1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
5 | // |
6 | // This Source Code Form is subject to the terms of the Mozilla |
7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
9 | |
10 | #ifndef EIGEN_EULERANGLES_H |
11 | #define EIGEN_EULERANGLES_H |
12 | |
13 | namespace Eigen { |
14 | |
15 | /** \geometry_module \ingroup Geometry_Module |
16 | * |
17 | * |
18 | * \returns the Euler-angles of the rotation matrix \c *this using the convention defined by the triplet (\a a0,\a a1,\a a2) |
19 | * |
20 | * Each of the three parameters \a a0,\a a1,\a a2 represents the respective rotation axis as an integer in {0,1,2}. |
21 | * For instance, in: |
22 | * \code Vector3f ea = mat.eulerAngles(2, 0, 2); \endcode |
23 | * "2" represents the z axis and "0" the x axis, etc. The returned angles are such that |
24 | * we have the following equality: |
25 | * \code |
26 | * mat == AngleAxisf(ea[0], Vector3f::UnitZ()) |
27 | * * AngleAxisf(ea[1], Vector3f::UnitX()) |
28 | * * AngleAxisf(ea[2], Vector3f::UnitZ()); \endcode |
29 | * This corresponds to the right-multiply conventions (with right hand side frames). |
30 | * |
31 | * The returned angles are in the ranges [0:pi]x[-pi:pi]x[-pi:pi]. |
32 | * |
33 | * \sa class AngleAxis |
34 | */ |
35 | template<typename Derived> |
36 | EIGEN_DEVICE_FUNC inline Matrix<typename MatrixBase<Derived>::Scalar,3,1> |
37 | MatrixBase<Derived>::eulerAngles(Index a0, Index a1, Index a2) const |
38 | { |
39 | EIGEN_USING_STD_MATH(atan2) |
40 | EIGEN_USING_STD_MATH(sin) |
41 | EIGEN_USING_STD_MATH(cos) |
42 | /* Implemented from Graphics Gems IV */ |
43 | EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived,3,3) |
44 | |
45 | Matrix<Scalar,3,1> res; |
46 | typedef Matrix<typename Derived::Scalar,2,1> Vector2; |
47 | |
48 | const Index odd = ((a0+1)%3 == a1) ? 0 : 1; |
49 | const Index i = a0; |
50 | const Index j = (a0 + 1 + odd)%3; |
51 | const Index k = (a0 + 2 - odd)%3; |
52 | |
53 | if (a0==a2) |
54 | { |
55 | res[0] = atan2(coeff(j,i), coeff(k,i)); |
56 | if((odd && res[0]<Scalar(0)) || ((!odd) && res[0]>Scalar(0))) |
57 | { |
58 | if(res[0] > Scalar(0)) { |
59 | res[0] -= Scalar(EIGEN_PI); |
60 | } |
61 | else { |
62 | res[0] += Scalar(EIGEN_PI); |
63 | } |
64 | Scalar s2 = Vector2(coeff(j,i), coeff(k,i)).norm(); |
65 | res[1] = -atan2(s2, coeff(i,i)); |
66 | } |
67 | else |
68 | { |
69 | Scalar s2 = Vector2(coeff(j,i), coeff(k,i)).norm(); |
70 | res[1] = atan2(s2, coeff(i,i)); |
71 | } |
72 | |
73 | // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles, |
74 | // we can compute their respective rotation, and apply its inverse to M. Since the result must |
75 | // be a rotation around x, we have: |
76 | // |
77 | // c2 s1.s2 c1.s2 1 0 0 |
78 | // 0 c1 -s1 * M = 0 c3 s3 |
79 | // -s2 s1.c2 c1.c2 0 -s3 c3 |
80 | // |
81 | // Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3 |
82 | |
83 | Scalar s1 = sin(res[0]); |
84 | Scalar c1 = cos(res[0]); |
85 | res[2] = atan2(c1*coeff(j,k)-s1*coeff(k,k), c1*coeff(j,j) - s1 * coeff(k,j)); |
86 | } |
87 | else |
88 | { |
89 | res[0] = atan2(coeff(j,k), coeff(k,k)); |
90 | Scalar c2 = Vector2(coeff(i,i), coeff(i,j)).norm(); |
91 | if((odd && res[0]<Scalar(0)) || ((!odd) && res[0]>Scalar(0))) { |
92 | if(res[0] > Scalar(0)) { |
93 | res[0] -= Scalar(EIGEN_PI); |
94 | } |
95 | else { |
96 | res[0] += Scalar(EIGEN_PI); |
97 | } |
98 | res[1] = atan2(-coeff(i,k), -c2); |
99 | } |
100 | else |
101 | res[1] = atan2(-coeff(i,k), c2); |
102 | Scalar s1 = sin(res[0]); |
103 | Scalar c1 = cos(res[0]); |
104 | res[2] = atan2(s1*coeff(k,i)-c1*coeff(j,i), c1*coeff(j,j) - s1 * coeff(k,j)); |
105 | } |
106 | if (!odd) |
107 | res = -res; |
108 | |
109 | return res; |
110 | } |
111 | |
112 | } // end namespace Eigen |
113 | |
114 | #endif // EIGEN_EULERANGLES_H |
115 | |