| 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 5 | // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | #ifndef EIGEN_GENERAL_PRODUCT_H |
| 12 | #define EIGEN_GENERAL_PRODUCT_H |
| 13 | |
| 14 | namespace Eigen { |
| 15 | |
| 16 | enum { |
| 17 | Large = 2, |
| 18 | Small = 3 |
| 19 | }; |
| 20 | |
| 21 | namespace internal { |
| 22 | |
| 23 | template<int Rows, int Cols, int Depth> struct product_type_selector; |
| 24 | |
| 25 | template<int Size, int MaxSize> struct product_size_category |
| 26 | { |
| 27 | enum { |
| 28 | #ifndef EIGEN_CUDA_ARCH |
| 29 | is_large = MaxSize == Dynamic || |
| 30 | Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD || |
| 31 | (Size==Dynamic && MaxSize>=EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD), |
| 32 | #else |
| 33 | is_large = 0, |
| 34 | #endif |
| 35 | value = is_large ? Large |
| 36 | : Size == 1 ? 1 |
| 37 | : Small |
| 38 | }; |
| 39 | }; |
| 40 | |
| 41 | template<typename Lhs, typename Rhs> struct product_type |
| 42 | { |
| 43 | typedef typename remove_all<Lhs>::type _Lhs; |
| 44 | typedef typename remove_all<Rhs>::type _Rhs; |
| 45 | enum { |
| 46 | MaxRows = traits<_Lhs>::MaxRowsAtCompileTime, |
| 47 | Rows = traits<_Lhs>::RowsAtCompileTime, |
| 48 | MaxCols = traits<_Rhs>::MaxColsAtCompileTime, |
| 49 | Cols = traits<_Rhs>::ColsAtCompileTime, |
| 50 | MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::MaxColsAtCompileTime, |
| 51 | traits<_Rhs>::MaxRowsAtCompileTime), |
| 52 | Depth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::ColsAtCompileTime, |
| 53 | traits<_Rhs>::RowsAtCompileTime) |
| 54 | }; |
| 55 | |
| 56 | // the splitting into different lines of code here, introducing the _select enums and the typedef below, |
| 57 | // is to work around an internal compiler error with gcc 4.1 and 4.2. |
| 58 | private: |
| 59 | enum { |
| 60 | rows_select = product_size_category<Rows,MaxRows>::value, |
| 61 | cols_select = product_size_category<Cols,MaxCols>::value, |
| 62 | depth_select = product_size_category<Depth,MaxDepth>::value |
| 63 | }; |
| 64 | typedef product_type_selector<rows_select, cols_select, depth_select> selector; |
| 65 | |
| 66 | public: |
| 67 | enum { |
| 68 | value = selector::ret, |
| 69 | ret = selector::ret |
| 70 | }; |
| 71 | #ifdef EIGEN_DEBUG_PRODUCT |
| 72 | static void debug() |
| 73 | { |
| 74 | EIGEN_DEBUG_VAR(Rows); |
| 75 | EIGEN_DEBUG_VAR(Cols); |
| 76 | EIGEN_DEBUG_VAR(Depth); |
| 77 | EIGEN_DEBUG_VAR(rows_select); |
| 78 | EIGEN_DEBUG_VAR(cols_select); |
| 79 | EIGEN_DEBUG_VAR(depth_select); |
| 80 | EIGEN_DEBUG_VAR(value); |
| 81 | } |
| 82 | #endif |
| 83 | }; |
| 84 | |
| 85 | /* The following allows to select the kind of product at compile time |
| 86 | * based on the three dimensions of the product. |
| 87 | * This is a compile time mapping from {1,Small,Large}^3 -> {product types} */ |
| 88 | // FIXME I'm not sure the current mapping is the ideal one. |
| 89 | template<int M, int N> struct product_type_selector<M,N,1> { enum { ret = OuterProduct }; }; |
| 90 | template<int M> struct product_type_selector<M, 1, 1> { enum { ret = LazyCoeffBasedProductMode }; }; |
| 91 | template<int N> struct product_type_selector<1, N, 1> { enum { ret = LazyCoeffBasedProductMode }; }; |
| 92 | template<int Depth> struct product_type_selector<1, 1, Depth> { enum { ret = InnerProduct }; }; |
| 93 | template<> struct product_type_selector<1, 1, 1> { enum { ret = InnerProduct }; }; |
| 94 | template<> struct product_type_selector<Small,1, Small> { enum { ret = CoeffBasedProductMode }; }; |
| 95 | template<> struct product_type_selector<1, Small,Small> { enum { ret = CoeffBasedProductMode }; }; |
| 96 | template<> struct product_type_selector<Small,Small,Small> { enum { ret = CoeffBasedProductMode }; }; |
| 97 | template<> struct product_type_selector<Small, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; }; |
| 98 | template<> struct product_type_selector<Small, Large, 1> { enum { ret = LazyCoeffBasedProductMode }; }; |
| 99 | template<> struct product_type_selector<Large, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; }; |
| 100 | template<> struct product_type_selector<1, Large,Small> { enum { ret = CoeffBasedProductMode }; }; |
| 101 | template<> struct product_type_selector<1, Large,Large> { enum { ret = GemvProduct }; }; |
| 102 | template<> struct product_type_selector<1, Small,Large> { enum { ret = CoeffBasedProductMode }; }; |
| 103 | template<> struct product_type_selector<Large,1, Small> { enum { ret = CoeffBasedProductMode }; }; |
| 104 | template<> struct product_type_selector<Large,1, Large> { enum { ret = GemvProduct }; }; |
| 105 | template<> struct product_type_selector<Small,1, Large> { enum { ret = CoeffBasedProductMode }; }; |
| 106 | template<> struct product_type_selector<Small,Small,Large> { enum { ret = GemmProduct }; }; |
| 107 | template<> struct product_type_selector<Large,Small,Large> { enum { ret = GemmProduct }; }; |
| 108 | template<> struct product_type_selector<Small,Large,Large> { enum { ret = GemmProduct }; }; |
| 109 | template<> struct product_type_selector<Large,Large,Large> { enum { ret = GemmProduct }; }; |
| 110 | template<> struct product_type_selector<Large,Small,Small> { enum { ret = CoeffBasedProductMode }; }; |
| 111 | template<> struct product_type_selector<Small,Large,Small> { enum { ret = CoeffBasedProductMode }; }; |
| 112 | template<> struct product_type_selector<Large,Large,Small> { enum { ret = GemmProduct }; }; |
| 113 | |
| 114 | } // end namespace internal |
| 115 | |
| 116 | /*********************************************************************** |
| 117 | * Implementation of Inner Vector Vector Product |
| 118 | ***********************************************************************/ |
| 119 | |
| 120 | // FIXME : maybe the "inner product" could return a Scalar |
| 121 | // instead of a 1x1 matrix ?? |
| 122 | // Pro: more natural for the user |
| 123 | // Cons: this could be a problem if in a meta unrolled algorithm a matrix-matrix |
| 124 | // product ends up to a row-vector times col-vector product... To tackle this use |
| 125 | // case, we could have a specialization for Block<MatrixType,1,1> with: operator=(Scalar x); |
| 126 | |
| 127 | /*********************************************************************** |
| 128 | * Implementation of Outer Vector Vector Product |
| 129 | ***********************************************************************/ |
| 130 | |
| 131 | /*********************************************************************** |
| 132 | * Implementation of General Matrix Vector Product |
| 133 | ***********************************************************************/ |
| 134 | |
| 135 | /* According to the shape/flags of the matrix we have to distinghish 3 different cases: |
| 136 | * 1 - the matrix is col-major, BLAS compatible and M is large => call fast BLAS-like colmajor routine |
| 137 | * 2 - the matrix is row-major, BLAS compatible and N is large => call fast BLAS-like rowmajor routine |
| 138 | * 3 - all other cases are handled using a simple loop along the outer-storage direction. |
| 139 | * Therefore we need a lower level meta selector. |
| 140 | * Furthermore, if the matrix is the rhs, then the product has to be transposed. |
| 141 | */ |
| 142 | namespace internal { |
| 143 | |
| 144 | template<int Side, int StorageOrder, bool BlasCompatible> |
| 145 | struct gemv_dense_selector; |
| 146 | |
| 147 | } // end namespace internal |
| 148 | |
| 149 | namespace internal { |
| 150 | |
| 151 | template<typename Scalar,int Size,int MaxSize,bool Cond> struct gemv_static_vector_if; |
| 152 | |
| 153 | template<typename Scalar,int Size,int MaxSize> |
| 154 | struct gemv_static_vector_if<Scalar,Size,MaxSize,false> |
| 155 | { |
| 156 | EIGEN_STRONG_INLINE Scalar* data() { eigen_internal_assert(false && "should never be called" ); return 0; } |
| 157 | }; |
| 158 | |
| 159 | template<typename Scalar,int Size> |
| 160 | struct gemv_static_vector_if<Scalar,Size,Dynamic,true> |
| 161 | { |
| 162 | EIGEN_STRONG_INLINE Scalar* data() { return 0; } |
| 163 | }; |
| 164 | |
| 165 | template<typename Scalar,int Size,int MaxSize> |
| 166 | struct gemv_static_vector_if<Scalar,Size,MaxSize,true> |
| 167 | { |
| 168 | enum { |
| 169 | ForceAlignment = internal::packet_traits<Scalar>::Vectorizable, |
| 170 | PacketSize = internal::packet_traits<Scalar>::size |
| 171 | }; |
| 172 | #if EIGEN_MAX_STATIC_ALIGN_BYTES!=0 |
| 173 | internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize),0,EIGEN_PLAIN_ENUM_MIN(AlignedMax,PacketSize)> m_data; |
| 174 | EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; } |
| 175 | #else |
| 176 | // Some architectures cannot align on the stack, |
| 177 | // => let's manually enforce alignment by allocating more data and return the address of the first aligned element. |
| 178 | internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize)+(ForceAlignment?EIGEN_MAX_ALIGN_BYTES:0),0> m_data; |
| 179 | EIGEN_STRONG_INLINE Scalar* data() { |
| 180 | return ForceAlignment |
| 181 | ? reinterpret_cast<Scalar*>((internal::UIntPtr(m_data.array) & ~(std::size_t(EIGEN_MAX_ALIGN_BYTES-1))) + EIGEN_MAX_ALIGN_BYTES) |
| 182 | : m_data.array; |
| 183 | } |
| 184 | #endif |
| 185 | }; |
| 186 | |
| 187 | // The vector is on the left => transposition |
| 188 | template<int StorageOrder, bool BlasCompatible> |
| 189 | struct gemv_dense_selector<OnTheLeft,StorageOrder,BlasCompatible> |
| 190 | { |
| 191 | template<typename Lhs, typename Rhs, typename Dest> |
| 192 | static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) |
| 193 | { |
| 194 | Transpose<Dest> destT(dest); |
| 195 | enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor }; |
| 196 | gemv_dense_selector<OnTheRight,OtherStorageOrder,BlasCompatible> |
| 197 | ::run(rhs.transpose(), lhs.transpose(), destT, alpha); |
| 198 | } |
| 199 | }; |
| 200 | |
| 201 | template<> struct gemv_dense_selector<OnTheRight,ColMajor,true> |
| 202 | { |
| 203 | template<typename Lhs, typename Rhs, typename Dest> |
| 204 | static inline void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) |
| 205 | { |
| 206 | typedef typename Lhs::Scalar LhsScalar; |
| 207 | typedef typename Rhs::Scalar RhsScalar; |
| 208 | typedef typename Dest::Scalar ResScalar; |
| 209 | typedef typename Dest::RealScalar RealScalar; |
| 210 | |
| 211 | typedef internal::blas_traits<Lhs> LhsBlasTraits; |
| 212 | typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; |
| 213 | typedef internal::blas_traits<Rhs> RhsBlasTraits; |
| 214 | typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; |
| 215 | |
| 216 | typedef Map<Matrix<ResScalar,Dynamic,1>, EIGEN_PLAIN_ENUM_MIN(AlignedMax,internal::packet_traits<ResScalar>::size)> MappedDest; |
| 217 | |
| 218 | ActualLhsType actualLhs = LhsBlasTraits::extract(lhs); |
| 219 | ActualRhsType actualRhs = RhsBlasTraits::extract(rhs); |
| 220 | |
| 221 | ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs) |
| 222 | * RhsBlasTraits::extractScalarFactor(rhs); |
| 223 | |
| 224 | // make sure Dest is a compile-time vector type (bug 1166) |
| 225 | typedef typename conditional<Dest::IsVectorAtCompileTime, Dest, typename Dest::ColXpr>::type ActualDest; |
| 226 | |
| 227 | enum { |
| 228 | // FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1 |
| 229 | // on, the other hand it is good for the cache to pack the vector anyways... |
| 230 | EvalToDestAtCompileTime = (ActualDest::InnerStrideAtCompileTime==1), |
| 231 | ComplexByReal = (NumTraits<LhsScalar>::IsComplex) && (!NumTraits<RhsScalar>::IsComplex), |
| 232 | MightCannotUseDest = (!EvalToDestAtCompileTime) || ComplexByReal |
| 233 | }; |
| 234 | |
| 235 | typedef const_blas_data_mapper<LhsScalar,Index,ColMajor> LhsMapper; |
| 236 | typedef const_blas_data_mapper<RhsScalar,Index,RowMajor> RhsMapper; |
| 237 | RhsScalar compatibleAlpha = get_factor<ResScalar,RhsScalar>::run(actualAlpha); |
| 238 | |
| 239 | if(!MightCannotUseDest) |
| 240 | { |
| 241 | // shortcut if we are sure to be able to use dest directly, |
| 242 | // this ease the compiler to generate cleaner and more optimzized code for most common cases |
| 243 | general_matrix_vector_product |
| 244 | <Index,LhsScalar,LhsMapper,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run( |
| 245 | actualLhs.rows(), actualLhs.cols(), |
| 246 | LhsMapper(actualLhs.data(), actualLhs.outerStride()), |
| 247 | RhsMapper(actualRhs.data(), actualRhs.innerStride()), |
| 248 | dest.data(), 1, |
| 249 | compatibleAlpha); |
| 250 | } |
| 251 | else |
| 252 | { |
| 253 | gemv_static_vector_if<ResScalar,ActualDest::SizeAtCompileTime,ActualDest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest; |
| 254 | |
| 255 | const bool alphaIsCompatible = (!ComplexByReal) || (numext::imag(actualAlpha)==RealScalar(0)); |
| 256 | const bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible; |
| 257 | |
| 258 | ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(), |
| 259 | evalToDest ? dest.data() : static_dest.data()); |
| 260 | |
| 261 | if(!evalToDest) |
| 262 | { |
| 263 | #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN |
| 264 | Index size = dest.size(); |
| 265 | EIGEN_DENSE_STORAGE_CTOR_PLUGIN |
| 266 | #endif |
| 267 | if(!alphaIsCompatible) |
| 268 | { |
| 269 | MappedDest(actualDestPtr, dest.size()).setZero(); |
| 270 | compatibleAlpha = RhsScalar(1); |
| 271 | } |
| 272 | else |
| 273 | MappedDest(actualDestPtr, dest.size()) = dest; |
| 274 | } |
| 275 | |
| 276 | general_matrix_vector_product |
| 277 | <Index,LhsScalar,LhsMapper,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run( |
| 278 | actualLhs.rows(), actualLhs.cols(), |
| 279 | LhsMapper(actualLhs.data(), actualLhs.outerStride()), |
| 280 | RhsMapper(actualRhs.data(), actualRhs.innerStride()), |
| 281 | actualDestPtr, 1, |
| 282 | compatibleAlpha); |
| 283 | |
| 284 | if (!evalToDest) |
| 285 | { |
| 286 | if(!alphaIsCompatible) |
| 287 | dest.matrix() += actualAlpha * MappedDest(actualDestPtr, dest.size()); |
| 288 | else |
| 289 | dest = MappedDest(actualDestPtr, dest.size()); |
| 290 | } |
| 291 | } |
| 292 | } |
| 293 | }; |
| 294 | |
| 295 | template<> struct gemv_dense_selector<OnTheRight,RowMajor,true> |
| 296 | { |
| 297 | template<typename Lhs, typename Rhs, typename Dest> |
| 298 | static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) |
| 299 | { |
| 300 | typedef typename Lhs::Scalar LhsScalar; |
| 301 | typedef typename Rhs::Scalar RhsScalar; |
| 302 | typedef typename Dest::Scalar ResScalar; |
| 303 | |
| 304 | typedef internal::blas_traits<Lhs> LhsBlasTraits; |
| 305 | typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; |
| 306 | typedef internal::blas_traits<Rhs> RhsBlasTraits; |
| 307 | typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; |
| 308 | typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned; |
| 309 | |
| 310 | typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(lhs); |
| 311 | typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(rhs); |
| 312 | |
| 313 | ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs) |
| 314 | * RhsBlasTraits::extractScalarFactor(rhs); |
| 315 | |
| 316 | enum { |
| 317 | // FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1 |
| 318 | // on, the other hand it is good for the cache to pack the vector anyways... |
| 319 | DirectlyUseRhs = ActualRhsTypeCleaned::InnerStrideAtCompileTime==1 |
| 320 | }; |
| 321 | |
| 322 | gemv_static_vector_if<RhsScalar,ActualRhsTypeCleaned::SizeAtCompileTime,ActualRhsTypeCleaned::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs; |
| 323 | |
| 324 | ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(), |
| 325 | DirectlyUseRhs ? const_cast<RhsScalar*>(actualRhs.data()) : static_rhs.data()); |
| 326 | |
| 327 | if(!DirectlyUseRhs) |
| 328 | { |
| 329 | #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN |
| 330 | Index size = actualRhs.size(); |
| 331 | EIGEN_DENSE_STORAGE_CTOR_PLUGIN |
| 332 | #endif |
| 333 | Map<typename ActualRhsTypeCleaned::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs; |
| 334 | } |
| 335 | |
| 336 | typedef const_blas_data_mapper<LhsScalar,Index,RowMajor> LhsMapper; |
| 337 | typedef const_blas_data_mapper<RhsScalar,Index,ColMajor> RhsMapper; |
| 338 | general_matrix_vector_product |
| 339 | <Index,LhsScalar,LhsMapper,RowMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run( |
| 340 | actualLhs.rows(), actualLhs.cols(), |
| 341 | LhsMapper(actualLhs.data(), actualLhs.outerStride()), |
| 342 | RhsMapper(actualRhsPtr, 1), |
| 343 | dest.data(), dest.col(0).innerStride(), //NOTE if dest is not a vector at compile-time, then dest.innerStride() might be wrong. (bug 1166) |
| 344 | actualAlpha); |
| 345 | } |
| 346 | }; |
| 347 | |
| 348 | template<> struct gemv_dense_selector<OnTheRight,ColMajor,false> |
| 349 | { |
| 350 | template<typename Lhs, typename Rhs, typename Dest> |
| 351 | static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) |
| 352 | { |
| 353 | EIGEN_STATIC_ASSERT((!nested_eval<Lhs,1>::Evaluate),EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE); |
| 354 | // TODO if rhs is large enough it might be beneficial to make sure that dest is sequentially stored in memory, otherwise use a temp |
| 355 | typename nested_eval<Rhs,1>::type actual_rhs(rhs); |
| 356 | const Index size = rhs.rows(); |
| 357 | for(Index k=0; k<size; ++k) |
| 358 | dest += (alpha*actual_rhs.coeff(k)) * lhs.col(k); |
| 359 | } |
| 360 | }; |
| 361 | |
| 362 | template<> struct gemv_dense_selector<OnTheRight,RowMajor,false> |
| 363 | { |
| 364 | template<typename Lhs, typename Rhs, typename Dest> |
| 365 | static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) |
| 366 | { |
| 367 | EIGEN_STATIC_ASSERT((!nested_eval<Lhs,1>::Evaluate),EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE); |
| 368 | typename nested_eval<Rhs,Lhs::RowsAtCompileTime>::type actual_rhs(rhs); |
| 369 | const Index rows = dest.rows(); |
| 370 | for(Index i=0; i<rows; ++i) |
| 371 | dest.coeffRef(i) += alpha * (lhs.row(i).cwiseProduct(actual_rhs.transpose())).sum(); |
| 372 | } |
| 373 | }; |
| 374 | |
| 375 | } // end namespace internal |
| 376 | |
| 377 | /*************************************************************************** |
| 378 | * Implementation of matrix base methods |
| 379 | ***************************************************************************/ |
| 380 | |
| 381 | /** \returns the matrix product of \c *this and \a other. |
| 382 | * |
| 383 | * \note If instead of the matrix product you want the coefficient-wise product, see Cwise::operator*(). |
| 384 | * |
| 385 | * \sa lazyProduct(), operator*=(const MatrixBase&), Cwise::operator*() |
| 386 | */ |
| 387 | template<typename Derived> |
| 388 | template<typename OtherDerived> |
| 389 | inline const Product<Derived, OtherDerived> |
| 390 | MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const |
| 391 | { |
| 392 | // A note regarding the function declaration: In MSVC, this function will sometimes |
| 393 | // not be inlined since DenseStorage is an unwindable object for dynamic |
| 394 | // matrices and product types are holding a member to store the result. |
| 395 | // Thus it does not help tagging this function with EIGEN_STRONG_INLINE. |
| 396 | enum { |
| 397 | ProductIsValid = Derived::ColsAtCompileTime==Dynamic |
| 398 | || OtherDerived::RowsAtCompileTime==Dynamic |
| 399 | || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime), |
| 400 | AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime, |
| 401 | SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived) |
| 402 | }; |
| 403 | // note to the lost user: |
| 404 | // * for a dot product use: v1.dot(v2) |
| 405 | // * for a coeff-wise product use: v1.cwiseProduct(v2) |
| 406 | EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes), |
| 407 | INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS) |
| 408 | EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors), |
| 409 | INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION) |
| 410 | EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT) |
| 411 | #ifdef EIGEN_DEBUG_PRODUCT |
| 412 | internal::product_type<Derived,OtherDerived>::debug(); |
| 413 | #endif |
| 414 | |
| 415 | return Product<Derived, OtherDerived>(derived(), other.derived()); |
| 416 | } |
| 417 | |
| 418 | /** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation. |
| 419 | * |
| 420 | * The returned product will behave like any other expressions: the coefficients of the product will be |
| 421 | * computed once at a time as requested. This might be useful in some extremely rare cases when only |
| 422 | * a small and no coherent fraction of the result's coefficients have to be computed. |
| 423 | * |
| 424 | * \warning This version of the matrix product can be much much slower. So use it only if you know |
| 425 | * what you are doing and that you measured a true speed improvement. |
| 426 | * |
| 427 | * \sa operator*(const MatrixBase&) |
| 428 | */ |
| 429 | template<typename Derived> |
| 430 | template<typename OtherDerived> |
| 431 | const Product<Derived,OtherDerived,LazyProduct> |
| 432 | MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const |
| 433 | { |
| 434 | enum { |
| 435 | ProductIsValid = Derived::ColsAtCompileTime==Dynamic |
| 436 | || OtherDerived::RowsAtCompileTime==Dynamic |
| 437 | || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime), |
| 438 | AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime, |
| 439 | SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived) |
| 440 | }; |
| 441 | // note to the lost user: |
| 442 | // * for a dot product use: v1.dot(v2) |
| 443 | // * for a coeff-wise product use: v1.cwiseProduct(v2) |
| 444 | EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes), |
| 445 | INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS) |
| 446 | EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors), |
| 447 | INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION) |
| 448 | EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT) |
| 449 | |
| 450 | return Product<Derived,OtherDerived,LazyProduct>(derived(), other.derived()); |
| 451 | } |
| 452 | |
| 453 | } // end namespace Eigen |
| 454 | |
| 455 | #endif // EIGEN_PRODUCT_H |
| 456 | |