| 1 | /** \file |
| 2 | * \brief Bandit test suite for Steiner tree algorithms |
| 3 | * |
| 4 | * \author Tilo Wiedera |
| 5 | * |
| 6 | * \par License: |
| 7 | * This file is part of the Open Graph Drawing Framework (OGDF). |
| 8 | * |
| 9 | * \par |
| 10 | * Copyright (C)<br> |
| 11 | * See README.md in the OGDF root directory for details. |
| 12 | * |
| 13 | * \par |
| 14 | * This program is free software; you can redistribute it and/or |
| 15 | * modify it under the terms of the GNU General Public License |
| 16 | * Version 2 or 3 as published by the Free Software Foundation; |
| 17 | * see the file LICENSE.txt included in the packaging of this file |
| 18 | * for details. |
| 19 | * |
| 20 | * \par |
| 21 | * This program is distributed in the hope that it will be useful, |
| 22 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 23 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 24 | * GNU General Public License for more details. |
| 25 | * |
| 26 | * \par |
| 27 | * You should have received a copy of the GNU General Public |
| 28 | * License along with this program; if not, see |
| 29 | * http://www.gnu.org/copyleft/gpl.html |
| 30 | */ |
| 31 | |
| 32 | #include <string> |
| 33 | #include <vector> |
| 34 | #include <ogdf/fileformats/GraphIO.h> |
| 35 | #include <ogdf/graphalg/MinSteinerTreeDirectedCut.h> |
| 36 | #include <ogdf/graphalg/MaxFlowEdmondsKarp.h> |
| 37 | #include <ogdf/graphalg/MinSteinerTreeKou.h> |
| 38 | #include <ogdf/graphalg/MinSteinerTreeMehlhorn.h> |
| 39 | #include <ogdf/graphalg/MinSteinerTreeRZLoss.h> |
| 40 | #include <ogdf/graphalg/MinSteinerTreeZelikovsky.h> |
| 41 | #include <ogdf/graphalg/MinSteinerTreeShore.h> |
| 42 | #include <ogdf/graphalg/MinSteinerTreePrimalDual.h> |
| 43 | #include <ogdf/graphalg/MinSteinerTreeDualAscent.h> |
| 44 | #include <ogdf/graphalg/MinSteinerTreeGoemans139.h> |
| 45 | #include <resources.h> |
| 46 | |
| 47 | template<typename T> |
| 48 | struct ModuleData { |
| 49 | //! a human-readable name/description of the module |
| 50 | std::string name; |
| 51 | //! the Steiner tree module to be tested |
| 52 | std::unique_ptr<MinSteinerTreeModule<T>> alg; |
| 53 | //! the approximation factor of this algorithm, needed for validating the results |
| 54 | double ratio; |
| 55 | //! the sizes (number of nodes) of the random graphs to test |
| 56 | std::vector<int> sizes; |
| 57 | }; |
| 58 | |
| 59 | template<typename T> |
| 60 | using Modules = std::vector<ModuleData<T>>; |
| 61 | |
| 62 | template<typename T> |
| 63 | static void addModule(Modules<T>& modules, const std::string& name, MinSteinerTreeModule<T>* alg, double ratio, std::vector<int> sizes = {35, 50}) { |
| 64 | modules.emplace_back(ModuleData<T>{name, std::unique_ptr<MinSteinerTreeModule<T>>(alg), ratio, sizes}); |
| 65 | } |
| 66 | |
| 67 | /** |
| 68 | * Generates a new graph with an optimal Steiner tree. |
| 69 | * Only very basic graphs are generated |
| 70 | * to guarantee the optimality of the resulting Steiner tree. |
| 71 | * |
| 72 | * \param n |
| 73 | * number of nodes |
| 74 | * \param graph |
| 75 | * the resulting graph |
| 76 | * \param terminals |
| 77 | * this list will hold all terminals |
| 78 | * \param isTerminal |
| 79 | * stores which node is a terminal |
| 80 | * \param tree |
| 81 | * an optimal Steiner tree for this graph. |
| 82 | */ |
| 83 | template<typename T> |
| 84 | T randomOptimalSteiner( |
| 85 | int n, |
| 86 | EdgeWeightedGraph<T> &graph, |
| 87 | List<node> &terminals, |
| 88 | NodeArray<bool> &isTerminal, |
| 89 | EdgeWeightedGraphCopy<T> &tree |
| 90 | ) |
| 91 | { |
| 92 | OGDF_ASSERT(n >= 4); |
| 93 | |
| 94 | terminals.clear(); |
| 95 | |
| 96 | int numberOfTerminals = max(3, randomNumber(n/4, n/2)); |
| 97 | int numberOfNonterminals = n - numberOfTerminals; |
| 98 | int numberOfEdges = randomNumber(numberOfTerminals-1 + numberOfNonterminals*2, (n*(n-1))/2); |
| 99 | |
| 100 | randomTree(graph, numberOfTerminals); |
| 101 | isTerminal.init(graph, false); |
| 102 | for (node v : graph.nodes) { |
| 103 | if (v->degree() == 1) { |
| 104 | isTerminal[v] = true; |
| 105 | } |
| 106 | } |
| 107 | for (edge e : graph.edges) { |
| 108 | graph.setWeight(e, 1); |
| 109 | } |
| 110 | |
| 111 | tree.init(graph); |
| 112 | T result = tree.numberOfEdges(); |
| 113 | |
| 114 | for(int i = numberOfTerminals-1; i < numberOfEdges;) { |
| 115 | node v = graph.chooseNode(); |
| 116 | node u = graph.chooseNode([&](node w) { return w != v; }); |
| 117 | OGDF_ASSERT(u != nullptr); |
| 118 | |
| 119 | if(numberOfNonterminals > 0) { |
| 120 | node w = graph.newNode(); |
| 121 | graph.newEdge(v, w, n); |
| 122 | graph.newEdge(w, u, n); |
| 123 | numberOfNonterminals--; |
| 124 | i += 2; |
| 125 | } |
| 126 | else { |
| 127 | if (graph.searchEdge(v, u) == nullptr |
| 128 | && graph.searchEdge(u, v) == nullptr) { |
| 129 | graph.newEdge(v, u, n); |
| 130 | i++; |
| 131 | } |
| 132 | } |
| 133 | } |
| 134 | |
| 135 | MinSteinerTreeModule<T>::getTerminals(terminals, graph, isTerminal); |
| 136 | |
| 137 | OGDF_ASSERT(terminals.size() <= numberOfTerminals); |
| 138 | OGDF_ASSERT(graph.numberOfEdges() == numberOfEdges); |
| 139 | OGDF_ASSERT(tree.numberOfNodes() == numberOfTerminals); |
| 140 | OGDF_ASSERT(tree.numberOfEdges() == numberOfTerminals - 1); |
| 141 | OGDF_ASSERT(tree.weight(tree.firstEdge()) == 1); |
| 142 | OGDF_ASSERT(tree.weight(tree.lastEdge()) == 1); |
| 143 | OGDF_ASSERT(graph.numberOfNodes() == n); |
| 144 | OGDF_ASSERT(isSimpleUndirected(graph)); |
| 145 | OGDF_ASSERT(isConnected(graph)); |
| 146 | return result; |
| 147 | } |
| 148 | |
| 149 | /** |
| 150 | * Generates a random Steiner tree instance. |
| 151 | * |
| 152 | * \param n number of nodes |
| 153 | * \param graph the resulting graph |
| 154 | * \param terminals this list will hold all terminals |
| 155 | * \param isTerminal stores which node is a terminal |
| 156 | */ |
| 157 | template<typename T> |
| 158 | void randomSteinerTreeInstance( |
| 159 | int n, |
| 160 | EdgeWeightedGraph<T> &graph, |
| 161 | List<node> &terminals, |
| 162 | NodeArray<bool> &isTerminal) |
| 163 | { |
| 164 | OGDF_ASSERT(n >= 3); |
| 165 | |
| 166 | randomSimpleConnectedGraph(graph, n, randomNumber(2*n - 3, n*(n-1)/2)); |
| 167 | int numberOfTerminals = max(3, randomNumber(n/4, 2*n/3)); |
| 168 | |
| 169 | for (edge e : graph.edges) { |
| 170 | graph.setWeight(e, randomNumber(1, 100)); |
| 171 | } |
| 172 | |
| 173 | Array<node> nodes; |
| 174 | graph.allNodes(nodes); |
| 175 | nodes.permute(); |
| 176 | |
| 177 | terminals.clear(); |
| 178 | isTerminal.init(graph, false); |
| 179 | for (int i = 0; i < numberOfTerminals; ++i) { |
| 180 | const node v = nodes[i]; |
| 181 | isTerminal[v] = true; |
| 182 | terminals.pushBack(v); |
| 183 | } |
| 184 | } |
| 185 | |
| 186 | /** |
| 187 | * Test if modules generates a valid/reasonable Steiner tree for a graph with given number of nodes |
| 188 | */ |
| 189 | template<typename T> |
| 190 | void testModuleOnRandomGraph(MinSteinerTreeModule<T> &alg, int n, double factor = 0) |
| 191 | { |
| 192 | it("generates a valid Steiner tree for a random graph of " + to_string(n) + " nodes" , [&]() { |
| 193 | EdgeWeightedGraph<T> graph; |
| 194 | NodeArray<bool> isTerminal(graph, false); |
| 195 | List<node> terminals; |
| 196 | |
| 197 | randomSteinerTreeInstance(n, graph, terminals, isTerminal); |
| 198 | std::cout << " (" << terminals.size() << " terminals, " << graph.numberOfEdges() << " edges)" ; |
| 199 | |
| 200 | EdgeWeightedGraphCopy<T>* make_solution; |
| 201 | T returnedCost = alg.call(graph, terminals, isTerminal, make_solution); |
| 202 | |
| 203 | std::unique_ptr<EdgeWeightedGraphCopy<T>> solution(make_solution); |
| 204 | |
| 205 | for (node v : solution->nodes) { |
| 206 | AssertThat(solution->original(v), !IsNull()); |
| 207 | } |
| 208 | |
| 209 | T actualCost(0); |
| 210 | for (edge e : solution->edges) { |
| 211 | AssertThat(solution->original(e), !IsNull()); |
| 212 | actualCost += solution->weight(e); |
| 213 | } |
| 214 | |
| 215 | AssertThat(actualCost, Equals(returnedCost)); |
| 216 | AssertThat(MinSteinerTreeModule<T>::isSteinerTree(graph, terminals, isTerminal, *solution), Equals(true)); |
| 217 | }); |
| 218 | |
| 219 | it("finds a reasonable Steiner tree for a graph of " + to_string(n) + " nodes" , [&]() { |
| 220 | EdgeWeightedGraph<T> graph; |
| 221 | EdgeWeightedGraphCopy<T> tree; |
| 222 | NodeArray<bool> isTerminal(graph, false); |
| 223 | List<node> terminals; |
| 224 | |
| 225 | T cost = randomOptimalSteiner<T>(n, graph, terminals, isTerminal, tree); |
| 226 | std::cout << " (" << terminals.size() << " terminals, " << graph.numberOfEdges() << " edges)" ; |
| 227 | |
| 228 | EdgeWeightedGraphCopy<T>* make_solution; |
| 229 | T algCost = alg.call(graph, terminals, isTerminal, make_solution); |
| 230 | std::unique_ptr<EdgeWeightedGraphCopy<T>> solution(make_solution); |
| 231 | |
| 232 | AssertThat(MinSteinerTreeModule<T>::isSteinerTree(graph, terminals, isTerminal, *solution), IsTrue()); |
| 233 | |
| 234 | // only check optimum approximation |
| 235 | // for algorithms with factor of 2 or better |
| 236 | if(factor >= 1 && factor <= 2) { |
| 237 | AssertThat(algCost, Equals(cost)); |
| 238 | AssertThat(solution->numberOfNodes(), Equals(tree.numberOfNodes())); |
| 239 | AssertThat(solution->numberOfEdges(), Equals(tree.numberOfEdges())); |
| 240 | |
| 241 | List<node> nodes; |
| 242 | tree.allNodes(nodes); |
| 243 | for(node v : nodes) { |
| 244 | AssertThat(solution->copy(tree.original(v)), !IsNull()); |
| 245 | } |
| 246 | |
| 247 | List<edge> edges; |
| 248 | tree.allEdges(edges); |
| 249 | for(edge e : edges) { |
| 250 | AssertThat(solution->copy(tree.original(e)), !IsNull()); |
| 251 | } |
| 252 | } |
| 253 | }); |
| 254 | } |
| 255 | |
| 256 | /** |
| 257 | * Tests one subclass of MinSteinerTreeModule for a specific type. |
| 258 | */ |
| 259 | template<typename T> |
| 260 | void testModule(const ModuleData<T>& module) |
| 261 | { |
| 262 | describe(module.name, [&]() { |
| 263 | for (int n : module.sizes) { |
| 264 | testModuleOnRandomGraph(*module.alg, n, module.ratio); |
| 265 | } |
| 266 | |
| 267 | for_each_file("steiner" , [&](const ResourceFile* file){ |
| 268 | // optimal solution value is extracted from the filename |
| 269 | string filename = file->name(); |
| 270 | string tmp = filename.substr(0, filename.length() - 4); |
| 271 | T opt(0); |
| 272 | auto pos = tmp.find_last_of('.'); |
| 273 | if (pos != tmp.npos) { |
| 274 | tmp = tmp.substr(tmp.find_last_of('.') + 1); |
| 275 | std::stringstream ss(tmp); |
| 276 | ss >> opt; |
| 277 | } |
| 278 | |
| 279 | it("yields correct results on " + file->fullPath() + " (optimum is " + (opt == 0 ? "unknown" : to_string(opt)) + ")" , [&] { |
| 280 | EdgeWeightedGraph<T> graph; |
| 281 | List<node> terminals; |
| 282 | NodeArray<bool> isTerminal; |
| 283 | |
| 284 | std::stringstream is{file->data()}; |
| 285 | GraphIO::readSTP(graph, terminals, isTerminal, is); |
| 286 | |
| 287 | EdgeWeightedGraphCopy<T>* make_solution; |
| 288 | T algCost = module.alg->call(graph, terminals, isTerminal, make_solution); |
| 289 | std::unique_ptr<EdgeWeightedGraphCopy<T>> solution(make_solution); |
| 290 | |
| 291 | AssertThat(MinSteinerTreeModule<T>::isSteinerTree(graph, terminals, isTerminal, *solution), IsTrue()); |
| 292 | if (opt > 0) { |
| 293 | AssertThat(algCost, IsGreaterThan(opt) || Equals(opt)); |
| 294 | if (module.ratio != 0) { |
| 295 | AssertThat(algCost, IsLessThan(module.ratio*opt) || Equals(module.ratio*opt)); |
| 296 | } |
| 297 | } |
| 298 | }); |
| 299 | }); |
| 300 | }); |
| 301 | } |
| 302 | |
| 303 | struct MaxFlowFactoryBase { |
| 304 | virtual MaxFlowModule<double>* create() = 0; |
| 305 | virtual ~MaxFlowFactoryBase() = default; |
| 306 | }; |
| 307 | template<typename MaxFlowModuleType> |
| 308 | struct MaxFlowFactory : MaxFlowFactoryBase { |
| 309 | MaxFlowModule<double>* create() override { |
| 310 | return new MaxFlowModuleType(); |
| 311 | } |
| 312 | }; |
| 313 | |
| 314 | /** |
| 315 | * Registers one instance of the MinSteinerTreeDirectedCut class for each of its variants |
| 316 | */ |
| 317 | template <typename T> |
| 318 | static void |
| 319 | registerDirectedCutVariants(Modules<T> &modules) |
| 320 | { |
| 321 | using AlgPair = std::pair<MaxFlowFactoryBase*, std::string>; |
| 322 | std::unique_ptr<MaxFlowFactoryBase> flowEK(new MaxFlowFactory<MaxFlowEdmondsKarp<double>>()); |
| 323 | std::unique_ptr<MaxFlowFactoryBase> flowGT(new MaxFlowFactory<MaxFlowEdmondsKarp<double>>()); |
| 324 | |
| 325 | using BoolPair = std::pair<bool, std::string>; |
| 326 | struct VerboseTrueFalse : public std::vector<BoolPair> { |
| 327 | VerboseTrueFalse(std::string&& trueString, std::string&& falseString = "" ) : std::vector<BoolPair>({{true, trueString}, {false, falseString}}) {} |
| 328 | }; |
| 329 | |
| 330 | for (auto maxFlow : {AlgPair{flowEK.get(), "Edmonds-Karp" }, AlgPair{flowGT.get(), "Goldberg-Tarjan" }}) { |
| 331 | for (auto useBackCuts : VerboseTrueFalse{", back cuts" }) { |
| 332 | for (auto useMinCardinalityCuts : VerboseTrueFalse{", min cardinality cuts" }) { |
| 333 | for (auto useNestedCuts : VerboseTrueFalse{", nested cuts" }) { |
| 334 | for (auto : VerboseTrueFalse{"all extra constraints" , "only necessary constraints" }) { |
| 335 | MinSteinerTreeDirectedCut<T> *alg = new MinSteinerTreeDirectedCut<T>(); |
| 336 | |
| 337 | std::stringstream ss; |
| 338 | ss << "DirectedCut" ; |
| 339 | |
| 340 | alg->setMaxFlowModule(maxFlow.first->create()); |
| 341 | ss << ", " << maxFlow.second; |
| 342 | |
| 343 | alg->useBackCuts(useBackCuts.first); |
| 344 | ss << useBackCuts.second; |
| 345 | |
| 346 | alg->useMinCardinalityCuts(useMinCardinalityCuts.first); |
| 347 | ss << useMinCardinalityCuts.second; |
| 348 | |
| 349 | alg->useNestedCuts(useNestedCuts.first); |
| 350 | ss << useNestedCuts.second; |
| 351 | |
| 352 | alg->useDegreeConstraints(useExtraConstraints.first); |
| 353 | alg->useFlowBalanceConstraints(useExtraConstraints.first); |
| 354 | alg->useGSEC2Constraints(useExtraConstraints.first); |
| 355 | alg->useIndegreeEdgeConstraints(useExtraConstraints.first); |
| 356 | ss << ", " << useExtraConstraints.second; |
| 357 | |
| 358 | addModule(modules, ss.str(), alg, 1, {12, 30}); |
| 359 | } |
| 360 | } |
| 361 | } |
| 362 | } |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | /** |
| 367 | * Registers one instance of the MinSteinerTreeZelikovsky class for each of its variants |
| 368 | */ |
| 369 | template <typename T> |
| 370 | static void |
| 371 | registerZelikovskyVariants(Modules<T> &modules) |
| 372 | { |
| 373 | using WCalc = std::tuple<std::string, typename MinSteinerTreeZelikovsky<T>::WinCalculation>; |
| 374 | using TGen = std::tuple<std::string, typename MinSteinerTreeZelikovsky<T>::TripleGeneration>; |
| 375 | using TRed = std::tuple<std::string, typename MinSteinerTreeZelikovsky<T>::TripleReduction>; |
| 376 | using SCalc = std::tuple<std::string, typename MinSteinerTreeZelikovsky<T>::SaveCalculation>; |
| 377 | using Pass = std::tuple<std::string, typename MinSteinerTreeZelikovsky<T>::Pass>; |
| 378 | using APSPStrategy = std::tuple<std::string, bool>; |
| 379 | |
| 380 | std::vector<WCalc> winCalculations = { |
| 381 | WCalc("absolute win function" , MinSteinerTreeZelikovsky<T>::WinCalculation::absolute), |
| 382 | WCalc("relative win function" , MinSteinerTreeZelikovsky<T>::WinCalculation::relative) |
| 383 | }; |
| 384 | std::vector<TGen> tripleGenStrategies = { |
| 385 | TGen("exhaustive triple generation" , MinSteinerTreeZelikovsky<T>::TripleGeneration::exhaustive), |
| 386 | TGen("Voronoi triple generation" , MinSteinerTreeZelikovsky<T>::TripleGeneration::voronoi), |
| 387 | TGen("direct triple generation" , MinSteinerTreeZelikovsky<T>::TripleGeneration::ondemand) |
| 388 | }; |
| 389 | std::vector<TRed> tripleReductStrategies = { |
| 390 | TRed("enabled reduction" , MinSteinerTreeZelikovsky<T>::TripleReduction::on), |
| 391 | TRed("disabled reduction" , MinSteinerTreeZelikovsky<T>::TripleReduction::off), |
| 392 | }; |
| 393 | std::vector<SCalc> saveCalculations = { |
| 394 | SCalc("static enumeration save calculation" , MinSteinerTreeZelikovsky<T>::SaveCalculation::staticEnum), |
| 395 | SCalc("static LCATree save calculation" , MinSteinerTreeZelikovsky<T>::SaveCalculation::staticLCATree), |
| 396 | SCalc("dynamic LCATree save calculation" , MinSteinerTreeZelikovsky<T>::SaveCalculation::dynamicLCATree), |
| 397 | SCalc("hybrid save calculation" , MinSteinerTreeZelikovsky<T>::SaveCalculation::hybrid) |
| 398 | }; |
| 399 | std::vector<Pass> passes = { |
| 400 | Pass("one-pass" , MinSteinerTreeZelikovsky<T>::Pass::one), |
| 401 | Pass("multi-pass" , MinSteinerTreeZelikovsky<T>::Pass::multi) |
| 402 | }; |
| 403 | std::vector<APSPStrategy> apspStrategies = { |
| 404 | APSPStrategy("forced APSP" , true), |
| 405 | APSPStrategy("SSSP" , false), |
| 406 | }; |
| 407 | |
| 408 | std::vector<typename decltype(winCalculations)::size_type> |
| 409 | choice = { 0, 0, 0, 0, 0, 0 }, |
| 410 | maxchoice = { |
| 411 | winCalculations.size(), |
| 412 | tripleGenStrategies.size(), |
| 413 | tripleReductStrategies.size(), |
| 414 | saveCalculations.size(), |
| 415 | passes.size(), |
| 416 | apspStrategies.size(), |
| 417 | }; |
| 418 | enum indices { |
| 419 | winIdx = 0, |
| 420 | tgenIdx, |
| 421 | tredIdx, |
| 422 | saveIdx, |
| 423 | passIdx, |
| 424 | apspIdx, |
| 425 | }; |
| 426 | |
| 427 | auto nextChoice = [&]() { |
| 428 | bool overflow; |
| 429 | unsigned int i = 0; |
| 430 | do { |
| 431 | overflow = false; |
| 432 | ++choice[i]; |
| 433 | choice[i] %= maxchoice[i]; |
| 434 | if (choice[i] == 0) { |
| 435 | ++i; |
| 436 | overflow = true; |
| 437 | } |
| 438 | } while (overflow && i < choice.size()); |
| 439 | return !overflow; |
| 440 | }; |
| 441 | |
| 442 | do { |
| 443 | string desc = "Zelikovsky: " ; |
| 444 | |
| 445 | MinSteinerTreeZelikovsky<T> *module = new MinSteinerTreeZelikovsky<T>(); |
| 446 | |
| 447 | Pass pass = passes[choice[passIdx]]; |
| 448 | desc += std::get<0>(pass); |
| 449 | module->pass(std::get<1>(pass)); |
| 450 | |
| 451 | SCalc saveCalc = saveCalculations[choice[saveIdx]]; |
| 452 | desc += ", " + std::get<0>(saveCalc); |
| 453 | module->saveCalculation(std::get<1>(saveCalc)); |
| 454 | |
| 455 | TGen tripleGen = tripleGenStrategies[choice[tgenIdx]]; |
| 456 | desc += ", " + std::get<0>(tripleGen); |
| 457 | module->tripleGeneration(std::get<1>(tripleGen)); |
| 458 | |
| 459 | TRed tripleRed = tripleReductStrategies[choice[tredIdx]]; |
| 460 | desc += ", " + std::get<0>(tripleRed); |
| 461 | module->tripleReduction(std::get<1>(tripleRed)); |
| 462 | |
| 463 | WCalc winCalc = winCalculations[choice[winIdx]]; |
| 464 | desc += ", " + std::get<0>(winCalc); |
| 465 | module->winCalculation(std::get<1>(winCalc)); |
| 466 | |
| 467 | APSPStrategy apspStrategy = apspStrategies[choice[apspIdx]]; |
| 468 | desc += ", " + std::get<0>(apspStrategy); |
| 469 | module->forceAPSP(std::get<1>(apspStrategy)); |
| 470 | |
| 471 | // check for invalid configurations |
| 472 | if (module->tripleGeneration() == MinSteinerTreeZelikovsky<T>::TripleGeneration::ondemand |
| 473 | && ((module->winCalculation() != MinSteinerTreeZelikovsky<T>::WinCalculation::absolute) |
| 474 | || (module->saveCalculation() == MinSteinerTreeZelikovsky<T>::SaveCalculation::hybrid) |
| 475 | || (module->tripleReduction() == MinSteinerTreeZelikovsky<T>::TripleReduction::off) |
| 476 | || (module->pass() == MinSteinerTreeZelikovsky<T>::Pass::one))) { |
| 477 | delete module; |
| 478 | } else { |
| 479 | addModule(modules, desc, module, 11/6.0); |
| 480 | }; |
| 481 | } while (nextChoice()); |
| 482 | } |
| 483 | |
| 484 | /** |
| 485 | * Registers one instance of the MinSteinerTreeRZLoss class for each of its variants |
| 486 | */ |
| 487 | template <typename T> |
| 488 | static void |
| 489 | registerRZLossVariants(Modules<T> &modules) |
| 490 | { |
| 491 | // RZLoss for different maximum component sizes |
| 492 | for(int i = 2; i < 6; i++) { |
| 493 | MinSteinerTreeRZLoss<T> *alg = new MinSteinerTreeRZLoss<T>(); |
| 494 | int maxCompSize = i; |
| 495 | std::string info = "" ; |
| 496 | // APSP is only being used for maximum component size of 3 |
| 497 | if(i == 2) { |
| 498 | alg->forceAPSP(true); |
| 499 | info = " and forced APSP" ; |
| 500 | maxCompSize = 3; |
| 501 | } |
| 502 | alg->setMaxComponentSize(maxCompSize); |
| 503 | addModule(modules, "RZLoss with maximum component size of " + to_string(maxCompSize) + info, alg, 2, {14, 25}); |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | /** |
| 508 | * Registers one instance of the MinSteinerTreeGoemans139 class for each of its variants |
| 509 | */ |
| 510 | template <typename T> |
| 511 | static void |
| 512 | registerGoemans139Variants(Modules<T> &modules) |
| 513 | { |
| 514 | // Goemans139 for different maximum component sizes |
| 515 | for(int i = 2; i < 6; i++) { |
| 516 | // and for standard and stronger LP relaxation |
| 517 | for (int strongerLP = 0; strongerLP < 2; ++strongerLP) { |
| 518 | for (int use2approx = 0; use2approx < 2; ++use2approx) { |
| 519 | MinSteinerTreeGoemans139<T> *alg = new MinSteinerTreeGoemans139<T>(); |
| 520 | int maxCompSize = i; |
| 521 | std::string info = "Goemans139 with maximum component size " ; |
| 522 | if(i == 2) { |
| 523 | alg->forceAPSP(); |
| 524 | maxCompSize = 3; |
| 525 | info += "3 (enforced APSP)" ; |
| 526 | } else { |
| 527 | info += to_string(maxCompSize); |
| 528 | } |
| 529 | alg->setMaxComponentSize(maxCompSize); |
| 530 | if (strongerLP) { |
| 531 | alg->separateCycles(); |
| 532 | info += " using stronger LP" ; |
| 533 | } |
| 534 | if (use2approx) { |
| 535 | alg->use2Approximation(); |
| 536 | info += " with upper bound" ; |
| 537 | } |
| 538 | addModule(modules, info, alg, 2, {14, 25}); |
| 539 | } |
| 540 | } |
| 541 | } |
| 542 | } |
| 543 | |
| 544 | /** |
| 545 | * Registers a complete Steiner test suite for a given |
| 546 | * template parameter, like int or double. |
| 547 | */ |
| 548 | template<typename T> |
| 549 | void registerSuite(const std::string typeName) |
| 550 | { |
| 551 | describe("for graphs with " + typeName + "-typed costs:" , [] { |
| 552 | Modules<T> modules; |
| 553 | addModule(modules, "DirectedCut default" , new MinSteinerTreeDirectedCut<T>(), 1); |
| 554 | addModule(modules, "Kou" , new MinSteinerTreeKou<T>(), 2); |
| 555 | addModule(modules, "Mehlhorn" , new MinSteinerTreeMehlhorn<T>(), 2); |
| 556 | addModule(modules, "RZLoss default" , new MinSteinerTreeRZLoss<T>(), 2); |
| 557 | addModule(modules, "Goemans139 default" , new MinSteinerTreeGoemans139<T>(), 2); |
| 558 | addModule(modules, "Takahashi" , new MinSteinerTreeTakahashi<T>(), 2); |
| 559 | addModule(modules, "Shore" , new MinSteinerTreeShore<T>(), 1, {10, 20}); |
| 560 | addModule(modules, "Primal-Dual" , new MinSteinerTreePrimalDual<T>(), 2); |
| 561 | addModule(modules, "DualAscent" , new MinSteinerTreeDualAscent<T>(), 0); |
| 562 | addModule(modules, "Zelikovsky default" , new MinSteinerTreeZelikovsky<T>(), 11/6.0); |
| 563 | |
| 564 | registerDirectedCutVariants<T>(modules); |
| 565 | registerZelikovskyVariants<T>(modules); |
| 566 | registerRZLossVariants<T>(modules); |
| 567 | registerGoemans139Variants<T>(modules); |
| 568 | |
| 569 | // register suites |
| 570 | for (auto& module : modules) { |
| 571 | testModule<T>(module); |
| 572 | module.alg.reset(); |
| 573 | } |
| 574 | }); |
| 575 | } |
| 576 | |
| 577 | go_bandit([](){ |
| 578 | describe("Steiner tree algorithms" , []() { |
| 579 | registerSuite<int>("int" ); |
| 580 | registerSuite<double>("double" ); |
| 581 | }); |
| 582 | }); |
| 583 | |