
8569 | Field *field= part_iter->part_info->subpart_field_array[0]; |
8570 | uint32 res; |
8571 | if (part_iter->field_vals.cur == part_iter->field_vals.end) |
8572 | { |
8573 | part_iter->field_vals.cur= part_iter->field_vals.start; |
8574 | return NOT_A_PARTITION_ID; |
8575 | } |
8576 | field->store(part_iter->field_vals.cur++, field->flags & UNSIGNED_FLAG); |
8577 | if (part_iter->part_info->get_subpartition_id(part_iter->part_info, |
8578 | &res)) |
8579 | return NOT_A_PARTITION_ID; |
8580 | return res; |
8581 | } |
8582 | |
8583 | /* used in error messages below */ |
8584 | static const char *longest_str(const char *s1, const char *s2, |
8585 | const char *s3=0) |
8586 | { |
8587 | if (strlen(s2) > strlen(s1)) s1= s2; |
8588 | if (s3 && strlen(s3) > strlen(s1)) s1= s3; |
8589 | return s1; |
8590 | } |
8591 | |
8592 | |
8593 | /* |
8594 | Create partition names |
8595 | |
8596 | SYNOPSIS |
8597 | create_partition_name() |
8598 | out:out The buffer for the created partition name string |
8599 | must be *at least* of FN_REFLEN+1 bytes |
8600 | in1 First part |
8601 | in2 Second part |
8602 | name_variant Normal, temporary or renamed partition name |
8603 | |
8604 | RETURN VALUE |
8605 | 0 if ok, error if name too long |
8606 | |
8607 | DESCRIPTION |
8608 | This method is used to calculate the partition name, service routine to |
8609 | the del_ren_cre_table method. |
8610 | */ |
8611 | |
8612 | int create_partition_name(char *out, size_t outlen, const char *in1, |
8613 | const char *in2, uint name_variant, bool translate) |
8614 | { |
8615 | char transl_part_name[FN_REFLEN]; |
8616 | const char *transl_part, *end; |
8617 | DBUG_ASSERT(outlen >= FN_REFLEN + 1); // consistency! same limit everywhere |
8618 | |
8619 | if (translate) |
8620 | { |
8621 | tablename_to_filename(in2, transl_part_name, FN_REFLEN); |
8622 | transl_part= transl_part_name; |
8623 | } |
8624 | else |
8625 | transl_part= in2; |
8626 | |
8627 | if (name_variant == NORMAL_PART_NAME) |
8628 | end= strxnmov(out, outlen-1, in1, "#P#" , transl_part, NullS); |
8629 | else if (name_variant == TEMP_PART_NAME) |
8630 | end= strxnmov(out, outlen-1, in1, "#P#" , transl_part, "#TMP#" , NullS); |
8631 | else |
8632 | { |
8633 | DBUG_ASSERT(name_variant == RENAMED_PART_NAME); |
8634 | end= strxnmov(out, outlen-1, in1, "#P#" , transl_part, "#REN#" , NullS); |
8635 | } |
8636 | if (end - out == static_cast<ptrdiff_t>(outlen-1)) |
8637 | { |
8638 | my_error(ER_PATH_LENGTH, MYF(0), longest_str(in1, transl_part)); |
8639 | return HA_WRONG_CREATE_OPTION; |
8640 | } |
8641 | return 0; |
8642 | } |
8643 | |
8644 | /** |
8645 | Create subpartition name. This method is used to calculate the |
8646 | subpartition name, service routine to the del_ren_cre_table method. |
8647 | The output buffer size should be FN_REFLEN + 1(terminating '\0'). |
8648 | |
8649 | @param [out] out Created partition name string |
8650 | @param in1 First part |
8651 | @param in2 Second part |
8652 | @param in3 Third part |
8653 | @param name_variant Normal, temporary or renamed partition name |
8654 | |
8655 | @retval true Error. |
8656 | @retval false Success. |
8657 | */ |
8658 | |
8659 | int create_subpartition_name(char *out, size_t outlen, |
8660 | const char *in1, const char *in2, |
8661 | const char *in3, uint name_variant) |
8662 | { |
8663 | char transl_part_name[FN_REFLEN], transl_subpart_name[FN_REFLEN], *end; |
8664 | DBUG_ASSERT(outlen >= FN_REFLEN + 1); // consistency! same limit everywhere |
8665 | |
8666 | tablename_to_filename(in2, transl_part_name, FN_REFLEN); |
8667 | tablename_to_filename(in3, transl_subpart_name, FN_REFLEN); |
8668 | |
8669 | if (name_variant == NORMAL_PART_NAME) |
8670 | end= strxnmov(out, outlen-1, in1, "#P#" , transl_part_name, |
8671 | "#SP#" , transl_subpart_name, NullS); |
8672 | else if (name_variant == TEMP_PART_NAME) |
8673 | end= strxnmov(out, outlen-1, in1, "#P#" , transl_part_name, |
8674 | "#SP#" , transl_subpart_name, "#TMP#" , NullS); |
8675 | else |
8676 | { |
8677 | DBUG_ASSERT(name_variant == RENAMED_PART_NAME); |
8678 | end= strxnmov(out, outlen-1, in1, "#P#" , transl_part_name, |
8679 | "#SP#" , transl_subpart_name, "#REN#" , NullS); |
8680 | } |
8681 | if (end - out == static_cast<ptrdiff_t>(outlen-1)) |
8682 | { |
8683 | my_error(ER_PATH_LENGTH, MYF(0), |
8684 | longest_str(in1, transl_part_name, transl_subpart_name)); |
8685 | return HA_WRONG_CREATE_OPTION; |
8686 | } |
8687 | return 0; |
8688 | } |
8689 | |
8690 | uint get_partition_field_store_length(Field *field) |
8691 | { |
8692 | uint store_length; |
8693 | |
8694 | store_length= field->key_length(); |
8695 | if (field->real_maybe_null()) |
8696 | store_length+= HA_KEY_NULL_LENGTH; |
8697 | if (field->real_type() == MYSQL_TYPE_VARCHAR) |
8698 | store_length+= HA_KEY_BLOB_LENGTH; |
8699 | return store_length; |
8700 | } |
8701 | |
8702 | #endif |
8703 | |