1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
5 | // |
6 | // This Source Code Form is subject to the terms of the Mozilla |
7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
9 | |
10 | #ifndef EIGEN_ROTATION2D_H |
11 | #define EIGEN_ROTATION2D_H |
12 | |
13 | namespace Eigen { |
14 | |
15 | /** \geometry_module \ingroup Geometry_Module |
16 | * |
17 | * \class Rotation2D |
18 | * |
19 | * \brief Represents a rotation/orientation in a 2 dimensional space. |
20 | * |
21 | * \tparam _Scalar the scalar type, i.e., the type of the coefficients |
22 | * |
23 | * This class is equivalent to a single scalar representing a counter clock wise rotation |
24 | * as a single angle in radian. It provides some additional features such as the automatic |
25 | * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar |
26 | * interface to Quaternion in order to facilitate the writing of generic algorithms |
27 | * dealing with rotations. |
28 | * |
29 | * \sa class Quaternion, class Transform |
30 | */ |
31 | |
32 | namespace internal { |
33 | |
34 | template<typename _Scalar> struct traits<Rotation2D<_Scalar> > |
35 | { |
36 | typedef _Scalar Scalar; |
37 | }; |
38 | } // end namespace internal |
39 | |
40 | template<typename _Scalar> |
41 | class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2> |
42 | { |
43 | typedef RotationBase<Rotation2D<_Scalar>,2> Base; |
44 | |
45 | public: |
46 | |
47 | using Base::operator*; |
48 | |
49 | enum { Dim = 2 }; |
50 | /** the scalar type of the coefficients */ |
51 | typedef _Scalar Scalar; |
52 | typedef Matrix<Scalar,2,1> Vector2; |
53 | typedef Matrix<Scalar,2,2> Matrix2; |
54 | |
55 | protected: |
56 | |
57 | Scalar m_angle; |
58 | |
59 | public: |
60 | |
61 | /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */ |
62 | EIGEN_DEVICE_FUNC explicit inline Rotation2D(const Scalar& a) : m_angle(a) {} |
63 | |
64 | /** Default constructor wihtout initialization. The represented rotation is undefined. */ |
65 | EIGEN_DEVICE_FUNC Rotation2D() {} |
66 | |
67 | /** Construct a 2D rotation from a 2x2 rotation matrix \a mat. |
68 | * |
69 | * \sa fromRotationMatrix() |
70 | */ |
71 | template<typename Derived> |
72 | EIGEN_DEVICE_FUNC explicit Rotation2D(const MatrixBase<Derived>& m) |
73 | { |
74 | fromRotationMatrix(m.derived()); |
75 | } |
76 | |
77 | /** \returns the rotation angle */ |
78 | EIGEN_DEVICE_FUNC inline Scalar angle() const { return m_angle; } |
79 | |
80 | /** \returns a read-write reference to the rotation angle */ |
81 | EIGEN_DEVICE_FUNC inline Scalar& angle() { return m_angle; } |
82 | |
83 | /** \returns the rotation angle in [0,2pi] */ |
84 | EIGEN_DEVICE_FUNC inline Scalar smallestPositiveAngle() const { |
85 | Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI)); |
86 | return tmp<Scalar(0) ? tmp + Scalar(2*EIGEN_PI) : tmp; |
87 | } |
88 | |
89 | /** \returns the rotation angle in [-pi,pi] */ |
90 | EIGEN_DEVICE_FUNC inline Scalar smallestAngle() const { |
91 | Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI)); |
92 | if(tmp>Scalar(EIGEN_PI)) tmp -= Scalar(2*EIGEN_PI); |
93 | else if(tmp<-Scalar(EIGEN_PI)) tmp += Scalar(2*EIGEN_PI); |
94 | return tmp; |
95 | } |
96 | |
97 | /** \returns the inverse rotation */ |
98 | EIGEN_DEVICE_FUNC inline Rotation2D inverse() const { return Rotation2D(-m_angle); } |
99 | |
100 | /** Concatenates two rotations */ |
101 | EIGEN_DEVICE_FUNC inline Rotation2D operator*(const Rotation2D& other) const |
102 | { return Rotation2D(m_angle + other.m_angle); } |
103 | |
104 | /** Concatenates two rotations */ |
105 | EIGEN_DEVICE_FUNC inline Rotation2D& operator*=(const Rotation2D& other) |
106 | { m_angle += other.m_angle; return *this; } |
107 | |
108 | /** Applies the rotation to a 2D vector */ |
109 | EIGEN_DEVICE_FUNC Vector2 operator* (const Vector2& vec) const |
110 | { return toRotationMatrix() * vec; } |
111 | |
112 | template<typename Derived> |
113 | EIGEN_DEVICE_FUNC Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m); |
114 | EIGEN_DEVICE_FUNC Matrix2 toRotationMatrix() const; |
115 | |
116 | /** Set \c *this from a 2x2 rotation matrix \a mat. |
117 | * In other words, this function extract the rotation angle from the rotation matrix. |
118 | * |
119 | * This method is an alias for fromRotationMatrix() |
120 | * |
121 | * \sa fromRotationMatrix() |
122 | */ |
123 | template<typename Derived> |
124 | EIGEN_DEVICE_FUNC Rotation2D& operator=(const MatrixBase<Derived>& m) |
125 | { return fromRotationMatrix(m.derived()); } |
126 | |
127 | /** \returns the spherical interpolation between \c *this and \a other using |
128 | * parameter \a t. It is in fact equivalent to a linear interpolation. |
129 | */ |
130 | EIGEN_DEVICE_FUNC inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const |
131 | { |
132 | Scalar dist = Rotation2D(other.m_angle-m_angle).smallestAngle(); |
133 | return Rotation2D(m_angle + dist*t); |
134 | } |
135 | |
136 | /** \returns \c *this with scalar type casted to \a NewScalarType |
137 | * |
138 | * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
139 | * then this function smartly returns a const reference to \c *this. |
140 | */ |
141 | template<typename NewScalarType> |
142 | EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const |
143 | { return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); } |
144 | |
145 | /** Copy constructor with scalar type conversion */ |
146 | template<typename OtherScalarType> |
147 | EIGEN_DEVICE_FUNC inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other) |
148 | { |
149 | m_angle = Scalar(other.angle()); |
150 | } |
151 | |
152 | EIGEN_DEVICE_FUNC static inline Rotation2D Identity() { return Rotation2D(0); } |
153 | |
154 | /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
155 | * determined by \a prec. |
156 | * |
157 | * \sa MatrixBase::isApprox() */ |
158 | EIGEN_DEVICE_FUNC bool isApprox(const Rotation2D& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const |
159 | { return internal::isApprox(m_angle,other.m_angle, prec); } |
160 | |
161 | }; |
162 | |
163 | /** \ingroup Geometry_Module |
164 | * single precision 2D rotation type */ |
165 | typedef Rotation2D<float> Rotation2Df; |
166 | /** \ingroup Geometry_Module |
167 | * double precision 2D rotation type */ |
168 | typedef Rotation2D<double> Rotation2Dd; |
169 | |
170 | /** Set \c *this from a 2x2 rotation matrix \a mat. |
171 | * In other words, this function extract the rotation angle |
172 | * from the rotation matrix. |
173 | */ |
174 | template<typename Scalar> |
175 | template<typename Derived> |
176 | EIGEN_DEVICE_FUNC Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat) |
177 | { |
178 | EIGEN_USING_STD_MATH(atan2) |
179 | EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE) |
180 | m_angle = atan2(mat.coeff(1,0), mat.coeff(0,0)); |
181 | return *this; |
182 | } |
183 | |
184 | /** Constructs and \returns an equivalent 2x2 rotation matrix. |
185 | */ |
186 | template<typename Scalar> |
187 | typename Rotation2D<Scalar>::Matrix2 |
188 | EIGEN_DEVICE_FUNC Rotation2D<Scalar>::toRotationMatrix(void) const |
189 | { |
190 | EIGEN_USING_STD_MATH(sin) |
191 | EIGEN_USING_STD_MATH(cos) |
192 | Scalar sinA = sin(m_angle); |
193 | Scalar cosA = cos(m_angle); |
194 | return (Matrix2() << cosA, -sinA, sinA, cosA).finished(); |
195 | } |
196 | |
197 | } // end namespace Eigen |
198 | |
199 | #endif // EIGEN_ROTATION2D_H |
200 | |