1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
5 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
6 | // |
7 | // This Source Code Form is subject to the terms of the Mozilla |
8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
10 | |
11 | #ifndef EIGEN_ORTHOMETHODS_H |
12 | #define EIGEN_ORTHOMETHODS_H |
13 | |
14 | namespace Eigen { |
15 | |
16 | /** \geometry_module \ingroup Geometry_Module |
17 | * |
18 | * \returns the cross product of \c *this and \a other |
19 | * |
20 | * Here is a very good explanation of cross-product: http://xkcd.com/199/ |
21 | * |
22 | * With complex numbers, the cross product is implemented as |
23 | * \f$ (\mathbf{a}+i\mathbf{b}) \times (\mathbf{c}+i\mathbf{d}) = (\mathbf{a} \times \mathbf{c} - \mathbf{b} \times \mathbf{d}) - i(\mathbf{a} \times \mathbf{d} - \mathbf{b} \times \mathbf{c})\f$ |
24 | * |
25 | * \sa MatrixBase::cross3() |
26 | */ |
27 | template<typename Derived> |
28 | template<typename OtherDerived> |
29 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
30 | EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::template cross_product_return_type<OtherDerived>::type |
31 | #else |
32 | inline typename MatrixBase<Derived>::PlainObject |
33 | #endif |
34 | MatrixBase<Derived>::cross(const MatrixBase<OtherDerived>& other) const |
35 | { |
36 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,3) |
37 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3) |
38 | |
39 | // Note that there is no need for an expression here since the compiler |
40 | // optimize such a small temporary very well (even within a complex expression) |
41 | typename internal::nested_eval<Derived,2>::type lhs(derived()); |
42 | typename internal::nested_eval<OtherDerived,2>::type rhs(other.derived()); |
43 | return typename cross_product_return_type<OtherDerived>::type( |
44 | numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)), |
45 | numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)), |
46 | numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)) |
47 | ); |
48 | } |
49 | |
50 | namespace internal { |
51 | |
52 | template< int Arch,typename VectorLhs,typename VectorRhs, |
53 | typename Scalar = typename VectorLhs::Scalar, |
54 | bool Vectorizable = bool((VectorLhs::Flags&VectorRhs::Flags)&PacketAccessBit)> |
55 | struct cross3_impl { |
56 | EIGEN_DEVICE_FUNC static inline typename internal::plain_matrix_type<VectorLhs>::type |
57 | run(const VectorLhs& lhs, const VectorRhs& rhs) |
58 | { |
59 | return typename internal::plain_matrix_type<VectorLhs>::type( |
60 | numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)), |
61 | numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)), |
62 | numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)), |
63 | 0 |
64 | ); |
65 | } |
66 | }; |
67 | |
68 | } |
69 | |
70 | /** \geometry_module \ingroup Geometry_Module |
71 | * |
72 | * \returns the cross product of \c *this and \a other using only the x, y, and z coefficients |
73 | * |
74 | * The size of \c *this and \a other must be four. This function is especially useful |
75 | * when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization. |
76 | * |
77 | * \sa MatrixBase::cross() |
78 | */ |
79 | template<typename Derived> |
80 | template<typename OtherDerived> |
81 | EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::PlainObject |
82 | MatrixBase<Derived>::cross3(const MatrixBase<OtherDerived>& other) const |
83 | { |
84 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,4) |
85 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,4) |
86 | |
87 | typedef typename internal::nested_eval<Derived,2>::type DerivedNested; |
88 | typedef typename internal::nested_eval<OtherDerived,2>::type OtherDerivedNested; |
89 | DerivedNested lhs(derived()); |
90 | OtherDerivedNested rhs(other.derived()); |
91 | |
92 | return internal::cross3_impl<Architecture::Target, |
93 | typename internal::remove_all<DerivedNested>::type, |
94 | typename internal::remove_all<OtherDerivedNested>::type>::run(lhs,rhs); |
95 | } |
96 | |
97 | /** \geometry_module \ingroup Geometry_Module |
98 | * |
99 | * \returns a matrix expression of the cross product of each column or row |
100 | * of the referenced expression with the \a other vector. |
101 | * |
102 | * The referenced matrix must have one dimension equal to 3. |
103 | * The result matrix has the same dimensions than the referenced one. |
104 | * |
105 | * \sa MatrixBase::cross() */ |
106 | template<typename ExpressionType, int Direction> |
107 | template<typename OtherDerived> |
108 | EIGEN_DEVICE_FUNC |
109 | const typename VectorwiseOp<ExpressionType,Direction>::CrossReturnType |
110 | VectorwiseOp<ExpressionType,Direction>::cross(const MatrixBase<OtherDerived>& other) const |
111 | { |
112 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3) |
113 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value), |
114 | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) |
115 | |
116 | typename internal::nested_eval<ExpressionType,2>::type mat(_expression()); |
117 | typename internal::nested_eval<OtherDerived,2>::type vec(other.derived()); |
118 | |
119 | CrossReturnType res(_expression().rows(),_expression().cols()); |
120 | if(Direction==Vertical) |
121 | { |
122 | eigen_assert(CrossReturnType::RowsAtCompileTime==3 && "the matrix must have exactly 3 rows" ); |
123 | res.row(0) = (mat.row(1) * vec.coeff(2) - mat.row(2) * vec.coeff(1)).conjugate(); |
124 | res.row(1) = (mat.row(2) * vec.coeff(0) - mat.row(0) * vec.coeff(2)).conjugate(); |
125 | res.row(2) = (mat.row(0) * vec.coeff(1) - mat.row(1) * vec.coeff(0)).conjugate(); |
126 | } |
127 | else |
128 | { |
129 | eigen_assert(CrossReturnType::ColsAtCompileTime==3 && "the matrix must have exactly 3 columns" ); |
130 | res.col(0) = (mat.col(1) * vec.coeff(2) - mat.col(2) * vec.coeff(1)).conjugate(); |
131 | res.col(1) = (mat.col(2) * vec.coeff(0) - mat.col(0) * vec.coeff(2)).conjugate(); |
132 | res.col(2) = (mat.col(0) * vec.coeff(1) - mat.col(1) * vec.coeff(0)).conjugate(); |
133 | } |
134 | return res; |
135 | } |
136 | |
137 | namespace internal { |
138 | |
139 | template<typename Derived, int Size = Derived::SizeAtCompileTime> |
140 | struct unitOrthogonal_selector |
141 | { |
142 | typedef typename plain_matrix_type<Derived>::type VectorType; |
143 | typedef typename traits<Derived>::Scalar Scalar; |
144 | typedef typename NumTraits<Scalar>::Real RealScalar; |
145 | typedef Matrix<Scalar,2,1> Vector2; |
146 | EIGEN_DEVICE_FUNC |
147 | static inline VectorType run(const Derived& src) |
148 | { |
149 | VectorType perp = VectorType::Zero(src.size()); |
150 | Index maxi = 0; |
151 | Index sndi = 0; |
152 | src.cwiseAbs().maxCoeff(&maxi); |
153 | if (maxi==0) |
154 | sndi = 1; |
155 | RealScalar invnm = RealScalar(1)/(Vector2() << src.coeff(sndi),src.coeff(maxi)).finished().norm(); |
156 | perp.coeffRef(maxi) = -numext::conj(src.coeff(sndi)) * invnm; |
157 | perp.coeffRef(sndi) = numext::conj(src.coeff(maxi)) * invnm; |
158 | |
159 | return perp; |
160 | } |
161 | }; |
162 | |
163 | template<typename Derived> |
164 | struct unitOrthogonal_selector<Derived,3> |
165 | { |
166 | typedef typename plain_matrix_type<Derived>::type VectorType; |
167 | typedef typename traits<Derived>::Scalar Scalar; |
168 | typedef typename NumTraits<Scalar>::Real RealScalar; |
169 | EIGEN_DEVICE_FUNC |
170 | static inline VectorType run(const Derived& src) |
171 | { |
172 | VectorType perp; |
173 | /* Let us compute the crossed product of *this with a vector |
174 | * that is not too close to being colinear to *this. |
175 | */ |
176 | |
177 | /* unless the x and y coords are both close to zero, we can |
178 | * simply take ( -y, x, 0 ) and normalize it. |
179 | */ |
180 | if((!isMuchSmallerThan(src.x(), src.z())) |
181 | || (!isMuchSmallerThan(src.y(), src.z()))) |
182 | { |
183 | RealScalar invnm = RealScalar(1)/src.template head<2>().norm(); |
184 | perp.coeffRef(0) = -numext::conj(src.y())*invnm; |
185 | perp.coeffRef(1) = numext::conj(src.x())*invnm; |
186 | perp.coeffRef(2) = 0; |
187 | } |
188 | /* if both x and y are close to zero, then the vector is close |
189 | * to the z-axis, so it's far from colinear to the x-axis for instance. |
190 | * So we take the crossed product with (1,0,0) and normalize it. |
191 | */ |
192 | else |
193 | { |
194 | RealScalar invnm = RealScalar(1)/src.template tail<2>().norm(); |
195 | perp.coeffRef(0) = 0; |
196 | perp.coeffRef(1) = -numext::conj(src.z())*invnm; |
197 | perp.coeffRef(2) = numext::conj(src.y())*invnm; |
198 | } |
199 | |
200 | return perp; |
201 | } |
202 | }; |
203 | |
204 | template<typename Derived> |
205 | struct unitOrthogonal_selector<Derived,2> |
206 | { |
207 | typedef typename plain_matrix_type<Derived>::type VectorType; |
208 | EIGEN_DEVICE_FUNC |
209 | static inline VectorType run(const Derived& src) |
210 | { return VectorType(-numext::conj(src.y()), numext::conj(src.x())).normalized(); } |
211 | }; |
212 | |
213 | } // end namespace internal |
214 | |
215 | /** \geometry_module \ingroup Geometry_Module |
216 | * |
217 | * \returns a unit vector which is orthogonal to \c *this |
218 | * |
219 | * The size of \c *this must be at least 2. If the size is exactly 2, |
220 | * then the returned vector is a counter clock wise rotation of \c *this, i.e., (-y,x).normalized(). |
221 | * |
222 | * \sa cross() |
223 | */ |
224 | template<typename Derived> |
225 | EIGEN_DEVICE_FUNC typename MatrixBase<Derived>::PlainObject |
226 | MatrixBase<Derived>::unitOrthogonal() const |
227 | { |
228 | EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) |
229 | return internal::unitOrthogonal_selector<Derived>::run(derived()); |
230 | } |
231 | |
232 | } // end namespace Eigen |
233 | |
234 | #endif // EIGEN_ORTHOMETHODS_H |
235 | |