| 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H |
| 11 | #define EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H |
| 12 | |
| 13 | namespace Eigen { |
| 14 | |
| 15 | namespace internal { |
| 16 | |
| 17 | template<typename Lhs, typename Rhs, typename ResultType> |
| 18 | static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res, bool sortedInsertion = false) |
| 19 | { |
| 20 | typedef typename remove_all<Lhs>::type::Scalar LhsScalar; |
| 21 | typedef typename remove_all<Rhs>::type::Scalar RhsScalar; |
| 22 | typedef typename remove_all<ResultType>::type::Scalar ResScalar; |
| 23 | |
| 24 | // make sure to call innerSize/outerSize since we fake the storage order. |
| 25 | Index rows = lhs.innerSize(); |
| 26 | Index cols = rhs.outerSize(); |
| 27 | eigen_assert(lhs.outerSize() == rhs.innerSize()); |
| 28 | |
| 29 | ei_declare_aligned_stack_constructed_variable(bool, mask, rows, 0); |
| 30 | ei_declare_aligned_stack_constructed_variable(ResScalar, values, rows, 0); |
| 31 | ei_declare_aligned_stack_constructed_variable(Index, indices, rows, 0); |
| 32 | |
| 33 | std::memset(mask,0,sizeof(bool)*rows); |
| 34 | |
| 35 | evaluator<Lhs> lhsEval(lhs); |
| 36 | evaluator<Rhs> rhsEval(rhs); |
| 37 | |
| 38 | // estimate the number of non zero entries |
| 39 | // given a rhs column containing Y non zeros, we assume that the respective Y columns |
| 40 | // of the lhs differs in average of one non zeros, thus the number of non zeros for |
| 41 | // the product of a rhs column with the lhs is X+Y where X is the average number of non zero |
| 42 | // per column of the lhs. |
| 43 | // Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs) |
| 44 | Index estimated_nnz_prod = lhsEval.nonZerosEstimate() + rhsEval.nonZerosEstimate(); |
| 45 | |
| 46 | res.setZero(); |
| 47 | res.reserve(Index(estimated_nnz_prod)); |
| 48 | // we compute each column of the result, one after the other |
| 49 | for (Index j=0; j<cols; ++j) |
| 50 | { |
| 51 | |
| 52 | res.startVec(j); |
| 53 | Index nnz = 0; |
| 54 | for (typename evaluator<Rhs>::InnerIterator rhsIt(rhsEval, j); rhsIt; ++rhsIt) |
| 55 | { |
| 56 | RhsScalar y = rhsIt.value(); |
| 57 | Index k = rhsIt.index(); |
| 58 | for (typename evaluator<Lhs>::InnerIterator lhsIt(lhsEval, k); lhsIt; ++lhsIt) |
| 59 | { |
| 60 | Index i = lhsIt.index(); |
| 61 | LhsScalar x = lhsIt.value(); |
| 62 | if(!mask[i]) |
| 63 | { |
| 64 | mask[i] = true; |
| 65 | values[i] = x * y; |
| 66 | indices[nnz] = i; |
| 67 | ++nnz; |
| 68 | } |
| 69 | else |
| 70 | values[i] += x * y; |
| 71 | } |
| 72 | } |
| 73 | if(!sortedInsertion) |
| 74 | { |
| 75 | // unordered insertion |
| 76 | for(Index k=0; k<nnz; ++k) |
| 77 | { |
| 78 | Index i = indices[k]; |
| 79 | res.insertBackByOuterInnerUnordered(j,i) = values[i]; |
| 80 | mask[i] = false; |
| 81 | } |
| 82 | } |
| 83 | else |
| 84 | { |
| 85 | // alternative ordered insertion code: |
| 86 | const Index t200 = rows/11; // 11 == (log2(200)*1.39) |
| 87 | const Index t = (rows*100)/139; |
| 88 | |
| 89 | // FIXME reserve nnz non zeros |
| 90 | // FIXME implement faster sorting algorithms for very small nnz |
| 91 | // if the result is sparse enough => use a quick sort |
| 92 | // otherwise => loop through the entire vector |
| 93 | // In order to avoid to perform an expensive log2 when the |
| 94 | // result is clearly very sparse we use a linear bound up to 200. |
| 95 | if((nnz<200 && nnz<t200) || nnz * numext::log2(int(nnz)) < t) |
| 96 | { |
| 97 | if(nnz>1) std::sort(indices,indices+nnz); |
| 98 | for(Index k=0; k<nnz; ++k) |
| 99 | { |
| 100 | Index i = indices[k]; |
| 101 | res.insertBackByOuterInner(j,i) = values[i]; |
| 102 | mask[i] = false; |
| 103 | } |
| 104 | } |
| 105 | else |
| 106 | { |
| 107 | // dense path |
| 108 | for(Index i=0; i<rows; ++i) |
| 109 | { |
| 110 | if(mask[i]) |
| 111 | { |
| 112 | mask[i] = false; |
| 113 | res.insertBackByOuterInner(j,i) = values[i]; |
| 114 | } |
| 115 | } |
| 116 | } |
| 117 | } |
| 118 | } |
| 119 | res.finalize(); |
| 120 | } |
| 121 | |
| 122 | |
| 123 | } // end namespace internal |
| 124 | |
| 125 | namespace internal { |
| 126 | |
| 127 | template<typename Lhs, typename Rhs, typename ResultType, |
| 128 | int LhsStorageOrder = (traits<Lhs>::Flags&RowMajorBit) ? RowMajor : ColMajor, |
| 129 | int RhsStorageOrder = (traits<Rhs>::Flags&RowMajorBit) ? RowMajor : ColMajor, |
| 130 | int ResStorageOrder = (traits<ResultType>::Flags&RowMajorBit) ? RowMajor : ColMajor> |
| 131 | struct conservative_sparse_sparse_product_selector; |
| 132 | |
| 133 | template<typename Lhs, typename Rhs, typename ResultType> |
| 134 | struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor> |
| 135 | { |
| 136 | typedef typename remove_all<Lhs>::type LhsCleaned; |
| 137 | typedef typename LhsCleaned::Scalar Scalar; |
| 138 | |
| 139 | static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| 140 | { |
| 141 | typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorMatrix; |
| 142 | typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorMatrixAux; |
| 143 | typedef typename sparse_eval<ColMajorMatrixAux,ResultType::RowsAtCompileTime,ResultType::ColsAtCompileTime,ColMajorMatrixAux::Flags>::type ColMajorMatrix; |
| 144 | |
| 145 | // If the result is tall and thin (in the extreme case a column vector) |
| 146 | // then it is faster to sort the coefficients inplace instead of transposing twice. |
| 147 | // FIXME, the following heuristic is probably not very good. |
| 148 | if(lhs.rows()>rhs.cols()) |
| 149 | { |
| 150 | ColMajorMatrix resCol(lhs.rows(),rhs.cols()); |
| 151 | // perform sorted insertion |
| 152 | internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol, true); |
| 153 | res = resCol.markAsRValue(); |
| 154 | } |
| 155 | else |
| 156 | { |
| 157 | ColMajorMatrixAux resCol(lhs.rows(),rhs.cols()); |
| 158 | // ressort to transpose to sort the entries |
| 159 | internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrixAux>(lhs, rhs, resCol, false); |
| 160 | RowMajorMatrix resRow(resCol); |
| 161 | res = resRow.markAsRValue(); |
| 162 | } |
| 163 | } |
| 164 | }; |
| 165 | |
| 166 | template<typename Lhs, typename Rhs, typename ResultType> |
| 167 | struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,ColMajor> |
| 168 | { |
| 169 | static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| 170 | { |
| 171 | typedef SparseMatrix<typename Rhs::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorRhs; |
| 172 | typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorRes; |
| 173 | RowMajorRhs rhsRow = rhs; |
| 174 | RowMajorRes resRow(lhs.rows(), rhs.cols()); |
| 175 | internal::conservative_sparse_sparse_product_impl<RowMajorRhs,Lhs,RowMajorRes>(rhsRow, lhs, resRow); |
| 176 | res = resRow; |
| 177 | } |
| 178 | }; |
| 179 | |
| 180 | template<typename Lhs, typename Rhs, typename ResultType> |
| 181 | struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,ColMajor> |
| 182 | { |
| 183 | static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| 184 | { |
| 185 | typedef SparseMatrix<typename Lhs::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorLhs; |
| 186 | typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorRes; |
| 187 | RowMajorLhs lhsRow = lhs; |
| 188 | RowMajorRes resRow(lhs.rows(), rhs.cols()); |
| 189 | internal::conservative_sparse_sparse_product_impl<Rhs,RowMajorLhs,RowMajorRes>(rhs, lhsRow, resRow); |
| 190 | res = resRow; |
| 191 | } |
| 192 | }; |
| 193 | |
| 194 | template<typename Lhs, typename Rhs, typename ResultType> |
| 195 | struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor> |
| 196 | { |
| 197 | static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| 198 | { |
| 199 | typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorMatrix; |
| 200 | RowMajorMatrix resRow(lhs.rows(), rhs.cols()); |
| 201 | internal::conservative_sparse_sparse_product_impl<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow); |
| 202 | res = resRow; |
| 203 | } |
| 204 | }; |
| 205 | |
| 206 | |
| 207 | template<typename Lhs, typename Rhs, typename ResultType> |
| 208 | struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor> |
| 209 | { |
| 210 | typedef typename traits<typename remove_all<Lhs>::type>::Scalar Scalar; |
| 211 | |
| 212 | static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| 213 | { |
| 214 | typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorMatrix; |
| 215 | ColMajorMatrix resCol(lhs.rows(), rhs.cols()); |
| 216 | internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol); |
| 217 | res = resCol; |
| 218 | } |
| 219 | }; |
| 220 | |
| 221 | template<typename Lhs, typename Rhs, typename ResultType> |
| 222 | struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,RowMajor> |
| 223 | { |
| 224 | static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| 225 | { |
| 226 | typedef SparseMatrix<typename Lhs::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorLhs; |
| 227 | typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorRes; |
| 228 | ColMajorLhs lhsCol = lhs; |
| 229 | ColMajorRes resCol(lhs.rows(), rhs.cols()); |
| 230 | internal::conservative_sparse_sparse_product_impl<ColMajorLhs,Rhs,ColMajorRes>(lhsCol, rhs, resCol); |
| 231 | res = resCol; |
| 232 | } |
| 233 | }; |
| 234 | |
| 235 | template<typename Lhs, typename Rhs, typename ResultType> |
| 236 | struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,RowMajor> |
| 237 | { |
| 238 | static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| 239 | { |
| 240 | typedef SparseMatrix<typename Rhs::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorRhs; |
| 241 | typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorRes; |
| 242 | ColMajorRhs rhsCol = rhs; |
| 243 | ColMajorRes resCol(lhs.rows(), rhs.cols()); |
| 244 | internal::conservative_sparse_sparse_product_impl<Lhs,ColMajorRhs,ColMajorRes>(lhs, rhsCol, resCol); |
| 245 | res = resCol; |
| 246 | } |
| 247 | }; |
| 248 | |
| 249 | template<typename Lhs, typename Rhs, typename ResultType> |
| 250 | struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor> |
| 251 | { |
| 252 | static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| 253 | { |
| 254 | typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorMatrix; |
| 255 | typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorMatrix; |
| 256 | RowMajorMatrix resRow(lhs.rows(),rhs.cols()); |
| 257 | internal::conservative_sparse_sparse_product_impl<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow); |
| 258 | // sort the non zeros: |
| 259 | ColMajorMatrix resCol(resRow); |
| 260 | res = resCol; |
| 261 | } |
| 262 | }; |
| 263 | |
| 264 | } // end namespace internal |
| 265 | |
| 266 | |
| 267 | namespace internal { |
| 268 | |
| 269 | template<typename Lhs, typename Rhs, typename ResultType> |
| 270 | static void sparse_sparse_to_dense_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| 271 | { |
| 272 | typedef typename remove_all<Lhs>::type::Scalar LhsScalar; |
| 273 | typedef typename remove_all<Rhs>::type::Scalar RhsScalar; |
| 274 | Index cols = rhs.outerSize(); |
| 275 | eigen_assert(lhs.outerSize() == rhs.innerSize()); |
| 276 | |
| 277 | evaluator<Lhs> lhsEval(lhs); |
| 278 | evaluator<Rhs> rhsEval(rhs); |
| 279 | |
| 280 | for (Index j=0; j<cols; ++j) |
| 281 | { |
| 282 | for (typename evaluator<Rhs>::InnerIterator rhsIt(rhsEval, j); rhsIt; ++rhsIt) |
| 283 | { |
| 284 | RhsScalar y = rhsIt.value(); |
| 285 | Index k = rhsIt.index(); |
| 286 | for (typename evaluator<Lhs>::InnerIterator lhsIt(lhsEval, k); lhsIt; ++lhsIt) |
| 287 | { |
| 288 | Index i = lhsIt.index(); |
| 289 | LhsScalar x = lhsIt.value(); |
| 290 | res.coeffRef(i,j) += x * y; |
| 291 | } |
| 292 | } |
| 293 | } |
| 294 | } |
| 295 | |
| 296 | |
| 297 | } // end namespace internal |
| 298 | |
| 299 | namespace internal { |
| 300 | |
| 301 | template<typename Lhs, typename Rhs, typename ResultType, |
| 302 | int LhsStorageOrder = (traits<Lhs>::Flags&RowMajorBit) ? RowMajor : ColMajor, |
| 303 | int RhsStorageOrder = (traits<Rhs>::Flags&RowMajorBit) ? RowMajor : ColMajor> |
| 304 | struct sparse_sparse_to_dense_product_selector; |
| 305 | |
| 306 | template<typename Lhs, typename Rhs, typename ResultType> |
| 307 | struct sparse_sparse_to_dense_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor> |
| 308 | { |
| 309 | static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| 310 | { |
| 311 | internal::sparse_sparse_to_dense_product_impl<Lhs,Rhs,ResultType>(lhs, rhs, res); |
| 312 | } |
| 313 | }; |
| 314 | |
| 315 | template<typename Lhs, typename Rhs, typename ResultType> |
| 316 | struct sparse_sparse_to_dense_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor> |
| 317 | { |
| 318 | static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| 319 | { |
| 320 | typedef SparseMatrix<typename Lhs::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorLhs; |
| 321 | ColMajorLhs lhsCol(lhs); |
| 322 | internal::sparse_sparse_to_dense_product_impl<ColMajorLhs,Rhs,ResultType>(lhsCol, rhs, res); |
| 323 | } |
| 324 | }; |
| 325 | |
| 326 | template<typename Lhs, typename Rhs, typename ResultType> |
| 327 | struct sparse_sparse_to_dense_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor> |
| 328 | { |
| 329 | static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| 330 | { |
| 331 | typedef SparseMatrix<typename Rhs::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorRhs; |
| 332 | ColMajorRhs rhsCol(rhs); |
| 333 | internal::sparse_sparse_to_dense_product_impl<Lhs,ColMajorRhs,ResultType>(lhs, rhsCol, res); |
| 334 | } |
| 335 | }; |
| 336 | |
| 337 | template<typename Lhs, typename Rhs, typename ResultType> |
| 338 | struct sparse_sparse_to_dense_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor> |
| 339 | { |
| 340 | static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| 341 | { |
| 342 | Transpose<ResultType> trRes(res); |
| 343 | internal::sparse_sparse_to_dense_product_impl<Rhs,Lhs,Transpose<ResultType> >(rhs, lhs, trRes); |
| 344 | } |
| 345 | }; |
| 346 | |
| 347 | |
| 348 | } // end namespace internal |
| 349 | |
| 350 | } // end namespace Eigen |
| 351 | |
| 352 | #endif // EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H |
| 353 | |