| 1 | // This file is part of Eigen, a lightweight C++ template library | 
|---|
| 2 | // for linear algebra. | 
|---|
| 3 | // | 
|---|
| 4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|---|
| 5 | // | 
|---|
| 6 | // This Source Code Form is subject to the terms of the Mozilla | 
|---|
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|---|
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|---|
| 9 |  | 
|---|
| 10 | #ifndef EIGEN_ROTATION2D_H | 
|---|
| 11 | #define EIGEN_ROTATION2D_H | 
|---|
| 12 |  | 
|---|
| 13 | namespace Eigen { | 
|---|
| 14 |  | 
|---|
| 15 | /** \geometry_module \ingroup Geometry_Module | 
|---|
| 16 | * | 
|---|
| 17 | * \class Rotation2D | 
|---|
| 18 | * | 
|---|
| 19 | * \brief Represents a rotation/orientation in a 2 dimensional space. | 
|---|
| 20 | * | 
|---|
| 21 | * \tparam _Scalar the scalar type, i.e., the type of the coefficients | 
|---|
| 22 | * | 
|---|
| 23 | * This class is equivalent to a single scalar representing a counter clock wise rotation | 
|---|
| 24 | * as a single angle in radian. It provides some additional features such as the automatic | 
|---|
| 25 | * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar | 
|---|
| 26 | * interface to Quaternion in order to facilitate the writing of generic algorithms | 
|---|
| 27 | * dealing with rotations. | 
|---|
| 28 | * | 
|---|
| 29 | * \sa class Quaternion, class Transform | 
|---|
| 30 | */ | 
|---|
| 31 |  | 
|---|
| 32 | namespace internal { | 
|---|
| 33 |  | 
|---|
| 34 | template<typename _Scalar> struct traits<Rotation2D<_Scalar> > | 
|---|
| 35 | { | 
|---|
| 36 | typedef _Scalar Scalar; | 
|---|
| 37 | }; | 
|---|
| 38 | } // end namespace internal | 
|---|
| 39 |  | 
|---|
| 40 | template<typename _Scalar> | 
|---|
| 41 | class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2> | 
|---|
| 42 | { | 
|---|
| 43 | typedef RotationBase<Rotation2D<_Scalar>,2> Base; | 
|---|
| 44 |  | 
|---|
| 45 | public: | 
|---|
| 46 |  | 
|---|
| 47 | using Base::operator*; | 
|---|
| 48 |  | 
|---|
| 49 | enum { Dim = 2 }; | 
|---|
| 50 | /** the scalar type of the coefficients */ | 
|---|
| 51 | typedef _Scalar Scalar; | 
|---|
| 52 | typedef Matrix<Scalar,2,1> Vector2; | 
|---|
| 53 | typedef Matrix<Scalar,2,2> Matrix2; | 
|---|
| 54 |  | 
|---|
| 55 | protected: | 
|---|
| 56 |  | 
|---|
| 57 | Scalar m_angle; | 
|---|
| 58 |  | 
|---|
| 59 | public: | 
|---|
| 60 |  | 
|---|
| 61 | /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */ | 
|---|
| 62 | EIGEN_DEVICE_FUNC explicit inline Rotation2D(const Scalar& a) : m_angle(a) {} | 
|---|
| 63 |  | 
|---|
| 64 | /** Default constructor wihtout initialization. The represented rotation is undefined. */ | 
|---|
| 65 | EIGEN_DEVICE_FUNC Rotation2D() {} | 
|---|
| 66 |  | 
|---|
| 67 | /** Construct a 2D rotation from a 2x2 rotation matrix \a mat. | 
|---|
| 68 | * | 
|---|
| 69 | * \sa fromRotationMatrix() | 
|---|
| 70 | */ | 
|---|
| 71 | template<typename Derived> | 
|---|
| 72 | EIGEN_DEVICE_FUNC explicit Rotation2D(const MatrixBase<Derived>& m) | 
|---|
| 73 | { | 
|---|
| 74 | fromRotationMatrix(m.derived()); | 
|---|
| 75 | } | 
|---|
| 76 |  | 
|---|
| 77 | /** \returns the rotation angle */ | 
|---|
| 78 | EIGEN_DEVICE_FUNC inline Scalar angle() const { return m_angle; } | 
|---|
| 79 |  | 
|---|
| 80 | /** \returns a read-write reference to the rotation angle */ | 
|---|
| 81 | EIGEN_DEVICE_FUNC inline Scalar& angle() { return m_angle; } | 
|---|
| 82 |  | 
|---|
| 83 | /** \returns the rotation angle in [0,2pi] */ | 
|---|
| 84 | EIGEN_DEVICE_FUNC inline Scalar smallestPositiveAngle() const { | 
|---|
| 85 | Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI)); | 
|---|
| 86 | return tmp<Scalar(0) ? tmp + Scalar(2*EIGEN_PI) : tmp; | 
|---|
| 87 | } | 
|---|
| 88 |  | 
|---|
| 89 | /** \returns the rotation angle in [-pi,pi] */ | 
|---|
| 90 | EIGEN_DEVICE_FUNC inline Scalar smallestAngle() const { | 
|---|
| 91 | Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI)); | 
|---|
| 92 | if(tmp>Scalar(EIGEN_PI))       tmp -= Scalar(2*EIGEN_PI); | 
|---|
| 93 | else if(tmp<-Scalar(EIGEN_PI)) tmp += Scalar(2*EIGEN_PI); | 
|---|
| 94 | return tmp; | 
|---|
| 95 | } | 
|---|
| 96 |  | 
|---|
| 97 | /** \returns the inverse rotation */ | 
|---|
| 98 | EIGEN_DEVICE_FUNC inline Rotation2D inverse() const { return Rotation2D(-m_angle); } | 
|---|
| 99 |  | 
|---|
| 100 | /** Concatenates two rotations */ | 
|---|
| 101 | EIGEN_DEVICE_FUNC inline Rotation2D operator*(const Rotation2D& other) const | 
|---|
| 102 | { return Rotation2D(m_angle + other.m_angle); } | 
|---|
| 103 |  | 
|---|
| 104 | /** Concatenates two rotations */ | 
|---|
| 105 | EIGEN_DEVICE_FUNC inline Rotation2D& operator*=(const Rotation2D& other) | 
|---|
| 106 | { m_angle += other.m_angle; return *this; } | 
|---|
| 107 |  | 
|---|
| 108 | /** Applies the rotation to a 2D vector */ | 
|---|
| 109 | EIGEN_DEVICE_FUNC Vector2 operator* (const Vector2& vec) const | 
|---|
| 110 | { return toRotationMatrix() * vec; } | 
|---|
| 111 |  | 
|---|
| 112 | template<typename Derived> | 
|---|
| 113 | EIGEN_DEVICE_FUNC Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m); | 
|---|
| 114 | EIGEN_DEVICE_FUNC Matrix2 toRotationMatrix() const; | 
|---|
| 115 |  | 
|---|
| 116 | /** Set \c *this from a 2x2 rotation matrix \a mat. | 
|---|
| 117 | * In other words, this function extract the rotation angle from the rotation matrix. | 
|---|
| 118 | * | 
|---|
| 119 | * This method is an alias for fromRotationMatrix() | 
|---|
| 120 | * | 
|---|
| 121 | * \sa fromRotationMatrix() | 
|---|
| 122 | */ | 
|---|
| 123 | template<typename Derived> | 
|---|
| 124 | EIGEN_DEVICE_FUNC Rotation2D& operator=(const  MatrixBase<Derived>& m) | 
|---|
| 125 | { return fromRotationMatrix(m.derived()); } | 
|---|
| 126 |  | 
|---|
| 127 | /** \returns the spherical interpolation between \c *this and \a other using | 
|---|
| 128 | * parameter \a t. It is in fact equivalent to a linear interpolation. | 
|---|
| 129 | */ | 
|---|
| 130 | EIGEN_DEVICE_FUNC inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const | 
|---|
| 131 | { | 
|---|
| 132 | Scalar dist = Rotation2D(other.m_angle-m_angle).smallestAngle(); | 
|---|
| 133 | return Rotation2D(m_angle + dist*t); | 
|---|
| 134 | } | 
|---|
| 135 |  | 
|---|
| 136 | /** \returns \c *this with scalar type casted to \a NewScalarType | 
|---|
| 137 | * | 
|---|
| 138 | * Note that if \a NewScalarType is equal to the current scalar type of \c *this | 
|---|
| 139 | * then this function smartly returns a const reference to \c *this. | 
|---|
| 140 | */ | 
|---|
| 141 | template<typename NewScalarType> | 
|---|
| 142 | EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const | 
|---|
| 143 | { return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); } | 
|---|
| 144 |  | 
|---|
| 145 | /** Copy constructor with scalar type conversion */ | 
|---|
| 146 | template<typename OtherScalarType> | 
|---|
| 147 | EIGEN_DEVICE_FUNC inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other) | 
|---|
| 148 | { | 
|---|
| 149 | m_angle = Scalar(other.angle()); | 
|---|
| 150 | } | 
|---|
| 151 |  | 
|---|
| 152 | EIGEN_DEVICE_FUNC static inline Rotation2D Identity() { return Rotation2D(0); } | 
|---|
| 153 |  | 
|---|
| 154 | /** \returns \c true if \c *this is approximately equal to \a other, within the precision | 
|---|
| 155 | * determined by \a prec. | 
|---|
| 156 | * | 
|---|
| 157 | * \sa MatrixBase::isApprox() */ | 
|---|
| 158 | EIGEN_DEVICE_FUNC bool isApprox(const Rotation2D& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const | 
|---|
| 159 | { return internal::isApprox(m_angle,other.m_angle, prec); } | 
|---|
| 160 |  | 
|---|
| 161 | }; | 
|---|
| 162 |  | 
|---|
| 163 | /** \ingroup Geometry_Module | 
|---|
| 164 | * single precision 2D rotation type */ | 
|---|
| 165 | typedef Rotation2D<float> Rotation2Df; | 
|---|
| 166 | /** \ingroup Geometry_Module | 
|---|
| 167 | * double precision 2D rotation type */ | 
|---|
| 168 | typedef Rotation2D<double> Rotation2Dd; | 
|---|
| 169 |  | 
|---|
| 170 | /** Set \c *this from a 2x2 rotation matrix \a mat. | 
|---|
| 171 | * In other words, this function extract the rotation angle | 
|---|
| 172 | * from the rotation matrix. | 
|---|
| 173 | */ | 
|---|
| 174 | template<typename Scalar> | 
|---|
| 175 | template<typename Derived> | 
|---|
| 176 | EIGEN_DEVICE_FUNC Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat) | 
|---|
| 177 | { | 
|---|
| 178 | EIGEN_USING_STD_MATH(atan2) | 
|---|
| 179 | EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|---|
| 180 | m_angle = atan2(mat.coeff(1,0), mat.coeff(0,0)); | 
|---|
| 181 | return *this; | 
|---|
| 182 | } | 
|---|
| 183 |  | 
|---|
| 184 | /** Constructs and \returns an equivalent 2x2 rotation matrix. | 
|---|
| 185 | */ | 
|---|
| 186 | template<typename Scalar> | 
|---|
| 187 | typename Rotation2D<Scalar>::Matrix2 | 
|---|
| 188 | EIGEN_DEVICE_FUNC Rotation2D<Scalar>::toRotationMatrix(void) const | 
|---|
| 189 | { | 
|---|
| 190 | EIGEN_USING_STD_MATH(sin) | 
|---|
| 191 | EIGEN_USING_STD_MATH(cos) | 
|---|
| 192 | Scalar sinA = sin(m_angle); | 
|---|
| 193 | Scalar cosA = cos(m_angle); | 
|---|
| 194 | return (Matrix2() << cosA, -sinA, sinA, cosA).finished(); | 
|---|
| 195 | } | 
|---|
| 196 |  | 
|---|
| 197 | } // end namespace Eigen | 
|---|
| 198 |  | 
|---|
| 199 | #endif // EIGEN_ROTATION2D_H | 
|---|
| 200 |  | 
|---|