| 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | #ifndef EIGEN_PARTIAL_REDUX_H |
| 12 | #define EIGEN_PARTIAL_REDUX_H |
| 13 | |
| 14 | namespace Eigen { |
| 15 | |
| 16 | /** \class PartialReduxExpr |
| 17 | * \ingroup Core_Module |
| 18 | * |
| 19 | * \brief Generic expression of a partially reduxed matrix |
| 20 | * |
| 21 | * \tparam MatrixType the type of the matrix we are applying the redux operation |
| 22 | * \tparam MemberOp type of the member functor |
| 23 | * \tparam Direction indicates the direction of the redux (#Vertical or #Horizontal) |
| 24 | * |
| 25 | * This class represents an expression of a partial redux operator of a matrix. |
| 26 | * It is the return type of some VectorwiseOp functions, |
| 27 | * and most of the time this is the only way it is used. |
| 28 | * |
| 29 | * \sa class VectorwiseOp |
| 30 | */ |
| 31 | |
| 32 | template< typename MatrixType, typename MemberOp, int Direction> |
| 33 | class PartialReduxExpr; |
| 34 | |
| 35 | namespace internal { |
| 36 | template<typename MatrixType, typename MemberOp, int Direction> |
| 37 | struct traits<PartialReduxExpr<MatrixType, MemberOp, Direction> > |
| 38 | : traits<MatrixType> |
| 39 | { |
| 40 | typedef typename MemberOp::result_type Scalar; |
| 41 | typedef typename traits<MatrixType>::StorageKind StorageKind; |
| 42 | typedef typename traits<MatrixType>::XprKind XprKind; |
| 43 | typedef typename MatrixType::Scalar InputScalar; |
| 44 | enum { |
| 45 | RowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::RowsAtCompileTime, |
| 46 | ColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::ColsAtCompileTime, |
| 47 | MaxRowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::MaxRowsAtCompileTime, |
| 48 | MaxColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::MaxColsAtCompileTime, |
| 49 | Flags = RowsAtCompileTime == 1 ? RowMajorBit : 0, |
| 50 | TraversalSize = Direction==Vertical ? MatrixType::RowsAtCompileTime : MatrixType::ColsAtCompileTime |
| 51 | }; |
| 52 | }; |
| 53 | } |
| 54 | |
| 55 | template< typename MatrixType, typename MemberOp, int Direction> |
| 56 | class PartialReduxExpr : public internal::dense_xpr_base< PartialReduxExpr<MatrixType, MemberOp, Direction> >::type, |
| 57 | internal::no_assignment_operator |
| 58 | { |
| 59 | public: |
| 60 | |
| 61 | typedef typename internal::dense_xpr_base<PartialReduxExpr>::type Base; |
| 62 | EIGEN_DENSE_PUBLIC_INTERFACE(PartialReduxExpr) |
| 63 | |
| 64 | EIGEN_DEVICE_FUNC |
| 65 | explicit PartialReduxExpr(const MatrixType& mat, const MemberOp& func = MemberOp()) |
| 66 | : m_matrix(mat), m_functor(func) {} |
| 67 | |
| 68 | EIGEN_DEVICE_FUNC |
| 69 | Index rows() const { return (Direction==Vertical ? 1 : m_matrix.rows()); } |
| 70 | EIGEN_DEVICE_FUNC |
| 71 | Index cols() const { return (Direction==Horizontal ? 1 : m_matrix.cols()); } |
| 72 | |
| 73 | EIGEN_DEVICE_FUNC |
| 74 | typename MatrixType::Nested nestedExpression() const { return m_matrix; } |
| 75 | |
| 76 | EIGEN_DEVICE_FUNC |
| 77 | const MemberOp& functor() const { return m_functor; } |
| 78 | |
| 79 | protected: |
| 80 | typename MatrixType::Nested m_matrix; |
| 81 | const MemberOp m_functor; |
| 82 | }; |
| 83 | |
| 84 | #define EIGEN_MEMBER_FUNCTOR(MEMBER,COST) \ |
| 85 | template <typename ResultType> \ |
| 86 | struct member_##MEMBER { \ |
| 87 | EIGEN_EMPTY_STRUCT_CTOR(member_##MEMBER) \ |
| 88 | typedef ResultType result_type; \ |
| 89 | template<typename Scalar, int Size> struct Cost \ |
| 90 | { enum { value = COST }; }; \ |
| 91 | template<typename XprType> \ |
| 92 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ |
| 93 | ResultType operator()(const XprType& mat) const \ |
| 94 | { return mat.MEMBER(); } \ |
| 95 | } |
| 96 | |
| 97 | namespace internal { |
| 98 | |
| 99 | EIGEN_MEMBER_FUNCTOR(squaredNorm, Size * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost); |
| 100 | EIGEN_MEMBER_FUNCTOR(norm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost); |
| 101 | EIGEN_MEMBER_FUNCTOR(stableNorm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost); |
| 102 | EIGEN_MEMBER_FUNCTOR(blueNorm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost); |
| 103 | EIGEN_MEMBER_FUNCTOR(hypotNorm, (Size-1) * functor_traits<scalar_hypot_op<Scalar> >::Cost ); |
| 104 | EIGEN_MEMBER_FUNCTOR(sum, (Size-1)*NumTraits<Scalar>::AddCost); |
| 105 | EIGEN_MEMBER_FUNCTOR(mean, (Size-1)*NumTraits<Scalar>::AddCost + NumTraits<Scalar>::MulCost); |
| 106 | EIGEN_MEMBER_FUNCTOR(minCoeff, (Size-1)*NumTraits<Scalar>::AddCost); |
| 107 | EIGEN_MEMBER_FUNCTOR(maxCoeff, (Size-1)*NumTraits<Scalar>::AddCost); |
| 108 | EIGEN_MEMBER_FUNCTOR(all, (Size-1)*NumTraits<Scalar>::AddCost); |
| 109 | EIGEN_MEMBER_FUNCTOR(any, (Size-1)*NumTraits<Scalar>::AddCost); |
| 110 | EIGEN_MEMBER_FUNCTOR(count, (Size-1)*NumTraits<Scalar>::AddCost); |
| 111 | EIGEN_MEMBER_FUNCTOR(prod, (Size-1)*NumTraits<Scalar>::MulCost); |
| 112 | |
| 113 | template <int p, typename ResultType> |
| 114 | struct member_lpnorm { |
| 115 | typedef ResultType result_type; |
| 116 | template<typename Scalar, int Size> struct Cost |
| 117 | { enum { value = (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost }; }; |
| 118 | EIGEN_DEVICE_FUNC member_lpnorm() {} |
| 119 | template<typename XprType> |
| 120 | EIGEN_DEVICE_FUNC inline ResultType operator()(const XprType& mat) const |
| 121 | { return mat.template lpNorm<p>(); } |
| 122 | }; |
| 123 | |
| 124 | template <typename BinaryOp, typename Scalar> |
| 125 | struct member_redux { |
| 126 | typedef typename result_of< |
| 127 | BinaryOp(const Scalar&,const Scalar&) |
| 128 | >::type result_type; |
| 129 | template<typename _Scalar, int Size> struct Cost |
| 130 | { enum { value = (Size-1) * functor_traits<BinaryOp>::Cost }; }; |
| 131 | EIGEN_DEVICE_FUNC explicit member_redux(const BinaryOp func) : m_functor(func) {} |
| 132 | template<typename Derived> |
| 133 | EIGEN_DEVICE_FUNC inline result_type operator()(const DenseBase<Derived>& mat) const |
| 134 | { return mat.redux(m_functor); } |
| 135 | const BinaryOp m_functor; |
| 136 | }; |
| 137 | } |
| 138 | |
| 139 | /** \class VectorwiseOp |
| 140 | * \ingroup Core_Module |
| 141 | * |
| 142 | * \brief Pseudo expression providing partial reduction operations |
| 143 | * |
| 144 | * \tparam ExpressionType the type of the object on which to do partial reductions |
| 145 | * \tparam Direction indicates the direction of the redux (#Vertical or #Horizontal) |
| 146 | * |
| 147 | * This class represents a pseudo expression with partial reduction features. |
| 148 | * It is the return type of DenseBase::colwise() and DenseBase::rowwise() |
| 149 | * and most of the time this is the only way it is used. |
| 150 | * |
| 151 | * Example: \include MatrixBase_colwise.cpp |
| 152 | * Output: \verbinclude MatrixBase_colwise.out |
| 153 | * |
| 154 | * \sa DenseBase::colwise(), DenseBase::rowwise(), class PartialReduxExpr |
| 155 | */ |
| 156 | template<typename ExpressionType, int Direction> class VectorwiseOp |
| 157 | { |
| 158 | public: |
| 159 | |
| 160 | typedef typename ExpressionType::Scalar Scalar; |
| 161 | typedef typename ExpressionType::RealScalar RealScalar; |
| 162 | typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 |
| 163 | typedef typename internal::ref_selector<ExpressionType>::non_const_type ExpressionTypeNested; |
| 164 | typedef typename internal::remove_all<ExpressionTypeNested>::type ExpressionTypeNestedCleaned; |
| 165 | |
| 166 | template<template<typename _Scalar> class Functor, |
| 167 | typename Scalar_=Scalar> struct ReturnType |
| 168 | { |
| 169 | typedef PartialReduxExpr<ExpressionType, |
| 170 | Functor<Scalar_>, |
| 171 | Direction |
| 172 | > Type; |
| 173 | }; |
| 174 | |
| 175 | template<typename BinaryOp> struct ReduxReturnType |
| 176 | { |
| 177 | typedef PartialReduxExpr<ExpressionType, |
| 178 | internal::member_redux<BinaryOp,Scalar>, |
| 179 | Direction |
| 180 | > Type; |
| 181 | }; |
| 182 | |
| 183 | enum { |
| 184 | isVertical = (Direction==Vertical) ? 1 : 0, |
| 185 | isHorizontal = (Direction==Horizontal) ? 1 : 0 |
| 186 | }; |
| 187 | |
| 188 | protected: |
| 189 | |
| 190 | typedef typename internal::conditional<isVertical, |
| 191 | typename ExpressionType::ColXpr, |
| 192 | typename ExpressionType::RowXpr>::type SubVector; |
| 193 | /** \internal |
| 194 | * \returns the i-th subvector according to the \c Direction */ |
| 195 | EIGEN_DEVICE_FUNC |
| 196 | SubVector subVector(Index i) |
| 197 | { |
| 198 | return SubVector(m_matrix.derived(),i); |
| 199 | } |
| 200 | |
| 201 | /** \internal |
| 202 | * \returns the number of subvectors in the direction \c Direction */ |
| 203 | EIGEN_DEVICE_FUNC |
| 204 | Index subVectors() const |
| 205 | { return isVertical?m_matrix.cols():m_matrix.rows(); } |
| 206 | |
| 207 | template<typename OtherDerived> struct ExtendedType { |
| 208 | typedef Replicate<OtherDerived, |
| 209 | isVertical ? 1 : ExpressionType::RowsAtCompileTime, |
| 210 | isHorizontal ? 1 : ExpressionType::ColsAtCompileTime> Type; |
| 211 | }; |
| 212 | |
| 213 | /** \internal |
| 214 | * Replicates a vector to match the size of \c *this */ |
| 215 | template<typename OtherDerived> |
| 216 | EIGEN_DEVICE_FUNC |
| 217 | typename ExtendedType<OtherDerived>::Type |
| 218 | extendedTo(const DenseBase<OtherDerived>& other) const |
| 219 | { |
| 220 | EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isVertical, OtherDerived::MaxColsAtCompileTime==1), |
| 221 | YOU_PASSED_A_ROW_VECTOR_BUT_A_COLUMN_VECTOR_WAS_EXPECTED) |
| 222 | EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isHorizontal, OtherDerived::MaxRowsAtCompileTime==1), |
| 223 | YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED) |
| 224 | return typename ExtendedType<OtherDerived>::Type |
| 225 | (other.derived(), |
| 226 | isVertical ? 1 : m_matrix.rows(), |
| 227 | isHorizontal ? 1 : m_matrix.cols()); |
| 228 | } |
| 229 | |
| 230 | template<typename OtherDerived> struct OppositeExtendedType { |
| 231 | typedef Replicate<OtherDerived, |
| 232 | isHorizontal ? 1 : ExpressionType::RowsAtCompileTime, |
| 233 | isVertical ? 1 : ExpressionType::ColsAtCompileTime> Type; |
| 234 | }; |
| 235 | |
| 236 | /** \internal |
| 237 | * Replicates a vector in the opposite direction to match the size of \c *this */ |
| 238 | template<typename OtherDerived> |
| 239 | EIGEN_DEVICE_FUNC |
| 240 | typename OppositeExtendedType<OtherDerived>::Type |
| 241 | extendedToOpposite(const DenseBase<OtherDerived>& other) const |
| 242 | { |
| 243 | EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isHorizontal, OtherDerived::MaxColsAtCompileTime==1), |
| 244 | YOU_PASSED_A_ROW_VECTOR_BUT_A_COLUMN_VECTOR_WAS_EXPECTED) |
| 245 | EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isVertical, OtherDerived::MaxRowsAtCompileTime==1), |
| 246 | YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED) |
| 247 | return typename OppositeExtendedType<OtherDerived>::Type |
| 248 | (other.derived(), |
| 249 | isHorizontal ? 1 : m_matrix.rows(), |
| 250 | isVertical ? 1 : m_matrix.cols()); |
| 251 | } |
| 252 | |
| 253 | public: |
| 254 | EIGEN_DEVICE_FUNC |
| 255 | explicit inline VectorwiseOp(ExpressionType& matrix) : m_matrix(matrix) {} |
| 256 | |
| 257 | /** \internal */ |
| 258 | EIGEN_DEVICE_FUNC |
| 259 | inline const ExpressionType& _expression() const { return m_matrix; } |
| 260 | |
| 261 | /** \returns a row or column vector expression of \c *this reduxed by \a func |
| 262 | * |
| 263 | * The template parameter \a BinaryOp is the type of the functor |
| 264 | * of the custom redux operator. Note that func must be an associative operator. |
| 265 | * |
| 266 | * \sa class VectorwiseOp, DenseBase::colwise(), DenseBase::rowwise() |
| 267 | */ |
| 268 | template<typename BinaryOp> |
| 269 | EIGEN_DEVICE_FUNC |
| 270 | const typename ReduxReturnType<BinaryOp>::Type |
| 271 | redux(const BinaryOp& func = BinaryOp()) const |
| 272 | { return typename ReduxReturnType<BinaryOp>::Type(_expression(), internal::member_redux<BinaryOp,Scalar>(func)); } |
| 273 | |
| 274 | typedef typename ReturnType<internal::member_minCoeff>::Type MinCoeffReturnType; |
| 275 | typedef typename ReturnType<internal::member_maxCoeff>::Type MaxCoeffReturnType; |
| 276 | typedef typename ReturnType<internal::member_squaredNorm,RealScalar>::Type SquaredNormReturnType; |
| 277 | typedef typename ReturnType<internal::member_norm,RealScalar>::Type NormReturnType; |
| 278 | typedef typename ReturnType<internal::member_blueNorm,RealScalar>::Type BlueNormReturnType; |
| 279 | typedef typename ReturnType<internal::member_stableNorm,RealScalar>::Type StableNormReturnType; |
| 280 | typedef typename ReturnType<internal::member_hypotNorm,RealScalar>::Type HypotNormReturnType; |
| 281 | typedef typename ReturnType<internal::member_sum>::Type SumReturnType; |
| 282 | typedef typename ReturnType<internal::member_mean>::Type MeanReturnType; |
| 283 | typedef typename ReturnType<internal::member_all>::Type AllReturnType; |
| 284 | typedef typename ReturnType<internal::member_any>::Type AnyReturnType; |
| 285 | typedef PartialReduxExpr<ExpressionType, internal::member_count<Index>, Direction> CountReturnType; |
| 286 | typedef typename ReturnType<internal::member_prod>::Type ProdReturnType; |
| 287 | typedef Reverse<const ExpressionType, Direction> ConstReverseReturnType; |
| 288 | typedef Reverse<ExpressionType, Direction> ReverseReturnType; |
| 289 | |
| 290 | template<int p> struct LpNormReturnType { |
| 291 | typedef PartialReduxExpr<ExpressionType, internal::member_lpnorm<p,RealScalar>,Direction> Type; |
| 292 | }; |
| 293 | |
| 294 | /** \returns a row (or column) vector expression of the smallest coefficient |
| 295 | * of each column (or row) of the referenced expression. |
| 296 | * |
| 297 | * \warning the result is undefined if \c *this contains NaN. |
| 298 | * |
| 299 | * Example: \include PartialRedux_minCoeff.cpp |
| 300 | * Output: \verbinclude PartialRedux_minCoeff.out |
| 301 | * |
| 302 | * \sa DenseBase::minCoeff() */ |
| 303 | EIGEN_DEVICE_FUNC |
| 304 | const MinCoeffReturnType minCoeff() const |
| 305 | { return MinCoeffReturnType(_expression()); } |
| 306 | |
| 307 | /** \returns a row (or column) vector expression of the largest coefficient |
| 308 | * of each column (or row) of the referenced expression. |
| 309 | * |
| 310 | * \warning the result is undefined if \c *this contains NaN. |
| 311 | * |
| 312 | * Example: \include PartialRedux_maxCoeff.cpp |
| 313 | * Output: \verbinclude PartialRedux_maxCoeff.out |
| 314 | * |
| 315 | * \sa DenseBase::maxCoeff() */ |
| 316 | EIGEN_DEVICE_FUNC |
| 317 | const MaxCoeffReturnType maxCoeff() const |
| 318 | { return MaxCoeffReturnType(_expression()); } |
| 319 | |
| 320 | /** \returns a row (or column) vector expression of the squared norm |
| 321 | * of each column (or row) of the referenced expression. |
| 322 | * This is a vector with real entries, even if the original matrix has complex entries. |
| 323 | * |
| 324 | * Example: \include PartialRedux_squaredNorm.cpp |
| 325 | * Output: \verbinclude PartialRedux_squaredNorm.out |
| 326 | * |
| 327 | * \sa DenseBase::squaredNorm() */ |
| 328 | EIGEN_DEVICE_FUNC |
| 329 | const SquaredNormReturnType squaredNorm() const |
| 330 | { return SquaredNormReturnType(_expression()); } |
| 331 | |
| 332 | /** \returns a row (or column) vector expression of the norm |
| 333 | * of each column (or row) of the referenced expression. |
| 334 | * This is a vector with real entries, even if the original matrix has complex entries. |
| 335 | * |
| 336 | * Example: \include PartialRedux_norm.cpp |
| 337 | * Output: \verbinclude PartialRedux_norm.out |
| 338 | * |
| 339 | * \sa DenseBase::norm() */ |
| 340 | EIGEN_DEVICE_FUNC |
| 341 | const NormReturnType norm() const |
| 342 | { return NormReturnType(_expression()); } |
| 343 | |
| 344 | /** \returns a row (or column) vector expression of the norm |
| 345 | * of each column (or row) of the referenced expression. |
| 346 | * This is a vector with real entries, even if the original matrix has complex entries. |
| 347 | * |
| 348 | * Example: \include PartialRedux_norm.cpp |
| 349 | * Output: \verbinclude PartialRedux_norm.out |
| 350 | * |
| 351 | * \sa DenseBase::norm() */ |
| 352 | template<int p> |
| 353 | EIGEN_DEVICE_FUNC |
| 354 | const typename LpNormReturnType<p>::Type lpNorm() const |
| 355 | { return typename LpNormReturnType<p>::Type(_expression()); } |
| 356 | |
| 357 | |
| 358 | /** \returns a row (or column) vector expression of the norm |
| 359 | * of each column (or row) of the referenced expression, using |
| 360 | * Blue's algorithm. |
| 361 | * This is a vector with real entries, even if the original matrix has complex entries. |
| 362 | * |
| 363 | * \sa DenseBase::blueNorm() */ |
| 364 | EIGEN_DEVICE_FUNC |
| 365 | const BlueNormReturnType blueNorm() const |
| 366 | { return BlueNormReturnType(_expression()); } |
| 367 | |
| 368 | |
| 369 | /** \returns a row (or column) vector expression of the norm |
| 370 | * of each column (or row) of the referenced expression, avoiding |
| 371 | * underflow and overflow. |
| 372 | * This is a vector with real entries, even if the original matrix has complex entries. |
| 373 | * |
| 374 | * \sa DenseBase::stableNorm() */ |
| 375 | EIGEN_DEVICE_FUNC |
| 376 | const StableNormReturnType stableNorm() const |
| 377 | { return StableNormReturnType(_expression()); } |
| 378 | |
| 379 | |
| 380 | /** \returns a row (or column) vector expression of the norm |
| 381 | * of each column (or row) of the referenced expression, avoiding |
| 382 | * underflow and overflow using a concatenation of hypot() calls. |
| 383 | * This is a vector with real entries, even if the original matrix has complex entries. |
| 384 | * |
| 385 | * \sa DenseBase::hypotNorm() */ |
| 386 | EIGEN_DEVICE_FUNC |
| 387 | const HypotNormReturnType hypotNorm() const |
| 388 | { return HypotNormReturnType(_expression()); } |
| 389 | |
| 390 | /** \returns a row (or column) vector expression of the sum |
| 391 | * of each column (or row) of the referenced expression. |
| 392 | * |
| 393 | * Example: \include PartialRedux_sum.cpp |
| 394 | * Output: \verbinclude PartialRedux_sum.out |
| 395 | * |
| 396 | * \sa DenseBase::sum() */ |
| 397 | EIGEN_DEVICE_FUNC |
| 398 | const SumReturnType sum() const |
| 399 | { return SumReturnType(_expression()); } |
| 400 | |
| 401 | /** \returns a row (or column) vector expression of the mean |
| 402 | * of each column (or row) of the referenced expression. |
| 403 | * |
| 404 | * \sa DenseBase::mean() */ |
| 405 | EIGEN_DEVICE_FUNC |
| 406 | const MeanReturnType mean() const |
| 407 | { return MeanReturnType(_expression()); } |
| 408 | |
| 409 | /** \returns a row (or column) vector expression representing |
| 410 | * whether \b all coefficients of each respective column (or row) are \c true. |
| 411 | * This expression can be assigned to a vector with entries of type \c bool. |
| 412 | * |
| 413 | * \sa DenseBase::all() */ |
| 414 | EIGEN_DEVICE_FUNC |
| 415 | const AllReturnType all() const |
| 416 | { return AllReturnType(_expression()); } |
| 417 | |
| 418 | /** \returns a row (or column) vector expression representing |
| 419 | * whether \b at \b least one coefficient of each respective column (or row) is \c true. |
| 420 | * This expression can be assigned to a vector with entries of type \c bool. |
| 421 | * |
| 422 | * \sa DenseBase::any() */ |
| 423 | EIGEN_DEVICE_FUNC |
| 424 | const AnyReturnType any() const |
| 425 | { return AnyReturnType(_expression()); } |
| 426 | |
| 427 | /** \returns a row (or column) vector expression representing |
| 428 | * the number of \c true coefficients of each respective column (or row). |
| 429 | * This expression can be assigned to a vector whose entries have the same type as is used to |
| 430 | * index entries of the original matrix; for dense matrices, this is \c std::ptrdiff_t . |
| 431 | * |
| 432 | * Example: \include PartialRedux_count.cpp |
| 433 | * Output: \verbinclude PartialRedux_count.out |
| 434 | * |
| 435 | * \sa DenseBase::count() */ |
| 436 | EIGEN_DEVICE_FUNC |
| 437 | const CountReturnType count() const |
| 438 | { return CountReturnType(_expression()); } |
| 439 | |
| 440 | /** \returns a row (or column) vector expression of the product |
| 441 | * of each column (or row) of the referenced expression. |
| 442 | * |
| 443 | * Example: \include PartialRedux_prod.cpp |
| 444 | * Output: \verbinclude PartialRedux_prod.out |
| 445 | * |
| 446 | * \sa DenseBase::prod() */ |
| 447 | EIGEN_DEVICE_FUNC |
| 448 | const ProdReturnType prod() const |
| 449 | { return ProdReturnType(_expression()); } |
| 450 | |
| 451 | |
| 452 | /** \returns a matrix expression |
| 453 | * where each column (or row) are reversed. |
| 454 | * |
| 455 | * Example: \include Vectorwise_reverse.cpp |
| 456 | * Output: \verbinclude Vectorwise_reverse.out |
| 457 | * |
| 458 | * \sa DenseBase::reverse() */ |
| 459 | EIGEN_DEVICE_FUNC |
| 460 | const ConstReverseReturnType reverse() const |
| 461 | { return ConstReverseReturnType( _expression() ); } |
| 462 | |
| 463 | /** \returns a writable matrix expression |
| 464 | * where each column (or row) are reversed. |
| 465 | * |
| 466 | * \sa reverse() const */ |
| 467 | EIGEN_DEVICE_FUNC |
| 468 | ReverseReturnType reverse() |
| 469 | { return ReverseReturnType( _expression() ); } |
| 470 | |
| 471 | typedef Replicate<ExpressionType,(isVertical?Dynamic:1),(isHorizontal?Dynamic:1)> ReplicateReturnType; |
| 472 | EIGEN_DEVICE_FUNC |
| 473 | const ReplicateReturnType replicate(Index factor) const; |
| 474 | |
| 475 | /** |
| 476 | * \return an expression of the replication of each column (or row) of \c *this |
| 477 | * |
| 478 | * Example: \include DirectionWise_replicate.cpp |
| 479 | * Output: \verbinclude DirectionWise_replicate.out |
| 480 | * |
| 481 | * \sa VectorwiseOp::replicate(Index), DenseBase::replicate(), class Replicate |
| 482 | */ |
| 483 | // NOTE implemented here because of sunstudio's compilation errors |
| 484 | // isVertical*Factor+isHorizontal instead of (isVertical?Factor:1) to handle CUDA bug with ternary operator |
| 485 | template<int Factor> const Replicate<ExpressionType,isVertical*Factor+isHorizontal,isHorizontal*Factor+isVertical> |
| 486 | EIGEN_DEVICE_FUNC |
| 487 | replicate(Index factor = Factor) const |
| 488 | { |
| 489 | return Replicate<ExpressionType,(isVertical?Factor:1),(isHorizontal?Factor:1)> |
| 490 | (_expression(),isVertical?factor:1,isHorizontal?factor:1); |
| 491 | } |
| 492 | |
| 493 | /////////// Artithmetic operators /////////// |
| 494 | |
| 495 | /** Copies the vector \a other to each subvector of \c *this */ |
| 496 | template<typename OtherDerived> |
| 497 | EIGEN_DEVICE_FUNC |
| 498 | ExpressionType& operator=(const DenseBase<OtherDerived>& other) |
| 499 | { |
| 500 | EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) |
| 501 | EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) |
| 502 | //eigen_assert((m_matrix.isNull()) == (other.isNull())); FIXME |
| 503 | return const_cast<ExpressionType&>(m_matrix = extendedTo(other.derived())); |
| 504 | } |
| 505 | |
| 506 | /** Adds the vector \a other to each subvector of \c *this */ |
| 507 | template<typename OtherDerived> |
| 508 | EIGEN_DEVICE_FUNC |
| 509 | ExpressionType& operator+=(const DenseBase<OtherDerived>& other) |
| 510 | { |
| 511 | EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) |
| 512 | EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) |
| 513 | return const_cast<ExpressionType&>(m_matrix += extendedTo(other.derived())); |
| 514 | } |
| 515 | |
| 516 | /** Substracts the vector \a other to each subvector of \c *this */ |
| 517 | template<typename OtherDerived> |
| 518 | EIGEN_DEVICE_FUNC |
| 519 | ExpressionType& operator-=(const DenseBase<OtherDerived>& other) |
| 520 | { |
| 521 | EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) |
| 522 | EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) |
| 523 | return const_cast<ExpressionType&>(m_matrix -= extendedTo(other.derived())); |
| 524 | } |
| 525 | |
| 526 | /** Multiples each subvector of \c *this by the vector \a other */ |
| 527 | template<typename OtherDerived> |
| 528 | EIGEN_DEVICE_FUNC |
| 529 | ExpressionType& operator*=(const DenseBase<OtherDerived>& other) |
| 530 | { |
| 531 | EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) |
| 532 | EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType) |
| 533 | EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) |
| 534 | m_matrix *= extendedTo(other.derived()); |
| 535 | return const_cast<ExpressionType&>(m_matrix); |
| 536 | } |
| 537 | |
| 538 | /** Divides each subvector of \c *this by the vector \a other */ |
| 539 | template<typename OtherDerived> |
| 540 | EIGEN_DEVICE_FUNC |
| 541 | ExpressionType& operator/=(const DenseBase<OtherDerived>& other) |
| 542 | { |
| 543 | EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) |
| 544 | EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType) |
| 545 | EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) |
| 546 | m_matrix /= extendedTo(other.derived()); |
| 547 | return const_cast<ExpressionType&>(m_matrix); |
| 548 | } |
| 549 | |
| 550 | /** Returns the expression of the sum of the vector \a other to each subvector of \c *this */ |
| 551 | template<typename OtherDerived> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC |
| 552 | CwiseBinaryOp<internal::scalar_sum_op<Scalar,typename OtherDerived::Scalar>, |
| 553 | const ExpressionTypeNestedCleaned, |
| 554 | const typename ExtendedType<OtherDerived>::Type> |
| 555 | operator+(const DenseBase<OtherDerived>& other) const |
| 556 | { |
| 557 | EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) |
| 558 | EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) |
| 559 | return m_matrix + extendedTo(other.derived()); |
| 560 | } |
| 561 | |
| 562 | /** Returns the expression of the difference between each subvector of \c *this and the vector \a other */ |
| 563 | template<typename OtherDerived> |
| 564 | EIGEN_DEVICE_FUNC |
| 565 | CwiseBinaryOp<internal::scalar_difference_op<Scalar,typename OtherDerived::Scalar>, |
| 566 | const ExpressionTypeNestedCleaned, |
| 567 | const typename ExtendedType<OtherDerived>::Type> |
| 568 | operator-(const DenseBase<OtherDerived>& other) const |
| 569 | { |
| 570 | EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) |
| 571 | EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) |
| 572 | return m_matrix - extendedTo(other.derived()); |
| 573 | } |
| 574 | |
| 575 | /** Returns the expression where each subvector is the product of the vector \a other |
| 576 | * by the corresponding subvector of \c *this */ |
| 577 | template<typename OtherDerived> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC |
| 578 | CwiseBinaryOp<internal::scalar_product_op<Scalar>, |
| 579 | const ExpressionTypeNestedCleaned, |
| 580 | const typename ExtendedType<OtherDerived>::Type> |
| 581 | EIGEN_DEVICE_FUNC |
| 582 | operator*(const DenseBase<OtherDerived>& other) const |
| 583 | { |
| 584 | EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) |
| 585 | EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType) |
| 586 | EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) |
| 587 | return m_matrix * extendedTo(other.derived()); |
| 588 | } |
| 589 | |
| 590 | /** Returns the expression where each subvector is the quotient of the corresponding |
| 591 | * subvector of \c *this by the vector \a other */ |
| 592 | template<typename OtherDerived> |
| 593 | EIGEN_DEVICE_FUNC |
| 594 | CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, |
| 595 | const ExpressionTypeNestedCleaned, |
| 596 | const typename ExtendedType<OtherDerived>::Type> |
| 597 | operator/(const DenseBase<OtherDerived>& other) const |
| 598 | { |
| 599 | EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) |
| 600 | EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType) |
| 601 | EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) |
| 602 | return m_matrix / extendedTo(other.derived()); |
| 603 | } |
| 604 | |
| 605 | /** \returns an expression where each column (or row) of the referenced matrix are normalized. |
| 606 | * The referenced matrix is \b not modified. |
| 607 | * \sa MatrixBase::normalized(), normalize() |
| 608 | */ |
| 609 | EIGEN_DEVICE_FUNC |
| 610 | CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, |
| 611 | const ExpressionTypeNestedCleaned, |
| 612 | const typename OppositeExtendedType<typename ReturnType<internal::member_norm,RealScalar>::Type>::Type> |
| 613 | normalized() const { return m_matrix.cwiseQuotient(extendedToOpposite(this->norm())); } |
| 614 | |
| 615 | |
| 616 | /** Normalize in-place each row or columns of the referenced matrix. |
| 617 | * \sa MatrixBase::normalize(), normalized() |
| 618 | */ |
| 619 | EIGEN_DEVICE_FUNC void normalize() { |
| 620 | m_matrix = this->normalized(); |
| 621 | } |
| 622 | |
| 623 | EIGEN_DEVICE_FUNC inline void reverseInPlace(); |
| 624 | |
| 625 | /////////// Geometry module /////////// |
| 626 | |
| 627 | typedef Homogeneous<ExpressionType,Direction> HomogeneousReturnType; |
| 628 | EIGEN_DEVICE_FUNC |
| 629 | HomogeneousReturnType homogeneous() const; |
| 630 | |
| 631 | typedef typename ExpressionType::PlainObject CrossReturnType; |
| 632 | template<typename OtherDerived> |
| 633 | EIGEN_DEVICE_FUNC |
| 634 | const CrossReturnType cross(const MatrixBase<OtherDerived>& other) const; |
| 635 | |
| 636 | enum { |
| 637 | HNormalized_Size = Direction==Vertical ? internal::traits<ExpressionType>::RowsAtCompileTime |
| 638 | : internal::traits<ExpressionType>::ColsAtCompileTime, |
| 639 | HNormalized_SizeMinusOne = HNormalized_Size==Dynamic ? Dynamic : HNormalized_Size-1 |
| 640 | }; |
| 641 | typedef Block<const ExpressionType, |
| 642 | Direction==Vertical ? int(HNormalized_SizeMinusOne) |
| 643 | : int(internal::traits<ExpressionType>::RowsAtCompileTime), |
| 644 | Direction==Horizontal ? int(HNormalized_SizeMinusOne) |
| 645 | : int(internal::traits<ExpressionType>::ColsAtCompileTime)> |
| 646 | HNormalized_Block; |
| 647 | typedef Block<const ExpressionType, |
| 648 | Direction==Vertical ? 1 : int(internal::traits<ExpressionType>::RowsAtCompileTime), |
| 649 | Direction==Horizontal ? 1 : int(internal::traits<ExpressionType>::ColsAtCompileTime)> |
| 650 | HNormalized_Factors; |
| 651 | typedef CwiseBinaryOp<internal::scalar_quotient_op<typename internal::traits<ExpressionType>::Scalar>, |
| 652 | const HNormalized_Block, |
| 653 | const Replicate<HNormalized_Factors, |
| 654 | Direction==Vertical ? HNormalized_SizeMinusOne : 1, |
| 655 | Direction==Horizontal ? HNormalized_SizeMinusOne : 1> > |
| 656 | HNormalizedReturnType; |
| 657 | |
| 658 | EIGEN_DEVICE_FUNC |
| 659 | const HNormalizedReturnType hnormalized() const; |
| 660 | |
| 661 | protected: |
| 662 | ExpressionTypeNested m_matrix; |
| 663 | }; |
| 664 | |
| 665 | //const colwise moved to DenseBase.h due to CUDA compiler bug |
| 666 | |
| 667 | |
| 668 | /** \returns a writable VectorwiseOp wrapper of *this providing additional partial reduction operations |
| 669 | * |
| 670 | * \sa rowwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting |
| 671 | */ |
| 672 | template<typename Derived> |
| 673 | inline typename DenseBase<Derived>::ColwiseReturnType |
| 674 | DenseBase<Derived>::colwise() |
| 675 | { |
| 676 | return ColwiseReturnType(derived()); |
| 677 | } |
| 678 | |
| 679 | //const rowwise moved to DenseBase.h due to CUDA compiler bug |
| 680 | |
| 681 | |
| 682 | /** \returns a writable VectorwiseOp wrapper of *this providing additional partial reduction operations |
| 683 | * |
| 684 | * \sa colwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting |
| 685 | */ |
| 686 | template<typename Derived> |
| 687 | inline typename DenseBase<Derived>::RowwiseReturnType |
| 688 | DenseBase<Derived>::rowwise() |
| 689 | { |
| 690 | return RowwiseReturnType(derived()); |
| 691 | } |
| 692 | |
| 693 | } // end namespace Eigen |
| 694 | |
| 695 | #endif // EIGEN_PARTIAL_REDUX_H |
| 696 | |