| 1 | // This file is part of Eigen, a lightweight C++ template library | 
|---|
| 2 | // for linear algebra. | 
|---|
| 3 | // | 
|---|
| 4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|---|
| 5 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|---|
| 6 | // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com> | 
|---|
| 7 | // | 
|---|
| 8 | // This Source Code Form is subject to the terms of the Mozilla | 
|---|
| 9 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|---|
| 10 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|---|
| 11 |  | 
|---|
| 12 | #ifndef EIGEN_TRANSFORM_H | 
|---|
| 13 | #define EIGEN_TRANSFORM_H | 
|---|
| 14 |  | 
|---|
| 15 | namespace Eigen { | 
|---|
| 16 |  | 
|---|
| 17 | namespace internal { | 
|---|
| 18 |  | 
|---|
| 19 | template<typename Transform> | 
|---|
| 20 | struct transform_traits | 
|---|
| 21 | { | 
|---|
| 22 | enum | 
|---|
| 23 | { | 
|---|
| 24 | Dim = Transform::Dim, | 
|---|
| 25 | HDim = Transform::HDim, | 
|---|
| 26 | Mode = Transform::Mode, | 
|---|
| 27 | IsProjective = (int(Mode)==int(Projective)) | 
|---|
| 28 | }; | 
|---|
| 29 | }; | 
|---|
| 30 |  | 
|---|
| 31 | template< typename TransformType, | 
|---|
| 32 | typename MatrixType, | 
|---|
| 33 | int Case = transform_traits<TransformType>::IsProjective ? 0 | 
|---|
| 34 | : int(MatrixType::RowsAtCompileTime) == int(transform_traits<TransformType>::HDim) ? 1 | 
|---|
| 35 | : 2, | 
|---|
| 36 | int RhsCols = MatrixType::ColsAtCompileTime> | 
|---|
| 37 | struct transform_right_product_impl; | 
|---|
| 38 |  | 
|---|
| 39 | template< typename Other, | 
|---|
| 40 | int Mode, | 
|---|
| 41 | int Options, | 
|---|
| 42 | int Dim, | 
|---|
| 43 | int HDim, | 
|---|
| 44 | int OtherRows=Other::RowsAtCompileTime, | 
|---|
| 45 | int OtherCols=Other::ColsAtCompileTime> | 
|---|
| 46 | struct transform_left_product_impl; | 
|---|
| 47 |  | 
|---|
| 48 | template< typename Lhs, | 
|---|
| 49 | typename Rhs, | 
|---|
| 50 | bool AnyProjective = | 
|---|
| 51 | transform_traits<Lhs>::IsProjective || | 
|---|
| 52 | transform_traits<Rhs>::IsProjective> | 
|---|
| 53 | struct transform_transform_product_impl; | 
|---|
| 54 |  | 
|---|
| 55 | template< typename Other, | 
|---|
| 56 | int Mode, | 
|---|
| 57 | int Options, | 
|---|
| 58 | int Dim, | 
|---|
| 59 | int HDim, | 
|---|
| 60 | int OtherRows=Other::RowsAtCompileTime, | 
|---|
| 61 | int OtherCols=Other::ColsAtCompileTime> | 
|---|
| 62 | struct transform_construct_from_matrix; | 
|---|
| 63 |  | 
|---|
| 64 | template<typename TransformType> struct transform_take_affine_part; | 
|---|
| 65 |  | 
|---|
| 66 | template<typename _Scalar, int _Dim, int _Mode, int _Options> | 
|---|
| 67 | struct traits<Transform<_Scalar,_Dim,_Mode,_Options> > | 
|---|
| 68 | { | 
|---|
| 69 | typedef _Scalar Scalar; | 
|---|
| 70 | typedef Eigen::Index StorageIndex; | 
|---|
| 71 | typedef Dense StorageKind; | 
|---|
| 72 | enum { | 
|---|
| 73 | Dim1 = _Dim==Dynamic ? _Dim : _Dim + 1, | 
|---|
| 74 | RowsAtCompileTime = _Mode==Projective ? Dim1 : _Dim, | 
|---|
| 75 | ColsAtCompileTime = Dim1, | 
|---|
| 76 | MaxRowsAtCompileTime = RowsAtCompileTime, | 
|---|
| 77 | MaxColsAtCompileTime = ColsAtCompileTime, | 
|---|
| 78 | Flags = 0 | 
|---|
| 79 | }; | 
|---|
| 80 | }; | 
|---|
| 81 |  | 
|---|
| 82 | template<int Mode> struct transform_make_affine; | 
|---|
| 83 |  | 
|---|
| 84 | } // end namespace internal | 
|---|
| 85 |  | 
|---|
| 86 | /** \geometry_module \ingroup Geometry_Module | 
|---|
| 87 | * | 
|---|
| 88 | * \class Transform | 
|---|
| 89 | * | 
|---|
| 90 | * \brief Represents an homogeneous transformation in a N dimensional space | 
|---|
| 91 | * | 
|---|
| 92 | * \tparam _Scalar the scalar type, i.e., the type of the coefficients | 
|---|
| 93 | * \tparam _Dim the dimension of the space | 
|---|
| 94 | * \tparam _Mode the type of the transformation. Can be: | 
|---|
| 95 | *              - #Affine: the transformation is stored as a (Dim+1)^2 matrix, | 
|---|
| 96 | *                         where the last row is assumed to be [0 ... 0 1]. | 
|---|
| 97 | *              - #AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix. | 
|---|
| 98 | *              - #Projective: the transformation is stored as a (Dim+1)^2 matrix | 
|---|
| 99 | *                             without any assumption. | 
|---|
| 100 | * \tparam _Options has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor. | 
|---|
| 101 | *                  These Options are passed directly to the underlying matrix type. | 
|---|
| 102 | * | 
|---|
| 103 | * The homography is internally represented and stored by a matrix which | 
|---|
| 104 | * is available through the matrix() method. To understand the behavior of | 
|---|
| 105 | * this class you have to think a Transform object as its internal | 
|---|
| 106 | * matrix representation. The chosen convention is right multiply: | 
|---|
| 107 | * | 
|---|
| 108 | * \code v' = T * v \endcode | 
|---|
| 109 | * | 
|---|
| 110 | * Therefore, an affine transformation matrix M is shaped like this: | 
|---|
| 111 | * | 
|---|
| 112 | * \f$ \left( \begin{array}{cc} | 
|---|
| 113 | * linear & translation\\ | 
|---|
| 114 | * 0 ... 0 & 1 | 
|---|
| 115 | * \end{array} \right) \f$ | 
|---|
| 116 | * | 
|---|
| 117 | * Note that for a projective transformation the last row can be anything, | 
|---|
| 118 | * and then the interpretation of different parts might be sightly different. | 
|---|
| 119 | * | 
|---|
| 120 | * However, unlike a plain matrix, the Transform class provides many features | 
|---|
| 121 | * simplifying both its assembly and usage. In particular, it can be composed | 
|---|
| 122 | * with any other transformations (Transform,Translation,RotationBase,DiagonalMatrix) | 
|---|
| 123 | * and can be directly used to transform implicit homogeneous vectors. All these | 
|---|
| 124 | * operations are handled via the operator*. For the composition of transformations, | 
|---|
| 125 | * its principle consists to first convert the right/left hand sides of the product | 
|---|
| 126 | * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product. | 
|---|
| 127 | * Of course, internally, operator* tries to perform the minimal number of operations | 
|---|
| 128 | * according to the nature of each terms. Likewise, when applying the transform | 
|---|
| 129 | * to points, the latters are automatically promoted to homogeneous vectors | 
|---|
| 130 | * before doing the matrix product. The conventions to homogeneous representations | 
|---|
| 131 | * are performed as follow: | 
|---|
| 132 | * | 
|---|
| 133 | * \b Translation t (Dim)x(1): | 
|---|
| 134 | * \f$ \left( \begin{array}{cc} | 
|---|
| 135 | * I & t \\ | 
|---|
| 136 | * 0\,...\,0 & 1 | 
|---|
| 137 | * \end{array} \right) \f$ | 
|---|
| 138 | * | 
|---|
| 139 | * \b Rotation R (Dim)x(Dim): | 
|---|
| 140 | * \f$ \left( \begin{array}{cc} | 
|---|
| 141 | * R & 0\\ | 
|---|
| 142 | * 0\,...\,0 & 1 | 
|---|
| 143 | * \end{array} \right) \f$ | 
|---|
| 144 | *<!-- | 
|---|
| 145 | * \b Linear \b Matrix L (Dim)x(Dim): | 
|---|
| 146 | * \f$ \left( \begin{array}{cc} | 
|---|
| 147 | * L & 0\\ | 
|---|
| 148 | * 0\,...\,0 & 1 | 
|---|
| 149 | * \end{array} \right) \f$ | 
|---|
| 150 | * | 
|---|
| 151 | * \b Affine \b Matrix A (Dim)x(Dim+1): | 
|---|
| 152 | * \f$ \left( \begin{array}{c} | 
|---|
| 153 | * A\\ | 
|---|
| 154 | * 0\,...\,0\,1 | 
|---|
| 155 | * \end{array} \right) \f$ | 
|---|
| 156 | *--> | 
|---|
| 157 | * \b Scaling \b DiagonalMatrix S (Dim)x(Dim): | 
|---|
| 158 | * \f$ \left( \begin{array}{cc} | 
|---|
| 159 | * S & 0\\ | 
|---|
| 160 | * 0\,...\,0 & 1 | 
|---|
| 161 | * \end{array} \right) \f$ | 
|---|
| 162 | * | 
|---|
| 163 | * \b Column \b point v (Dim)x(1): | 
|---|
| 164 | * \f$ \left( \begin{array}{c} | 
|---|
| 165 | * v\\ | 
|---|
| 166 | * 1 | 
|---|
| 167 | * \end{array} \right) \f$ | 
|---|
| 168 | * | 
|---|
| 169 | * \b Set \b of \b column \b points V1...Vn (Dim)x(n): | 
|---|
| 170 | * \f$ \left( \begin{array}{ccc} | 
|---|
| 171 | * v_1 & ... & v_n\\ | 
|---|
| 172 | * 1 & ... & 1 | 
|---|
| 173 | * \end{array} \right) \f$ | 
|---|
| 174 | * | 
|---|
| 175 | * The concatenation of a Transform object with any kind of other transformation | 
|---|
| 176 | * always returns a Transform object. | 
|---|
| 177 | * | 
|---|
| 178 | * A little exception to the "as pure matrix product" rule is the case of the | 
|---|
| 179 | * transformation of non homogeneous vectors by an affine transformation. In | 
|---|
| 180 | * that case the last matrix row can be ignored, and the product returns non | 
|---|
| 181 | * homogeneous vectors. | 
|---|
| 182 | * | 
|---|
| 183 | * Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation, | 
|---|
| 184 | * it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix. | 
|---|
| 185 | * The solution is either to use a Dim x Dynamic matrix or explicitly request a | 
|---|
| 186 | * vector transformation by making the vector homogeneous: | 
|---|
| 187 | * \code | 
|---|
| 188 | * m' = T * m.colwise().homogeneous(); | 
|---|
| 189 | * \endcode | 
|---|
| 190 | * Note that there is zero overhead. | 
|---|
| 191 | * | 
|---|
| 192 | * Conversion methods from/to Qt's QMatrix and QTransform are available if the | 
|---|
| 193 | * preprocessor token EIGEN_QT_SUPPORT is defined. | 
|---|
| 194 | * | 
|---|
| 195 | * This class can be extended with the help of the plugin mechanism described on the page | 
|---|
| 196 | * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_TRANSFORM_PLUGIN. | 
|---|
| 197 | * | 
|---|
| 198 | * \sa class Matrix, class Quaternion | 
|---|
| 199 | */ | 
|---|
| 200 | template<typename _Scalar, int _Dim, int _Mode, int _Options> | 
|---|
| 201 | class Transform | 
|---|
| 202 | { | 
|---|
| 203 | public: | 
|---|
| 204 | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1)) | 
|---|
| 205 | enum { | 
|---|
| 206 | Mode = _Mode, | 
|---|
| 207 | Options = _Options, | 
|---|
| 208 | Dim = _Dim,     ///< space dimension in which the transformation holds | 
|---|
| 209 | HDim = _Dim+1,  ///< size of a respective homogeneous vector | 
|---|
| 210 | Rows = int(Mode)==(AffineCompact) ? Dim : HDim | 
|---|
| 211 | }; | 
|---|
| 212 | /** the scalar type of the coefficients */ | 
|---|
| 213 | typedef _Scalar Scalar; | 
|---|
| 214 | typedef Eigen::Index StorageIndex; | 
|---|
| 215 | typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 | 
|---|
| 216 | /** type of the matrix used to represent the transformation */ | 
|---|
| 217 | typedef typename internal::make_proper_matrix_type<Scalar,Rows,HDim,Options>::type MatrixType; | 
|---|
| 218 | /** constified MatrixType */ | 
|---|
| 219 | typedef const MatrixType ConstMatrixType; | 
|---|
| 220 | /** type of the matrix used to represent the linear part of the transformation */ | 
|---|
| 221 | typedef Matrix<Scalar,Dim,Dim,Options> LinearMatrixType; | 
|---|
| 222 | /** type of read/write reference to the linear part of the transformation */ | 
|---|
| 223 | typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> LinearPart; | 
|---|
| 224 | /** type of read reference to the linear part of the transformation */ | 
|---|
| 225 | typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> ConstLinearPart; | 
|---|
| 226 | /** type of read/write reference to the affine part of the transformation */ | 
|---|
| 227 | typedef typename internal::conditional<int(Mode)==int(AffineCompact), | 
|---|
| 228 | MatrixType&, | 
|---|
| 229 | Block<MatrixType,Dim,HDim> >::type AffinePart; | 
|---|
| 230 | /** type of read reference to the affine part of the transformation */ | 
|---|
| 231 | typedef typename internal::conditional<int(Mode)==int(AffineCompact), | 
|---|
| 232 | const MatrixType&, | 
|---|
| 233 | const Block<const MatrixType,Dim,HDim> >::type ConstAffinePart; | 
|---|
| 234 | /** type of a vector */ | 
|---|
| 235 | typedef Matrix<Scalar,Dim,1> VectorType; | 
|---|
| 236 | /** type of a read/write reference to the translation part of the rotation */ | 
|---|
| 237 | typedef Block<MatrixType,Dim,1,!(internal::traits<MatrixType>::Flags & RowMajorBit)> TranslationPart; | 
|---|
| 238 | /** type of a read reference to the translation part of the rotation */ | 
|---|
| 239 | typedef const Block<ConstMatrixType,Dim,1,!(internal::traits<MatrixType>::Flags & RowMajorBit)> ConstTranslationPart; | 
|---|
| 240 | /** corresponding translation type */ | 
|---|
| 241 | typedef Translation<Scalar,Dim> TranslationType; | 
|---|
| 242 |  | 
|---|
| 243 | // this intermediate enum is needed to avoid an ICE with gcc 3.4 and 4.0 | 
|---|
| 244 | enum { TransformTimeDiagonalMode = ((Mode==int(Isometry))?Affine:int(Mode)) }; | 
|---|
| 245 | /** The return type of the product between a diagonal matrix and a transform */ | 
|---|
| 246 | typedef Transform<Scalar,Dim,TransformTimeDiagonalMode> TransformTimeDiagonalReturnType; | 
|---|
| 247 |  | 
|---|
| 248 | protected: | 
|---|
| 249 |  | 
|---|
| 250 | MatrixType m_matrix; | 
|---|
| 251 |  | 
|---|
| 252 | public: | 
|---|
| 253 |  | 
|---|
| 254 | /** Default constructor without initialization of the meaningful coefficients. | 
|---|
| 255 | * If Mode==Affine, then the last row is set to [0 ... 0 1] */ | 
|---|
| 256 | EIGEN_DEVICE_FUNC inline Transform() | 
|---|
| 257 | { | 
|---|
| 258 | check_template_params(); | 
|---|
| 259 | internal::transform_make_affine<(int(Mode)==Affine) ? Affine : AffineCompact>::run(m_matrix); | 
|---|
| 260 | } | 
|---|
| 261 |  | 
|---|
| 262 | EIGEN_DEVICE_FUNC inline Transform(const Transform& other) | 
|---|
| 263 | { | 
|---|
| 264 | check_template_params(); | 
|---|
| 265 | m_matrix = other.m_matrix; | 
|---|
| 266 | } | 
|---|
| 267 |  | 
|---|
| 268 | EIGEN_DEVICE_FUNC inline explicit Transform(const TranslationType& t) | 
|---|
| 269 | { | 
|---|
| 270 | check_template_params(); | 
|---|
| 271 | *this = t; | 
|---|
| 272 | } | 
|---|
| 273 | EIGEN_DEVICE_FUNC inline explicit Transform(const UniformScaling<Scalar>& s) | 
|---|
| 274 | { | 
|---|
| 275 | check_template_params(); | 
|---|
| 276 | *this = s; | 
|---|
| 277 | } | 
|---|
| 278 | template<typename Derived> | 
|---|
| 279 | EIGEN_DEVICE_FUNC inline explicit Transform(const RotationBase<Derived, Dim>& r) | 
|---|
| 280 | { | 
|---|
| 281 | check_template_params(); | 
|---|
| 282 | *this = r; | 
|---|
| 283 | } | 
|---|
| 284 |  | 
|---|
| 285 | EIGEN_DEVICE_FUNC inline Transform& operator=(const Transform& other) | 
|---|
| 286 | { m_matrix = other.m_matrix; return *this; } | 
|---|
| 287 |  | 
|---|
| 288 | typedef internal::transform_take_affine_part<Transform> take_affine_part; | 
|---|
| 289 |  | 
|---|
| 290 | /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */ | 
|---|
| 291 | template<typename OtherDerived> | 
|---|
| 292 | EIGEN_DEVICE_FUNC inline explicit Transform(const EigenBase<OtherDerived>& other) | 
|---|
| 293 | { | 
|---|
| 294 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value), | 
|---|
| 295 | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY); | 
|---|
| 296 |  | 
|---|
| 297 | check_template_params(); | 
|---|
| 298 | internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived()); | 
|---|
| 299 | } | 
|---|
| 300 |  | 
|---|
| 301 | /** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */ | 
|---|
| 302 | template<typename OtherDerived> | 
|---|
| 303 | EIGEN_DEVICE_FUNC inline Transform& operator=(const EigenBase<OtherDerived>& other) | 
|---|
| 304 | { | 
|---|
| 305 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value), | 
|---|
| 306 | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY); | 
|---|
| 307 |  | 
|---|
| 308 | internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived()); | 
|---|
| 309 | return *this; | 
|---|
| 310 | } | 
|---|
| 311 |  | 
|---|
| 312 | template<int OtherOptions> | 
|---|
| 313 | EIGEN_DEVICE_FUNC inline Transform(const Transform<Scalar,Dim,Mode,OtherOptions>& other) | 
|---|
| 314 | { | 
|---|
| 315 | check_template_params(); | 
|---|
| 316 | // only the options change, we can directly copy the matrices | 
|---|
| 317 | m_matrix = other.matrix(); | 
|---|
| 318 | } | 
|---|
| 319 |  | 
|---|
| 320 | template<int OtherMode,int OtherOptions> | 
|---|
| 321 | EIGEN_DEVICE_FUNC inline Transform(const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) | 
|---|
| 322 | { | 
|---|
| 323 | check_template_params(); | 
|---|
| 324 | // prevent conversions as: | 
|---|
| 325 | // Affine | AffineCompact | Isometry = Projective | 
|---|
| 326 | EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Projective), Mode==int(Projective)), | 
|---|
| 327 | YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION) | 
|---|
| 328 |  | 
|---|
| 329 | // prevent conversions as: | 
|---|
| 330 | // Isometry = Affine | AffineCompact | 
|---|
| 331 | EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Affine)||OtherMode==int(AffineCompact), Mode!=int(Isometry)), | 
|---|
| 332 | YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION) | 
|---|
| 333 |  | 
|---|
| 334 | enum { ModeIsAffineCompact = Mode == int(AffineCompact), | 
|---|
| 335 | OtherModeIsAffineCompact = OtherMode == int(AffineCompact) | 
|---|
| 336 | }; | 
|---|
| 337 |  | 
|---|
| 338 | if(ModeIsAffineCompact == OtherModeIsAffineCompact) | 
|---|
| 339 | { | 
|---|
| 340 | // We need the block expression because the code is compiled for all | 
|---|
| 341 | // combinations of transformations and will trigger a compile time error | 
|---|
| 342 | // if one tries to assign the matrices directly | 
|---|
| 343 | m_matrix.template block<Dim,Dim+1>(0,0) = other.matrix().template block<Dim,Dim+1>(0,0); | 
|---|
| 344 | makeAffine(); | 
|---|
| 345 | } | 
|---|
| 346 | else if(OtherModeIsAffineCompact) | 
|---|
| 347 | { | 
|---|
| 348 | typedef typename Transform<Scalar,Dim,OtherMode,OtherOptions>::MatrixType OtherMatrixType; | 
|---|
| 349 | internal::transform_construct_from_matrix<OtherMatrixType,Mode,Options,Dim,HDim>::run(this, other.matrix()); | 
|---|
| 350 | } | 
|---|
| 351 | else | 
|---|
| 352 | { | 
|---|
| 353 | // here we know that Mode == AffineCompact and OtherMode != AffineCompact. | 
|---|
| 354 | // if OtherMode were Projective, the static assert above would already have caught it. | 
|---|
| 355 | // So the only possibility is that OtherMode == Affine | 
|---|
| 356 | linear() = other.linear(); | 
|---|
| 357 | translation() = other.translation(); | 
|---|
| 358 | } | 
|---|
| 359 | } | 
|---|
| 360 |  | 
|---|
| 361 | template<typename OtherDerived> | 
|---|
| 362 | EIGEN_DEVICE_FUNC Transform(const ReturnByValue<OtherDerived>& other) | 
|---|
| 363 | { | 
|---|
| 364 | check_template_params(); | 
|---|
| 365 | other.evalTo(*this); | 
|---|
| 366 | } | 
|---|
| 367 |  | 
|---|
| 368 | template<typename OtherDerived> | 
|---|
| 369 | EIGEN_DEVICE_FUNC Transform& operator=(const ReturnByValue<OtherDerived>& other) | 
|---|
| 370 | { | 
|---|
| 371 | other.evalTo(*this); | 
|---|
| 372 | return *this; | 
|---|
| 373 | } | 
|---|
| 374 |  | 
|---|
| 375 | #ifdef EIGEN_QT_SUPPORT | 
|---|
| 376 | inline Transform(const QMatrix& other); | 
|---|
| 377 | inline Transform& operator=(const QMatrix& other); | 
|---|
| 378 | inline QMatrix toQMatrix(void) const; | 
|---|
| 379 | inline Transform(const QTransform& other); | 
|---|
| 380 | inline Transform& operator=(const QTransform& other); | 
|---|
| 381 | inline QTransform toQTransform(void) const; | 
|---|
| 382 | #endif | 
|---|
| 383 |  | 
|---|
| 384 | EIGEN_DEVICE_FUNC Index rows() const { return int(Mode)==int(Projective) ? m_matrix.cols() : (m_matrix.cols()-1); } | 
|---|
| 385 | EIGEN_DEVICE_FUNC Index cols() const { return m_matrix.cols(); } | 
|---|
| 386 |  | 
|---|
| 387 | /** shortcut for m_matrix(row,col); | 
|---|
| 388 | * \sa MatrixBase::operator(Index,Index) const */ | 
|---|
| 389 | EIGEN_DEVICE_FUNC inline Scalar operator() (Index row, Index col) const { return m_matrix(row,col); } | 
|---|
| 390 | /** shortcut for m_matrix(row,col); | 
|---|
| 391 | * \sa MatrixBase::operator(Index,Index) */ | 
|---|
| 392 | EIGEN_DEVICE_FUNC inline Scalar& operator() (Index row, Index col) { return m_matrix(row,col); } | 
|---|
| 393 |  | 
|---|
| 394 | /** \returns a read-only expression of the transformation matrix */ | 
|---|
| 395 | EIGEN_DEVICE_FUNC inline const MatrixType& matrix() const { return m_matrix; } | 
|---|
| 396 | /** \returns a writable expression of the transformation matrix */ | 
|---|
| 397 | EIGEN_DEVICE_FUNC inline MatrixType& matrix() { return m_matrix; } | 
|---|
| 398 |  | 
|---|
| 399 | /** \returns a read-only expression of the linear part of the transformation */ | 
|---|
| 400 | EIGEN_DEVICE_FUNC inline ConstLinearPart linear() const { return ConstLinearPart(m_matrix,0,0); } | 
|---|
| 401 | /** \returns a writable expression of the linear part of the transformation */ | 
|---|
| 402 | EIGEN_DEVICE_FUNC inline LinearPart linear() { return LinearPart(m_matrix,0,0); } | 
|---|
| 403 |  | 
|---|
| 404 | /** \returns a read-only expression of the Dim x HDim affine part of the transformation */ | 
|---|
| 405 | EIGEN_DEVICE_FUNC inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); } | 
|---|
| 406 | /** \returns a writable expression of the Dim x HDim affine part of the transformation */ | 
|---|
| 407 | EIGEN_DEVICE_FUNC inline AffinePart affine() { return take_affine_part::run(m_matrix); } | 
|---|
| 408 |  | 
|---|
| 409 | /** \returns a read-only expression of the translation vector of the transformation */ | 
|---|
| 410 | EIGEN_DEVICE_FUNC inline ConstTranslationPart translation() const { return ConstTranslationPart(m_matrix,0,Dim); } | 
|---|
| 411 | /** \returns a writable expression of the translation vector of the transformation */ | 
|---|
| 412 | EIGEN_DEVICE_FUNC inline TranslationPart translation() { return TranslationPart(m_matrix,0,Dim); } | 
|---|
| 413 |  | 
|---|
| 414 | /** \returns an expression of the product between the transform \c *this and a matrix expression \a other. | 
|---|
| 415 | * | 
|---|
| 416 | * The right-hand-side \a other can be either: | 
|---|
| 417 | * \li an homogeneous vector of size Dim+1, | 
|---|
| 418 | * \li a set of homogeneous vectors of size Dim+1 x N, | 
|---|
| 419 | * \li a transformation matrix of size Dim+1 x Dim+1. | 
|---|
| 420 | * | 
|---|
| 421 | * Moreover, if \c *this represents an affine transformation (i.e., Mode!=Projective), then \a other can also be: | 
|---|
| 422 | * \li a point of size Dim (computes: \code this->linear() * other + this->translation()\endcode), | 
|---|
| 423 | * \li a set of N points as a Dim x N matrix (computes: \code (this->linear() * other).colwise() + this->translation()\endcode), | 
|---|
| 424 | * | 
|---|
| 425 | * In all cases, the return type is a matrix or vector of same sizes as the right-hand-side \a other. | 
|---|
| 426 | * | 
|---|
| 427 | * If you want to interpret \a other as a linear or affine transformation, then first convert it to a Transform<> type, | 
|---|
| 428 | * or do your own cooking. | 
|---|
| 429 | * | 
|---|
| 430 | * Finally, if you want to apply Affine transformations to vectors, then explicitly apply the linear part only: | 
|---|
| 431 | * \code | 
|---|
| 432 | * Affine3f A; | 
|---|
| 433 | * Vector3f v1, v2; | 
|---|
| 434 | * v2 = A.linear() * v1; | 
|---|
| 435 | * \endcode | 
|---|
| 436 | * | 
|---|
| 437 | */ | 
|---|
| 438 | // note: this function is defined here because some compilers cannot find the respective declaration | 
|---|
| 439 | template<typename OtherDerived> | 
|---|
| 440 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename internal::transform_right_product_impl<Transform, OtherDerived>::ResultType | 
|---|
| 441 | operator * (const EigenBase<OtherDerived> &other) const | 
|---|
| 442 | { return internal::transform_right_product_impl<Transform, OtherDerived>::run(*this,other.derived()); } | 
|---|
| 443 |  | 
|---|
| 444 | /** \returns the product expression of a transformation matrix \a a times a transform \a b | 
|---|
| 445 | * | 
|---|
| 446 | * The left hand side \a other can be either: | 
|---|
| 447 | * \li a linear transformation matrix of size Dim x Dim, | 
|---|
| 448 | * \li an affine transformation matrix of size Dim x Dim+1, | 
|---|
| 449 | * \li a general transformation matrix of size Dim+1 x Dim+1. | 
|---|
| 450 | */ | 
|---|
| 451 | template<typename OtherDerived> friend | 
|---|
| 452 | EIGEN_DEVICE_FUNC inline const typename internal::transform_left_product_impl<OtherDerived,Mode,Options,_Dim,_Dim+1>::ResultType | 
|---|
| 453 | operator * (const EigenBase<OtherDerived> &a, const Transform &b) | 
|---|
| 454 | { return internal::transform_left_product_impl<OtherDerived,Mode,Options,Dim,HDim>::run(a.derived(),b); } | 
|---|
| 455 |  | 
|---|
| 456 | /** \returns The product expression of a transform \a a times a diagonal matrix \a b | 
|---|
| 457 | * | 
|---|
| 458 | * The rhs diagonal matrix is interpreted as an affine scaling transformation. The | 
|---|
| 459 | * product results in a Transform of the same type (mode) as the lhs only if the lhs | 
|---|
| 460 | * mode is no isometry. In that case, the returned transform is an affinity. | 
|---|
| 461 | */ | 
|---|
| 462 | template<typename DiagonalDerived> | 
|---|
| 463 | EIGEN_DEVICE_FUNC inline const TransformTimeDiagonalReturnType | 
|---|
| 464 | operator * (const DiagonalBase<DiagonalDerived> &b) const | 
|---|
| 465 | { | 
|---|
| 466 | TransformTimeDiagonalReturnType res(*this); | 
|---|
| 467 | res.linearExt() *= b; | 
|---|
| 468 | return res; | 
|---|
| 469 | } | 
|---|
| 470 |  | 
|---|
| 471 | /** \returns The product expression of a diagonal matrix \a a times a transform \a b | 
|---|
| 472 | * | 
|---|
| 473 | * The lhs diagonal matrix is interpreted as an affine scaling transformation. The | 
|---|
| 474 | * product results in a Transform of the same type (mode) as the lhs only if the lhs | 
|---|
| 475 | * mode is no isometry. In that case, the returned transform is an affinity. | 
|---|
| 476 | */ | 
|---|
| 477 | template<typename DiagonalDerived> | 
|---|
| 478 | EIGEN_DEVICE_FUNC friend inline TransformTimeDiagonalReturnType | 
|---|
| 479 | operator * (const DiagonalBase<DiagonalDerived> &a, const Transform &b) | 
|---|
| 480 | { | 
|---|
| 481 | TransformTimeDiagonalReturnType res; | 
|---|
| 482 | res.linear().noalias() = a*b.linear(); | 
|---|
| 483 | res.translation().noalias() = a*b.translation(); | 
|---|
| 484 | if (Mode!=int(AffineCompact)) | 
|---|
| 485 | res.matrix().row(Dim) = b.matrix().row(Dim); | 
|---|
| 486 | return res; | 
|---|
| 487 | } | 
|---|
| 488 |  | 
|---|
| 489 | template<typename OtherDerived> | 
|---|
| 490 | EIGEN_DEVICE_FUNC inline Transform& operator*=(const EigenBase<OtherDerived>& other) { return *this = *this * other; } | 
|---|
| 491 |  | 
|---|
| 492 | /** Concatenates two transformations */ | 
|---|
| 493 | EIGEN_DEVICE_FUNC inline const Transform operator * (const Transform& other) const | 
|---|
| 494 | { | 
|---|
| 495 | return internal::transform_transform_product_impl<Transform,Transform>::run(*this,other); | 
|---|
| 496 | } | 
|---|
| 497 |  | 
|---|
| 498 | #if EIGEN_COMP_ICC | 
|---|
| 499 | private: | 
|---|
| 500 | // this intermediate structure permits to workaround a bug in ICC 11: | 
|---|
| 501 | //   error: template instantiation resulted in unexpected function type of "Eigen::Transform<double, 3, 32, 0> | 
|---|
| 502 | //             (const Eigen::Transform<double, 3, 2, 0> &) const" | 
|---|
| 503 | //  (the meaning of a name may have changed since the template declaration -- the type of the template is: | 
|---|
| 504 | // "Eigen::internal::transform_transform_product_impl<Eigen::Transform<double, 3, 32, 0>, | 
|---|
| 505 | //     Eigen::Transform<double, 3, Mode, Options>, <expression>>::ResultType (const Eigen::Transform<double, 3, Mode, Options> &) const") | 
|---|
| 506 | // | 
|---|
| 507 | template<int OtherMode,int OtherOptions> struct icc_11_workaround | 
|---|
| 508 | { | 
|---|
| 509 | typedef internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> > ProductType; | 
|---|
| 510 | typedef typename ProductType::ResultType ResultType; | 
|---|
| 511 | }; | 
|---|
| 512 |  | 
|---|
| 513 | public: | 
|---|
| 514 | /** Concatenates two different transformations */ | 
|---|
| 515 | template<int OtherMode,int OtherOptions> | 
|---|
| 516 | inline typename icc_11_workaround<OtherMode,OtherOptions>::ResultType | 
|---|
| 517 | operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const | 
|---|
| 518 | { | 
|---|
| 519 | typedef typename icc_11_workaround<OtherMode,OtherOptions>::ProductType ProductType; | 
|---|
| 520 | return ProductType::run(*this,other); | 
|---|
| 521 | } | 
|---|
| 522 | #else | 
|---|
| 523 | /** Concatenates two different transformations */ | 
|---|
| 524 | template<int OtherMode,int OtherOptions> | 
|---|
| 525 | EIGEN_DEVICE_FUNC inline typename internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::ResultType | 
|---|
| 526 | operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const | 
|---|
| 527 | { | 
|---|
| 528 | return internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::run(*this,other); | 
|---|
| 529 | } | 
|---|
| 530 | #endif | 
|---|
| 531 |  | 
|---|
| 532 | /** \sa MatrixBase::setIdentity() */ | 
|---|
| 533 | EIGEN_DEVICE_FUNC void setIdentity() { m_matrix.setIdentity(); } | 
|---|
| 534 |  | 
|---|
| 535 | /** | 
|---|
| 536 | * \brief Returns an identity transformation. | 
|---|
| 537 | * \todo In the future this function should be returning a Transform expression. | 
|---|
| 538 | */ | 
|---|
| 539 | EIGEN_DEVICE_FUNC static const Transform Identity() | 
|---|
| 540 | { | 
|---|
| 541 | return Transform(MatrixType::Identity()); | 
|---|
| 542 | } | 
|---|
| 543 |  | 
|---|
| 544 | template<typename OtherDerived> | 
|---|
| 545 | EIGEN_DEVICE_FUNC | 
|---|
| 546 | inline Transform& scale(const MatrixBase<OtherDerived> &other); | 
|---|
| 547 |  | 
|---|
| 548 | template<typename OtherDerived> | 
|---|
| 549 | EIGEN_DEVICE_FUNC | 
|---|
| 550 | inline Transform& prescale(const MatrixBase<OtherDerived> &other); | 
|---|
| 551 |  | 
|---|
| 552 | EIGEN_DEVICE_FUNC inline Transform& scale(const Scalar& s); | 
|---|
| 553 | EIGEN_DEVICE_FUNC inline Transform& prescale(const Scalar& s); | 
|---|
| 554 |  | 
|---|
| 555 | template<typename OtherDerived> | 
|---|
| 556 | EIGEN_DEVICE_FUNC | 
|---|
| 557 | inline Transform& translate(const MatrixBase<OtherDerived> &other); | 
|---|
| 558 |  | 
|---|
| 559 | template<typename OtherDerived> | 
|---|
| 560 | EIGEN_DEVICE_FUNC | 
|---|
| 561 | inline Transform& pretranslate(const MatrixBase<OtherDerived> &other); | 
|---|
| 562 |  | 
|---|
| 563 | template<typename RotationType> | 
|---|
| 564 | EIGEN_DEVICE_FUNC | 
|---|
| 565 | inline Transform& rotate(const RotationType& rotation); | 
|---|
| 566 |  | 
|---|
| 567 | template<typename RotationType> | 
|---|
| 568 | EIGEN_DEVICE_FUNC | 
|---|
| 569 | inline Transform& prerotate(const RotationType& rotation); | 
|---|
| 570 |  | 
|---|
| 571 | EIGEN_DEVICE_FUNC Transform& shear(const Scalar& sx, const Scalar& sy); | 
|---|
| 572 | EIGEN_DEVICE_FUNC Transform& preshear(const Scalar& sx, const Scalar& sy); | 
|---|
| 573 |  | 
|---|
| 574 | EIGEN_DEVICE_FUNC inline Transform& operator=(const TranslationType& t); | 
|---|
| 575 |  | 
|---|
| 576 | EIGEN_DEVICE_FUNC | 
|---|
| 577 | inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); } | 
|---|
| 578 |  | 
|---|
| 579 | EIGEN_DEVICE_FUNC inline Transform operator*(const TranslationType& t) const; | 
|---|
| 580 |  | 
|---|
| 581 | EIGEN_DEVICE_FUNC | 
|---|
| 582 | inline Transform& operator=(const UniformScaling<Scalar>& t); | 
|---|
| 583 |  | 
|---|
| 584 | EIGEN_DEVICE_FUNC | 
|---|
| 585 | inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); } | 
|---|
| 586 |  | 
|---|
| 587 | EIGEN_DEVICE_FUNC | 
|---|
| 588 | inline TransformTimeDiagonalReturnType operator*(const UniformScaling<Scalar>& s) const | 
|---|
| 589 | { | 
|---|
| 590 | TransformTimeDiagonalReturnType res = *this; | 
|---|
| 591 | res.scale(s.factor()); | 
|---|
| 592 | return res; | 
|---|
| 593 | } | 
|---|
| 594 |  | 
|---|
| 595 | EIGEN_DEVICE_FUNC | 
|---|
| 596 | inline Transform& operator*=(const DiagonalMatrix<Scalar,Dim>& s) { linearExt() *= s; return *this; } | 
|---|
| 597 |  | 
|---|
| 598 | template<typename Derived> | 
|---|
| 599 | EIGEN_DEVICE_FUNC inline Transform& operator=(const RotationBase<Derived,Dim>& r); | 
|---|
| 600 | template<typename Derived> | 
|---|
| 601 | EIGEN_DEVICE_FUNC inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); } | 
|---|
| 602 | template<typename Derived> | 
|---|
| 603 | EIGEN_DEVICE_FUNC inline Transform operator*(const RotationBase<Derived,Dim>& r) const; | 
|---|
| 604 |  | 
|---|
| 605 | EIGEN_DEVICE_FUNC const LinearMatrixType rotation() const; | 
|---|
| 606 | template<typename RotationMatrixType, typename ScalingMatrixType> | 
|---|
| 607 | EIGEN_DEVICE_FUNC | 
|---|
| 608 | void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const; | 
|---|
| 609 | template<typename ScalingMatrixType, typename RotationMatrixType> | 
|---|
| 610 | EIGEN_DEVICE_FUNC | 
|---|
| 611 | void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const; | 
|---|
| 612 |  | 
|---|
| 613 | template<typename PositionDerived, typename OrientationType, typename ScaleDerived> | 
|---|
| 614 | EIGEN_DEVICE_FUNC | 
|---|
| 615 | Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position, | 
|---|
| 616 | const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale); | 
|---|
| 617 |  | 
|---|
| 618 | EIGEN_DEVICE_FUNC | 
|---|
| 619 | inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const; | 
|---|
| 620 |  | 
|---|
| 621 | /** \returns a const pointer to the column major internal matrix */ | 
|---|
| 622 | EIGEN_DEVICE_FUNC const Scalar* data() const { return m_matrix.data(); } | 
|---|
| 623 | /** \returns a non-const pointer to the column major internal matrix */ | 
|---|
| 624 | EIGEN_DEVICE_FUNC Scalar* data() { return m_matrix.data(); } | 
|---|
| 625 |  | 
|---|
| 626 | /** \returns \c *this with scalar type casted to \a NewScalarType | 
|---|
| 627 | * | 
|---|
| 628 | * Note that if \a NewScalarType is equal to the current scalar type of \c *this | 
|---|
| 629 | * then this function smartly returns a const reference to \c *this. | 
|---|
| 630 | */ | 
|---|
| 631 | template<typename NewScalarType> | 
|---|
| 632 | EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type cast() const | 
|---|
| 633 | { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type(*this); } | 
|---|
| 634 |  | 
|---|
| 635 | /** Copy constructor with scalar type conversion */ | 
|---|
| 636 | template<typename OtherScalarType> | 
|---|
| 637 | EIGEN_DEVICE_FUNC inline explicit Transform(const Transform<OtherScalarType,Dim,Mode,Options>& other) | 
|---|
| 638 | { | 
|---|
| 639 | check_template_params(); | 
|---|
| 640 | m_matrix = other.matrix().template cast<Scalar>(); | 
|---|
| 641 | } | 
|---|
| 642 |  | 
|---|
| 643 | /** \returns \c true if \c *this is approximately equal to \a other, within the precision | 
|---|
| 644 | * determined by \a prec. | 
|---|
| 645 | * | 
|---|
| 646 | * \sa MatrixBase::isApprox() */ | 
|---|
| 647 | EIGEN_DEVICE_FUNC bool isApprox(const Transform& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const | 
|---|
| 648 | { return m_matrix.isApprox(other.m_matrix, prec); } | 
|---|
| 649 |  | 
|---|
| 650 | /** Sets the last row to [0 ... 0 1] | 
|---|
| 651 | */ | 
|---|
| 652 | EIGEN_DEVICE_FUNC void makeAffine() | 
|---|
| 653 | { | 
|---|
| 654 | internal::transform_make_affine<int(Mode)>::run(m_matrix); | 
|---|
| 655 | } | 
|---|
| 656 |  | 
|---|
| 657 | /** \internal | 
|---|
| 658 | * \returns the Dim x Dim linear part if the transformation is affine, | 
|---|
| 659 | *          and the HDim x Dim part for projective transformations. | 
|---|
| 660 | */ | 
|---|
| 661 | EIGEN_DEVICE_FUNC inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() | 
|---|
| 662 | { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); } | 
|---|
| 663 | /** \internal | 
|---|
| 664 | * \returns the Dim x Dim linear part if the transformation is affine, | 
|---|
| 665 | *          and the HDim x Dim part for projective transformations. | 
|---|
| 666 | */ | 
|---|
| 667 | EIGEN_DEVICE_FUNC inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() const | 
|---|
| 668 | { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); } | 
|---|
| 669 |  | 
|---|
| 670 | /** \internal | 
|---|
| 671 | * \returns the translation part if the transformation is affine, | 
|---|
| 672 | *          and the last column for projective transformations. | 
|---|
| 673 | */ | 
|---|
| 674 | EIGEN_DEVICE_FUNC inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() | 
|---|
| 675 | { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); } | 
|---|
| 676 | /** \internal | 
|---|
| 677 | * \returns the translation part if the transformation is affine, | 
|---|
| 678 | *          and the last column for projective transformations. | 
|---|
| 679 | */ | 
|---|
| 680 | EIGEN_DEVICE_FUNC inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() const | 
|---|
| 681 | { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); } | 
|---|
| 682 |  | 
|---|
| 683 |  | 
|---|
| 684 | #ifdef EIGEN_TRANSFORM_PLUGIN | 
|---|
| 685 | #include EIGEN_TRANSFORM_PLUGIN | 
|---|
| 686 | #endif | 
|---|
| 687 |  | 
|---|
| 688 | protected: | 
|---|
| 689 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|---|
| 690 | EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void check_template_params() | 
|---|
| 691 | { | 
|---|
| 692 | EIGEN_STATIC_ASSERT((Options & (DontAlign|RowMajor)) == Options, INVALID_MATRIX_TEMPLATE_PARAMETERS) | 
|---|
| 693 | } | 
|---|
| 694 | #endif | 
|---|
| 695 |  | 
|---|
| 696 | }; | 
|---|
| 697 |  | 
|---|
| 698 | /** \ingroup Geometry_Module */ | 
|---|
| 699 | typedef Transform<float,2,Isometry> Isometry2f; | 
|---|
| 700 | /** \ingroup Geometry_Module */ | 
|---|
| 701 | typedef Transform<float,3,Isometry> Isometry3f; | 
|---|
| 702 | /** \ingroup Geometry_Module */ | 
|---|
| 703 | typedef Transform<double,2,Isometry> Isometry2d; | 
|---|
| 704 | /** \ingroup Geometry_Module */ | 
|---|
| 705 | typedef Transform<double,3,Isometry> Isometry3d; | 
|---|
| 706 |  | 
|---|
| 707 | /** \ingroup Geometry_Module */ | 
|---|
| 708 | typedef Transform<float,2,Affine> Affine2f; | 
|---|
| 709 | /** \ingroup Geometry_Module */ | 
|---|
| 710 | typedef Transform<float,3,Affine> Affine3f; | 
|---|
| 711 | /** \ingroup Geometry_Module */ | 
|---|
| 712 | typedef Transform<double,2,Affine> Affine2d; | 
|---|
| 713 | /** \ingroup Geometry_Module */ | 
|---|
| 714 | typedef Transform<double,3,Affine> Affine3d; | 
|---|
| 715 |  | 
|---|
| 716 | /** \ingroup Geometry_Module */ | 
|---|
| 717 | typedef Transform<float,2,AffineCompact> AffineCompact2f; | 
|---|
| 718 | /** \ingroup Geometry_Module */ | 
|---|
| 719 | typedef Transform<float,3,AffineCompact> AffineCompact3f; | 
|---|
| 720 | /** \ingroup Geometry_Module */ | 
|---|
| 721 | typedef Transform<double,2,AffineCompact> AffineCompact2d; | 
|---|
| 722 | /** \ingroup Geometry_Module */ | 
|---|
| 723 | typedef Transform<double,3,AffineCompact> AffineCompact3d; | 
|---|
| 724 |  | 
|---|
| 725 | /** \ingroup Geometry_Module */ | 
|---|
| 726 | typedef Transform<float,2,Projective> Projective2f; | 
|---|
| 727 | /** \ingroup Geometry_Module */ | 
|---|
| 728 | typedef Transform<float,3,Projective> Projective3f; | 
|---|
| 729 | /** \ingroup Geometry_Module */ | 
|---|
| 730 | typedef Transform<double,2,Projective> Projective2d; | 
|---|
| 731 | /** \ingroup Geometry_Module */ | 
|---|
| 732 | typedef Transform<double,3,Projective> Projective3d; | 
|---|
| 733 |  | 
|---|
| 734 | /************************** | 
|---|
| 735 | *** Optional QT support *** | 
|---|
| 736 | **************************/ | 
|---|
| 737 |  | 
|---|
| 738 | #ifdef EIGEN_QT_SUPPORT | 
|---|
| 739 | /** Initializes \c *this from a QMatrix assuming the dimension is 2. | 
|---|
| 740 | * | 
|---|
| 741 | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|---|
| 742 | */ | 
|---|
| 743 | template<typename Scalar, int Dim, int Mode,int Options> | 
|---|
| 744 | Transform<Scalar,Dim,Mode,Options>::Transform(const QMatrix& other) | 
|---|
| 745 | { | 
|---|
| 746 | check_template_params(); | 
|---|
| 747 | *this = other; | 
|---|
| 748 | } | 
|---|
| 749 |  | 
|---|
| 750 | /** Set \c *this from a QMatrix assuming the dimension is 2. | 
|---|
| 751 | * | 
|---|
| 752 | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|---|
| 753 | */ | 
|---|
| 754 | template<typename Scalar, int Dim, int Mode,int Options> | 
|---|
| 755 | Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QMatrix& other) | 
|---|
| 756 | { | 
|---|
| 757 | EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|---|
| 758 | if (Mode == int(AffineCompact)) | 
|---|
| 759 | m_matrix << other.m11(), other.m21(), other.dx(), | 
|---|
| 760 | other.m12(), other.m22(), other.dy(); | 
|---|
| 761 | else | 
|---|
| 762 | m_matrix << other.m11(), other.m21(), other.dx(), | 
|---|
| 763 | other.m12(), other.m22(), other.dy(), | 
|---|
| 764 | 0, 0, 1; | 
|---|
| 765 | return *this; | 
|---|
| 766 | } | 
|---|
| 767 |  | 
|---|
| 768 | /** \returns a QMatrix from \c *this assuming the dimension is 2. | 
|---|
| 769 | * | 
|---|
| 770 | * \warning this conversion might loss data if \c *this is not affine | 
|---|
| 771 | * | 
|---|
| 772 | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|---|
| 773 | */ | 
|---|
| 774 | template<typename Scalar, int Dim, int Mode, int Options> | 
|---|
| 775 | QMatrix Transform<Scalar,Dim,Mode,Options>::toQMatrix(void) const | 
|---|
| 776 | { | 
|---|
| 777 | check_template_params(); | 
|---|
| 778 | EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|---|
| 779 | return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0), | 
|---|
| 780 | m_matrix.coeff(0,1), m_matrix.coeff(1,1), | 
|---|
| 781 | m_matrix.coeff(0,2), m_matrix.coeff(1,2)); | 
|---|
| 782 | } | 
|---|
| 783 |  | 
|---|
| 784 | /** Initializes \c *this from a QTransform assuming the dimension is 2. | 
|---|
| 785 | * | 
|---|
| 786 | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|---|
| 787 | */ | 
|---|
| 788 | template<typename Scalar, int Dim, int Mode,int Options> | 
|---|
| 789 | Transform<Scalar,Dim,Mode,Options>::Transform(const QTransform& other) | 
|---|
| 790 | { | 
|---|
| 791 | check_template_params(); | 
|---|
| 792 | *this = other; | 
|---|
| 793 | } | 
|---|
| 794 |  | 
|---|
| 795 | /** Set \c *this from a QTransform assuming the dimension is 2. | 
|---|
| 796 | * | 
|---|
| 797 | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|---|
| 798 | */ | 
|---|
| 799 | template<typename Scalar, int Dim, int Mode, int Options> | 
|---|
| 800 | Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QTransform& other) | 
|---|
| 801 | { | 
|---|
| 802 | check_template_params(); | 
|---|
| 803 | EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|---|
| 804 | if (Mode == int(AffineCompact)) | 
|---|
| 805 | m_matrix << other.m11(), other.m21(), other.dx(), | 
|---|
| 806 | other.m12(), other.m22(), other.dy(); | 
|---|
| 807 | else | 
|---|
| 808 | m_matrix << other.m11(), other.m21(), other.dx(), | 
|---|
| 809 | other.m12(), other.m22(), other.dy(), | 
|---|
| 810 | other.m13(), other.m23(), other.m33(); | 
|---|
| 811 | return *this; | 
|---|
| 812 | } | 
|---|
| 813 |  | 
|---|
| 814 | /** \returns a QTransform from \c *this assuming the dimension is 2. | 
|---|
| 815 | * | 
|---|
| 816 | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|---|
| 817 | */ | 
|---|
| 818 | template<typename Scalar, int Dim, int Mode, int Options> | 
|---|
| 819 | QTransform Transform<Scalar,Dim,Mode,Options>::toQTransform(void) const | 
|---|
| 820 | { | 
|---|
| 821 | EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|---|
| 822 | if (Mode == int(AffineCompact)) | 
|---|
| 823 | return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), | 
|---|
| 824 | m_matrix.coeff(0,1), m_matrix.coeff(1,1), | 
|---|
| 825 | m_matrix.coeff(0,2), m_matrix.coeff(1,2)); | 
|---|
| 826 | else | 
|---|
| 827 | return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0), | 
|---|
| 828 | m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1), | 
|---|
| 829 | m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2)); | 
|---|
| 830 | } | 
|---|
| 831 | #endif | 
|---|
| 832 |  | 
|---|
| 833 | /********************* | 
|---|
| 834 | *** Procedural API *** | 
|---|
| 835 | *********************/ | 
|---|
| 836 |  | 
|---|
| 837 | /** Applies on the right the non uniform scale transformation represented | 
|---|
| 838 | * by the vector \a other to \c *this and returns a reference to \c *this. | 
|---|
| 839 | * \sa prescale() | 
|---|
| 840 | */ | 
|---|
| 841 | template<typename Scalar, int Dim, int Mode, int Options> | 
|---|
| 842 | template<typename OtherDerived> | 
|---|
| 843 | EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>& | 
|---|
| 844 | Transform<Scalar,Dim,Mode,Options>::scale(const MatrixBase<OtherDerived> &other) | 
|---|
| 845 | { | 
|---|
| 846 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) | 
|---|
| 847 | EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) | 
|---|
| 848 | linearExt().noalias() = (linearExt() * other.asDiagonal()); | 
|---|
| 849 | return *this; | 
|---|
| 850 | } | 
|---|
| 851 |  | 
|---|
| 852 | /** Applies on the right a uniform scale of a factor \a c to \c *this | 
|---|
| 853 | * and returns a reference to \c *this. | 
|---|
| 854 | * \sa prescale(Scalar) | 
|---|
| 855 | */ | 
|---|
| 856 | template<typename Scalar, int Dim, int Mode, int Options> | 
|---|
| 857 | EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::scale(const Scalar& s) | 
|---|
| 858 | { | 
|---|
| 859 | EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) | 
|---|
| 860 | linearExt() *= s; | 
|---|
| 861 | return *this; | 
|---|
| 862 | } | 
|---|
| 863 |  | 
|---|
| 864 | /** Applies on the left the non uniform scale transformation represented | 
|---|
| 865 | * by the vector \a other to \c *this and returns a reference to \c *this. | 
|---|
| 866 | * \sa scale() | 
|---|
| 867 | */ | 
|---|
| 868 | template<typename Scalar, int Dim, int Mode, int Options> | 
|---|
| 869 | template<typename OtherDerived> | 
|---|
| 870 | EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>& | 
|---|
| 871 | Transform<Scalar,Dim,Mode,Options>::prescale(const MatrixBase<OtherDerived> &other) | 
|---|
| 872 | { | 
|---|
| 873 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) | 
|---|
| 874 | EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) | 
|---|
| 875 | affine().noalias() = (other.asDiagonal() * affine()); | 
|---|
| 876 | return *this; | 
|---|
| 877 | } | 
|---|
| 878 |  | 
|---|
| 879 | /** Applies on the left a uniform scale of a factor \a c to \c *this | 
|---|
| 880 | * and returns a reference to \c *this. | 
|---|
| 881 | * \sa scale(Scalar) | 
|---|
| 882 | */ | 
|---|
| 883 | template<typename Scalar, int Dim, int Mode, int Options> | 
|---|
| 884 | EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::prescale(const Scalar& s) | 
|---|
| 885 | { | 
|---|
| 886 | EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) | 
|---|
| 887 | m_matrix.template topRows<Dim>() *= s; | 
|---|
| 888 | return *this; | 
|---|
| 889 | } | 
|---|
| 890 |  | 
|---|
| 891 | /** Applies on the right the translation matrix represented by the vector \a other | 
|---|
| 892 | * to \c *this and returns a reference to \c *this. | 
|---|
| 893 | * \sa pretranslate() | 
|---|
| 894 | */ | 
|---|
| 895 | template<typename Scalar, int Dim, int Mode, int Options> | 
|---|
| 896 | template<typename OtherDerived> | 
|---|
| 897 | EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>& | 
|---|
| 898 | Transform<Scalar,Dim,Mode,Options>::translate(const MatrixBase<OtherDerived> &other) | 
|---|
| 899 | { | 
|---|
| 900 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) | 
|---|
| 901 | translationExt() += linearExt() * other; | 
|---|
| 902 | return *this; | 
|---|
| 903 | } | 
|---|
| 904 |  | 
|---|
| 905 | /** Applies on the left the translation matrix represented by the vector \a other | 
|---|
| 906 | * to \c *this and returns a reference to \c *this. | 
|---|
| 907 | * \sa translate() | 
|---|
| 908 | */ | 
|---|
| 909 | template<typename Scalar, int Dim, int Mode, int Options> | 
|---|
| 910 | template<typename OtherDerived> | 
|---|
| 911 | EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>& | 
|---|
| 912 | Transform<Scalar,Dim,Mode,Options>::pretranslate(const MatrixBase<OtherDerived> &other) | 
|---|
| 913 | { | 
|---|
| 914 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) | 
|---|
| 915 | if(int(Mode)==int(Projective)) | 
|---|
| 916 | affine() += other * m_matrix.row(Dim); | 
|---|
| 917 | else | 
|---|
| 918 | translation() += other; | 
|---|
| 919 | return *this; | 
|---|
| 920 | } | 
|---|
| 921 |  | 
|---|
| 922 | /** Applies on the right the rotation represented by the rotation \a rotation | 
|---|
| 923 | * to \c *this and returns a reference to \c *this. | 
|---|
| 924 | * | 
|---|
| 925 | * The template parameter \a RotationType is the type of the rotation which | 
|---|
| 926 | * must be known by internal::toRotationMatrix<>. | 
|---|
| 927 | * | 
|---|
| 928 | * Natively supported types includes: | 
|---|
| 929 | *   - any scalar (2D), | 
|---|
| 930 | *   - a Dim x Dim matrix expression, | 
|---|
| 931 | *   - a Quaternion (3D), | 
|---|
| 932 | *   - a AngleAxis (3D) | 
|---|
| 933 | * | 
|---|
| 934 | * This mechanism is easily extendable to support user types such as Euler angles, | 
|---|
| 935 | * or a pair of Quaternion for 4D rotations. | 
|---|
| 936 | * | 
|---|
| 937 | * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType) | 
|---|
| 938 | */ | 
|---|
| 939 | template<typename Scalar, int Dim, int Mode, int Options> | 
|---|
| 940 | template<typename RotationType> | 
|---|
| 941 | EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>& | 
|---|
| 942 | Transform<Scalar,Dim,Mode,Options>::rotate(const RotationType& rotation) | 
|---|
| 943 | { | 
|---|
| 944 | linearExt() *= internal::toRotationMatrix<Scalar,Dim>(rotation); | 
|---|
| 945 | return *this; | 
|---|
| 946 | } | 
|---|
| 947 |  | 
|---|
| 948 | /** Applies on the left the rotation represented by the rotation \a rotation | 
|---|
| 949 | * to \c *this and returns a reference to \c *this. | 
|---|
| 950 | * | 
|---|
| 951 | * See rotate() for further details. | 
|---|
| 952 | * | 
|---|
| 953 | * \sa rotate() | 
|---|
| 954 | */ | 
|---|
| 955 | template<typename Scalar, int Dim, int Mode, int Options> | 
|---|
| 956 | template<typename RotationType> | 
|---|
| 957 | EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>& | 
|---|
| 958 | Transform<Scalar,Dim,Mode,Options>::prerotate(const RotationType& rotation) | 
|---|
| 959 | { | 
|---|
| 960 | m_matrix.template block<Dim,HDim>(0,0) = internal::toRotationMatrix<Scalar,Dim>(rotation) | 
|---|
| 961 | * m_matrix.template block<Dim,HDim>(0,0); | 
|---|
| 962 | return *this; | 
|---|
| 963 | } | 
|---|
| 964 |  | 
|---|
| 965 | /** Applies on the right the shear transformation represented | 
|---|
| 966 | * by the vector \a other to \c *this and returns a reference to \c *this. | 
|---|
| 967 | * \warning 2D only. | 
|---|
| 968 | * \sa preshear() | 
|---|
| 969 | */ | 
|---|
| 970 | template<typename Scalar, int Dim, int Mode, int Options> | 
|---|
| 971 | EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>& | 
|---|
| 972 | Transform<Scalar,Dim,Mode,Options>::shear(const Scalar& sx, const Scalar& sy) | 
|---|
| 973 | { | 
|---|
| 974 | EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|---|
| 975 | EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) | 
|---|
| 976 | VectorType tmp = linear().col(0)*sy + linear().col(1); | 
|---|
| 977 | linear() << linear().col(0) + linear().col(1)*sx, tmp; | 
|---|
| 978 | return *this; | 
|---|
| 979 | } | 
|---|
| 980 |  | 
|---|
| 981 | /** Applies on the left the shear transformation represented | 
|---|
| 982 | * by the vector \a other to \c *this and returns a reference to \c *this. | 
|---|
| 983 | * \warning 2D only. | 
|---|
| 984 | * \sa shear() | 
|---|
| 985 | */ | 
|---|
| 986 | template<typename Scalar, int Dim, int Mode, int Options> | 
|---|
| 987 | EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>& | 
|---|
| 988 | Transform<Scalar,Dim,Mode,Options>::preshear(const Scalar& sx, const Scalar& sy) | 
|---|
| 989 | { | 
|---|
| 990 | EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|---|
| 991 | EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) | 
|---|
| 992 | m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0); | 
|---|
| 993 | return *this; | 
|---|
| 994 | } | 
|---|
| 995 |  | 
|---|
| 996 | /****************************************************** | 
|---|
| 997 | *** Scaling, Translation and Rotation compatibility *** | 
|---|
| 998 | ******************************************************/ | 
|---|
| 999 |  | 
|---|
| 1000 | template<typename Scalar, int Dim, int Mode, int Options> | 
|---|
| 1001 | EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const TranslationType& t) | 
|---|
| 1002 | { | 
|---|
| 1003 | linear().setIdentity(); | 
|---|
| 1004 | translation() = t.vector(); | 
|---|
| 1005 | makeAffine(); | 
|---|
| 1006 | return *this; | 
|---|
| 1007 | } | 
|---|
| 1008 |  | 
|---|
| 1009 | template<typename Scalar, int Dim, int Mode, int Options> | 
|---|
| 1010 | EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const TranslationType& t) const | 
|---|
| 1011 | { | 
|---|
| 1012 | Transform res = *this; | 
|---|
| 1013 | res.translate(t.vector()); | 
|---|
| 1014 | return res; | 
|---|
| 1015 | } | 
|---|
| 1016 |  | 
|---|
| 1017 | template<typename Scalar, int Dim, int Mode, int Options> | 
|---|
| 1018 | EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const UniformScaling<Scalar>& s) | 
|---|
| 1019 | { | 
|---|
| 1020 | m_matrix.setZero(); | 
|---|
| 1021 | linear().diagonal().fill(s.factor()); | 
|---|
| 1022 | makeAffine(); | 
|---|
| 1023 | return *this; | 
|---|
| 1024 | } | 
|---|
| 1025 |  | 
|---|
| 1026 | template<typename Scalar, int Dim, int Mode, int Options> | 
|---|
| 1027 | template<typename Derived> | 
|---|
| 1028 | EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const RotationBase<Derived,Dim>& r) | 
|---|
| 1029 | { | 
|---|
| 1030 | linear() = internal::toRotationMatrix<Scalar,Dim>(r); | 
|---|
| 1031 | translation().setZero(); | 
|---|
| 1032 | makeAffine(); | 
|---|
| 1033 | return *this; | 
|---|
| 1034 | } | 
|---|
| 1035 |  | 
|---|
| 1036 | template<typename Scalar, int Dim, int Mode, int Options> | 
|---|
| 1037 | template<typename Derived> | 
|---|
| 1038 | EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const RotationBase<Derived,Dim>& r) const | 
|---|
| 1039 | { | 
|---|
| 1040 | Transform res = *this; | 
|---|
| 1041 | res.rotate(r.derived()); | 
|---|
| 1042 | return res; | 
|---|
| 1043 | } | 
|---|
| 1044 |  | 
|---|
| 1045 | /************************ | 
|---|
| 1046 | *** Special functions *** | 
|---|
| 1047 | ************************/ | 
|---|
| 1048 |  | 
|---|
| 1049 | /** \returns the rotation part of the transformation | 
|---|
| 1050 | * | 
|---|
| 1051 | * | 
|---|
| 1052 | * \svd_module | 
|---|
| 1053 | * | 
|---|
| 1054 | * \sa computeRotationScaling(), computeScalingRotation(), class SVD | 
|---|
| 1055 | */ | 
|---|
| 1056 | template<typename Scalar, int Dim, int Mode, int Options> | 
|---|
| 1057 | EIGEN_DEVICE_FUNC const typename Transform<Scalar,Dim,Mode,Options>::LinearMatrixType | 
|---|
| 1058 | Transform<Scalar,Dim,Mode,Options>::rotation() const | 
|---|
| 1059 | { | 
|---|
| 1060 | LinearMatrixType result; | 
|---|
| 1061 | computeRotationScaling(&result, (LinearMatrixType*)0); | 
|---|
| 1062 | return result; | 
|---|
| 1063 | } | 
|---|
| 1064 |  | 
|---|
| 1065 |  | 
|---|
| 1066 | /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being | 
|---|
| 1067 | * not necessarily positive. | 
|---|
| 1068 | * | 
|---|
| 1069 | * If either pointer is zero, the corresponding computation is skipped. | 
|---|
| 1070 | * | 
|---|
| 1071 | * | 
|---|
| 1072 | * | 
|---|
| 1073 | * \svd_module | 
|---|
| 1074 | * | 
|---|
| 1075 | * \sa computeScalingRotation(), rotation(), class SVD | 
|---|
| 1076 | */ | 
|---|
| 1077 | template<typename Scalar, int Dim, int Mode, int Options> | 
|---|
| 1078 | template<typename RotationMatrixType, typename ScalingMatrixType> | 
|---|
| 1079 | EIGEN_DEVICE_FUNC void Transform<Scalar,Dim,Mode,Options>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const | 
|---|
| 1080 | { | 
|---|
| 1081 | JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV); | 
|---|
| 1082 |  | 
|---|
| 1083 | Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 | 
|---|
| 1084 | VectorType sv(svd.singularValues()); | 
|---|
| 1085 | sv.coeffRef(0) *= x; | 
|---|
| 1086 | if(scaling) scaling->lazyAssign(svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint()); | 
|---|
| 1087 | if(rotation) | 
|---|
| 1088 | { | 
|---|
| 1089 | LinearMatrixType m(svd.matrixU()); | 
|---|
| 1090 | m.col(0) /= x; | 
|---|
| 1091 | rotation->lazyAssign(m * svd.matrixV().adjoint()); | 
|---|
| 1092 | } | 
|---|
| 1093 | } | 
|---|
| 1094 |  | 
|---|
| 1095 | /** decomposes the linear part of the transformation as a product scaling x rotation, the scaling being | 
|---|
| 1096 | * not necessarily positive. | 
|---|
| 1097 | * | 
|---|
| 1098 | * If either pointer is zero, the corresponding computation is skipped. | 
|---|
| 1099 | * | 
|---|
| 1100 | * | 
|---|
| 1101 | * | 
|---|
| 1102 | * \svd_module | 
|---|
| 1103 | * | 
|---|
| 1104 | * \sa computeRotationScaling(), rotation(), class SVD | 
|---|
| 1105 | */ | 
|---|
| 1106 | template<typename Scalar, int Dim, int Mode, int Options> | 
|---|
| 1107 | template<typename ScalingMatrixType, typename RotationMatrixType> | 
|---|
| 1108 | EIGEN_DEVICE_FUNC void Transform<Scalar,Dim,Mode,Options>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const | 
|---|
| 1109 | { | 
|---|
| 1110 | JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV); | 
|---|
| 1111 |  | 
|---|
| 1112 | Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 | 
|---|
| 1113 | VectorType sv(svd.singularValues()); | 
|---|
| 1114 | sv.coeffRef(0) *= x; | 
|---|
| 1115 | if(scaling) scaling->lazyAssign(svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint()); | 
|---|
| 1116 | if(rotation) | 
|---|
| 1117 | { | 
|---|
| 1118 | LinearMatrixType m(svd.matrixU()); | 
|---|
| 1119 | m.col(0) /= x; | 
|---|
| 1120 | rotation->lazyAssign(m * svd.matrixV().adjoint()); | 
|---|
| 1121 | } | 
|---|
| 1122 | } | 
|---|
| 1123 |  | 
|---|
| 1124 | /** Convenient method to set \c *this from a position, orientation and scale | 
|---|
| 1125 | * of a 3D object. | 
|---|
| 1126 | */ | 
|---|
| 1127 | template<typename Scalar, int Dim, int Mode, int Options> | 
|---|
| 1128 | template<typename PositionDerived, typename OrientationType, typename ScaleDerived> | 
|---|
| 1129 | EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>& | 
|---|
| 1130 | Transform<Scalar,Dim,Mode,Options>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position, | 
|---|
| 1131 | const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale) | 
|---|
| 1132 | { | 
|---|
| 1133 | linear() = internal::toRotationMatrix<Scalar,Dim>(orientation); | 
|---|
| 1134 | linear() *= scale.asDiagonal(); | 
|---|
| 1135 | translation() = position; | 
|---|
| 1136 | makeAffine(); | 
|---|
| 1137 | return *this; | 
|---|
| 1138 | } | 
|---|
| 1139 |  | 
|---|
| 1140 | namespace internal { | 
|---|
| 1141 |  | 
|---|
| 1142 | template<int Mode> | 
|---|
| 1143 | struct transform_make_affine | 
|---|
| 1144 | { | 
|---|
| 1145 | template<typename MatrixType> | 
|---|
| 1146 | EIGEN_DEVICE_FUNC static void run(MatrixType &mat) | 
|---|
| 1147 | { | 
|---|
| 1148 | static const int Dim = MatrixType::ColsAtCompileTime-1; | 
|---|
| 1149 | mat.template block<1,Dim>(Dim,0).setZero(); | 
|---|
| 1150 | mat.coeffRef(Dim,Dim) = typename MatrixType::Scalar(1); | 
|---|
| 1151 | } | 
|---|
| 1152 | }; | 
|---|
| 1153 |  | 
|---|
| 1154 | template<> | 
|---|
| 1155 | struct transform_make_affine<AffineCompact> | 
|---|
| 1156 | { | 
|---|
| 1157 | template<typename MatrixType> EIGEN_DEVICE_FUNC static void run(MatrixType &) { } | 
|---|
| 1158 | }; | 
|---|
| 1159 |  | 
|---|
| 1160 | // selector needed to avoid taking the inverse of a 3x4 matrix | 
|---|
| 1161 | template<typename TransformType, int Mode=TransformType::Mode> | 
|---|
| 1162 | struct projective_transform_inverse | 
|---|
| 1163 | { | 
|---|
| 1164 | EIGEN_DEVICE_FUNC static inline void run(const TransformType&, TransformType&) | 
|---|
| 1165 | {} | 
|---|
| 1166 | }; | 
|---|
| 1167 |  | 
|---|
| 1168 | template<typename TransformType> | 
|---|
| 1169 | struct projective_transform_inverse<TransformType, Projective> | 
|---|
| 1170 | { | 
|---|
| 1171 | EIGEN_DEVICE_FUNC static inline void run(const TransformType& m, TransformType& res) | 
|---|
| 1172 | { | 
|---|
| 1173 | res.matrix() = m.matrix().inverse(); | 
|---|
| 1174 | } | 
|---|
| 1175 | }; | 
|---|
| 1176 |  | 
|---|
| 1177 | } // end namespace internal | 
|---|
| 1178 |  | 
|---|
| 1179 |  | 
|---|
| 1180 | /** | 
|---|
| 1181 | * | 
|---|
| 1182 | * \returns the inverse transformation according to some given knowledge | 
|---|
| 1183 | * on \c *this. | 
|---|
| 1184 | * | 
|---|
| 1185 | * \param hint allows to optimize the inversion process when the transformation | 
|---|
| 1186 | * is known to be not a general transformation (optional). The possible values are: | 
|---|
| 1187 | *  - #Projective if the transformation is not necessarily affine, i.e., if the | 
|---|
| 1188 | *    last row is not guaranteed to be [0 ... 0 1] | 
|---|
| 1189 | *  - #Affine if the last row can be assumed to be [0 ... 0 1] | 
|---|
| 1190 | *  - #Isometry if the transformation is only a concatenations of translations | 
|---|
| 1191 | *    and rotations. | 
|---|
| 1192 | *  The default is the template class parameter \c Mode. | 
|---|
| 1193 | * | 
|---|
| 1194 | * \warning unless \a traits is always set to NoShear or NoScaling, this function | 
|---|
| 1195 | * requires the generic inverse method of MatrixBase defined in the LU module. If | 
|---|
| 1196 | * you forget to include this module, then you will get hard to debug linking errors. | 
|---|
| 1197 | * | 
|---|
| 1198 | * \sa MatrixBase::inverse() | 
|---|
| 1199 | */ | 
|---|
| 1200 | template<typename Scalar, int Dim, int Mode, int Options> | 
|---|
| 1201 | EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options> | 
|---|
| 1202 | Transform<Scalar,Dim,Mode,Options>::inverse(TransformTraits hint) const | 
|---|
| 1203 | { | 
|---|
| 1204 | Transform res; | 
|---|
| 1205 | if (hint == Projective) | 
|---|
| 1206 | { | 
|---|
| 1207 | internal::projective_transform_inverse<Transform>::run(*this, res); | 
|---|
| 1208 | } | 
|---|
| 1209 | else | 
|---|
| 1210 | { | 
|---|
| 1211 | if (hint == Isometry) | 
|---|
| 1212 | { | 
|---|
| 1213 | res.matrix().template topLeftCorner<Dim,Dim>() = linear().transpose(); | 
|---|
| 1214 | } | 
|---|
| 1215 | else if(hint&Affine) | 
|---|
| 1216 | { | 
|---|
| 1217 | res.matrix().template topLeftCorner<Dim,Dim>() = linear().inverse(); | 
|---|
| 1218 | } | 
|---|
| 1219 | else | 
|---|
| 1220 | { | 
|---|
| 1221 | eigen_assert(false && "Invalid transform traits in Transform::Inverse"); | 
|---|
| 1222 | } | 
|---|
| 1223 | // translation and remaining parts | 
|---|
| 1224 | res.matrix().template topRightCorner<Dim,1>() | 
|---|
| 1225 | = - res.matrix().template topLeftCorner<Dim,Dim>() * translation(); | 
|---|
| 1226 | res.makeAffine(); // we do need this, because in the beginning res is uninitialized | 
|---|
| 1227 | } | 
|---|
| 1228 | return res; | 
|---|
| 1229 | } | 
|---|
| 1230 |  | 
|---|
| 1231 | namespace internal { | 
|---|
| 1232 |  | 
|---|
| 1233 | /***************************************************** | 
|---|
| 1234 | *** Specializations of take affine part            *** | 
|---|
| 1235 | *****************************************************/ | 
|---|
| 1236 |  | 
|---|
| 1237 | template<typename TransformType> struct transform_take_affine_part { | 
|---|
| 1238 | typedef typename TransformType::MatrixType MatrixType; | 
|---|
| 1239 | typedef typename TransformType::AffinePart AffinePart; | 
|---|
| 1240 | typedef typename TransformType::ConstAffinePart ConstAffinePart; | 
|---|
| 1241 | static inline AffinePart run(MatrixType& m) | 
|---|
| 1242 | { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); } | 
|---|
| 1243 | static inline ConstAffinePart run(const MatrixType& m) | 
|---|
| 1244 | { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); } | 
|---|
| 1245 | }; | 
|---|
| 1246 |  | 
|---|
| 1247 | template<typename Scalar, int Dim, int Options> | 
|---|
| 1248 | struct transform_take_affine_part<Transform<Scalar,Dim,AffineCompact, Options> > { | 
|---|
| 1249 | typedef typename Transform<Scalar,Dim,AffineCompact,Options>::MatrixType MatrixType; | 
|---|
| 1250 | static inline MatrixType& run(MatrixType& m) { return m; } | 
|---|
| 1251 | static inline const MatrixType& run(const MatrixType& m) { return m; } | 
|---|
| 1252 | }; | 
|---|
| 1253 |  | 
|---|
| 1254 | /***************************************************** | 
|---|
| 1255 | *** Specializations of construct from matrix       *** | 
|---|
| 1256 | *****************************************************/ | 
|---|
| 1257 |  | 
|---|
| 1258 | template<typename Other, int Mode, int Options, int Dim, int HDim> | 
|---|
| 1259 | struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,Dim> | 
|---|
| 1260 | { | 
|---|
| 1261 | static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other) | 
|---|
| 1262 | { | 
|---|
| 1263 | transform->linear() = other; | 
|---|
| 1264 | transform->translation().setZero(); | 
|---|
| 1265 | transform->makeAffine(); | 
|---|
| 1266 | } | 
|---|
| 1267 | }; | 
|---|
| 1268 |  | 
|---|
| 1269 | template<typename Other, int Mode, int Options, int Dim, int HDim> | 
|---|
| 1270 | struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,HDim> | 
|---|
| 1271 | { | 
|---|
| 1272 | static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other) | 
|---|
| 1273 | { | 
|---|
| 1274 | transform->affine() = other; | 
|---|
| 1275 | transform->makeAffine(); | 
|---|
| 1276 | } | 
|---|
| 1277 | }; | 
|---|
| 1278 |  | 
|---|
| 1279 | template<typename Other, int Mode, int Options, int Dim, int HDim> | 
|---|
| 1280 | struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, HDim,HDim> | 
|---|
| 1281 | { | 
|---|
| 1282 | static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other) | 
|---|
| 1283 | { transform->matrix() = other; } | 
|---|
| 1284 | }; | 
|---|
| 1285 |  | 
|---|
| 1286 | template<typename Other, int Options, int Dim, int HDim> | 
|---|
| 1287 | struct transform_construct_from_matrix<Other, AffineCompact,Options,Dim,HDim, HDim,HDim> | 
|---|
| 1288 | { | 
|---|
| 1289 | static inline void run(Transform<typename Other::Scalar,Dim,AffineCompact,Options> *transform, const Other& other) | 
|---|
| 1290 | { transform->matrix() = other.template block<Dim,HDim>(0,0); } | 
|---|
| 1291 | }; | 
|---|
| 1292 |  | 
|---|
| 1293 | /********************************************************** | 
|---|
| 1294 | ***   Specializations of operator* with rhs EigenBase   *** | 
|---|
| 1295 | **********************************************************/ | 
|---|
| 1296 |  | 
|---|
| 1297 | template<int LhsMode,int RhsMode> | 
|---|
| 1298 | struct transform_product_result | 
|---|
| 1299 | { | 
|---|
| 1300 | enum | 
|---|
| 1301 | { | 
|---|
| 1302 | Mode = | 
|---|
| 1303 | (LhsMode == (int)Projective    || RhsMode == (int)Projective    ) ? Projective : | 
|---|
| 1304 | (LhsMode == (int)Affine        || RhsMode == (int)Affine        ) ? Affine : | 
|---|
| 1305 | (LhsMode == (int)AffineCompact || RhsMode == (int)AffineCompact ) ? AffineCompact : | 
|---|
| 1306 | (LhsMode == (int)Isometry      || RhsMode == (int)Isometry      ) ? Isometry : Projective | 
|---|
| 1307 | }; | 
|---|
| 1308 | }; | 
|---|
| 1309 |  | 
|---|
| 1310 | template< typename TransformType, typename MatrixType, int RhsCols> | 
|---|
| 1311 | struct transform_right_product_impl< TransformType, MatrixType, 0, RhsCols> | 
|---|
| 1312 | { | 
|---|
| 1313 | typedef typename MatrixType::PlainObject ResultType; | 
|---|
| 1314 |  | 
|---|
| 1315 | static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) | 
|---|
| 1316 | { | 
|---|
| 1317 | return T.matrix() * other; | 
|---|
| 1318 | } | 
|---|
| 1319 | }; | 
|---|
| 1320 |  | 
|---|
| 1321 | template< typename TransformType, typename MatrixType, int RhsCols> | 
|---|
| 1322 | struct transform_right_product_impl< TransformType, MatrixType, 1, RhsCols> | 
|---|
| 1323 | { | 
|---|
| 1324 | enum { | 
|---|
| 1325 | Dim = TransformType::Dim, | 
|---|
| 1326 | HDim = TransformType::HDim, | 
|---|
| 1327 | OtherRows = MatrixType::RowsAtCompileTime, | 
|---|
| 1328 | OtherCols = MatrixType::ColsAtCompileTime | 
|---|
| 1329 | }; | 
|---|
| 1330 |  | 
|---|
| 1331 | typedef typename MatrixType::PlainObject ResultType; | 
|---|
| 1332 |  | 
|---|
| 1333 | static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) | 
|---|
| 1334 | { | 
|---|
| 1335 | EIGEN_STATIC_ASSERT(OtherRows==HDim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); | 
|---|
| 1336 |  | 
|---|
| 1337 | typedef Block<ResultType, Dim, OtherCols, int(MatrixType::RowsAtCompileTime)==Dim> TopLeftLhs; | 
|---|
| 1338 |  | 
|---|
| 1339 | ResultType res(other.rows(),other.cols()); | 
|---|
| 1340 | TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() = T.affine() * other; | 
|---|
| 1341 | res.row(OtherRows-1) = other.row(OtherRows-1); | 
|---|
| 1342 |  | 
|---|
| 1343 | return res; | 
|---|
| 1344 | } | 
|---|
| 1345 | }; | 
|---|
| 1346 |  | 
|---|
| 1347 | template< typename TransformType, typename MatrixType, int RhsCols> | 
|---|
| 1348 | struct transform_right_product_impl< TransformType, MatrixType, 2, RhsCols> | 
|---|
| 1349 | { | 
|---|
| 1350 | enum { | 
|---|
| 1351 | Dim = TransformType::Dim, | 
|---|
| 1352 | HDim = TransformType::HDim, | 
|---|
| 1353 | OtherRows = MatrixType::RowsAtCompileTime, | 
|---|
| 1354 | OtherCols = MatrixType::ColsAtCompileTime | 
|---|
| 1355 | }; | 
|---|
| 1356 |  | 
|---|
| 1357 | typedef typename MatrixType::PlainObject ResultType; | 
|---|
| 1358 |  | 
|---|
| 1359 | static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) | 
|---|
| 1360 | { | 
|---|
| 1361 | EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); | 
|---|
| 1362 |  | 
|---|
| 1363 | typedef Block<ResultType, Dim, OtherCols, true> TopLeftLhs; | 
|---|
| 1364 | ResultType res(Replicate<typename TransformType::ConstTranslationPart, 1, OtherCols>(T.translation(),1,other.cols())); | 
|---|
| 1365 | TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() += T.linear() * other; | 
|---|
| 1366 |  | 
|---|
| 1367 | return res; | 
|---|
| 1368 | } | 
|---|
| 1369 | }; | 
|---|
| 1370 |  | 
|---|
| 1371 | template< typename TransformType, typename MatrixType > | 
|---|
| 1372 | struct transform_right_product_impl< TransformType, MatrixType, 2, 1> // rhs is a vector of size Dim | 
|---|
| 1373 | { | 
|---|
| 1374 | typedef typename TransformType::MatrixType TransformMatrix; | 
|---|
| 1375 | enum { | 
|---|
| 1376 | Dim = TransformType::Dim, | 
|---|
| 1377 | HDim = TransformType::HDim, | 
|---|
| 1378 | OtherRows = MatrixType::RowsAtCompileTime, | 
|---|
| 1379 | WorkingRows = EIGEN_PLAIN_ENUM_MIN(TransformMatrix::RowsAtCompileTime,HDim) | 
|---|
| 1380 | }; | 
|---|
| 1381 |  | 
|---|
| 1382 | typedef typename MatrixType::PlainObject ResultType; | 
|---|
| 1383 |  | 
|---|
| 1384 | static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) | 
|---|
| 1385 | { | 
|---|
| 1386 | EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); | 
|---|
| 1387 |  | 
|---|
| 1388 | Matrix<typename ResultType::Scalar, Dim+1, 1> rhs; | 
|---|
| 1389 | rhs.template head<Dim>() = other; rhs[Dim] = typename ResultType::Scalar(1); | 
|---|
| 1390 | Matrix<typename ResultType::Scalar, WorkingRows, 1> res(T.matrix() * rhs); | 
|---|
| 1391 | return res.template head<Dim>(); | 
|---|
| 1392 | } | 
|---|
| 1393 | }; | 
|---|
| 1394 |  | 
|---|
| 1395 | /********************************************************** | 
|---|
| 1396 | ***   Specializations of operator* with lhs EigenBase   *** | 
|---|
| 1397 | **********************************************************/ | 
|---|
| 1398 |  | 
|---|
| 1399 | // generic HDim x HDim matrix * T => Projective | 
|---|
| 1400 | template<typename Other,int Mode, int Options, int Dim, int HDim> | 
|---|
| 1401 | struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, HDim,HDim> | 
|---|
| 1402 | { | 
|---|
| 1403 | typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType; | 
|---|
| 1404 | typedef typename TransformType::MatrixType MatrixType; | 
|---|
| 1405 | typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType; | 
|---|
| 1406 | static ResultType run(const Other& other,const TransformType& tr) | 
|---|
| 1407 | { return ResultType(other * tr.matrix()); } | 
|---|
| 1408 | }; | 
|---|
| 1409 |  | 
|---|
| 1410 | // generic HDim x HDim matrix * AffineCompact => Projective | 
|---|
| 1411 | template<typename Other, int Options, int Dim, int HDim> | 
|---|
| 1412 | struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, HDim,HDim> | 
|---|
| 1413 | { | 
|---|
| 1414 | typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType; | 
|---|
| 1415 | typedef typename TransformType::MatrixType MatrixType; | 
|---|
| 1416 | typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType; | 
|---|
| 1417 | static ResultType run(const Other& other,const TransformType& tr) | 
|---|
| 1418 | { | 
|---|
| 1419 | ResultType res; | 
|---|
| 1420 | res.matrix().noalias() = other.template block<HDim,Dim>(0,0) * tr.matrix(); | 
|---|
| 1421 | res.matrix().col(Dim) += other.col(Dim); | 
|---|
| 1422 | return res; | 
|---|
| 1423 | } | 
|---|
| 1424 | }; | 
|---|
| 1425 |  | 
|---|
| 1426 | // affine matrix * T | 
|---|
| 1427 | template<typename Other,int Mode, int Options, int Dim, int HDim> | 
|---|
| 1428 | struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,HDim> | 
|---|
| 1429 | { | 
|---|
| 1430 | typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType; | 
|---|
| 1431 | typedef typename TransformType::MatrixType MatrixType; | 
|---|
| 1432 | typedef TransformType ResultType; | 
|---|
| 1433 | static ResultType run(const Other& other,const TransformType& tr) | 
|---|
| 1434 | { | 
|---|
| 1435 | ResultType res; | 
|---|
| 1436 | res.affine().noalias() = other * tr.matrix(); | 
|---|
| 1437 | res.matrix().row(Dim) = tr.matrix().row(Dim); | 
|---|
| 1438 | return res; | 
|---|
| 1439 | } | 
|---|
| 1440 | }; | 
|---|
| 1441 |  | 
|---|
| 1442 | // affine matrix * AffineCompact | 
|---|
| 1443 | template<typename Other, int Options, int Dim, int HDim> | 
|---|
| 1444 | struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, Dim,HDim> | 
|---|
| 1445 | { | 
|---|
| 1446 | typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType; | 
|---|
| 1447 | typedef typename TransformType::MatrixType MatrixType; | 
|---|
| 1448 | typedef TransformType ResultType; | 
|---|
| 1449 | static ResultType run(const Other& other,const TransformType& tr) | 
|---|
| 1450 | { | 
|---|
| 1451 | ResultType res; | 
|---|
| 1452 | res.matrix().noalias() = other.template block<Dim,Dim>(0,0) * tr.matrix(); | 
|---|
| 1453 | res.translation() += other.col(Dim); | 
|---|
| 1454 | return res; | 
|---|
| 1455 | } | 
|---|
| 1456 | }; | 
|---|
| 1457 |  | 
|---|
| 1458 | // linear matrix * T | 
|---|
| 1459 | template<typename Other,int Mode, int Options, int Dim, int HDim> | 
|---|
| 1460 | struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,Dim> | 
|---|
| 1461 | { | 
|---|
| 1462 | typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType; | 
|---|
| 1463 | typedef typename TransformType::MatrixType MatrixType; | 
|---|
| 1464 | typedef TransformType ResultType; | 
|---|
| 1465 | static ResultType run(const Other& other, const TransformType& tr) | 
|---|
| 1466 | { | 
|---|
| 1467 | TransformType res; | 
|---|
| 1468 | if(Mode!=int(AffineCompact)) | 
|---|
| 1469 | res.matrix().row(Dim) = tr.matrix().row(Dim); | 
|---|
| 1470 | res.matrix().template topRows<Dim>().noalias() | 
|---|
| 1471 | = other * tr.matrix().template topRows<Dim>(); | 
|---|
| 1472 | return res; | 
|---|
| 1473 | } | 
|---|
| 1474 | }; | 
|---|
| 1475 |  | 
|---|
| 1476 | /********************************************************** | 
|---|
| 1477 | *** Specializations of operator* with another Transform *** | 
|---|
| 1478 | **********************************************************/ | 
|---|
| 1479 |  | 
|---|
| 1480 | template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions> | 
|---|
| 1481 | struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,false > | 
|---|
| 1482 | { | 
|---|
| 1483 | enum { ResultMode = transform_product_result<LhsMode,RhsMode>::Mode }; | 
|---|
| 1484 | typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs; | 
|---|
| 1485 | typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs; | 
|---|
| 1486 | typedef Transform<Scalar,Dim,ResultMode,LhsOptions> ResultType; | 
|---|
| 1487 | static ResultType run(const Lhs& lhs, const Rhs& rhs) | 
|---|
| 1488 | { | 
|---|
| 1489 | ResultType res; | 
|---|
| 1490 | res.linear() = lhs.linear() * rhs.linear(); | 
|---|
| 1491 | res.translation() = lhs.linear() * rhs.translation() + lhs.translation(); | 
|---|
| 1492 | res.makeAffine(); | 
|---|
| 1493 | return res; | 
|---|
| 1494 | } | 
|---|
| 1495 | }; | 
|---|
| 1496 |  | 
|---|
| 1497 | template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions> | 
|---|
| 1498 | struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,true > | 
|---|
| 1499 | { | 
|---|
| 1500 | typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs; | 
|---|
| 1501 | typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs; | 
|---|
| 1502 | typedef Transform<Scalar,Dim,Projective> ResultType; | 
|---|
| 1503 | static ResultType run(const Lhs& lhs, const Rhs& rhs) | 
|---|
| 1504 | { | 
|---|
| 1505 | return ResultType( lhs.matrix() * rhs.matrix() ); | 
|---|
| 1506 | } | 
|---|
| 1507 | }; | 
|---|
| 1508 |  | 
|---|
| 1509 | template<typename Scalar, int Dim, int LhsOptions, int RhsOptions> | 
|---|
| 1510 | struct transform_transform_product_impl<Transform<Scalar,Dim,AffineCompact,LhsOptions>,Transform<Scalar,Dim,Projective,RhsOptions>,true > | 
|---|
| 1511 | { | 
|---|
| 1512 | typedef Transform<Scalar,Dim,AffineCompact,LhsOptions> Lhs; | 
|---|
| 1513 | typedef Transform<Scalar,Dim,Projective,RhsOptions> Rhs; | 
|---|
| 1514 | typedef Transform<Scalar,Dim,Projective> ResultType; | 
|---|
| 1515 | static ResultType run(const Lhs& lhs, const Rhs& rhs) | 
|---|
| 1516 | { | 
|---|
| 1517 | ResultType res; | 
|---|
| 1518 | res.matrix().template topRows<Dim>() = lhs.matrix() * rhs.matrix(); | 
|---|
| 1519 | res.matrix().row(Dim) = rhs.matrix().row(Dim); | 
|---|
| 1520 | return res; | 
|---|
| 1521 | } | 
|---|
| 1522 | }; | 
|---|
| 1523 |  | 
|---|
| 1524 | template<typename Scalar, int Dim, int LhsOptions, int RhsOptions> | 
|---|
| 1525 | struct transform_transform_product_impl<Transform<Scalar,Dim,Projective,LhsOptions>,Transform<Scalar,Dim,AffineCompact,RhsOptions>,true > | 
|---|
| 1526 | { | 
|---|
| 1527 | typedef Transform<Scalar,Dim,Projective,LhsOptions> Lhs; | 
|---|
| 1528 | typedef Transform<Scalar,Dim,AffineCompact,RhsOptions> Rhs; | 
|---|
| 1529 | typedef Transform<Scalar,Dim,Projective> ResultType; | 
|---|
| 1530 | static ResultType run(const Lhs& lhs, const Rhs& rhs) | 
|---|
| 1531 | { | 
|---|
| 1532 | ResultType res(lhs.matrix().template leftCols<Dim>() * rhs.matrix()); | 
|---|
| 1533 | res.matrix().col(Dim) += lhs.matrix().col(Dim); | 
|---|
| 1534 | return res; | 
|---|
| 1535 | } | 
|---|
| 1536 | }; | 
|---|
| 1537 |  | 
|---|
| 1538 | } // end namespace internal | 
|---|
| 1539 |  | 
|---|
| 1540 | } // end namespace Eigen | 
|---|
| 1541 |  | 
|---|
| 1542 | #endif // EIGEN_TRANSFORM_H | 
|---|
| 1543 |  | 
|---|