1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
5 | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
6 | // |
7 | // This Source Code Form is subject to the terms of the Mozilla |
8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
10 | |
11 | #ifndef EIGEN_HYPERPLANE_H |
12 | #define EIGEN_HYPERPLANE_H |
13 | |
14 | namespace Eigen { |
15 | |
16 | /** \geometry_module \ingroup Geometry_Module |
17 | * |
18 | * \class Hyperplane |
19 | * |
20 | * \brief A hyperplane |
21 | * |
22 | * A hyperplane is an affine subspace of dimension n-1 in a space of dimension n. |
23 | * For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane. |
24 | * |
25 | * \tparam _Scalar the scalar type, i.e., the type of the coefficients |
26 | * \tparam _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. |
27 | * Notice that the dimension of the hyperplane is _AmbientDim-1. |
28 | * |
29 | * This class represents an hyperplane as the zero set of the implicit equation |
30 | * \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part) |
31 | * and \f$ d \f$ is the distance (offset) to the origin. |
32 | */ |
33 | template <typename _Scalar, int _AmbientDim, int _Options> |
34 | class Hyperplane |
35 | { |
36 | public: |
37 | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1) |
38 | enum { |
39 | AmbientDimAtCompileTime = _AmbientDim, |
40 | Options = _Options |
41 | }; |
42 | typedef _Scalar Scalar; |
43 | typedef typename NumTraits<Scalar>::Real RealScalar; |
44 | typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 |
45 | typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType; |
46 | typedef Matrix<Scalar,Index(AmbientDimAtCompileTime)==Dynamic |
47 | ? Dynamic |
48 | : Index(AmbientDimAtCompileTime)+1,1,Options> Coefficients; |
49 | typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType; |
50 | typedef const Block<const Coefficients,AmbientDimAtCompileTime,1> ConstNormalReturnType; |
51 | |
52 | /** Default constructor without initialization */ |
53 | EIGEN_DEVICE_FUNC inline Hyperplane() {} |
54 | |
55 | template<int OtherOptions> |
56 | EIGEN_DEVICE_FUNC Hyperplane(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other) |
57 | : m_coeffs(other.coeffs()) |
58 | {} |
59 | |
60 | /** Constructs a dynamic-size hyperplane with \a _dim the dimension |
61 | * of the ambient space */ |
62 | EIGEN_DEVICE_FUNC inline explicit Hyperplane(Index _dim) : m_coeffs(_dim+1) {} |
63 | |
64 | /** Construct a plane from its normal \a n and a point \a e onto the plane. |
65 | * \warning the vector normal is assumed to be normalized. |
66 | */ |
67 | EIGEN_DEVICE_FUNC inline Hyperplane(const VectorType& n, const VectorType& e) |
68 | : m_coeffs(n.size()+1) |
69 | { |
70 | normal() = n; |
71 | offset() = -n.dot(e); |
72 | } |
73 | |
74 | /** Constructs a plane from its normal \a n and distance to the origin \a d |
75 | * such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$. |
76 | * \warning the vector normal is assumed to be normalized. |
77 | */ |
78 | EIGEN_DEVICE_FUNC inline Hyperplane(const VectorType& n, const Scalar& d) |
79 | : m_coeffs(n.size()+1) |
80 | { |
81 | normal() = n; |
82 | offset() = d; |
83 | } |
84 | |
85 | /** Constructs a hyperplane passing through the two points. If the dimension of the ambient space |
86 | * is greater than 2, then there isn't uniqueness, so an arbitrary choice is made. |
87 | */ |
88 | EIGEN_DEVICE_FUNC static inline Hyperplane Through(const VectorType& p0, const VectorType& p1) |
89 | { |
90 | Hyperplane result(p0.size()); |
91 | result.normal() = (p1 - p0).unitOrthogonal(); |
92 | result.offset() = -p0.dot(result.normal()); |
93 | return result; |
94 | } |
95 | |
96 | /** Constructs a hyperplane passing through the three points. The dimension of the ambient space |
97 | * is required to be exactly 3. |
98 | */ |
99 | EIGEN_DEVICE_FUNC static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2) |
100 | { |
101 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3) |
102 | Hyperplane result(p0.size()); |
103 | VectorType v0(p2 - p0), v1(p1 - p0); |
104 | result.normal() = v0.cross(v1); |
105 | RealScalar norm = result.normal().norm(); |
106 | if(norm <= v0.norm() * v1.norm() * NumTraits<RealScalar>::epsilon()) |
107 | { |
108 | Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose(); |
109 | JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV); |
110 | result.normal() = svd.matrixV().col(2); |
111 | } |
112 | else |
113 | result.normal() /= norm; |
114 | result.offset() = -p0.dot(result.normal()); |
115 | return result; |
116 | } |
117 | |
118 | /** Constructs a hyperplane passing through the parametrized line \a parametrized. |
119 | * If the dimension of the ambient space is greater than 2, then there isn't uniqueness, |
120 | * so an arbitrary choice is made. |
121 | */ |
122 | // FIXME to be consitent with the rest this could be implemented as a static Through function ?? |
123 | EIGEN_DEVICE_FUNC explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized) |
124 | { |
125 | normal() = parametrized.direction().unitOrthogonal(); |
126 | offset() = -parametrized.origin().dot(normal()); |
127 | } |
128 | |
129 | EIGEN_DEVICE_FUNC ~Hyperplane() {} |
130 | |
131 | /** \returns the dimension in which the plane holds */ |
132 | EIGEN_DEVICE_FUNC inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_coeffs.size()-1 : Index(AmbientDimAtCompileTime); } |
133 | |
134 | /** normalizes \c *this */ |
135 | EIGEN_DEVICE_FUNC void normalize(void) |
136 | { |
137 | m_coeffs /= normal().norm(); |
138 | } |
139 | |
140 | /** \returns the signed distance between the plane \c *this and a point \a p. |
141 | * \sa absDistance() |
142 | */ |
143 | EIGEN_DEVICE_FUNC inline Scalar signedDistance(const VectorType& p) const { return normal().dot(p) + offset(); } |
144 | |
145 | /** \returns the absolute distance between the plane \c *this and a point \a p. |
146 | * \sa signedDistance() |
147 | */ |
148 | EIGEN_DEVICE_FUNC inline Scalar absDistance(const VectorType& p) const { return numext::abs(signedDistance(p)); } |
149 | |
150 | /** \returns the projection of a point \a p onto the plane \c *this. |
151 | */ |
152 | EIGEN_DEVICE_FUNC inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); } |
153 | |
154 | /** \returns a constant reference to the unit normal vector of the plane, which corresponds |
155 | * to the linear part of the implicit equation. |
156 | */ |
157 | EIGEN_DEVICE_FUNC inline ConstNormalReturnType normal() const { return ConstNormalReturnType(m_coeffs,0,0,dim(),1); } |
158 | |
159 | /** \returns a non-constant reference to the unit normal vector of the plane, which corresponds |
160 | * to the linear part of the implicit equation. |
161 | */ |
162 | EIGEN_DEVICE_FUNC inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); } |
163 | |
164 | /** \returns the distance to the origin, which is also the "constant term" of the implicit equation |
165 | * \warning the vector normal is assumed to be normalized. |
166 | */ |
167 | EIGEN_DEVICE_FUNC inline const Scalar& offset() const { return m_coeffs.coeff(dim()); } |
168 | |
169 | /** \returns a non-constant reference to the distance to the origin, which is also the constant part |
170 | * of the implicit equation */ |
171 | EIGEN_DEVICE_FUNC inline Scalar& offset() { return m_coeffs(dim()); } |
172 | |
173 | /** \returns a constant reference to the coefficients c_i of the plane equation: |
174 | * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$ |
175 | */ |
176 | EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; } |
177 | |
178 | /** \returns a non-constant reference to the coefficients c_i of the plane equation: |
179 | * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$ |
180 | */ |
181 | EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; } |
182 | |
183 | /** \returns the intersection of *this with \a other. |
184 | * |
185 | * \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines. |
186 | * |
187 | * \note If \a other is approximately parallel to *this, this method will return any point on *this. |
188 | */ |
189 | EIGEN_DEVICE_FUNC VectorType intersection(const Hyperplane& other) const |
190 | { |
191 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2) |
192 | Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0); |
193 | // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests |
194 | // whether the two lines are approximately parallel. |
195 | if(internal::isMuchSmallerThan(det, Scalar(1))) |
196 | { // special case where the two lines are approximately parallel. Pick any point on the first line. |
197 | if(numext::abs(coeffs().coeff(1))>numext::abs(coeffs().coeff(0))) |
198 | return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0)); |
199 | else |
200 | return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0)); |
201 | } |
202 | else |
203 | { // general case |
204 | Scalar invdet = Scalar(1) / det; |
205 | return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)), |
206 | invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2))); |
207 | } |
208 | } |
209 | |
210 | /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this. |
211 | * |
212 | * \param mat the Dim x Dim transformation matrix |
213 | * \param traits specifies whether the matrix \a mat represents an #Isometry |
214 | * or a more generic #Affine transformation. The default is #Affine. |
215 | */ |
216 | template<typename XprType> |
217 | EIGEN_DEVICE_FUNC inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine) |
218 | { |
219 | if (traits==Affine) |
220 | { |
221 | normal() = mat.inverse().transpose() * normal(); |
222 | m_coeffs /= normal().norm(); |
223 | } |
224 | else if (traits==Isometry) |
225 | normal() = mat * normal(); |
226 | else |
227 | { |
228 | eigen_assert(0 && "invalid traits value in Hyperplane::transform()" ); |
229 | } |
230 | return *this; |
231 | } |
232 | |
233 | /** Applies the transformation \a t to \c *this and returns a reference to \c *this. |
234 | * |
235 | * \param t the transformation of dimension Dim |
236 | * \param traits specifies whether the transformation \a t represents an #Isometry |
237 | * or a more generic #Affine transformation. The default is #Affine. |
238 | * Other kind of transformations are not supported. |
239 | */ |
240 | template<int TrOptions> |
241 | EIGEN_DEVICE_FUNC inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime,Affine,TrOptions>& t, |
242 | TransformTraits traits = Affine) |
243 | { |
244 | transform(t.linear(), traits); |
245 | offset() -= normal().dot(t.translation()); |
246 | return *this; |
247 | } |
248 | |
249 | /** \returns \c *this with scalar type casted to \a NewScalarType |
250 | * |
251 | * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
252 | * then this function smartly returns a const reference to \c *this. |
253 | */ |
254 | template<typename NewScalarType> |
255 | EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Hyperplane, |
256 | Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type cast() const |
257 | { |
258 | return typename internal::cast_return_type<Hyperplane, |
259 | Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type(*this); |
260 | } |
261 | |
262 | /** Copy constructor with scalar type conversion */ |
263 | template<typename OtherScalarType,int OtherOptions> |
264 | EIGEN_DEVICE_FUNC inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime,OtherOptions>& other) |
265 | { m_coeffs = other.coeffs().template cast<Scalar>(); } |
266 | |
267 | /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
268 | * determined by \a prec. |
269 | * |
270 | * \sa MatrixBase::isApprox() */ |
271 | template<int OtherOptions> |
272 | EIGEN_DEVICE_FUNC bool isApprox(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const |
273 | { return m_coeffs.isApprox(other.m_coeffs, prec); } |
274 | |
275 | protected: |
276 | |
277 | Coefficients m_coeffs; |
278 | }; |
279 | |
280 | } // end namespace Eigen |
281 | |
282 | #endif // EIGEN_HYPERPLANE_H |
283 | |