| 1 | // This file is part of Eigen, a lightweight C++ template library | 
|---|
| 2 | // for linear algebra. | 
|---|
| 3 | // | 
|---|
| 4 | // We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD" | 
|---|
| 5 | // research report written by Ming Gu and Stanley C.Eisenstat | 
|---|
| 6 | // The code variable names correspond to the names they used in their | 
|---|
| 7 | // report | 
|---|
| 8 | // | 
|---|
| 9 | // Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com> | 
|---|
| 10 | // Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr> | 
|---|
| 11 | // Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr> | 
|---|
| 12 | // Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr> | 
|---|
| 13 | // Copyright (C) 2013 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
|---|
| 14 | // Copyright (C) 2014-2017 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|---|
| 15 | // | 
|---|
| 16 | // Source Code Form is subject to the terms of the Mozilla | 
|---|
| 17 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|---|
| 18 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|---|
| 19 |  | 
|---|
| 20 | #ifndef EIGEN_BDCSVD_H | 
|---|
| 21 | #define EIGEN_BDCSVD_H | 
|---|
| 22 | // #define EIGEN_BDCSVD_DEBUG_VERBOSE | 
|---|
| 23 | // #define EIGEN_BDCSVD_SANITY_CHECKS | 
|---|
| 24 |  | 
|---|
| 25 | namespace Eigen { | 
|---|
| 26 |  | 
|---|
| 27 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|---|
| 28 | IOFormat bdcsvdfmt(8, 0, ", ", "\n", "  [", "]"); | 
|---|
| 29 | #endif | 
|---|
| 30 |  | 
|---|
| 31 | template<typename _MatrixType> class BDCSVD; | 
|---|
| 32 |  | 
|---|
| 33 | namespace internal { | 
|---|
| 34 |  | 
|---|
| 35 | template<typename _MatrixType> | 
|---|
| 36 | struct traits<BDCSVD<_MatrixType> > | 
|---|
| 37 | { | 
|---|
| 38 | typedef _MatrixType MatrixType; | 
|---|
| 39 | }; | 
|---|
| 40 |  | 
|---|
| 41 | } // end namespace internal | 
|---|
| 42 |  | 
|---|
| 43 |  | 
|---|
| 44 | /** \ingroup SVD_Module | 
|---|
| 45 | * | 
|---|
| 46 | * | 
|---|
| 47 | * \class BDCSVD | 
|---|
| 48 | * | 
|---|
| 49 | * \brief class Bidiagonal Divide and Conquer SVD | 
|---|
| 50 | * | 
|---|
| 51 | * \tparam _MatrixType the type of the matrix of which we are computing the SVD decomposition | 
|---|
| 52 | * | 
|---|
| 53 | * This class first reduces the input matrix to bi-diagonal form using class UpperBidiagonalization, | 
|---|
| 54 | * and then performs a divide-and-conquer diagonalization. Small blocks are diagonalized using class JacobiSVD. | 
|---|
| 55 | * You can control the switching size with the setSwitchSize() method, default is 16. | 
|---|
| 56 | * For small matrice (<16), it is thus preferable to directly use JacobiSVD. For larger ones, BDCSVD is highly | 
|---|
| 57 | * recommended and can several order of magnitude faster. | 
|---|
| 58 | * | 
|---|
| 59 | * \warning this algorithm is unlikely to provide accurate result when compiled with unsafe math optimizations. | 
|---|
| 60 | * For instance, this concerns Intel's compiler (ICC), which perfroms such optimization by default unless | 
|---|
| 61 | * you compile with the \c -fp-model \c precise option. Likewise, the \c -ffast-math option of GCC or clang will | 
|---|
| 62 | * significantly degrade the accuracy. | 
|---|
| 63 | * | 
|---|
| 64 | * \sa class JacobiSVD | 
|---|
| 65 | */ | 
|---|
| 66 | template<typename _MatrixType> | 
|---|
| 67 | class BDCSVD : public SVDBase<BDCSVD<_MatrixType> > | 
|---|
| 68 | { | 
|---|
| 69 | typedef SVDBase<BDCSVD> Base; | 
|---|
| 70 |  | 
|---|
| 71 | public: | 
|---|
| 72 | using Base::rows; | 
|---|
| 73 | using Base::cols; | 
|---|
| 74 | using Base::computeU; | 
|---|
| 75 | using Base::computeV; | 
|---|
| 76 |  | 
|---|
| 77 | typedef _MatrixType MatrixType; | 
|---|
| 78 | typedef typename MatrixType::Scalar Scalar; | 
|---|
| 79 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; | 
|---|
| 80 | typedef typename NumTraits<RealScalar>::Literal Literal; | 
|---|
| 81 | enum { | 
|---|
| 82 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
|---|
| 83 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
|---|
| 84 | DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime), | 
|---|
| 85 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
|---|
| 86 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, | 
|---|
| 87 | MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime, MaxColsAtCompileTime), | 
|---|
| 88 | MatrixOptions = MatrixType::Options | 
|---|
| 89 | }; | 
|---|
| 90 |  | 
|---|
| 91 | typedef typename Base::MatrixUType MatrixUType; | 
|---|
| 92 | typedef typename Base::MatrixVType MatrixVType; | 
|---|
| 93 | typedef typename Base::SingularValuesType SingularValuesType; | 
|---|
| 94 |  | 
|---|
| 95 | typedef Matrix<Scalar, Dynamic, Dynamic, ColMajor> MatrixX; | 
|---|
| 96 | typedef Matrix<RealScalar, Dynamic, Dynamic, ColMajor> MatrixXr; | 
|---|
| 97 | typedef Matrix<RealScalar, Dynamic, 1> VectorType; | 
|---|
| 98 | typedef Array<RealScalar, Dynamic, 1> ArrayXr; | 
|---|
| 99 | typedef Array<Index,1,Dynamic> ArrayXi; | 
|---|
| 100 | typedef Ref<ArrayXr> ArrayRef; | 
|---|
| 101 | typedef Ref<ArrayXi> IndicesRef; | 
|---|
| 102 |  | 
|---|
| 103 | /** \brief Default Constructor. | 
|---|
| 104 | * | 
|---|
| 105 | * The default constructor is useful in cases in which the user intends to | 
|---|
| 106 | * perform decompositions via BDCSVD::compute(const MatrixType&). | 
|---|
| 107 | */ | 
|---|
| 108 | BDCSVD() : m_algoswap(16), m_numIters(0) | 
|---|
| 109 | {} | 
|---|
| 110 |  | 
|---|
| 111 |  | 
|---|
| 112 | /** \brief Default Constructor with memory preallocation | 
|---|
| 113 | * | 
|---|
| 114 | * Like the default constructor but with preallocation of the internal data | 
|---|
| 115 | * according to the specified problem size. | 
|---|
| 116 | * \sa BDCSVD() | 
|---|
| 117 | */ | 
|---|
| 118 | BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0) | 
|---|
| 119 | : m_algoswap(16), m_numIters(0) | 
|---|
| 120 | { | 
|---|
| 121 | allocate(rows, cols, computationOptions); | 
|---|
| 122 | } | 
|---|
| 123 |  | 
|---|
| 124 | /** \brief Constructor performing the decomposition of given matrix. | 
|---|
| 125 | * | 
|---|
| 126 | * \param matrix the matrix to decompose | 
|---|
| 127 | * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. | 
|---|
| 128 | *                           By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU, | 
|---|
| 129 | *                           #ComputeFullV, #ComputeThinV. | 
|---|
| 130 | * | 
|---|
| 131 | * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not | 
|---|
| 132 | * available with the (non - default) FullPivHouseholderQR preconditioner. | 
|---|
| 133 | */ | 
|---|
| 134 | BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0) | 
|---|
| 135 | : m_algoswap(16), m_numIters(0) | 
|---|
| 136 | { | 
|---|
| 137 | compute(matrix, computationOptions); | 
|---|
| 138 | } | 
|---|
| 139 |  | 
|---|
| 140 | ~BDCSVD() | 
|---|
| 141 | { | 
|---|
| 142 | } | 
|---|
| 143 |  | 
|---|
| 144 | /** \brief Method performing the decomposition of given matrix using custom options. | 
|---|
| 145 | * | 
|---|
| 146 | * \param matrix the matrix to decompose | 
|---|
| 147 | * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. | 
|---|
| 148 | *                           By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU, | 
|---|
| 149 | *                           #ComputeFullV, #ComputeThinV. | 
|---|
| 150 | * | 
|---|
| 151 | * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not | 
|---|
| 152 | * available with the (non - default) FullPivHouseholderQR preconditioner. | 
|---|
| 153 | */ | 
|---|
| 154 | BDCSVD& compute(const MatrixType& matrix, unsigned int computationOptions); | 
|---|
| 155 |  | 
|---|
| 156 | /** \brief Method performing the decomposition of given matrix using current options. | 
|---|
| 157 | * | 
|---|
| 158 | * \param matrix the matrix to decompose | 
|---|
| 159 | * | 
|---|
| 160 | * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int). | 
|---|
| 161 | */ | 
|---|
| 162 | BDCSVD& compute(const MatrixType& matrix) | 
|---|
| 163 | { | 
|---|
| 164 | return compute(matrix, this->m_computationOptions); | 
|---|
| 165 | } | 
|---|
| 166 |  | 
|---|
| 167 | void setSwitchSize(int s) | 
|---|
| 168 | { | 
|---|
| 169 | eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 3"); | 
|---|
| 170 | m_algoswap = s; | 
|---|
| 171 | } | 
|---|
| 172 |  | 
|---|
| 173 | private: | 
|---|
| 174 | void allocate(Index rows, Index cols, unsigned int computationOptions); | 
|---|
| 175 | void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift); | 
|---|
| 176 | void computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V); | 
|---|
| 177 | void computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, VectorType& singVals, ArrayRef shifts, ArrayRef mus); | 
|---|
| 178 | void perturbCol0(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat); | 
|---|
| 179 | void computeSingVecs(const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V); | 
|---|
| 180 | void deflation43(Index firstCol, Index shift, Index i, Index size); | 
|---|
| 181 | void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size); | 
|---|
| 182 | void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift); | 
|---|
| 183 | template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV> | 
|---|
| 184 | void copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naivev); | 
|---|
| 185 | void structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1); | 
|---|
| 186 | static RealScalar secularEq(RealScalar x, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift); | 
|---|
| 187 |  | 
|---|
| 188 | protected: | 
|---|
| 189 | MatrixXr m_naiveU, m_naiveV; | 
|---|
| 190 | MatrixXr m_computed; | 
|---|
| 191 | Index m_nRec; | 
|---|
| 192 | ArrayXr m_workspace; | 
|---|
| 193 | ArrayXi m_workspaceI; | 
|---|
| 194 | int m_algoswap; | 
|---|
| 195 | bool m_isTranspose, m_compU, m_compV; | 
|---|
| 196 |  | 
|---|
| 197 | using Base::m_singularValues; | 
|---|
| 198 | using Base::m_diagSize; | 
|---|
| 199 | using Base::m_computeFullU; | 
|---|
| 200 | using Base::m_computeFullV; | 
|---|
| 201 | using Base::m_computeThinU; | 
|---|
| 202 | using Base::m_computeThinV; | 
|---|
| 203 | using Base::m_matrixU; | 
|---|
| 204 | using Base::m_matrixV; | 
|---|
| 205 | using Base::m_isInitialized; | 
|---|
| 206 | using Base::m_nonzeroSingularValues; | 
|---|
| 207 |  | 
|---|
| 208 | public: | 
|---|
| 209 | int m_numIters; | 
|---|
| 210 | }; //end class BDCSVD | 
|---|
| 211 |  | 
|---|
| 212 |  | 
|---|
| 213 | // Method to allocate and initialize matrix and attributes | 
|---|
| 214 | template<typename MatrixType> | 
|---|
| 215 | void BDCSVD<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions) | 
|---|
| 216 | { | 
|---|
| 217 | m_isTranspose = (cols > rows); | 
|---|
| 218 |  | 
|---|
| 219 | if (Base::allocate(rows, cols, computationOptions)) | 
|---|
| 220 | return; | 
|---|
| 221 |  | 
|---|
| 222 | m_computed = MatrixXr::Zero(m_diagSize + 1, m_diagSize ); | 
|---|
| 223 | m_compU = computeV(); | 
|---|
| 224 | m_compV = computeU(); | 
|---|
| 225 | if (m_isTranspose) | 
|---|
| 226 | std::swap(m_compU, m_compV); | 
|---|
| 227 |  | 
|---|
| 228 | if (m_compU) m_naiveU = MatrixXr::Zero(m_diagSize + 1, m_diagSize + 1 ); | 
|---|
| 229 | else         m_naiveU = MatrixXr::Zero(2, m_diagSize + 1 ); | 
|---|
| 230 |  | 
|---|
| 231 | if (m_compV) m_naiveV = MatrixXr::Zero(m_diagSize, m_diagSize); | 
|---|
| 232 |  | 
|---|
| 233 | m_workspace.resize((m_diagSize+1)*(m_diagSize+1)*3); | 
|---|
| 234 | m_workspaceI.resize(3*m_diagSize); | 
|---|
| 235 | }// end allocate | 
|---|
| 236 |  | 
|---|
| 237 | template<typename MatrixType> | 
|---|
| 238 | BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions) | 
|---|
| 239 | { | 
|---|
| 240 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|---|
| 241 | std::cout << "\n\n\n======================================================================================================================\n\n\n"; | 
|---|
| 242 | #endif | 
|---|
| 243 | allocate(matrix.rows(), matrix.cols(), computationOptions); | 
|---|
| 244 | using std::abs; | 
|---|
| 245 |  | 
|---|
| 246 | const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)(); | 
|---|
| 247 |  | 
|---|
| 248 | //**** step -1 - If the problem is too small, directly falls back to JacobiSVD and return | 
|---|
| 249 | if(matrix.cols() < m_algoswap) | 
|---|
| 250 | { | 
|---|
| 251 | // FIXME this line involves temporaries | 
|---|
| 252 | JacobiSVD<MatrixType> jsvd(matrix,computationOptions); | 
|---|
| 253 | if(computeU()) m_matrixU = jsvd.matrixU(); | 
|---|
| 254 | if(computeV()) m_matrixV = jsvd.matrixV(); | 
|---|
| 255 | m_singularValues = jsvd.singularValues(); | 
|---|
| 256 | m_nonzeroSingularValues = jsvd.nonzeroSingularValues(); | 
|---|
| 257 | m_isInitialized = true; | 
|---|
| 258 | return *this; | 
|---|
| 259 | } | 
|---|
| 260 |  | 
|---|
| 261 | //**** step 0 - Copy the input matrix and apply scaling to reduce over/under-flows | 
|---|
| 262 | RealScalar scale = matrix.cwiseAbs().maxCoeff(); | 
|---|
| 263 | if(scale==Literal(0)) scale = Literal(1); | 
|---|
| 264 | MatrixX copy; | 
|---|
| 265 | if (m_isTranspose) copy = matrix.adjoint()/scale; | 
|---|
| 266 | else               copy = matrix/scale; | 
|---|
| 267 |  | 
|---|
| 268 | //**** step 1 - Bidiagonalization | 
|---|
| 269 | // FIXME this line involves temporaries | 
|---|
| 270 | internal::UpperBidiagonalization<MatrixX> bid(copy); | 
|---|
| 271 |  | 
|---|
| 272 | //**** step 2 - Divide & Conquer | 
|---|
| 273 | m_naiveU.setZero(); | 
|---|
| 274 | m_naiveV.setZero(); | 
|---|
| 275 | // FIXME this line involves a temporary matrix | 
|---|
| 276 | m_computed.topRows(m_diagSize) = bid.bidiagonal().toDenseMatrix().transpose(); | 
|---|
| 277 | m_computed.template bottomRows<1>().setZero(); | 
|---|
| 278 | divide(0, m_diagSize - 1, 0, 0, 0); | 
|---|
| 279 |  | 
|---|
| 280 | //**** step 3 - Copy singular values and vectors | 
|---|
| 281 | for (int i=0; i<m_diagSize; i++) | 
|---|
| 282 | { | 
|---|
| 283 | RealScalar a = abs(m_computed.coeff(i, i)); | 
|---|
| 284 | m_singularValues.coeffRef(i) = a * scale; | 
|---|
| 285 | if (a<considerZero) | 
|---|
| 286 | { | 
|---|
| 287 | m_nonzeroSingularValues = i; | 
|---|
| 288 | m_singularValues.tail(m_diagSize - i - 1).setZero(); | 
|---|
| 289 | break; | 
|---|
| 290 | } | 
|---|
| 291 | else if (i == m_diagSize - 1) | 
|---|
| 292 | { | 
|---|
| 293 | m_nonzeroSingularValues = i + 1; | 
|---|
| 294 | break; | 
|---|
| 295 | } | 
|---|
| 296 | } | 
|---|
| 297 |  | 
|---|
| 298 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|---|
| 299 | //   std::cout << "m_naiveU\n" << m_naiveU << "\n\n"; | 
|---|
| 300 | //   std::cout << "m_naiveV\n" << m_naiveV << "\n\n"; | 
|---|
| 301 | #endif | 
|---|
| 302 | if(m_isTranspose) copyUV(bid.householderV(), bid.householderU(), m_naiveV, m_naiveU); | 
|---|
| 303 | else              copyUV(bid.householderU(), bid.householderV(), m_naiveU, m_naiveV); | 
|---|
| 304 |  | 
|---|
| 305 | m_isInitialized = true; | 
|---|
| 306 | return *this; | 
|---|
| 307 | }// end compute | 
|---|
| 308 |  | 
|---|
| 309 |  | 
|---|
| 310 | template<typename MatrixType> | 
|---|
| 311 | template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV> | 
|---|
| 312 | void BDCSVD<MatrixType>::copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naiveV) | 
|---|
| 313 | { | 
|---|
| 314 | // Note exchange of U and V: m_matrixU is set from m_naiveV and vice versa | 
|---|
| 315 | if (computeU()) | 
|---|
| 316 | { | 
|---|
| 317 | Index Ucols = m_computeThinU ? m_diagSize : householderU.cols(); | 
|---|
| 318 | m_matrixU = MatrixX::Identity(householderU.cols(), Ucols); | 
|---|
| 319 | m_matrixU.topLeftCorner(m_diagSize, m_diagSize) = naiveV.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize); | 
|---|
| 320 | householderU.applyThisOnTheLeft(m_matrixU); // FIXME this line involves a temporary buffer | 
|---|
| 321 | } | 
|---|
| 322 | if (computeV()) | 
|---|
| 323 | { | 
|---|
| 324 | Index Vcols = m_computeThinV ? m_diagSize : householderV.cols(); | 
|---|
| 325 | m_matrixV = MatrixX::Identity(householderV.cols(), Vcols); | 
|---|
| 326 | m_matrixV.topLeftCorner(m_diagSize, m_diagSize) = naiveU.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize); | 
|---|
| 327 | householderV.applyThisOnTheLeft(m_matrixV); // FIXME this line involves a temporary buffer | 
|---|
| 328 | } | 
|---|
| 329 | } | 
|---|
| 330 |  | 
|---|
| 331 | /** \internal | 
|---|
| 332 | * Performs A = A * B exploiting the special structure of the matrix A. Splitting A as: | 
|---|
| 333 | *  A = [A1] | 
|---|
| 334 | *      [A2] | 
|---|
| 335 | * such that A1.rows()==n1, then we assume that at least half of the columns of A1 and A2 are zeros. | 
|---|
| 336 | * We can thus pack them prior to the the matrix product. However, this is only worth the effort if the matrix is large | 
|---|
| 337 | * enough. | 
|---|
| 338 | */ | 
|---|
| 339 | template<typename MatrixType> | 
|---|
| 340 | void BDCSVD<MatrixType>::structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1) | 
|---|
| 341 | { | 
|---|
| 342 | Index n = A.rows(); | 
|---|
| 343 | if(n>100) | 
|---|
| 344 | { | 
|---|
| 345 | // If the matrices are large enough, let's exploit the sparse structure of A by | 
|---|
| 346 | // splitting it in half (wrt n1), and packing the non-zero columns. | 
|---|
| 347 | Index n2 = n - n1; | 
|---|
| 348 | Map<MatrixXr> A1(m_workspace.data()      , n1, n); | 
|---|
| 349 | Map<MatrixXr> A2(m_workspace.data()+ n1*n, n2, n); | 
|---|
| 350 | Map<MatrixXr> B1(m_workspace.data()+  n*n, n,  n); | 
|---|
| 351 | Map<MatrixXr> B2(m_workspace.data()+2*n*n, n,  n); | 
|---|
| 352 | Index k1=0, k2=0; | 
|---|
| 353 | for(Index j=0; j<n; ++j) | 
|---|
| 354 | { | 
|---|
| 355 | if( (A.col(j).head(n1).array()!=Literal(0)).any() ) | 
|---|
| 356 | { | 
|---|
| 357 | A1.col(k1) = A.col(j).head(n1); | 
|---|
| 358 | B1.row(k1) = B.row(j); | 
|---|
| 359 | ++k1; | 
|---|
| 360 | } | 
|---|
| 361 | if( (A.col(j).tail(n2).array()!=Literal(0)).any() ) | 
|---|
| 362 | { | 
|---|
| 363 | A2.col(k2) = A.col(j).tail(n2); | 
|---|
| 364 | B2.row(k2) = B.row(j); | 
|---|
| 365 | ++k2; | 
|---|
| 366 | } | 
|---|
| 367 | } | 
|---|
| 368 |  | 
|---|
| 369 | A.topRows(n1).noalias()    = A1.leftCols(k1) * B1.topRows(k1); | 
|---|
| 370 | A.bottomRows(n2).noalias() = A2.leftCols(k2) * B2.topRows(k2); | 
|---|
| 371 | } | 
|---|
| 372 | else | 
|---|
| 373 | { | 
|---|
| 374 | Map<MatrixXr,Aligned> tmp(m_workspace.data(),n,n); | 
|---|
| 375 | tmp.noalias() = A*B; | 
|---|
| 376 | A = tmp; | 
|---|
| 377 | } | 
|---|
| 378 | } | 
|---|
| 379 |  | 
|---|
| 380 | // The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the | 
|---|
| 381 | // place of the submatrix we are currently working on. | 
|---|
| 382 |  | 
|---|
| 383 | //@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU; | 
|---|
| 384 | //@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU; | 
|---|
| 385 | // lastCol + 1 - firstCol is the size of the submatrix. | 
|---|
| 386 | //@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section 1 for more information on W) | 
|---|
| 387 | //@param firstRowW : Same as firstRowW with the column. | 
|---|
| 388 | //@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix | 
|---|
| 389 | // to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper. | 
|---|
| 390 | template<typename MatrixType> | 
|---|
| 391 | void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift) | 
|---|
| 392 | { | 
|---|
| 393 | // requires rows = cols + 1; | 
|---|
| 394 | using std::pow; | 
|---|
| 395 | using std::sqrt; | 
|---|
| 396 | using std::abs; | 
|---|
| 397 | const Index n = lastCol - firstCol + 1; | 
|---|
| 398 | const Index k = n/2; | 
|---|
| 399 | const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)(); | 
|---|
| 400 | RealScalar alphaK; | 
|---|
| 401 | RealScalar betaK; | 
|---|
| 402 | RealScalar r0; | 
|---|
| 403 | RealScalar lambda, phi, c0, s0; | 
|---|
| 404 | VectorType l, f; | 
|---|
| 405 | // We use the other algorithm which is more efficient for small | 
|---|
| 406 | // matrices. | 
|---|
| 407 | if (n < m_algoswap) | 
|---|
| 408 | { | 
|---|
| 409 | // FIXME this line involves temporaries | 
|---|
| 410 | JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n), ComputeFullU | (m_compV ? ComputeFullV : 0)); | 
|---|
| 411 | if (m_compU) | 
|---|
| 412 | m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = b.matrixU(); | 
|---|
| 413 | else | 
|---|
| 414 | { | 
|---|
| 415 | m_naiveU.row(0).segment(firstCol, n + 1).real() = b.matrixU().row(0); | 
|---|
| 416 | m_naiveU.row(1).segment(firstCol, n + 1).real() = b.matrixU().row(n); | 
|---|
| 417 | } | 
|---|
| 418 | if (m_compV) m_naiveV.block(firstRowW, firstColW, n, n).real() = b.matrixV(); | 
|---|
| 419 | m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero(); | 
|---|
| 420 | m_computed.diagonal().segment(firstCol + shift, n) = b.singularValues().head(n); | 
|---|
| 421 | return; | 
|---|
| 422 | } | 
|---|
| 423 | // We use the divide and conquer algorithm | 
|---|
| 424 | alphaK =  m_computed(firstCol + k, firstCol + k); | 
|---|
| 425 | betaK = m_computed(firstCol + k + 1, firstCol + k); | 
|---|
| 426 | // The divide must be done in that order in order to have good results. Divide change the data inside the submatrices | 
|---|
| 427 | // and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the | 
|---|
| 428 | // right submatrix before the left one. | 
|---|
| 429 | divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift); | 
|---|
| 430 | divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1); | 
|---|
| 431 |  | 
|---|
| 432 | if (m_compU) | 
|---|
| 433 | { | 
|---|
| 434 | lambda = m_naiveU(firstCol + k, firstCol + k); | 
|---|
| 435 | phi = m_naiveU(firstCol + k + 1, lastCol + 1); | 
|---|
| 436 | } | 
|---|
| 437 | else | 
|---|
| 438 | { | 
|---|
| 439 | lambda = m_naiveU(1, firstCol + k); | 
|---|
| 440 | phi = m_naiveU(0, lastCol + 1); | 
|---|
| 441 | } | 
|---|
| 442 | r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda)) + abs(betaK * phi) * abs(betaK * phi)); | 
|---|
| 443 | if (m_compU) | 
|---|
| 444 | { | 
|---|
| 445 | l = m_naiveU.row(firstCol + k).segment(firstCol, k); | 
|---|
| 446 | f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1); | 
|---|
| 447 | } | 
|---|
| 448 | else | 
|---|
| 449 | { | 
|---|
| 450 | l = m_naiveU.row(1).segment(firstCol, k); | 
|---|
| 451 | f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1); | 
|---|
| 452 | } | 
|---|
| 453 | if (m_compV) m_naiveV(firstRowW+k, firstColW) = Literal(1); | 
|---|
| 454 | if (r0<considerZero) | 
|---|
| 455 | { | 
|---|
| 456 | c0 = Literal(1); | 
|---|
| 457 | s0 = Literal(0); | 
|---|
| 458 | } | 
|---|
| 459 | else | 
|---|
| 460 | { | 
|---|
| 461 | c0 = alphaK * lambda / r0; | 
|---|
| 462 | s0 = betaK * phi / r0; | 
|---|
| 463 | } | 
|---|
| 464 |  | 
|---|
| 465 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|---|
| 466 | assert(m_naiveU.allFinite()); | 
|---|
| 467 | assert(m_naiveV.allFinite()); | 
|---|
| 468 | assert(m_computed.allFinite()); | 
|---|
| 469 | #endif | 
|---|
| 470 |  | 
|---|
| 471 | if (m_compU) | 
|---|
| 472 | { | 
|---|
| 473 | MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1)); | 
|---|
| 474 | // we shiftW Q1 to the right | 
|---|
| 475 | for (Index i = firstCol + k - 1; i >= firstCol; i--) | 
|---|
| 476 | m_naiveU.col(i + 1).segment(firstCol, k + 1) = m_naiveU.col(i).segment(firstCol, k + 1); | 
|---|
| 477 | // we shift q1 at the left with a factor c0 | 
|---|
| 478 | m_naiveU.col(firstCol).segment( firstCol, k + 1) = (q1 * c0); | 
|---|
| 479 | // last column = q1 * - s0 | 
|---|
| 480 | m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) = (q1 * ( - s0)); | 
|---|
| 481 | // first column = q2 * s0 | 
|---|
| 482 | m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) = m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) * s0; | 
|---|
| 483 | // q2 *= c0 | 
|---|
| 484 | m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0; | 
|---|
| 485 | } | 
|---|
| 486 | else | 
|---|
| 487 | { | 
|---|
| 488 | RealScalar q1 = m_naiveU(0, firstCol + k); | 
|---|
| 489 | // we shift Q1 to the right | 
|---|
| 490 | for (Index i = firstCol + k - 1; i >= firstCol; i--) | 
|---|
| 491 | m_naiveU(0, i + 1) = m_naiveU(0, i); | 
|---|
| 492 | // we shift q1 at the left with a factor c0 | 
|---|
| 493 | m_naiveU(0, firstCol) = (q1 * c0); | 
|---|
| 494 | // last column = q1 * - s0 | 
|---|
| 495 | m_naiveU(0, lastCol + 1) = (q1 * ( - s0)); | 
|---|
| 496 | // first column = q2 * s0 | 
|---|
| 497 | m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0; | 
|---|
| 498 | // q2 *= c0 | 
|---|
| 499 | m_naiveU(1, lastCol + 1) *= c0; | 
|---|
| 500 | m_naiveU.row(1).segment(firstCol + 1, k).setZero(); | 
|---|
| 501 | m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero(); | 
|---|
| 502 | } | 
|---|
| 503 |  | 
|---|
| 504 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|---|
| 505 | assert(m_naiveU.allFinite()); | 
|---|
| 506 | assert(m_naiveV.allFinite()); | 
|---|
| 507 | assert(m_computed.allFinite()); | 
|---|
| 508 | #endif | 
|---|
| 509 |  | 
|---|
| 510 | m_computed(firstCol + shift, firstCol + shift) = r0; | 
|---|
| 511 | m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) = alphaK * l.transpose().real(); | 
|---|
| 512 | m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) = betaK * f.transpose().real(); | 
|---|
| 513 |  | 
|---|
| 514 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|---|
| 515 | ArrayXr tmp1 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues(); | 
|---|
| 516 | #endif | 
|---|
| 517 | // Second part: try to deflate singular values in combined matrix | 
|---|
| 518 | deflation(firstCol, lastCol, k, firstRowW, firstColW, shift); | 
|---|
| 519 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|---|
| 520 | ArrayXr tmp2 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues(); | 
|---|
| 521 | std::cout << "\n\nj1 = "<< tmp1.transpose().format(bdcsvdfmt) << "\n"; | 
|---|
| 522 | std::cout << "j2 = "<< tmp2.transpose().format(bdcsvdfmt) << "\n\n"; | 
|---|
| 523 | std::cout << "err:      "<< ((tmp1-tmp2).abs()>1e-12*tmp2.abs()).transpose() << "\n"; | 
|---|
| 524 | static int count = 0; | 
|---|
| 525 | std::cout << "# "<< ++count << "\n\n"; | 
|---|
| 526 | assert((tmp1-tmp2).matrix().norm() < 1e-14*tmp2.matrix().norm()); | 
|---|
| 527 | //   assert(count<681); | 
|---|
| 528 | //   assert(((tmp1-tmp2).abs()<1e-13*tmp2.abs()).all()); | 
|---|
| 529 | #endif | 
|---|
| 530 |  | 
|---|
| 531 | // Third part: compute SVD of combined matrix | 
|---|
| 532 | MatrixXr UofSVD, VofSVD; | 
|---|
| 533 | VectorType singVals; | 
|---|
| 534 | computeSVDofM(firstCol + shift, n, UofSVD, singVals, VofSVD); | 
|---|
| 535 |  | 
|---|
| 536 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|---|
| 537 | assert(UofSVD.allFinite()); | 
|---|
| 538 | assert(VofSVD.allFinite()); | 
|---|
| 539 | #endif | 
|---|
| 540 |  | 
|---|
| 541 | if (m_compU) | 
|---|
| 542 | structured_update(m_naiveU.block(firstCol, firstCol, n + 1, n + 1), UofSVD, (n+2)/2); | 
|---|
| 543 | else | 
|---|
| 544 | { | 
|---|
| 545 | Map<Matrix<RealScalar,2,Dynamic>,Aligned> tmp(m_workspace.data(),2,n+1); | 
|---|
| 546 | tmp.noalias() = m_naiveU.middleCols(firstCol, n+1) * UofSVD; | 
|---|
| 547 | m_naiveU.middleCols(firstCol, n + 1) = tmp; | 
|---|
| 548 | } | 
|---|
| 549 |  | 
|---|
| 550 | if (m_compV)  structured_update(m_naiveV.block(firstRowW, firstColW, n, n), VofSVD, (n+1)/2); | 
|---|
| 551 |  | 
|---|
| 552 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|---|
| 553 | assert(m_naiveU.allFinite()); | 
|---|
| 554 | assert(m_naiveV.allFinite()); | 
|---|
| 555 | assert(m_computed.allFinite()); | 
|---|
| 556 | #endif | 
|---|
| 557 |  | 
|---|
| 558 | m_computed.block(firstCol + shift, firstCol + shift, n, n).setZero(); | 
|---|
| 559 | m_computed.block(firstCol + shift, firstCol + shift, n, n).diagonal() = singVals; | 
|---|
| 560 | }// end divide | 
|---|
| 561 |  | 
|---|
| 562 | // Compute SVD of m_computed.block(firstCol, firstCol, n + 1, n); this block only has non-zeros in | 
|---|
| 563 | // the first column and on the diagonal and has undergone deflation, so diagonal is in increasing | 
|---|
| 564 | // order except for possibly the (0,0) entry. The computed SVD is stored U, singVals and V, except | 
|---|
| 565 | // that if m_compV is false, then V is not computed. Singular values are sorted in decreasing order. | 
|---|
| 566 | // | 
|---|
| 567 | // TODO Opportunities for optimization: better root finding algo, better stopping criterion, better | 
|---|
| 568 | // handling of round-off errors, be consistent in ordering | 
|---|
| 569 | // For instance, to solve the secular equation using FMM, see http://www.stat.uchicago.edu/~lekheng/courses/302/classics/greengard-rokhlin.pdf | 
|---|
| 570 | template <typename MatrixType> | 
|---|
| 571 | void BDCSVD<MatrixType>::computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V) | 
|---|
| 572 | { | 
|---|
| 573 | const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)(); | 
|---|
| 574 | using std::abs; | 
|---|
| 575 | ArrayRef col0 = m_computed.col(firstCol).segment(firstCol, n); | 
|---|
| 576 | m_workspace.head(n) =  m_computed.block(firstCol, firstCol, n, n).diagonal(); | 
|---|
| 577 | ArrayRef diag = m_workspace.head(n); | 
|---|
| 578 | diag(0) = Literal(0); | 
|---|
| 579 |  | 
|---|
| 580 | // Allocate space for singular values and vectors | 
|---|
| 581 | singVals.resize(n); | 
|---|
| 582 | U.resize(n+1, n+1); | 
|---|
| 583 | if (m_compV) V.resize(n, n); | 
|---|
| 584 |  | 
|---|
| 585 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|---|
| 586 | if (col0.hasNaN() || diag.hasNaN()) | 
|---|
| 587 | std::cout << "\n\nHAS NAN\n\n"; | 
|---|
| 588 | #endif | 
|---|
| 589 |  | 
|---|
| 590 | // Many singular values might have been deflated, the zero ones have been moved to the end, | 
|---|
| 591 | // but others are interleaved and we must ignore them at this stage. | 
|---|
| 592 | // To this end, let's compute a permutation skipping them: | 
|---|
| 593 | Index actual_n = n; | 
|---|
| 594 | while(actual_n>1 && diag(actual_n-1)==Literal(0)) --actual_n; | 
|---|
| 595 | Index m = 0; // size of the deflated problem | 
|---|
| 596 | for(Index k=0;k<actual_n;++k) | 
|---|
| 597 | if(abs(col0(k))>considerZero) | 
|---|
| 598 | m_workspaceI(m++) = k; | 
|---|
| 599 | Map<ArrayXi> perm(m_workspaceI.data(),m); | 
|---|
| 600 |  | 
|---|
| 601 | Map<ArrayXr> shifts(m_workspace.data()+1*n, n); | 
|---|
| 602 | Map<ArrayXr> mus(m_workspace.data()+2*n, n); | 
|---|
| 603 | Map<ArrayXr> zhat(m_workspace.data()+3*n, n); | 
|---|
| 604 |  | 
|---|
| 605 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|---|
| 606 | std::cout << "computeSVDofM using:\n"; | 
|---|
| 607 | std::cout << "  z: "<< col0.transpose() << "\n"; | 
|---|
| 608 | std::cout << "  d: "<< diag.transpose() << "\n"; | 
|---|
| 609 | #endif | 
|---|
| 610 |  | 
|---|
| 611 | // Compute singVals, shifts, and mus | 
|---|
| 612 | computeSingVals(col0, diag, perm, singVals, shifts, mus); | 
|---|
| 613 |  | 
|---|
| 614 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|---|
| 615 | std::cout << "  j:        "<< (m_computed.block(firstCol, firstCol, n, n)).jacobiSvd().singularValues().transpose().reverse() << "\n\n"; | 
|---|
| 616 | std::cout << "  sing-val: "<< singVals.transpose() << "\n"; | 
|---|
| 617 | std::cout << "  mu:       "<< mus.transpose() << "\n"; | 
|---|
| 618 | std::cout << "  shift:    "<< shifts.transpose() << "\n"; | 
|---|
| 619 |  | 
|---|
| 620 | { | 
|---|
| 621 | Index actual_n = n; | 
|---|
| 622 | while(actual_n>1 && abs(col0(actual_n-1))<considerZero) --actual_n; | 
|---|
| 623 | std::cout << "\n\n    mus:    "<< mus.head(actual_n).transpose() << "\n\n"; | 
|---|
| 624 | std::cout << "    check1 (expect0) : "<< ((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n).transpose() << "\n\n"; | 
|---|
| 625 | std::cout << "    check2 (>0)      : "<< ((singVals.array()-diag) / singVals.array()).head(actual_n).transpose() << "\n\n"; | 
|---|
| 626 | std::cout << "    check3 (>0)      : "<< ((diag.segment(1,actual_n-1)-singVals.head(actual_n-1).array()) / singVals.head(actual_n-1).array()).transpose() << "\n\n\n"; | 
|---|
| 627 | std::cout << "    check4 (>0)      : "<< ((singVals.segment(1,actual_n-1)-singVals.head(actual_n-1))).transpose() << "\n\n\n"; | 
|---|
| 628 | } | 
|---|
| 629 | #endif | 
|---|
| 630 |  | 
|---|
| 631 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|---|
| 632 | assert(singVals.allFinite()); | 
|---|
| 633 | assert(mus.allFinite()); | 
|---|
| 634 | assert(shifts.allFinite()); | 
|---|
| 635 | #endif | 
|---|
| 636 |  | 
|---|
| 637 | // Compute zhat | 
|---|
| 638 | perturbCol0(col0, diag, perm, singVals, shifts, mus, zhat); | 
|---|
| 639 | #ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE | 
|---|
| 640 | std::cout << "  zhat: "<< zhat.transpose() << "\n"; | 
|---|
| 641 | #endif | 
|---|
| 642 |  | 
|---|
| 643 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|---|
| 644 | assert(zhat.allFinite()); | 
|---|
| 645 | #endif | 
|---|
| 646 |  | 
|---|
| 647 | computeSingVecs(zhat, diag, perm, singVals, shifts, mus, U, V); | 
|---|
| 648 |  | 
|---|
| 649 | #ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE | 
|---|
| 650 | std::cout << "U^T U: "<< (U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() << "\n"; | 
|---|
| 651 | std::cout << "V^T V: "<< (V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() << "\n"; | 
|---|
| 652 | #endif | 
|---|
| 653 |  | 
|---|
| 654 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|---|
| 655 | assert(U.allFinite()); | 
|---|
| 656 | assert(V.allFinite()); | 
|---|
| 657 | assert((U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() < 1e-14 * n); | 
|---|
| 658 | assert((V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() < 1e-14 * n); | 
|---|
| 659 | assert(m_naiveU.allFinite()); | 
|---|
| 660 | assert(m_naiveV.allFinite()); | 
|---|
| 661 | assert(m_computed.allFinite()); | 
|---|
| 662 | #endif | 
|---|
| 663 |  | 
|---|
| 664 | // Because of deflation, the singular values might not be completely sorted. | 
|---|
| 665 | // Fortunately, reordering them is a O(n) problem | 
|---|
| 666 | for(Index i=0; i<actual_n-1; ++i) | 
|---|
| 667 | { | 
|---|
| 668 | if(singVals(i)>singVals(i+1)) | 
|---|
| 669 | { | 
|---|
| 670 | using std::swap; | 
|---|
| 671 | swap(singVals(i),singVals(i+1)); | 
|---|
| 672 | U.col(i).swap(U.col(i+1)); | 
|---|
| 673 | if(m_compV) V.col(i).swap(V.col(i+1)); | 
|---|
| 674 | } | 
|---|
| 675 | } | 
|---|
| 676 |  | 
|---|
| 677 | // Reverse order so that singular values in increased order | 
|---|
| 678 | // Because of deflation, the zeros singular-values are already at the end | 
|---|
| 679 | singVals.head(actual_n).reverseInPlace(); | 
|---|
| 680 | U.leftCols(actual_n).rowwise().reverseInPlace(); | 
|---|
| 681 | if (m_compV) V.leftCols(actual_n).rowwise().reverseInPlace(); | 
|---|
| 682 |  | 
|---|
| 683 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|---|
| 684 | JacobiSVD<MatrixXr> jsvd(m_computed.block(firstCol, firstCol, n, n) ); | 
|---|
| 685 | std::cout << "  * j:        "<< jsvd.singularValues().transpose() << "\n\n"; | 
|---|
| 686 | std::cout << "  * sing-val: "<< singVals.transpose() << "\n"; | 
|---|
| 687 | //   std::cout << "  * err:      " << ((jsvd.singularValues()-singVals)>1e-13*singVals.norm()).transpose() << "\n"; | 
|---|
| 688 | #endif | 
|---|
| 689 | } | 
|---|
| 690 |  | 
|---|
| 691 | template <typename MatrixType> | 
|---|
| 692 | typename BDCSVD<MatrixType>::RealScalar BDCSVD<MatrixType>::secularEq(RealScalar mu, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift) | 
|---|
| 693 | { | 
|---|
| 694 | Index m = perm.size(); | 
|---|
| 695 | RealScalar res = Literal(1); | 
|---|
| 696 | for(Index i=0; i<m; ++i) | 
|---|
| 697 | { | 
|---|
| 698 | Index j = perm(i); | 
|---|
| 699 | // The following expression could be rewritten to involve only a single division, | 
|---|
| 700 | // but this would make the expression more sensitive to overflow. | 
|---|
| 701 | res += (col0(j) / (diagShifted(j) - mu)) * (col0(j) / (diag(j) + shift + mu)); | 
|---|
| 702 | } | 
|---|
| 703 | return res; | 
|---|
| 704 |  | 
|---|
| 705 | } | 
|---|
| 706 |  | 
|---|
| 707 | template <typename MatrixType> | 
|---|
| 708 | void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, | 
|---|
| 709 | VectorType& singVals, ArrayRef shifts, ArrayRef mus) | 
|---|
| 710 | { | 
|---|
| 711 | using std::abs; | 
|---|
| 712 | using std::swap; | 
|---|
| 713 | using std::sqrt; | 
|---|
| 714 |  | 
|---|
| 715 | Index n = col0.size(); | 
|---|
| 716 | Index actual_n = n; | 
|---|
| 717 | // Note that here actual_n is computed based on col0(i)==0 instead of diag(i)==0 as above | 
|---|
| 718 | // because 1) we have diag(i)==0 => col0(i)==0 and 2) if col0(i)==0, then diag(i) is already a singular value. | 
|---|
| 719 | while(actual_n>1 && col0(actual_n-1)==Literal(0)) --actual_n; | 
|---|
| 720 |  | 
|---|
| 721 | for (Index k = 0; k < n; ++k) | 
|---|
| 722 | { | 
|---|
| 723 | if (col0(k) == Literal(0) || actual_n==1) | 
|---|
| 724 | { | 
|---|
| 725 | // if col0(k) == 0, then entry is deflated, so singular value is on diagonal | 
|---|
| 726 | // if actual_n==1, then the deflated problem is already diagonalized | 
|---|
| 727 | singVals(k) = k==0 ? col0(0) : diag(k); | 
|---|
| 728 | mus(k) = Literal(0); | 
|---|
| 729 | shifts(k) = k==0 ? col0(0) : diag(k); | 
|---|
| 730 | continue; | 
|---|
| 731 | } | 
|---|
| 732 |  | 
|---|
| 733 | // otherwise, use secular equation to find singular value | 
|---|
| 734 | RealScalar left = diag(k); | 
|---|
| 735 | RealScalar right; // was: = (k != actual_n-1) ? diag(k+1) : (diag(actual_n-1) + col0.matrix().norm()); | 
|---|
| 736 | if(k==actual_n-1) | 
|---|
| 737 | right = (diag(actual_n-1) + col0.matrix().norm()); | 
|---|
| 738 | else | 
|---|
| 739 | { | 
|---|
| 740 | // Skip deflated singular values, | 
|---|
| 741 | // recall that at this stage we assume that z[j]!=0 and all entries for which z[j]==0 have been put aside. | 
|---|
| 742 | // This should be equivalent to using perm[] | 
|---|
| 743 | Index l = k+1; | 
|---|
| 744 | while(col0(l)==Literal(0)) { ++l; eigen_internal_assert(l<actual_n); } | 
|---|
| 745 | right = diag(l); | 
|---|
| 746 | } | 
|---|
| 747 |  | 
|---|
| 748 | // first decide whether it's closer to the left end or the right end | 
|---|
| 749 | RealScalar mid = left + (right-left) / Literal(2); | 
|---|
| 750 | RealScalar fMid = secularEq(mid, col0, diag, perm, diag, Literal(0)); | 
|---|
| 751 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|---|
| 752 | std::cout << right-left << "\n"; | 
|---|
| 753 | std::cout << "fMid = "<< fMid << " "<< secularEq(mid-left, col0, diag, perm, diag-left, left) << " "<< secularEq(mid-right, col0, diag, perm, diag-right, right)   << "\n"; | 
|---|
| 754 | std::cout << "     = "<< secularEq(0.1*(left+right), col0, diag, perm, diag, 0) | 
|---|
| 755 | << " "<< secularEq(0.2*(left+right), col0, diag, perm, diag, 0) | 
|---|
| 756 | << " "<< secularEq(0.3*(left+right), col0, diag, perm, diag, 0) | 
|---|
| 757 | << " "<< secularEq(0.4*(left+right), col0, diag, perm, diag, 0) | 
|---|
| 758 | << " "<< secularEq(0.49*(left+right), col0, diag, perm, diag, 0) | 
|---|
| 759 | << " "<< secularEq(0.5*(left+right), col0, diag, perm, diag, 0) | 
|---|
| 760 | << " "<< secularEq(0.51*(left+right), col0, diag, perm, diag, 0) | 
|---|
| 761 | << " "<< secularEq(0.6*(left+right), col0, diag, perm, diag, 0) | 
|---|
| 762 | << " "<< secularEq(0.7*(left+right), col0, diag, perm, diag, 0) | 
|---|
| 763 | << " "<< secularEq(0.8*(left+right), col0, diag, perm, diag, 0) | 
|---|
| 764 | << " "<< secularEq(0.9*(left+right), col0, diag, perm, diag, 0) << "\n"; | 
|---|
| 765 | #endif | 
|---|
| 766 | RealScalar shift = (k == actual_n-1 || fMid > Literal(0)) ? left : right; | 
|---|
| 767 |  | 
|---|
| 768 | // measure everything relative to shift | 
|---|
| 769 | Map<ArrayXr> diagShifted(m_workspace.data()+4*n, n); | 
|---|
| 770 | diagShifted = diag - shift; | 
|---|
| 771 |  | 
|---|
| 772 | // initial guess | 
|---|
| 773 | RealScalar muPrev, muCur; | 
|---|
| 774 | if (shift == left) | 
|---|
| 775 | { | 
|---|
| 776 | muPrev = (right - left) * RealScalar(0.1); | 
|---|
| 777 | if (k == actual_n-1) muCur = right - left; | 
|---|
| 778 | else                 muCur = (right - left) * RealScalar(0.5); | 
|---|
| 779 | } | 
|---|
| 780 | else | 
|---|
| 781 | { | 
|---|
| 782 | muPrev = -(right - left) * RealScalar(0.1); | 
|---|
| 783 | muCur = -(right - left) * RealScalar(0.5); | 
|---|
| 784 | } | 
|---|
| 785 |  | 
|---|
| 786 | RealScalar fPrev = secularEq(muPrev, col0, diag, perm, diagShifted, shift); | 
|---|
| 787 | RealScalar fCur = secularEq(muCur, col0, diag, perm, diagShifted, shift); | 
|---|
| 788 | if (abs(fPrev) < abs(fCur)) | 
|---|
| 789 | { | 
|---|
| 790 | swap(fPrev, fCur); | 
|---|
| 791 | swap(muPrev, muCur); | 
|---|
| 792 | } | 
|---|
| 793 |  | 
|---|
| 794 | // rational interpolation: fit a function of the form a / mu + b through the two previous | 
|---|
| 795 | // iterates and use its zero to compute the next iterate | 
|---|
| 796 | bool useBisection = fPrev*fCur>Literal(0); | 
|---|
| 797 | while (fCur!=Literal(0) && abs(muCur - muPrev) > Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(muCur), abs(muPrev)) && abs(fCur - fPrev)>NumTraits<RealScalar>::epsilon() && !useBisection) | 
|---|
| 798 | { | 
|---|
| 799 | ++m_numIters; | 
|---|
| 800 |  | 
|---|
| 801 | // Find a and b such that the function f(mu) = a / mu + b matches the current and previous samples. | 
|---|
| 802 | RealScalar a = (fCur - fPrev) / (Literal(1)/muCur - Literal(1)/muPrev); | 
|---|
| 803 | RealScalar b = fCur - a / muCur; | 
|---|
| 804 | // And find mu such that f(mu)==0: | 
|---|
| 805 | RealScalar muZero = -a/b; | 
|---|
| 806 | RealScalar fZero = secularEq(muZero, col0, diag, perm, diagShifted, shift); | 
|---|
| 807 |  | 
|---|
| 808 | muPrev = muCur; | 
|---|
| 809 | fPrev = fCur; | 
|---|
| 810 | muCur = muZero; | 
|---|
| 811 | fCur = fZero; | 
|---|
| 812 |  | 
|---|
| 813 |  | 
|---|
| 814 | if (shift == left  && (muCur < Literal(0) || muCur > right - left)) useBisection = true; | 
|---|
| 815 | if (shift == right && (muCur < -(right - left) || muCur > Literal(0))) useBisection = true; | 
|---|
| 816 | if (abs(fCur)>abs(fPrev)) useBisection = true; | 
|---|
| 817 | } | 
|---|
| 818 |  | 
|---|
| 819 | // fall back on bisection method if rational interpolation did not work | 
|---|
| 820 | if (useBisection) | 
|---|
| 821 | { | 
|---|
| 822 | #ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE | 
|---|
| 823 | std::cout << "useBisection for k = "<< k << ", actual_n = "<< actual_n << "\n"; | 
|---|
| 824 | #endif | 
|---|
| 825 | RealScalar leftShifted, rightShifted; | 
|---|
| 826 | if (shift == left) | 
|---|
| 827 | { | 
|---|
| 828 | // to avoid overflow, we must have mu > max(real_min, |z(k)|/sqrt(real_max)), | 
|---|
| 829 | // the factor 2 is to be more conservative | 
|---|
| 830 | leftShifted = numext::maxi<RealScalar>( (std::numeric_limits<RealScalar>::min)(), Literal(2) * abs(col0(k)) / sqrt((std::numeric_limits<RealScalar>::max)()) ); | 
|---|
| 831 |  | 
|---|
| 832 | // check that we did it right: | 
|---|
| 833 | eigen_internal_assert( (numext::isfinite)( (col0(k)/leftShifted)*(col0(k)/(diag(k)+shift+leftShifted)) ) ); | 
|---|
| 834 | // I don't understand why the case k==0 would be special there: | 
|---|
| 835 | // if (k == 0) rightShifted = right - left; else | 
|---|
| 836 | rightShifted = (k==actual_n-1) ? right : ((right - left) * RealScalar(0.51)); // theoretically we can take 0.5, but let's be safe | 
|---|
| 837 | } | 
|---|
| 838 | else | 
|---|
| 839 | { | 
|---|
| 840 | leftShifted = -(right - left) * RealScalar(0.51); | 
|---|
| 841 | if(k+1<n) | 
|---|
| 842 | rightShifted = -numext::maxi<RealScalar>( (std::numeric_limits<RealScalar>::min)(), abs(col0(k+1)) / sqrt((std::numeric_limits<RealScalar>::max)()) ); | 
|---|
| 843 | else | 
|---|
| 844 | rightShifted = -(std::numeric_limits<RealScalar>::min)(); | 
|---|
| 845 | } | 
|---|
| 846 |  | 
|---|
| 847 | RealScalar fLeft = secularEq(leftShifted, col0, diag, perm, diagShifted, shift); | 
|---|
| 848 |  | 
|---|
| 849 | #if defined EIGEN_INTERNAL_DEBUGGING || defined EIGEN_BDCSVD_DEBUG_VERBOSE | 
|---|
| 850 | RealScalar fRight = secularEq(rightShifted, col0, diag, perm, diagShifted, shift); | 
|---|
| 851 | #endif | 
|---|
| 852 |  | 
|---|
| 853 | #ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE | 
|---|
| 854 | if(!(fLeft * fRight<0)) | 
|---|
| 855 | { | 
|---|
| 856 | std::cout << "fLeft: "<< leftShifted << " - "<< diagShifted.head(10).transpose()  << "\n ; "<< bool(left==shift) << " "<< (left-shift) << "\n"; | 
|---|
| 857 | std::cout << k << " : "<<  fLeft << " * "<< fRight << " == "<< fLeft * fRight << "  ;  "<< left << " - "<< right << " -> "<<  leftShifted << " "<< rightShifted << "   shift="<< shift << "\n"; | 
|---|
| 858 | } | 
|---|
| 859 | #endif | 
|---|
| 860 | eigen_internal_assert(fLeft * fRight < Literal(0)); | 
|---|
| 861 |  | 
|---|
| 862 | while (rightShifted - leftShifted > Literal(2) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(leftShifted), abs(rightShifted))) | 
|---|
| 863 | { | 
|---|
| 864 | RealScalar midShifted = (leftShifted + rightShifted) / Literal(2); | 
|---|
| 865 | fMid = secularEq(midShifted, col0, diag, perm, diagShifted, shift); | 
|---|
| 866 | if (fLeft * fMid < Literal(0)) | 
|---|
| 867 | { | 
|---|
| 868 | rightShifted = midShifted; | 
|---|
| 869 | } | 
|---|
| 870 | else | 
|---|
| 871 | { | 
|---|
| 872 | leftShifted = midShifted; | 
|---|
| 873 | fLeft = fMid; | 
|---|
| 874 | } | 
|---|
| 875 | } | 
|---|
| 876 |  | 
|---|
| 877 | muCur = (leftShifted + rightShifted) / Literal(2); | 
|---|
| 878 | } | 
|---|
| 879 |  | 
|---|
| 880 | singVals[k] = shift + muCur; | 
|---|
| 881 | shifts[k] = shift; | 
|---|
| 882 | mus[k] = muCur; | 
|---|
| 883 |  | 
|---|
| 884 | // perturb singular value slightly if it equals diagonal entry to avoid division by zero later | 
|---|
| 885 | // (deflation is supposed to avoid this from happening) | 
|---|
| 886 | // - this does no seem to be necessary anymore - | 
|---|
| 887 | //     if (singVals[k] == left) singVals[k] *= 1 + NumTraits<RealScalar>::epsilon(); | 
|---|
| 888 | //     if (singVals[k] == right) singVals[k] *= 1 - NumTraits<RealScalar>::epsilon(); | 
|---|
| 889 | } | 
|---|
| 890 | } | 
|---|
| 891 |  | 
|---|
| 892 |  | 
|---|
| 893 | // zhat is perturbation of col0 for which singular vectors can be computed stably (see Section 3.1) | 
|---|
| 894 | template <typename MatrixType> | 
|---|
| 895 | void BDCSVD<MatrixType>::perturbCol0 | 
|---|
| 896 | (const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals, | 
|---|
| 897 | const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat) | 
|---|
| 898 | { | 
|---|
| 899 | using std::sqrt; | 
|---|
| 900 | Index n = col0.size(); | 
|---|
| 901 | Index m = perm.size(); | 
|---|
| 902 | if(m==0) | 
|---|
| 903 | { | 
|---|
| 904 | zhat.setZero(); | 
|---|
| 905 | return; | 
|---|
| 906 | } | 
|---|
| 907 | Index last = perm(m-1); | 
|---|
| 908 | // The offset permits to skip deflated entries while computing zhat | 
|---|
| 909 | for (Index k = 0; k < n; ++k) | 
|---|
| 910 | { | 
|---|
| 911 | if (col0(k) == Literal(0)) // deflated | 
|---|
| 912 | zhat(k) = Literal(0); | 
|---|
| 913 | else | 
|---|
| 914 | { | 
|---|
| 915 | // see equation (3.6) | 
|---|
| 916 | RealScalar dk = diag(k); | 
|---|
| 917 | RealScalar prod = (singVals(last) + dk) * (mus(last) + (shifts(last) - dk)); | 
|---|
| 918 |  | 
|---|
| 919 | for(Index l = 0; l<m; ++l) | 
|---|
| 920 | { | 
|---|
| 921 | Index i = perm(l); | 
|---|
| 922 | if(i!=k) | 
|---|
| 923 | { | 
|---|
| 924 | Index j = i<k ? i : perm(l-1); | 
|---|
| 925 | prod *= ((singVals(j)+dk) / ((diag(i)+dk))) * ((mus(j)+(shifts(j)-dk)) / ((diag(i)-dk))); | 
|---|
| 926 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|---|
| 927 | if(i!=k && std::abs(((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) - 1) > 0.9 ) | 
|---|
| 928 | std::cout << "     "<< ((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) << " == ("<< (singVals(j)+dk) << " * "<< (mus(j)+(shifts(j)-dk)) | 
|---|
| 929 | << ") / ("<< (diag(i)+dk) << " * "<< (diag(i)-dk) << ")\n"; | 
|---|
| 930 | #endif | 
|---|
| 931 | } | 
|---|
| 932 | } | 
|---|
| 933 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|---|
| 934 | std::cout << "zhat("<< k << ") =  sqrt( "<< prod << ")  ;  "<< (singVals(last) + dk) << " * "<< mus(last) + shifts(last) << " - "<< dk << "\n"; | 
|---|
| 935 | #endif | 
|---|
| 936 | RealScalar tmp = sqrt(prod); | 
|---|
| 937 | zhat(k) = col0(k) > Literal(0) ? tmp : -tmp; | 
|---|
| 938 | } | 
|---|
| 939 | } | 
|---|
| 940 | } | 
|---|
| 941 |  | 
|---|
| 942 | // compute singular vectors | 
|---|
| 943 | template <typename MatrixType> | 
|---|
| 944 | void BDCSVD<MatrixType>::computeSingVecs | 
|---|
| 945 | (const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals, | 
|---|
| 946 | const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V) | 
|---|
| 947 | { | 
|---|
| 948 | Index n = zhat.size(); | 
|---|
| 949 | Index m = perm.size(); | 
|---|
| 950 |  | 
|---|
| 951 | for (Index k = 0; k < n; ++k) | 
|---|
| 952 | { | 
|---|
| 953 | if (zhat(k) == Literal(0)) | 
|---|
| 954 | { | 
|---|
| 955 | U.col(k) = VectorType::Unit(n+1, k); | 
|---|
| 956 | if (m_compV) V.col(k) = VectorType::Unit(n, k); | 
|---|
| 957 | } | 
|---|
| 958 | else | 
|---|
| 959 | { | 
|---|
| 960 | U.col(k).setZero(); | 
|---|
| 961 | for(Index l=0;l<m;++l) | 
|---|
| 962 | { | 
|---|
| 963 | Index i = perm(l); | 
|---|
| 964 | U(i,k) = zhat(i)/(((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k])); | 
|---|
| 965 | } | 
|---|
| 966 | U(n,k) = Literal(0); | 
|---|
| 967 | U.col(k).normalize(); | 
|---|
| 968 |  | 
|---|
| 969 | if (m_compV) | 
|---|
| 970 | { | 
|---|
| 971 | V.col(k).setZero(); | 
|---|
| 972 | for(Index l=1;l<m;++l) | 
|---|
| 973 | { | 
|---|
| 974 | Index i = perm(l); | 
|---|
| 975 | V(i,k) = diag(i) * zhat(i) / (((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k])); | 
|---|
| 976 | } | 
|---|
| 977 | V(0,k) = Literal(-1); | 
|---|
| 978 | V.col(k).normalize(); | 
|---|
| 979 | } | 
|---|
| 980 | } | 
|---|
| 981 | } | 
|---|
| 982 | U.col(n) = VectorType::Unit(n+1, n); | 
|---|
| 983 | } | 
|---|
| 984 |  | 
|---|
| 985 |  | 
|---|
| 986 | // page 12_13 | 
|---|
| 987 | // i >= 1, di almost null and zi non null. | 
|---|
| 988 | // We use a rotation to zero out zi applied to the left of M | 
|---|
| 989 | template <typename MatrixType> | 
|---|
| 990 | void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index size) | 
|---|
| 991 | { | 
|---|
| 992 | using std::abs; | 
|---|
| 993 | using std::sqrt; | 
|---|
| 994 | using std::pow; | 
|---|
| 995 | Index start = firstCol + shift; | 
|---|
| 996 | RealScalar c = m_computed(start, start); | 
|---|
| 997 | RealScalar s = m_computed(start+i, start); | 
|---|
| 998 | RealScalar r = numext::hypot(c,s); | 
|---|
| 999 | if (r == Literal(0)) | 
|---|
| 1000 | { | 
|---|
| 1001 | m_computed(start+i, start+i) = Literal(0); | 
|---|
| 1002 | return; | 
|---|
| 1003 | } | 
|---|
| 1004 | m_computed(start,start) = r; | 
|---|
| 1005 | m_computed(start+i, start) = Literal(0); | 
|---|
| 1006 | m_computed(start+i, start+i) = Literal(0); | 
|---|
| 1007 |  | 
|---|
| 1008 | JacobiRotation<RealScalar> J(c/r,-s/r); | 
|---|
| 1009 | if (m_compU)  m_naiveU.middleRows(firstCol, size+1).applyOnTheRight(firstCol, firstCol+i, J); | 
|---|
| 1010 | else          m_naiveU.applyOnTheRight(firstCol, firstCol+i, J); | 
|---|
| 1011 | }// end deflation 43 | 
|---|
| 1012 |  | 
|---|
| 1013 |  | 
|---|
| 1014 | // page 13 | 
|---|
| 1015 | // i,j >= 1, i!=j and |di - dj| < epsilon * norm2(M) | 
|---|
| 1016 | // We apply two rotations to have zj = 0; | 
|---|
| 1017 | // TODO deflation44 is still broken and not properly tested | 
|---|
| 1018 | template <typename MatrixType> | 
|---|
| 1019 | void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size) | 
|---|
| 1020 | { | 
|---|
| 1021 | using std::abs; | 
|---|
| 1022 | using std::sqrt; | 
|---|
| 1023 | using std::conj; | 
|---|
| 1024 | using std::pow; | 
|---|
| 1025 | RealScalar c = m_computed(firstColm+i, firstColm); | 
|---|
| 1026 | RealScalar s = m_computed(firstColm+j, firstColm); | 
|---|
| 1027 | RealScalar r = sqrt(numext::abs2(c) + numext::abs2(s)); | 
|---|
| 1028 | #ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE | 
|---|
| 1029 | std::cout << "deflation 4.4: "<< i << ","<< j << " -> "<< c << " "<< s << " "<< r << " ; " | 
|---|
| 1030 | << m_computed(firstColm + i-1, firstColm)  << " " | 
|---|
| 1031 | << m_computed(firstColm + i, firstColm)  << " " | 
|---|
| 1032 | << m_computed(firstColm + i+1, firstColm) << " " | 
|---|
| 1033 | << m_computed(firstColm + i+2, firstColm) << "\n"; | 
|---|
| 1034 | std::cout << m_computed(firstColm + i-1, firstColm + i-1)  << " " | 
|---|
| 1035 | << m_computed(firstColm + i, firstColm+i)  << " " | 
|---|
| 1036 | << m_computed(firstColm + i+1, firstColm+i+1) << " " | 
|---|
| 1037 | << m_computed(firstColm + i+2, firstColm+i+2) << "\n"; | 
|---|
| 1038 | #endif | 
|---|
| 1039 | if (r==Literal(0)) | 
|---|
| 1040 | { | 
|---|
| 1041 | m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j); | 
|---|
| 1042 | return; | 
|---|
| 1043 | } | 
|---|
| 1044 | c/=r; | 
|---|
| 1045 | s/=r; | 
|---|
| 1046 | m_computed(firstColm + i, firstColm) = r; | 
|---|
| 1047 | m_computed(firstColm + j, firstColm + j) = m_computed(firstColm + i, firstColm + i); | 
|---|
| 1048 | m_computed(firstColm + j, firstColm) = Literal(0); | 
|---|
| 1049 |  | 
|---|
| 1050 | JacobiRotation<RealScalar> J(c,-s); | 
|---|
| 1051 | if (m_compU)  m_naiveU.middleRows(firstColu, size+1).applyOnTheRight(firstColu + i, firstColu + j, J); | 
|---|
| 1052 | else          m_naiveU.applyOnTheRight(firstColu+i, firstColu+j, J); | 
|---|
| 1053 | if (m_compV)  m_naiveV.middleRows(firstRowW, size).applyOnTheRight(firstColW + i, firstColW + j, J); | 
|---|
| 1054 | }// end deflation 44 | 
|---|
| 1055 |  | 
|---|
| 1056 |  | 
|---|
| 1057 | // acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive] | 
|---|
| 1058 | template <typename MatrixType> | 
|---|
| 1059 | void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift) | 
|---|
| 1060 | { | 
|---|
| 1061 | using std::sqrt; | 
|---|
| 1062 | using std::abs; | 
|---|
| 1063 | const Index length = lastCol + 1 - firstCol; | 
|---|
| 1064 |  | 
|---|
| 1065 | Block<MatrixXr,Dynamic,1> col0(m_computed, firstCol+shift, firstCol+shift, length, 1); | 
|---|
| 1066 | Diagonal<MatrixXr> fulldiag(m_computed); | 
|---|
| 1067 | VectorBlock<Diagonal<MatrixXr>,Dynamic> diag(fulldiag, firstCol+shift, length); | 
|---|
| 1068 |  | 
|---|
| 1069 | const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)(); | 
|---|
| 1070 | RealScalar maxDiag = diag.tail((std::max)(Index(1),length-1)).cwiseAbs().maxCoeff(); | 
|---|
| 1071 | RealScalar epsilon_strict = numext::maxi<RealScalar>(considerZero,NumTraits<RealScalar>::epsilon() * maxDiag); | 
|---|
| 1072 | RealScalar epsilon_coarse = Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(col0.cwiseAbs().maxCoeff(), maxDiag); | 
|---|
| 1073 |  | 
|---|
| 1074 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|---|
| 1075 | assert(m_naiveU.allFinite()); | 
|---|
| 1076 | assert(m_naiveV.allFinite()); | 
|---|
| 1077 | assert(m_computed.allFinite()); | 
|---|
| 1078 | #endif | 
|---|
| 1079 |  | 
|---|
| 1080 | #ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE | 
|---|
| 1081 | std::cout << "\ndeflate:"<< diag.head(k+1).transpose() << "  |  "<< diag.segment(k+1,length-k-1).transpose() << "\n"; | 
|---|
| 1082 | #endif | 
|---|
| 1083 |  | 
|---|
| 1084 | //condition 4.1 | 
|---|
| 1085 | if (diag(0) < epsilon_coarse) | 
|---|
| 1086 | { | 
|---|
| 1087 | #ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE | 
|---|
| 1088 | std::cout << "deflation 4.1, because "<< diag(0) << " < "<< epsilon_coarse << "\n"; | 
|---|
| 1089 | #endif | 
|---|
| 1090 | diag(0) = epsilon_coarse; | 
|---|
| 1091 | } | 
|---|
| 1092 |  | 
|---|
| 1093 | //condition 4.2 | 
|---|
| 1094 | for (Index i=1;i<length;++i) | 
|---|
| 1095 | if (abs(col0(i)) < epsilon_strict) | 
|---|
| 1096 | { | 
|---|
| 1097 | #ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE | 
|---|
| 1098 | std::cout << "deflation 4.2, set z("<< i << ") to zero because "<< abs(col0(i)) << " < "<< epsilon_strict << "  (diag("<< i << ")="<< diag(i) << ")\n"; | 
|---|
| 1099 | #endif | 
|---|
| 1100 | col0(i) = Literal(0); | 
|---|
| 1101 | } | 
|---|
| 1102 |  | 
|---|
| 1103 | //condition 4.3 | 
|---|
| 1104 | for (Index i=1;i<length; i++) | 
|---|
| 1105 | if (diag(i) < epsilon_coarse) | 
|---|
| 1106 | { | 
|---|
| 1107 | #ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE | 
|---|
| 1108 | std::cout << "deflation 4.3, cancel z("<< i << ")="<< col0(i) << " because diag("<< i << ")="<< diag(i) << " < "<< epsilon_coarse << "\n"; | 
|---|
| 1109 | #endif | 
|---|
| 1110 | deflation43(firstCol, shift, i, length); | 
|---|
| 1111 | } | 
|---|
| 1112 |  | 
|---|
| 1113 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|---|
| 1114 | assert(m_naiveU.allFinite()); | 
|---|
| 1115 | assert(m_naiveV.allFinite()); | 
|---|
| 1116 | assert(m_computed.allFinite()); | 
|---|
| 1117 | #endif | 
|---|
| 1118 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|---|
| 1119 | std::cout << "to be sorted: "<< diag.transpose() << "\n\n"; | 
|---|
| 1120 | #endif | 
|---|
| 1121 | { | 
|---|
| 1122 | // Check for total deflation | 
|---|
| 1123 | // If we have a total deflation, then we have to consider col0(0)==diag(0) as a singular value during sorting | 
|---|
| 1124 | bool total_deflation = (col0.tail(length-1).array()<considerZero).all(); | 
|---|
| 1125 |  | 
|---|
| 1126 | // Sort the diagonal entries, since diag(1:k-1) and diag(k:length) are already sorted, let's do a sorted merge. | 
|---|
| 1127 | // First, compute the respective permutation. | 
|---|
| 1128 | Index *permutation = m_workspaceI.data(); | 
|---|
| 1129 | { | 
|---|
| 1130 | permutation[0] = 0; | 
|---|
| 1131 | Index p = 1; | 
|---|
| 1132 |  | 
|---|
| 1133 | // Move deflated diagonal entries at the end. | 
|---|
| 1134 | for(Index i=1; i<length; ++i) | 
|---|
| 1135 | if(abs(diag(i))<considerZero) | 
|---|
| 1136 | permutation[p++] = i; | 
|---|
| 1137 |  | 
|---|
| 1138 | Index i=1, j=k+1; | 
|---|
| 1139 | for( ; p < length; ++p) | 
|---|
| 1140 | { | 
|---|
| 1141 | if (i > k)             permutation[p] = j++; | 
|---|
| 1142 | else if (j >= length)       permutation[p] = i++; | 
|---|
| 1143 | else if (diag(i) < diag(j)) permutation[p] = j++; | 
|---|
| 1144 | else                        permutation[p] = i++; | 
|---|
| 1145 | } | 
|---|
| 1146 | } | 
|---|
| 1147 |  | 
|---|
| 1148 | // If we have a total deflation, then we have to insert diag(0) at the right place | 
|---|
| 1149 | if(total_deflation) | 
|---|
| 1150 | { | 
|---|
| 1151 | for(Index i=1; i<length; ++i) | 
|---|
| 1152 | { | 
|---|
| 1153 | Index pi = permutation[i]; | 
|---|
| 1154 | if(abs(diag(pi))<considerZero || diag(0)<diag(pi)) | 
|---|
| 1155 | permutation[i-1] = permutation[i]; | 
|---|
| 1156 | else | 
|---|
| 1157 | { | 
|---|
| 1158 | permutation[i-1] = 0; | 
|---|
| 1159 | break; | 
|---|
| 1160 | } | 
|---|
| 1161 | } | 
|---|
| 1162 | } | 
|---|
| 1163 |  | 
|---|
| 1164 | // Current index of each col, and current column of each index | 
|---|
| 1165 | Index *realInd = m_workspaceI.data()+length; | 
|---|
| 1166 | Index *realCol = m_workspaceI.data()+2*length; | 
|---|
| 1167 |  | 
|---|
| 1168 | for(int pos = 0; pos< length; pos++) | 
|---|
| 1169 | { | 
|---|
| 1170 | realCol[pos] = pos; | 
|---|
| 1171 | realInd[pos] = pos; | 
|---|
| 1172 | } | 
|---|
| 1173 |  | 
|---|
| 1174 | for(Index i = total_deflation?0:1; i < length; i++) | 
|---|
| 1175 | { | 
|---|
| 1176 | const Index pi = permutation[length - (total_deflation ? i+1 : i)]; | 
|---|
| 1177 | const Index J = realCol[pi]; | 
|---|
| 1178 |  | 
|---|
| 1179 | using std::swap; | 
|---|
| 1180 | // swap diagonal and first column entries: | 
|---|
| 1181 | swap(diag(i), diag(J)); | 
|---|
| 1182 | if(i!=0 && J!=0) swap(col0(i), col0(J)); | 
|---|
| 1183 |  | 
|---|
| 1184 | // change columns | 
|---|
| 1185 | if (m_compU) m_naiveU.col(firstCol+i).segment(firstCol, length + 1).swap(m_naiveU.col(firstCol+J).segment(firstCol, length + 1)); | 
|---|
| 1186 | else         m_naiveU.col(firstCol+i).segment(0, 2)                .swap(m_naiveU.col(firstCol+J).segment(0, 2)); | 
|---|
| 1187 | if (m_compV) m_naiveV.col(firstColW + i).segment(firstRowW, length).swap(m_naiveV.col(firstColW + J).segment(firstRowW, length)); | 
|---|
| 1188 |  | 
|---|
| 1189 | //update real pos | 
|---|
| 1190 | const Index realI = realInd[i]; | 
|---|
| 1191 | realCol[realI] = J; | 
|---|
| 1192 | realCol[pi] = i; | 
|---|
| 1193 | realInd[J] = realI; | 
|---|
| 1194 | realInd[i] = pi; | 
|---|
| 1195 | } | 
|---|
| 1196 | } | 
|---|
| 1197 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|---|
| 1198 | std::cout << "sorted: "<< diag.transpose().format(bdcsvdfmt) << "\n"; | 
|---|
| 1199 | std::cout << "      : "<< col0.transpose() << "\n\n"; | 
|---|
| 1200 | #endif | 
|---|
| 1201 |  | 
|---|
| 1202 | //condition 4.4 | 
|---|
| 1203 | { | 
|---|
| 1204 | Index i = length-1; | 
|---|
| 1205 | while(i>0 && (abs(diag(i))<considerZero || abs(col0(i))<considerZero)) --i; | 
|---|
| 1206 | for(; i>1;--i) | 
|---|
| 1207 | if( (diag(i) - diag(i-1)) < NumTraits<RealScalar>::epsilon()*maxDiag ) | 
|---|
| 1208 | { | 
|---|
| 1209 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|---|
| 1210 | std::cout << "deflation 4.4 with i = "<< i << " because "<< (diag(i) - diag(i-1)) << " < "<< NumTraits<RealScalar>::epsilon()*diag(i) << "\n"; | 
|---|
| 1211 | #endif | 
|---|
| 1212 | eigen_internal_assert(abs(diag(i) - diag(i-1))<epsilon_coarse && " diagonal entries are not properly sorted"); | 
|---|
| 1213 | deflation44(firstCol, firstCol + shift, firstRowW, firstColW, i-1, i, length); | 
|---|
| 1214 | } | 
|---|
| 1215 | } | 
|---|
| 1216 |  | 
|---|
| 1217 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|---|
| 1218 | for(Index j=2;j<length;++j) | 
|---|
| 1219 | assert(diag(j-1)<=diag(j) || abs(diag(j))<considerZero); | 
|---|
| 1220 | #endif | 
|---|
| 1221 |  | 
|---|
| 1222 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|---|
| 1223 | assert(m_naiveU.allFinite()); | 
|---|
| 1224 | assert(m_naiveV.allFinite()); | 
|---|
| 1225 | assert(m_computed.allFinite()); | 
|---|
| 1226 | #endif | 
|---|
| 1227 | }//end deflation | 
|---|
| 1228 |  | 
|---|
| 1229 | #ifndef __CUDACC__ | 
|---|
| 1230 | /** \svd_module | 
|---|
| 1231 | * | 
|---|
| 1232 | * \return the singular value decomposition of \c *this computed by Divide & Conquer algorithm | 
|---|
| 1233 | * | 
|---|
| 1234 | * \sa class BDCSVD | 
|---|
| 1235 | */ | 
|---|
| 1236 | template<typename Derived> | 
|---|
| 1237 | BDCSVD<typename MatrixBase<Derived>::PlainObject> | 
|---|
| 1238 | MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const | 
|---|
| 1239 | { | 
|---|
| 1240 | return BDCSVD<PlainObject>(*this, computationOptions); | 
|---|
| 1241 | } | 
|---|
| 1242 | #endif | 
|---|
| 1243 |  | 
|---|
| 1244 | } // end namespace Eigen | 
|---|
| 1245 |  | 
|---|
| 1246 | #endif | 
|---|
| 1247 |  | 
|---|