1 | /** \file |
2 | * \brief Bandit test suite for Steiner tree algorithms |
3 | * |
4 | * \author Tilo Wiedera |
5 | * |
6 | * \par License: |
7 | * This file is part of the Open Graph Drawing Framework (OGDF). |
8 | * |
9 | * \par |
10 | * Copyright (C)<br> |
11 | * See README.md in the OGDF root directory for details. |
12 | * |
13 | * \par |
14 | * This program is free software; you can redistribute it and/or |
15 | * modify it under the terms of the GNU General Public License |
16 | * Version 2 or 3 as published by the Free Software Foundation; |
17 | * see the file LICENSE.txt included in the packaging of this file |
18 | * for details. |
19 | * |
20 | * \par |
21 | * This program is distributed in the hope that it will be useful, |
22 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
23 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
24 | * GNU General Public License for more details. |
25 | * |
26 | * \par |
27 | * You should have received a copy of the GNU General Public |
28 | * License along with this program; if not, see |
29 | * http://www.gnu.org/copyleft/gpl.html |
30 | */ |
31 | |
32 | #include <string> |
33 | #include <vector> |
34 | #include <ogdf/fileformats/GraphIO.h> |
35 | #include <ogdf/graphalg/MinSteinerTreeDirectedCut.h> |
36 | #include <ogdf/graphalg/MaxFlowEdmondsKarp.h> |
37 | #include <ogdf/graphalg/MinSteinerTreeKou.h> |
38 | #include <ogdf/graphalg/MinSteinerTreeMehlhorn.h> |
39 | #include <ogdf/graphalg/MinSteinerTreeRZLoss.h> |
40 | #include <ogdf/graphalg/MinSteinerTreeZelikovsky.h> |
41 | #include <ogdf/graphalg/MinSteinerTreeShore.h> |
42 | #include <ogdf/graphalg/MinSteinerTreePrimalDual.h> |
43 | #include <ogdf/graphalg/MinSteinerTreeDualAscent.h> |
44 | #include <ogdf/graphalg/MinSteinerTreeGoemans139.h> |
45 | #include <resources.h> |
46 | |
47 | template<typename T> |
48 | struct ModuleData { |
49 | //! a human-readable name/description of the module |
50 | std::string name; |
51 | //! the Steiner tree module to be tested |
52 | std::unique_ptr<MinSteinerTreeModule<T>> alg; |
53 | //! the approximation factor of this algorithm, needed for validating the results |
54 | double ratio; |
55 | //! the sizes (number of nodes) of the random graphs to test |
56 | std::vector<int> sizes; |
57 | }; |
58 | |
59 | template<typename T> |
60 | using Modules = std::vector<ModuleData<T>>; |
61 | |
62 | template<typename T> |
63 | static void addModule(Modules<T>& modules, const std::string& name, MinSteinerTreeModule<T>* alg, double ratio, std::vector<int> sizes = {35, 50}) { |
64 | modules.emplace_back(ModuleData<T>{name, std::unique_ptr<MinSteinerTreeModule<T>>(alg), ratio, sizes}); |
65 | } |
66 | |
67 | /** |
68 | * Generates a new graph with an optimal Steiner tree. |
69 | * Only very basic graphs are generated |
70 | * to guarantee the optimality of the resulting Steiner tree. |
71 | * |
72 | * \param n |
73 | * number of nodes |
74 | * \param graph |
75 | * the resulting graph |
76 | * \param terminals |
77 | * this list will hold all terminals |
78 | * \param isTerminal |
79 | * stores which node is a terminal |
80 | * \param tree |
81 | * an optimal Steiner tree for this graph. |
82 | */ |
83 | template<typename T> |
84 | T randomOptimalSteiner( |
85 | int n, |
86 | EdgeWeightedGraph<T> &graph, |
87 | List<node> &terminals, |
88 | NodeArray<bool> &isTerminal, |
89 | EdgeWeightedGraphCopy<T> &tree |
90 | ) |
91 | { |
92 | OGDF_ASSERT(n >= 4); |
93 | |
94 | terminals.clear(); |
95 | |
96 | int numberOfTerminals = max(3, randomNumber(n/4, n/2)); |
97 | int numberOfNonterminals = n - numberOfTerminals; |
98 | int numberOfEdges = randomNumber(numberOfTerminals-1 + numberOfNonterminals*2, (n*(n-1))/2); |
99 | |
100 | randomTree(graph, numberOfTerminals); |
101 | isTerminal.init(graph, false); |
102 | for (node v : graph.nodes) { |
103 | if (v->degree() == 1) { |
104 | isTerminal[v] = true; |
105 | } |
106 | } |
107 | for (edge e : graph.edges) { |
108 | graph.setWeight(e, 1); |
109 | } |
110 | |
111 | tree.init(graph); |
112 | T result = tree.numberOfEdges(); |
113 | |
114 | for(int i = numberOfTerminals-1; i < numberOfEdges;) { |
115 | node v = graph.chooseNode(); |
116 | node u = graph.chooseNode([&](node w) { return w != v; }); |
117 | OGDF_ASSERT(u != nullptr); |
118 | |
119 | if(numberOfNonterminals > 0) { |
120 | node w = graph.newNode(); |
121 | graph.newEdge(v, w, n); |
122 | graph.newEdge(w, u, n); |
123 | numberOfNonterminals--; |
124 | i += 2; |
125 | } |
126 | else { |
127 | if (graph.searchEdge(v, u) == nullptr |
128 | && graph.searchEdge(u, v) == nullptr) { |
129 | graph.newEdge(v, u, n); |
130 | i++; |
131 | } |
132 | } |
133 | } |
134 | |
135 | MinSteinerTreeModule<T>::getTerminals(terminals, graph, isTerminal); |
136 | |
137 | OGDF_ASSERT(terminals.size() <= numberOfTerminals); |
138 | OGDF_ASSERT(graph.numberOfEdges() == numberOfEdges); |
139 | OGDF_ASSERT(tree.numberOfNodes() == numberOfTerminals); |
140 | OGDF_ASSERT(tree.numberOfEdges() == numberOfTerminals - 1); |
141 | OGDF_ASSERT(tree.weight(tree.firstEdge()) == 1); |
142 | OGDF_ASSERT(tree.weight(tree.lastEdge()) == 1); |
143 | OGDF_ASSERT(graph.numberOfNodes() == n); |
144 | OGDF_ASSERT(isSimpleUndirected(graph)); |
145 | OGDF_ASSERT(isConnected(graph)); |
146 | return result; |
147 | } |
148 | |
149 | /** |
150 | * Generates a random Steiner tree instance. |
151 | * |
152 | * \param n number of nodes |
153 | * \param graph the resulting graph |
154 | * \param terminals this list will hold all terminals |
155 | * \param isTerminal stores which node is a terminal |
156 | */ |
157 | template<typename T> |
158 | void randomSteinerTreeInstance( |
159 | int n, |
160 | EdgeWeightedGraph<T> &graph, |
161 | List<node> &terminals, |
162 | NodeArray<bool> &isTerminal) |
163 | { |
164 | OGDF_ASSERT(n >= 3); |
165 | |
166 | randomSimpleConnectedGraph(graph, n, randomNumber(2*n - 3, n*(n-1)/2)); |
167 | int numberOfTerminals = max(3, randomNumber(n/4, 2*n/3)); |
168 | |
169 | for (edge e : graph.edges) { |
170 | graph.setWeight(e, randomNumber(1, 100)); |
171 | } |
172 | |
173 | Array<node> nodes; |
174 | graph.allNodes(nodes); |
175 | nodes.permute(); |
176 | |
177 | terminals.clear(); |
178 | isTerminal.init(graph, false); |
179 | for (int i = 0; i < numberOfTerminals; ++i) { |
180 | const node v = nodes[i]; |
181 | isTerminal[v] = true; |
182 | terminals.pushBack(v); |
183 | } |
184 | } |
185 | |
186 | /** |
187 | * Test if modules generates a valid/reasonable Steiner tree for a graph with given number of nodes |
188 | */ |
189 | template<typename T> |
190 | void testModuleOnRandomGraph(MinSteinerTreeModule<T> &alg, int n, double factor = 0) |
191 | { |
192 | it("generates a valid Steiner tree for a random graph of " + to_string(n) + " nodes" , [&]() { |
193 | EdgeWeightedGraph<T> graph; |
194 | NodeArray<bool> isTerminal(graph, false); |
195 | List<node> terminals; |
196 | |
197 | randomSteinerTreeInstance(n, graph, terminals, isTerminal); |
198 | std::cout << " (" << terminals.size() << " terminals, " << graph.numberOfEdges() << " edges)" ; |
199 | |
200 | EdgeWeightedGraphCopy<T>* make_solution; |
201 | T returnedCost = alg.call(graph, terminals, isTerminal, make_solution); |
202 | |
203 | std::unique_ptr<EdgeWeightedGraphCopy<T>> solution(make_solution); |
204 | |
205 | for (node v : solution->nodes) { |
206 | AssertThat(solution->original(v), !IsNull()); |
207 | } |
208 | |
209 | T actualCost(0); |
210 | for (edge e : solution->edges) { |
211 | AssertThat(solution->original(e), !IsNull()); |
212 | actualCost += solution->weight(e); |
213 | } |
214 | |
215 | AssertThat(actualCost, Equals(returnedCost)); |
216 | AssertThat(MinSteinerTreeModule<T>::isSteinerTree(graph, terminals, isTerminal, *solution), Equals(true)); |
217 | }); |
218 | |
219 | it("finds a reasonable Steiner tree for a graph of " + to_string(n) + " nodes" , [&]() { |
220 | EdgeWeightedGraph<T> graph; |
221 | EdgeWeightedGraphCopy<T> tree; |
222 | NodeArray<bool> isTerminal(graph, false); |
223 | List<node> terminals; |
224 | |
225 | T cost = randomOptimalSteiner<T>(n, graph, terminals, isTerminal, tree); |
226 | std::cout << " (" << terminals.size() << " terminals, " << graph.numberOfEdges() << " edges)" ; |
227 | |
228 | EdgeWeightedGraphCopy<T>* make_solution; |
229 | T algCost = alg.call(graph, terminals, isTerminal, make_solution); |
230 | std::unique_ptr<EdgeWeightedGraphCopy<T>> solution(make_solution); |
231 | |
232 | AssertThat(MinSteinerTreeModule<T>::isSteinerTree(graph, terminals, isTerminal, *solution), IsTrue()); |
233 | |
234 | // only check optimum approximation |
235 | // for algorithms with factor of 2 or better |
236 | if(factor >= 1 && factor <= 2) { |
237 | AssertThat(algCost, Equals(cost)); |
238 | AssertThat(solution->numberOfNodes(), Equals(tree.numberOfNodes())); |
239 | AssertThat(solution->numberOfEdges(), Equals(tree.numberOfEdges())); |
240 | |
241 | List<node> nodes; |
242 | tree.allNodes(nodes); |
243 | for(node v : nodes) { |
244 | AssertThat(solution->copy(tree.original(v)), !IsNull()); |
245 | } |
246 | |
247 | List<edge> edges; |
248 | tree.allEdges(edges); |
249 | for(edge e : edges) { |
250 | AssertThat(solution->copy(tree.original(e)), !IsNull()); |
251 | } |
252 | } |
253 | }); |
254 | } |
255 | |
256 | /** |
257 | * Tests one subclass of MinSteinerTreeModule for a specific type. |
258 | */ |
259 | template<typename T> |
260 | void testModule(const ModuleData<T>& module) |
261 | { |
262 | describe(module.name, [&]() { |
263 | for (int n : module.sizes) { |
264 | testModuleOnRandomGraph(*module.alg, n, module.ratio); |
265 | } |
266 | |
267 | for_each_file("steiner" , [&](const ResourceFile* file){ |
268 | // optimal solution value is extracted from the filename |
269 | string filename = file->name(); |
270 | string tmp = filename.substr(0, filename.length() - 4); |
271 | T opt(0); |
272 | auto pos = tmp.find_last_of('.'); |
273 | if (pos != tmp.npos) { |
274 | tmp = tmp.substr(tmp.find_last_of('.') + 1); |
275 | std::stringstream ss(tmp); |
276 | ss >> opt; |
277 | } |
278 | |
279 | it("yields correct results on " + file->fullPath() + " (optimum is " + (opt == 0 ? "unknown" : to_string(opt)) + ")" , [&] { |
280 | EdgeWeightedGraph<T> graph; |
281 | List<node> terminals; |
282 | NodeArray<bool> isTerminal; |
283 | |
284 | std::stringstream is{file->data()}; |
285 | GraphIO::readSTP(graph, terminals, isTerminal, is); |
286 | |
287 | EdgeWeightedGraphCopy<T>* make_solution; |
288 | T algCost = module.alg->call(graph, terminals, isTerminal, make_solution); |
289 | std::unique_ptr<EdgeWeightedGraphCopy<T>> solution(make_solution); |
290 | |
291 | AssertThat(MinSteinerTreeModule<T>::isSteinerTree(graph, terminals, isTerminal, *solution), IsTrue()); |
292 | if (opt > 0) { |
293 | AssertThat(algCost, IsGreaterThan(opt) || Equals(opt)); |
294 | if (module.ratio != 0) { |
295 | AssertThat(algCost, IsLessThan(module.ratio*opt) || Equals(module.ratio*opt)); |
296 | } |
297 | } |
298 | }); |
299 | }); |
300 | }); |
301 | } |
302 | |
303 | struct MaxFlowFactoryBase { |
304 | virtual MaxFlowModule<double>* create() = 0; |
305 | virtual ~MaxFlowFactoryBase() = default; |
306 | }; |
307 | template<typename MaxFlowModuleType> |
308 | struct MaxFlowFactory : MaxFlowFactoryBase { |
309 | MaxFlowModule<double>* create() override { |
310 | return new MaxFlowModuleType(); |
311 | } |
312 | }; |
313 | |
314 | /** |
315 | * Registers one instance of the MinSteinerTreeDirectedCut class for each of its variants |
316 | */ |
317 | template <typename T> |
318 | static void |
319 | registerDirectedCutVariants(Modules<T> &modules) |
320 | { |
321 | using AlgPair = std::pair<MaxFlowFactoryBase*, std::string>; |
322 | std::unique_ptr<MaxFlowFactoryBase> flowEK(new MaxFlowFactory<MaxFlowEdmondsKarp<double>>()); |
323 | std::unique_ptr<MaxFlowFactoryBase> flowGT(new MaxFlowFactory<MaxFlowEdmondsKarp<double>>()); |
324 | |
325 | using BoolPair = std::pair<bool, std::string>; |
326 | struct VerboseTrueFalse : public std::vector<BoolPair> { |
327 | VerboseTrueFalse(std::string&& trueString, std::string&& falseString = "" ) : std::vector<BoolPair>({{true, trueString}, {false, falseString}}) {} |
328 | }; |
329 | |
330 | for (auto maxFlow : {AlgPair{flowEK.get(), "Edmonds-Karp" }, AlgPair{flowGT.get(), "Goldberg-Tarjan" }}) { |
331 | for (auto useBackCuts : VerboseTrueFalse{", back cuts" }) { |
332 | for (auto useMinCardinalityCuts : VerboseTrueFalse{", min cardinality cuts" }) { |
333 | for (auto useNestedCuts : VerboseTrueFalse{", nested cuts" }) { |
334 | for (auto : VerboseTrueFalse{"all extra constraints" , "only necessary constraints" }) { |
335 | MinSteinerTreeDirectedCut<T> *alg = new MinSteinerTreeDirectedCut<T>(); |
336 | |
337 | std::stringstream ss; |
338 | ss << "DirectedCut" ; |
339 | |
340 | alg->setMaxFlowModule(maxFlow.first->create()); |
341 | ss << ", " << maxFlow.second; |
342 | |
343 | alg->useBackCuts(useBackCuts.first); |
344 | ss << useBackCuts.second; |
345 | |
346 | alg->useMinCardinalityCuts(useMinCardinalityCuts.first); |
347 | ss << useMinCardinalityCuts.second; |
348 | |
349 | alg->useNestedCuts(useNestedCuts.first); |
350 | ss << useNestedCuts.second; |
351 | |
352 | alg->useDegreeConstraints(useExtraConstraints.first); |
353 | alg->useFlowBalanceConstraints(useExtraConstraints.first); |
354 | alg->useGSEC2Constraints(useExtraConstraints.first); |
355 | alg->useIndegreeEdgeConstraints(useExtraConstraints.first); |
356 | ss << ", " << useExtraConstraints.second; |
357 | |
358 | addModule(modules, ss.str(), alg, 1, {12, 30}); |
359 | } |
360 | } |
361 | } |
362 | } |
363 | } |
364 | } |
365 | |
366 | /** |
367 | * Registers one instance of the MinSteinerTreeZelikovsky class for each of its variants |
368 | */ |
369 | template <typename T> |
370 | static void |
371 | registerZelikovskyVariants(Modules<T> &modules) |
372 | { |
373 | using WCalc = std::tuple<std::string, typename MinSteinerTreeZelikovsky<T>::WinCalculation>; |
374 | using TGen = std::tuple<std::string, typename MinSteinerTreeZelikovsky<T>::TripleGeneration>; |
375 | using TRed = std::tuple<std::string, typename MinSteinerTreeZelikovsky<T>::TripleReduction>; |
376 | using SCalc = std::tuple<std::string, typename MinSteinerTreeZelikovsky<T>::SaveCalculation>; |
377 | using Pass = std::tuple<std::string, typename MinSteinerTreeZelikovsky<T>::Pass>; |
378 | using APSPStrategy = std::tuple<std::string, bool>; |
379 | |
380 | std::vector<WCalc> winCalculations = { |
381 | WCalc("absolute win function" , MinSteinerTreeZelikovsky<T>::WinCalculation::absolute), |
382 | WCalc("relative win function" , MinSteinerTreeZelikovsky<T>::WinCalculation::relative) |
383 | }; |
384 | std::vector<TGen> tripleGenStrategies = { |
385 | TGen("exhaustive triple generation" , MinSteinerTreeZelikovsky<T>::TripleGeneration::exhaustive), |
386 | TGen("Voronoi triple generation" , MinSteinerTreeZelikovsky<T>::TripleGeneration::voronoi), |
387 | TGen("direct triple generation" , MinSteinerTreeZelikovsky<T>::TripleGeneration::ondemand) |
388 | }; |
389 | std::vector<TRed> tripleReductStrategies = { |
390 | TRed("enabled reduction" , MinSteinerTreeZelikovsky<T>::TripleReduction::on), |
391 | TRed("disabled reduction" , MinSteinerTreeZelikovsky<T>::TripleReduction::off), |
392 | }; |
393 | std::vector<SCalc> saveCalculations = { |
394 | SCalc("static enumeration save calculation" , MinSteinerTreeZelikovsky<T>::SaveCalculation::staticEnum), |
395 | SCalc("static LCATree save calculation" , MinSteinerTreeZelikovsky<T>::SaveCalculation::staticLCATree), |
396 | SCalc("dynamic LCATree save calculation" , MinSteinerTreeZelikovsky<T>::SaveCalculation::dynamicLCATree), |
397 | SCalc("hybrid save calculation" , MinSteinerTreeZelikovsky<T>::SaveCalculation::hybrid) |
398 | }; |
399 | std::vector<Pass> passes = { |
400 | Pass("one-pass" , MinSteinerTreeZelikovsky<T>::Pass::one), |
401 | Pass("multi-pass" , MinSteinerTreeZelikovsky<T>::Pass::multi) |
402 | }; |
403 | std::vector<APSPStrategy> apspStrategies = { |
404 | APSPStrategy("forced APSP" , true), |
405 | APSPStrategy("SSSP" , false), |
406 | }; |
407 | |
408 | std::vector<typename decltype(winCalculations)::size_type> |
409 | choice = { 0, 0, 0, 0, 0, 0 }, |
410 | maxchoice = { |
411 | winCalculations.size(), |
412 | tripleGenStrategies.size(), |
413 | tripleReductStrategies.size(), |
414 | saveCalculations.size(), |
415 | passes.size(), |
416 | apspStrategies.size(), |
417 | }; |
418 | enum indices { |
419 | winIdx = 0, |
420 | tgenIdx, |
421 | tredIdx, |
422 | saveIdx, |
423 | passIdx, |
424 | apspIdx, |
425 | }; |
426 | |
427 | auto nextChoice = [&]() { |
428 | bool overflow; |
429 | unsigned int i = 0; |
430 | do { |
431 | overflow = false; |
432 | ++choice[i]; |
433 | choice[i] %= maxchoice[i]; |
434 | if (choice[i] == 0) { |
435 | ++i; |
436 | overflow = true; |
437 | } |
438 | } while (overflow && i < choice.size()); |
439 | return !overflow; |
440 | }; |
441 | |
442 | do { |
443 | string desc = "Zelikovsky: " ; |
444 | |
445 | MinSteinerTreeZelikovsky<T> *module = new MinSteinerTreeZelikovsky<T>(); |
446 | |
447 | Pass pass = passes[choice[passIdx]]; |
448 | desc += std::get<0>(pass); |
449 | module->pass(std::get<1>(pass)); |
450 | |
451 | SCalc saveCalc = saveCalculations[choice[saveIdx]]; |
452 | desc += ", " + std::get<0>(saveCalc); |
453 | module->saveCalculation(std::get<1>(saveCalc)); |
454 | |
455 | TGen tripleGen = tripleGenStrategies[choice[tgenIdx]]; |
456 | desc += ", " + std::get<0>(tripleGen); |
457 | module->tripleGeneration(std::get<1>(tripleGen)); |
458 | |
459 | TRed tripleRed = tripleReductStrategies[choice[tredIdx]]; |
460 | desc += ", " + std::get<0>(tripleRed); |
461 | module->tripleReduction(std::get<1>(tripleRed)); |
462 | |
463 | WCalc winCalc = winCalculations[choice[winIdx]]; |
464 | desc += ", " + std::get<0>(winCalc); |
465 | module->winCalculation(std::get<1>(winCalc)); |
466 | |
467 | APSPStrategy apspStrategy = apspStrategies[choice[apspIdx]]; |
468 | desc += ", " + std::get<0>(apspStrategy); |
469 | module->forceAPSP(std::get<1>(apspStrategy)); |
470 | |
471 | // check for invalid configurations |
472 | if (module->tripleGeneration() == MinSteinerTreeZelikovsky<T>::TripleGeneration::ondemand |
473 | && ((module->winCalculation() != MinSteinerTreeZelikovsky<T>::WinCalculation::absolute) |
474 | || (module->saveCalculation() == MinSteinerTreeZelikovsky<T>::SaveCalculation::hybrid) |
475 | || (module->tripleReduction() == MinSteinerTreeZelikovsky<T>::TripleReduction::off) |
476 | || (module->pass() == MinSteinerTreeZelikovsky<T>::Pass::one))) { |
477 | delete module; |
478 | } else { |
479 | addModule(modules, desc, module, 11/6.0); |
480 | }; |
481 | } while (nextChoice()); |
482 | } |
483 | |
484 | /** |
485 | * Registers one instance of the MinSteinerTreeRZLoss class for each of its variants |
486 | */ |
487 | template <typename T> |
488 | static void |
489 | registerRZLossVariants(Modules<T> &modules) |
490 | { |
491 | // RZLoss for different maximum component sizes |
492 | for(int i = 2; i < 6; i++) { |
493 | MinSteinerTreeRZLoss<T> *alg = new MinSteinerTreeRZLoss<T>(); |
494 | int maxCompSize = i; |
495 | std::string info = "" ; |
496 | // APSP is only being used for maximum component size of 3 |
497 | if(i == 2) { |
498 | alg->forceAPSP(true); |
499 | info = " and forced APSP" ; |
500 | maxCompSize = 3; |
501 | } |
502 | alg->setMaxComponentSize(maxCompSize); |
503 | addModule(modules, "RZLoss with maximum component size of " + to_string(maxCompSize) + info, alg, 2, {14, 25}); |
504 | } |
505 | } |
506 | |
507 | /** |
508 | * Registers one instance of the MinSteinerTreeGoemans139 class for each of its variants |
509 | */ |
510 | template <typename T> |
511 | static void |
512 | registerGoemans139Variants(Modules<T> &modules) |
513 | { |
514 | // Goemans139 for different maximum component sizes |
515 | for(int i = 2; i < 6; i++) { |
516 | // and for standard and stronger LP relaxation |
517 | for (int strongerLP = 0; strongerLP < 2; ++strongerLP) { |
518 | for (int use2approx = 0; use2approx < 2; ++use2approx) { |
519 | MinSteinerTreeGoemans139<T> *alg = new MinSteinerTreeGoemans139<T>(); |
520 | int maxCompSize = i; |
521 | std::string info = "Goemans139 with maximum component size " ; |
522 | if(i == 2) { |
523 | alg->forceAPSP(); |
524 | maxCompSize = 3; |
525 | info += "3 (enforced APSP)" ; |
526 | } else { |
527 | info += to_string(maxCompSize); |
528 | } |
529 | alg->setMaxComponentSize(maxCompSize); |
530 | if (strongerLP) { |
531 | alg->separateCycles(); |
532 | info += " using stronger LP" ; |
533 | } |
534 | if (use2approx) { |
535 | alg->use2Approximation(); |
536 | info += " with upper bound" ; |
537 | } |
538 | addModule(modules, info, alg, 2, {14, 25}); |
539 | } |
540 | } |
541 | } |
542 | } |
543 | |
544 | /** |
545 | * Registers a complete Steiner test suite for a given |
546 | * template parameter, like int or double. |
547 | */ |
548 | template<typename T> |
549 | void registerSuite(const std::string typeName) |
550 | { |
551 | describe("for graphs with " + typeName + "-typed costs:" , [] { |
552 | Modules<T> modules; |
553 | addModule(modules, "DirectedCut default" , new MinSteinerTreeDirectedCut<T>(), 1); |
554 | addModule(modules, "Kou" , new MinSteinerTreeKou<T>(), 2); |
555 | addModule(modules, "Mehlhorn" , new MinSteinerTreeMehlhorn<T>(), 2); |
556 | addModule(modules, "RZLoss default" , new MinSteinerTreeRZLoss<T>(), 2); |
557 | addModule(modules, "Goemans139 default" , new MinSteinerTreeGoemans139<T>(), 2); |
558 | addModule(modules, "Takahashi" , new MinSteinerTreeTakahashi<T>(), 2); |
559 | addModule(modules, "Shore" , new MinSteinerTreeShore<T>(), 1, {10, 20}); |
560 | addModule(modules, "Primal-Dual" , new MinSteinerTreePrimalDual<T>(), 2); |
561 | addModule(modules, "DualAscent" , new MinSteinerTreeDualAscent<T>(), 0); |
562 | addModule(modules, "Zelikovsky default" , new MinSteinerTreeZelikovsky<T>(), 11/6.0); |
563 | |
564 | registerDirectedCutVariants<T>(modules); |
565 | registerZelikovskyVariants<T>(modules); |
566 | registerRZLossVariants<T>(modules); |
567 | registerGoemans139Variants<T>(modules); |
568 | |
569 | // register suites |
570 | for (auto& module : modules) { |
571 | testModule<T>(module); |
572 | module.alg.reset(); |
573 | } |
574 | }); |
575 | } |
576 | |
577 | go_bandit([](){ |
578 | describe("Steiner tree algorithms" , []() { |
579 | registerSuite<int>("int" ); |
580 | registerSuite<double>("double" ); |
581 | }); |
582 | }); |
583 | |