| 1 | /** \file |
| 2 | * \brief Implementation of an approxmiation algorithm for |
| 3 | * Steiner tree problems provided by Michel X. Goemans and |
| 4 | * David P. Williamson. |
| 5 | * |
| 6 | * \author Tilo Wiedera |
| 7 | * |
| 8 | * \par License: |
| 9 | * This file is part of the Open Graph Drawing Framework (OGDF). |
| 10 | * |
| 11 | * \par |
| 12 | * Copyright (C)<br> |
| 13 | * See README.md in the OGDF root directory for details. |
| 14 | * |
| 15 | * \par |
| 16 | * This program is free software; you can redistribute it and/or |
| 17 | * modify it under the terms of the GNU General Public License |
| 18 | * Version 2 or 3 as published by the Free Software Foundation; |
| 19 | * see the file LICENSE.txt included in the packaging of this file |
| 20 | * for details. |
| 21 | * |
| 22 | * \par |
| 23 | * This program is distributed in the hope that it will be useful, |
| 24 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 25 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 26 | * GNU General Public License for more details. |
| 27 | * |
| 28 | * \par |
| 29 | * You should have received a copy of the GNU General Public |
| 30 | * License along with this program; if not, see |
| 31 | * http://www.gnu.org/copyleft/gpl.html |
| 32 | */ |
| 33 | |
| 34 | #pragma once |
| 35 | |
| 36 | #include <limits> |
| 37 | |
| 38 | #include <ogdf/graphalg/steiner_tree/EdgeWeightedGraphCopy.h> |
| 39 | #include <ogdf/module/MinSteinerTreeModule.h> |
| 40 | #include <ogdf/basic/DisjointSets.h> |
| 41 | |
| 42 | //#define OGDF_MINSTEINERTREE_PRIMAL_DUAL_LOGGING |
| 43 | |
| 44 | namespace ogdf { |
| 45 | |
| 46 | /** |
| 47 | * @brief Primal-Dual approximation algorithm for Steiner tree problems. |
| 48 | * Yields a guaranteed approximation factor of two. |
| 49 | * |
| 50 | * This algorithm was first described by Michel X. Goemans and David P. Williamson in |
| 51 | * "A General Approximation Technique for Constrained Forest Problems", |
| 52 | * SIAM Journal on Computing, 24:296-317, 1995. |
| 53 | * |
| 54 | * @ingroup ga-steiner |
| 55 | */ |
| 56 | template<typename T> |
| 57 | class MinSteinerTreePrimalDual : public MinSteinerTreeModule<T> { |
| 58 | private: |
| 59 | const EdgeWeightedGraph<T> *m_pGraph; |
| 60 | const List<node> *m_pTerminals; |
| 61 | const NodeArray<bool> *m_pIsTerminal; |
| 62 | const T MAX_VALUE = std::numeric_limits<T>::max(); |
| 63 | |
| 64 | NodeArray<int> m_componentMapping; |
| 65 | DisjointSets<> *m_pComponents; |
| 66 | HashArray<int, ListIterator<int>> m_activeComponentIterators; |
| 67 | List<int> m_activeComponents; |
| 68 | double m_lowerBound; |
| 69 | NodeArray<double> m_priorities; |
| 70 | |
| 71 | /** |
| 72 | * Merges two disjoint components |
| 73 | * |
| 74 | * @param v representative of the first component |
| 75 | * @param w representative of the second component |
| 76 | */ |
| 77 | void mergeComponents(const node v, const node w); |
| 78 | |
| 79 | /** |
| 80 | * Marks the specified component as active. |
| 81 | * |
| 82 | * @param component the component to be activated. |
| 83 | * @return |
| 84 | */ |
| 85 | void makeActive(int component); |
| 86 | |
| 87 | /** |
| 88 | * Returns whether the given component is active. |
| 89 | * |
| 90 | * @return true if the component is active, false otherwise |
| 91 | */ |
| 92 | bool isActive(int component) const; |
| 93 | |
| 94 | /** |
| 95 | * Finds the biggest set including node v. |
| 96 | * |
| 97 | * @param v the representative of the set to find |
| 98 | */ |
| 99 | int getComponent(const node v) const; |
| 100 | |
| 101 | /** |
| 102 | * Idendifies the next edge with a tight-to-be packing constraint. |
| 103 | * |
| 104 | * @param nextEdge the found edge |
| 105 | * @return the adjusted weight (aka epsilon) for the found edge |
| 106 | */ |
| 107 | double getNextEdge(edge *nextEdge); |
| 108 | |
| 109 | /** |
| 110 | * Must be called after merging any two components. |
| 111 | * Will update all the priorities of all active edges by epsilon. |
| 112 | * |
| 113 | * @param eps the value of the last tight edge |
| 114 | */ |
| 115 | void updatePriorities(double eps); |
| 116 | |
| 117 | /** |
| 118 | * Initializes all required datastructes. |
| 119 | */ |
| 120 | void init(); |
| 121 | |
| 122 | protected: |
| 123 | /** |
| 124 | * Builds a minimum Steiner tree given a weighted graph and a list of terminals |
| 125 | * |
| 126 | * \param G |
| 127 | * The weighted input graph |
| 128 | * \param terminals |
| 129 | * The list of terminal nodes |
| 130 | * \param isTerminal |
| 131 | * A bool array of terminals |
| 132 | * \param finalSteinerTree |
| 133 | * The final Steiner tree |
| 134 | * |
| 135 | * \return |
| 136 | * The objective value (sum of edge costs) of the final Steiner tree |
| 137 | */ |
| 138 | virtual T computeSteinerTree(const EdgeWeightedGraph<T> &G, const List<node> &terminals, const NodeArray<bool> &isTerminal, |
| 139 | EdgeWeightedGraphCopy<T> *&finalSteinerTree) override; |
| 140 | |
| 141 | public: |
| 142 | virtual T call(const EdgeWeightedGraph<T> &G, const List<node> &terminals, const NodeArray<bool> &isTerminal, EdgeWeightedGraphCopy<T> *&finalSteinerTree) override |
| 143 | { |
| 144 | m_lowerBound = 0; |
| 145 | return MinSteinerTreeModule<T>::call(G, terminals, isTerminal, finalSteinerTree); |
| 146 | } |
| 147 | |
| 148 | /** |
| 149 | * Returns the lower bound calculated while |
| 150 | * solving the last problem. Will return 0 if no problem |
| 151 | * was solved before. |
| 152 | */ |
| 153 | double getLastLowerBound() const; |
| 154 | }; |
| 155 | |
| 156 | template<typename T> |
| 157 | void MinSteinerTreePrimalDual<T>::init() |
| 158 | { |
| 159 | m_activeComponentIterators.clear(); |
| 160 | m_activeComponents.clear(); |
| 161 | m_componentMapping.init(*m_pGraph); |
| 162 | m_priorities.init(*m_pGraph, 0); |
| 163 | } |
| 164 | |
| 165 | template<typename T> |
| 166 | int MinSteinerTreePrimalDual<T>::getComponent(const node v) const |
| 167 | { |
| 168 | return m_pComponents->find(m_componentMapping[v]); |
| 169 | } |
| 170 | |
| 171 | template<typename T> |
| 172 | bool MinSteinerTreePrimalDual<T>::isActive(int component) const |
| 173 | { |
| 174 | return m_activeComponentIterators[component].valid(); |
| 175 | } |
| 176 | |
| 177 | template<typename T> |
| 178 | void MinSteinerTreePrimalDual<T>::makeActive(int comp) |
| 179 | { |
| 180 | m_activeComponentIterators[comp] = m_activeComponents.pushBack(comp); |
| 181 | } |
| 182 | |
| 183 | template<typename T> |
| 184 | void MinSteinerTreePrimalDual<T>::mergeComponents(const node v, const node w) |
| 185 | { |
| 186 | |
| 187 | int compV = getComponent(v); |
| 188 | int compW = getComponent(w); |
| 189 | |
| 190 | // remove former components |
| 191 | if(isActive(compV)) { |
| 192 | m_activeComponents.del(m_activeComponentIterators[compV]); |
| 193 | } |
| 194 | if(isActive(compW)) { |
| 195 | m_activeComponents.del(m_activeComponentIterators[compW]); |
| 196 | } |
| 197 | |
| 198 | // craete new component |
| 199 | int compNew = m_pComponents->link(compV, compW); |
| 200 | if(!m_activeComponents.empty()) { |
| 201 | makeActive(compNew); |
| 202 | } |
| 203 | } |
| 204 | |
| 205 | template<typename T> |
| 206 | void MinSteinerTreePrimalDual<T>::updatePriorities(double eps) |
| 207 | { |
| 208 | List<node> nodes; |
| 209 | m_pGraph->allNodes(nodes); |
| 210 | for(node v : nodes) { |
| 211 | if(isActive(getComponent(v))) { |
| 212 | m_priorities(v) += eps; |
| 213 | } |
| 214 | } |
| 215 | } |
| 216 | |
| 217 | template<typename T> |
| 218 | double MinSteinerTreePrimalDual<T>::getNextEdge(edge *nextEdge) |
| 219 | { |
| 220 | double result = MAX_VALUE; |
| 221 | *nextEdge = nullptr; |
| 222 | |
| 223 | List<edge> edges; |
| 224 | m_pGraph->allEdges(edges); |
| 225 | for(edge e : edges) { |
| 226 | node v = e->source(); |
| 227 | node w = e->target(); |
| 228 | int compV = getComponent(v); |
| 229 | int compW = getComponent(w); |
| 230 | if(compV != compW) { // spanning different components ? |
| 231 | double value = m_pGraph->weight(e) - m_priorities(v) - m_priorities(w); |
| 232 | int divisor = isActive(compV) + isActive(compW); |
| 233 | if(divisor == 0) { |
| 234 | value = MAX_VALUE; |
| 235 | } else { |
| 236 | value /= divisor; |
| 237 | } |
| 238 | if(*nextEdge == nullptr || value < result) { |
| 239 | *nextEdge = e; |
| 240 | result = value; |
| 241 | } |
| 242 | } |
| 243 | } |
| 244 | return result; |
| 245 | } |
| 246 | |
| 247 | template<typename T> |
| 248 | T MinSteinerTreePrimalDual<T>::computeSteinerTree(const EdgeWeightedGraph<T> &G, const List<node> &terminals, const NodeArray<bool> &isTerminal, EdgeWeightedGraphCopy<T> *&finalSteinerTree) |
| 249 | { |
| 250 | m_pGraph = &G; |
| 251 | m_pTerminals = &terminals; |
| 252 | m_pIsTerminal = &isTerminal; |
| 253 | DisjointSets<> components; |
| 254 | m_pComponents = &components; |
| 255 | |
| 256 | finalSteinerTree = new EdgeWeightedGraphCopy<T>(); |
| 257 | finalSteinerTree->createEmpty(*m_pGraph); |
| 258 | |
| 259 | init(); |
| 260 | |
| 261 | // initialize components |
| 262 | List<node> nodes; |
| 263 | m_pGraph->allNodes(nodes); |
| 264 | for(node v : nodes) { |
| 265 | int comp = m_pComponents->makeSet(); |
| 266 | m_componentMapping[v] = comp; |
| 267 | if(isTerminal(v)) { |
| 268 | makeActive(comp); |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | #ifdef OGDF_MINSTEINERTREE_PRIMAL_DUAL_LOGGING |
| 273 | std::cout << "Goemans primal-dual starting..." << std::endl; |
| 274 | std::cout << "terminals:" ; |
| 275 | for(node v : *m_pTerminals) { |
| 276 | std::cout << " " << v; |
| 277 | } |
| 278 | std::cout << std::endl; |
| 279 | |
| 280 | std::cout << "loop starting... " << std::endl; |
| 281 | #endif |
| 282 | |
| 283 | T result = 0; |
| 284 | while(!m_activeComponents.empty()) { |
| 285 | #ifdef OGDF_MINSTEINERTREE_PRIMAL_DUAL_LOGGING |
| 286 | std::cout << "active component exists" << std::endl; |
| 287 | #endif |
| 288 | // idendify next edge |
| 289 | edge minEdge = nullptr; |
| 290 | double minValue = getNextEdge(&minEdge); |
| 291 | OGDF_ASSERT(minEdge != nullptr); |
| 292 | |
| 293 | #ifdef OGDF_MINSTEINERTREE_PRIMAL_DUAL_LOGGING |
| 294 | std::cout << "minEdge found: " << minEdge << ", weight is " << m_pGraph->weight(minEdge) << ", adjusted weight is " << minValue << std::endl; |
| 295 | #endif |
| 296 | node v = minEdge->source(); |
| 297 | node w = minEdge->target(); |
| 298 | |
| 299 | // include nodes in Steiner tree |
| 300 | if(finalSteinerTree->copy(v) == nullptr) { |
| 301 | finalSteinerTree->newNode(v); |
| 302 | } |
| 303 | if(finalSteinerTree->copy(w) == nullptr) { |
| 304 | finalSteinerTree->newNode(w); |
| 305 | } |
| 306 | |
| 307 | // include edge in Steiner tree |
| 308 | T weight = m_pGraph->weight(minEdge); |
| 309 | result += weight; |
| 310 | finalSteinerTree->newEdge(minEdge, weight); |
| 311 | |
| 312 | m_lowerBound += m_activeComponents.size() * minValue; |
| 313 | |
| 314 | mergeComponents(v, w); |
| 315 | |
| 316 | updatePriorities(minValue); |
| 317 | } |
| 318 | result -= this->pruneAllDanglingSteinerPaths(*finalSteinerTree, *m_pIsTerminal); |
| 319 | |
| 320 | #ifdef OGDF_MINSTEINERTREE_PRIMAL_DUAL_LOGGING |
| 321 | std::cout << "calculation finished!" << std::endl; |
| 322 | #endif |
| 323 | return result; |
| 324 | } |
| 325 | |
| 326 | template<typename T> |
| 327 | double MinSteinerTreePrimalDual<T>::getLastLowerBound() const |
| 328 | { |
| 329 | return m_lowerBound; |
| 330 | } |
| 331 | |
| 332 | } |
| 333 | |