1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
5 | // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
6 | // |
7 | // This Source Code Form is subject to the terms of the Mozilla |
8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
10 | |
11 | #ifndef EIGEN_GENERAL_PRODUCT_H |
12 | #define EIGEN_GENERAL_PRODUCT_H |
13 | |
14 | namespace Eigen { |
15 | |
16 | enum { |
17 | Large = 2, |
18 | Small = 3 |
19 | }; |
20 | |
21 | namespace internal { |
22 | |
23 | template<int Rows, int Cols, int Depth> struct product_type_selector; |
24 | |
25 | template<int Size, int MaxSize> struct product_size_category |
26 | { |
27 | enum { |
28 | #ifndef EIGEN_CUDA_ARCH |
29 | is_large = MaxSize == Dynamic || |
30 | Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD || |
31 | (Size==Dynamic && MaxSize>=EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD), |
32 | #else |
33 | is_large = 0, |
34 | #endif |
35 | value = is_large ? Large |
36 | : Size == 1 ? 1 |
37 | : Small |
38 | }; |
39 | }; |
40 | |
41 | template<typename Lhs, typename Rhs> struct product_type |
42 | { |
43 | typedef typename remove_all<Lhs>::type _Lhs; |
44 | typedef typename remove_all<Rhs>::type _Rhs; |
45 | enum { |
46 | MaxRows = traits<_Lhs>::MaxRowsAtCompileTime, |
47 | Rows = traits<_Lhs>::RowsAtCompileTime, |
48 | MaxCols = traits<_Rhs>::MaxColsAtCompileTime, |
49 | Cols = traits<_Rhs>::ColsAtCompileTime, |
50 | MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::MaxColsAtCompileTime, |
51 | traits<_Rhs>::MaxRowsAtCompileTime), |
52 | Depth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::ColsAtCompileTime, |
53 | traits<_Rhs>::RowsAtCompileTime) |
54 | }; |
55 | |
56 | // the splitting into different lines of code here, introducing the _select enums and the typedef below, |
57 | // is to work around an internal compiler error with gcc 4.1 and 4.2. |
58 | private: |
59 | enum { |
60 | rows_select = product_size_category<Rows,MaxRows>::value, |
61 | cols_select = product_size_category<Cols,MaxCols>::value, |
62 | depth_select = product_size_category<Depth,MaxDepth>::value |
63 | }; |
64 | typedef product_type_selector<rows_select, cols_select, depth_select> selector; |
65 | |
66 | public: |
67 | enum { |
68 | value = selector::ret, |
69 | ret = selector::ret |
70 | }; |
71 | #ifdef EIGEN_DEBUG_PRODUCT |
72 | static void debug() |
73 | { |
74 | EIGEN_DEBUG_VAR(Rows); |
75 | EIGEN_DEBUG_VAR(Cols); |
76 | EIGEN_DEBUG_VAR(Depth); |
77 | EIGEN_DEBUG_VAR(rows_select); |
78 | EIGEN_DEBUG_VAR(cols_select); |
79 | EIGEN_DEBUG_VAR(depth_select); |
80 | EIGEN_DEBUG_VAR(value); |
81 | } |
82 | #endif |
83 | }; |
84 | |
85 | /* The following allows to select the kind of product at compile time |
86 | * based on the three dimensions of the product. |
87 | * This is a compile time mapping from {1,Small,Large}^3 -> {product types} */ |
88 | // FIXME I'm not sure the current mapping is the ideal one. |
89 | template<int M, int N> struct product_type_selector<M,N,1> { enum { ret = OuterProduct }; }; |
90 | template<int M> struct product_type_selector<M, 1, 1> { enum { ret = LazyCoeffBasedProductMode }; }; |
91 | template<int N> struct product_type_selector<1, N, 1> { enum { ret = LazyCoeffBasedProductMode }; }; |
92 | template<int Depth> struct product_type_selector<1, 1, Depth> { enum { ret = InnerProduct }; }; |
93 | template<> struct product_type_selector<1, 1, 1> { enum { ret = InnerProduct }; }; |
94 | template<> struct product_type_selector<Small,1, Small> { enum { ret = CoeffBasedProductMode }; }; |
95 | template<> struct product_type_selector<1, Small,Small> { enum { ret = CoeffBasedProductMode }; }; |
96 | template<> struct product_type_selector<Small,Small,Small> { enum { ret = CoeffBasedProductMode }; }; |
97 | template<> struct product_type_selector<Small, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; }; |
98 | template<> struct product_type_selector<Small, Large, 1> { enum { ret = LazyCoeffBasedProductMode }; }; |
99 | template<> struct product_type_selector<Large, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; }; |
100 | template<> struct product_type_selector<1, Large,Small> { enum { ret = CoeffBasedProductMode }; }; |
101 | template<> struct product_type_selector<1, Large,Large> { enum { ret = GemvProduct }; }; |
102 | template<> struct product_type_selector<1, Small,Large> { enum { ret = CoeffBasedProductMode }; }; |
103 | template<> struct product_type_selector<Large,1, Small> { enum { ret = CoeffBasedProductMode }; }; |
104 | template<> struct product_type_selector<Large,1, Large> { enum { ret = GemvProduct }; }; |
105 | template<> struct product_type_selector<Small,1, Large> { enum { ret = CoeffBasedProductMode }; }; |
106 | template<> struct product_type_selector<Small,Small,Large> { enum { ret = GemmProduct }; }; |
107 | template<> struct product_type_selector<Large,Small,Large> { enum { ret = GemmProduct }; }; |
108 | template<> struct product_type_selector<Small,Large,Large> { enum { ret = GemmProduct }; }; |
109 | template<> struct product_type_selector<Large,Large,Large> { enum { ret = GemmProduct }; }; |
110 | template<> struct product_type_selector<Large,Small,Small> { enum { ret = CoeffBasedProductMode }; }; |
111 | template<> struct product_type_selector<Small,Large,Small> { enum { ret = CoeffBasedProductMode }; }; |
112 | template<> struct product_type_selector<Large,Large,Small> { enum { ret = GemmProduct }; }; |
113 | |
114 | } // end namespace internal |
115 | |
116 | /*********************************************************************** |
117 | * Implementation of Inner Vector Vector Product |
118 | ***********************************************************************/ |
119 | |
120 | // FIXME : maybe the "inner product" could return a Scalar |
121 | // instead of a 1x1 matrix ?? |
122 | // Pro: more natural for the user |
123 | // Cons: this could be a problem if in a meta unrolled algorithm a matrix-matrix |
124 | // product ends up to a row-vector times col-vector product... To tackle this use |
125 | // case, we could have a specialization for Block<MatrixType,1,1> with: operator=(Scalar x); |
126 | |
127 | /*********************************************************************** |
128 | * Implementation of Outer Vector Vector Product |
129 | ***********************************************************************/ |
130 | |
131 | /*********************************************************************** |
132 | * Implementation of General Matrix Vector Product |
133 | ***********************************************************************/ |
134 | |
135 | /* According to the shape/flags of the matrix we have to distinghish 3 different cases: |
136 | * 1 - the matrix is col-major, BLAS compatible and M is large => call fast BLAS-like colmajor routine |
137 | * 2 - the matrix is row-major, BLAS compatible and N is large => call fast BLAS-like rowmajor routine |
138 | * 3 - all other cases are handled using a simple loop along the outer-storage direction. |
139 | * Therefore we need a lower level meta selector. |
140 | * Furthermore, if the matrix is the rhs, then the product has to be transposed. |
141 | */ |
142 | namespace internal { |
143 | |
144 | template<int Side, int StorageOrder, bool BlasCompatible> |
145 | struct gemv_dense_selector; |
146 | |
147 | } // end namespace internal |
148 | |
149 | namespace internal { |
150 | |
151 | template<typename Scalar,int Size,int MaxSize,bool Cond> struct gemv_static_vector_if; |
152 | |
153 | template<typename Scalar,int Size,int MaxSize> |
154 | struct gemv_static_vector_if<Scalar,Size,MaxSize,false> |
155 | { |
156 | EIGEN_STRONG_INLINE Scalar* data() { eigen_internal_assert(false && "should never be called" ); return 0; } |
157 | }; |
158 | |
159 | template<typename Scalar,int Size> |
160 | struct gemv_static_vector_if<Scalar,Size,Dynamic,true> |
161 | { |
162 | EIGEN_STRONG_INLINE Scalar* data() { return 0; } |
163 | }; |
164 | |
165 | template<typename Scalar,int Size,int MaxSize> |
166 | struct gemv_static_vector_if<Scalar,Size,MaxSize,true> |
167 | { |
168 | enum { |
169 | ForceAlignment = internal::packet_traits<Scalar>::Vectorizable, |
170 | PacketSize = internal::packet_traits<Scalar>::size |
171 | }; |
172 | #if EIGEN_MAX_STATIC_ALIGN_BYTES!=0 |
173 | internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize),0,EIGEN_PLAIN_ENUM_MIN(AlignedMax,PacketSize)> m_data; |
174 | EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; } |
175 | #else |
176 | // Some architectures cannot align on the stack, |
177 | // => let's manually enforce alignment by allocating more data and return the address of the first aligned element. |
178 | internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize)+(ForceAlignment?EIGEN_MAX_ALIGN_BYTES:0),0> m_data; |
179 | EIGEN_STRONG_INLINE Scalar* data() { |
180 | return ForceAlignment |
181 | ? reinterpret_cast<Scalar*>((internal::UIntPtr(m_data.array) & ~(std::size_t(EIGEN_MAX_ALIGN_BYTES-1))) + EIGEN_MAX_ALIGN_BYTES) |
182 | : m_data.array; |
183 | } |
184 | #endif |
185 | }; |
186 | |
187 | // The vector is on the left => transposition |
188 | template<int StorageOrder, bool BlasCompatible> |
189 | struct gemv_dense_selector<OnTheLeft,StorageOrder,BlasCompatible> |
190 | { |
191 | template<typename Lhs, typename Rhs, typename Dest> |
192 | static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) |
193 | { |
194 | Transpose<Dest> destT(dest); |
195 | enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor }; |
196 | gemv_dense_selector<OnTheRight,OtherStorageOrder,BlasCompatible> |
197 | ::run(rhs.transpose(), lhs.transpose(), destT, alpha); |
198 | } |
199 | }; |
200 | |
201 | template<> struct gemv_dense_selector<OnTheRight,ColMajor,true> |
202 | { |
203 | template<typename Lhs, typename Rhs, typename Dest> |
204 | static inline void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) |
205 | { |
206 | typedef typename Lhs::Scalar LhsScalar; |
207 | typedef typename Rhs::Scalar RhsScalar; |
208 | typedef typename Dest::Scalar ResScalar; |
209 | typedef typename Dest::RealScalar RealScalar; |
210 | |
211 | typedef internal::blas_traits<Lhs> LhsBlasTraits; |
212 | typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; |
213 | typedef internal::blas_traits<Rhs> RhsBlasTraits; |
214 | typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; |
215 | |
216 | typedef Map<Matrix<ResScalar,Dynamic,1>, EIGEN_PLAIN_ENUM_MIN(AlignedMax,internal::packet_traits<ResScalar>::size)> MappedDest; |
217 | |
218 | ActualLhsType actualLhs = LhsBlasTraits::extract(lhs); |
219 | ActualRhsType actualRhs = RhsBlasTraits::extract(rhs); |
220 | |
221 | ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs) |
222 | * RhsBlasTraits::extractScalarFactor(rhs); |
223 | |
224 | // make sure Dest is a compile-time vector type (bug 1166) |
225 | typedef typename conditional<Dest::IsVectorAtCompileTime, Dest, typename Dest::ColXpr>::type ActualDest; |
226 | |
227 | enum { |
228 | // FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1 |
229 | // on, the other hand it is good for the cache to pack the vector anyways... |
230 | EvalToDestAtCompileTime = (ActualDest::InnerStrideAtCompileTime==1), |
231 | ComplexByReal = (NumTraits<LhsScalar>::IsComplex) && (!NumTraits<RhsScalar>::IsComplex), |
232 | MightCannotUseDest = (!EvalToDestAtCompileTime) || ComplexByReal |
233 | }; |
234 | |
235 | typedef const_blas_data_mapper<LhsScalar,Index,ColMajor> LhsMapper; |
236 | typedef const_blas_data_mapper<RhsScalar,Index,RowMajor> RhsMapper; |
237 | RhsScalar compatibleAlpha = get_factor<ResScalar,RhsScalar>::run(actualAlpha); |
238 | |
239 | if(!MightCannotUseDest) |
240 | { |
241 | // shortcut if we are sure to be able to use dest directly, |
242 | // this ease the compiler to generate cleaner and more optimzized code for most common cases |
243 | general_matrix_vector_product |
244 | <Index,LhsScalar,LhsMapper,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run( |
245 | actualLhs.rows(), actualLhs.cols(), |
246 | LhsMapper(actualLhs.data(), actualLhs.outerStride()), |
247 | RhsMapper(actualRhs.data(), actualRhs.innerStride()), |
248 | dest.data(), 1, |
249 | compatibleAlpha); |
250 | } |
251 | else |
252 | { |
253 | gemv_static_vector_if<ResScalar,ActualDest::SizeAtCompileTime,ActualDest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest; |
254 | |
255 | const bool alphaIsCompatible = (!ComplexByReal) || (numext::imag(actualAlpha)==RealScalar(0)); |
256 | const bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible; |
257 | |
258 | ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(), |
259 | evalToDest ? dest.data() : static_dest.data()); |
260 | |
261 | if(!evalToDest) |
262 | { |
263 | #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN |
264 | Index size = dest.size(); |
265 | EIGEN_DENSE_STORAGE_CTOR_PLUGIN |
266 | #endif |
267 | if(!alphaIsCompatible) |
268 | { |
269 | MappedDest(actualDestPtr, dest.size()).setZero(); |
270 | compatibleAlpha = RhsScalar(1); |
271 | } |
272 | else |
273 | MappedDest(actualDestPtr, dest.size()) = dest; |
274 | } |
275 | |
276 | general_matrix_vector_product |
277 | <Index,LhsScalar,LhsMapper,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run( |
278 | actualLhs.rows(), actualLhs.cols(), |
279 | LhsMapper(actualLhs.data(), actualLhs.outerStride()), |
280 | RhsMapper(actualRhs.data(), actualRhs.innerStride()), |
281 | actualDestPtr, 1, |
282 | compatibleAlpha); |
283 | |
284 | if (!evalToDest) |
285 | { |
286 | if(!alphaIsCompatible) |
287 | dest.matrix() += actualAlpha * MappedDest(actualDestPtr, dest.size()); |
288 | else |
289 | dest = MappedDest(actualDestPtr, dest.size()); |
290 | } |
291 | } |
292 | } |
293 | }; |
294 | |
295 | template<> struct gemv_dense_selector<OnTheRight,RowMajor,true> |
296 | { |
297 | template<typename Lhs, typename Rhs, typename Dest> |
298 | static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) |
299 | { |
300 | typedef typename Lhs::Scalar LhsScalar; |
301 | typedef typename Rhs::Scalar RhsScalar; |
302 | typedef typename Dest::Scalar ResScalar; |
303 | |
304 | typedef internal::blas_traits<Lhs> LhsBlasTraits; |
305 | typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; |
306 | typedef internal::blas_traits<Rhs> RhsBlasTraits; |
307 | typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; |
308 | typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned; |
309 | |
310 | typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(lhs); |
311 | typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(rhs); |
312 | |
313 | ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs) |
314 | * RhsBlasTraits::extractScalarFactor(rhs); |
315 | |
316 | enum { |
317 | // FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1 |
318 | // on, the other hand it is good for the cache to pack the vector anyways... |
319 | DirectlyUseRhs = ActualRhsTypeCleaned::InnerStrideAtCompileTime==1 |
320 | }; |
321 | |
322 | gemv_static_vector_if<RhsScalar,ActualRhsTypeCleaned::SizeAtCompileTime,ActualRhsTypeCleaned::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs; |
323 | |
324 | ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(), |
325 | DirectlyUseRhs ? const_cast<RhsScalar*>(actualRhs.data()) : static_rhs.data()); |
326 | |
327 | if(!DirectlyUseRhs) |
328 | { |
329 | #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN |
330 | Index size = actualRhs.size(); |
331 | EIGEN_DENSE_STORAGE_CTOR_PLUGIN |
332 | #endif |
333 | Map<typename ActualRhsTypeCleaned::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs; |
334 | } |
335 | |
336 | typedef const_blas_data_mapper<LhsScalar,Index,RowMajor> LhsMapper; |
337 | typedef const_blas_data_mapper<RhsScalar,Index,ColMajor> RhsMapper; |
338 | general_matrix_vector_product |
339 | <Index,LhsScalar,LhsMapper,RowMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run( |
340 | actualLhs.rows(), actualLhs.cols(), |
341 | LhsMapper(actualLhs.data(), actualLhs.outerStride()), |
342 | RhsMapper(actualRhsPtr, 1), |
343 | dest.data(), dest.col(0).innerStride(), //NOTE if dest is not a vector at compile-time, then dest.innerStride() might be wrong. (bug 1166) |
344 | actualAlpha); |
345 | } |
346 | }; |
347 | |
348 | template<> struct gemv_dense_selector<OnTheRight,ColMajor,false> |
349 | { |
350 | template<typename Lhs, typename Rhs, typename Dest> |
351 | static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) |
352 | { |
353 | EIGEN_STATIC_ASSERT((!nested_eval<Lhs,1>::Evaluate),EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE); |
354 | // TODO if rhs is large enough it might be beneficial to make sure that dest is sequentially stored in memory, otherwise use a temp |
355 | typename nested_eval<Rhs,1>::type actual_rhs(rhs); |
356 | const Index size = rhs.rows(); |
357 | for(Index k=0; k<size; ++k) |
358 | dest += (alpha*actual_rhs.coeff(k)) * lhs.col(k); |
359 | } |
360 | }; |
361 | |
362 | template<> struct gemv_dense_selector<OnTheRight,RowMajor,false> |
363 | { |
364 | template<typename Lhs, typename Rhs, typename Dest> |
365 | static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) |
366 | { |
367 | EIGEN_STATIC_ASSERT((!nested_eval<Lhs,1>::Evaluate),EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE); |
368 | typename nested_eval<Rhs,Lhs::RowsAtCompileTime>::type actual_rhs(rhs); |
369 | const Index rows = dest.rows(); |
370 | for(Index i=0; i<rows; ++i) |
371 | dest.coeffRef(i) += alpha * (lhs.row(i).cwiseProduct(actual_rhs.transpose())).sum(); |
372 | } |
373 | }; |
374 | |
375 | } // end namespace internal |
376 | |
377 | /*************************************************************************** |
378 | * Implementation of matrix base methods |
379 | ***************************************************************************/ |
380 | |
381 | /** \returns the matrix product of \c *this and \a other. |
382 | * |
383 | * \note If instead of the matrix product you want the coefficient-wise product, see Cwise::operator*(). |
384 | * |
385 | * \sa lazyProduct(), operator*=(const MatrixBase&), Cwise::operator*() |
386 | */ |
387 | template<typename Derived> |
388 | template<typename OtherDerived> |
389 | inline const Product<Derived, OtherDerived> |
390 | MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const |
391 | { |
392 | // A note regarding the function declaration: In MSVC, this function will sometimes |
393 | // not be inlined since DenseStorage is an unwindable object for dynamic |
394 | // matrices and product types are holding a member to store the result. |
395 | // Thus it does not help tagging this function with EIGEN_STRONG_INLINE. |
396 | enum { |
397 | ProductIsValid = Derived::ColsAtCompileTime==Dynamic |
398 | || OtherDerived::RowsAtCompileTime==Dynamic |
399 | || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime), |
400 | AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime, |
401 | SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived) |
402 | }; |
403 | // note to the lost user: |
404 | // * for a dot product use: v1.dot(v2) |
405 | // * for a coeff-wise product use: v1.cwiseProduct(v2) |
406 | EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes), |
407 | INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS) |
408 | EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors), |
409 | INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION) |
410 | EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT) |
411 | #ifdef EIGEN_DEBUG_PRODUCT |
412 | internal::product_type<Derived,OtherDerived>::debug(); |
413 | #endif |
414 | |
415 | return Product<Derived, OtherDerived>(derived(), other.derived()); |
416 | } |
417 | |
418 | /** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation. |
419 | * |
420 | * The returned product will behave like any other expressions: the coefficients of the product will be |
421 | * computed once at a time as requested. This might be useful in some extremely rare cases when only |
422 | * a small and no coherent fraction of the result's coefficients have to be computed. |
423 | * |
424 | * \warning This version of the matrix product can be much much slower. So use it only if you know |
425 | * what you are doing and that you measured a true speed improvement. |
426 | * |
427 | * \sa operator*(const MatrixBase&) |
428 | */ |
429 | template<typename Derived> |
430 | template<typename OtherDerived> |
431 | const Product<Derived,OtherDerived,LazyProduct> |
432 | MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const |
433 | { |
434 | enum { |
435 | ProductIsValid = Derived::ColsAtCompileTime==Dynamic |
436 | || OtherDerived::RowsAtCompileTime==Dynamic |
437 | || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime), |
438 | AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime, |
439 | SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived) |
440 | }; |
441 | // note to the lost user: |
442 | // * for a dot product use: v1.dot(v2) |
443 | // * for a coeff-wise product use: v1.cwiseProduct(v2) |
444 | EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes), |
445 | INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS) |
446 | EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors), |
447 | INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION) |
448 | EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT) |
449 | |
450 | return Product<Derived,OtherDerived,LazyProduct>(derived(), other.derived()); |
451 | } |
452 | |
453 | } // end namespace Eigen |
454 | |
455 | #endif // EIGEN_PRODUCT_H |
456 | |