| 1 | /* $Id: ClpPredictorCorrector.cpp 1753 2011-06-19 16:27:26Z stefan $ */ |
| 2 | // Copyright (C) 2003, International Business Machines |
| 3 | // Corporation and others. All Rights Reserved. |
| 4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
| 5 | |
| 6 | /* |
| 7 | Implements crude primal dual predictor corrector algorithm |
| 8 | |
| 9 | */ |
| 10 | //#define SOME_DEBUG |
| 11 | |
| 12 | #include "CoinPragma.hpp" |
| 13 | #include <math.h> |
| 14 | |
| 15 | #include "CoinHelperFunctions.hpp" |
| 16 | #include "ClpPredictorCorrector.hpp" |
| 17 | #include "CoinPackedMatrix.hpp" |
| 18 | #include "ClpMessage.hpp" |
| 19 | #include "ClpCholeskyBase.hpp" |
| 20 | #include "ClpHelperFunctions.hpp" |
| 21 | #include "ClpQuadraticObjective.hpp" |
| 22 | #include <cfloat> |
| 23 | #include <cassert> |
| 24 | #include <string> |
| 25 | #include <cstdio> |
| 26 | #include <iostream> |
| 27 | #if 0 |
| 28 | static int yyyyyy = 0; |
| 29 | void ClpPredictorCorrector::saveSolution(std::string fileName) |
| 30 | { |
| 31 | FILE * fp = fopen(fileName.c_str(), "wb" ); |
| 32 | if (fp) { |
| 33 | int numberRows = numberRows_; |
| 34 | int numberColumns = numberColumns_; |
| 35 | fwrite(&numberRows, sizeof(int), 1, fp); |
| 36 | fwrite(&numberColumns, sizeof(int), 1, fp); |
| 37 | CoinWorkDouble dsave[20]; |
| 38 | memset(dsave, 0, sizeof(dsave)); |
| 39 | fwrite(dsave, sizeof(CoinWorkDouble), 20, fp); |
| 40 | int msave[20]; |
| 41 | memset(msave, 0, sizeof(msave)); |
| 42 | msave[0] = numberIterations_; |
| 43 | fwrite(msave, sizeof(int), 20, fp); |
| 44 | fwrite(dual_, sizeof(CoinWorkDouble), numberRows, fp); |
| 45 | fwrite(errorRegion_, sizeof(CoinWorkDouble), numberRows, fp); |
| 46 | fwrite(rhsFixRegion_, sizeof(CoinWorkDouble), numberRows, fp); |
| 47 | fwrite(solution_, sizeof(CoinWorkDouble), numberColumns, fp); |
| 48 | fwrite(solution_ + numberColumns, sizeof(CoinWorkDouble), numberRows, fp); |
| 49 | fwrite(diagonal_, sizeof(CoinWorkDouble), numberColumns, fp); |
| 50 | fwrite(diagonal_ + numberColumns, sizeof(CoinWorkDouble), numberRows, fp); |
| 51 | fwrite(wVec_, sizeof(CoinWorkDouble), numberColumns, fp); |
| 52 | fwrite(wVec_ + numberColumns, sizeof(CoinWorkDouble), numberRows, fp); |
| 53 | fwrite(zVec_, sizeof(CoinWorkDouble), numberColumns, fp); |
| 54 | fwrite(zVec_ + numberColumns, sizeof(CoinWorkDouble), numberRows, fp); |
| 55 | fwrite(upperSlack_, sizeof(CoinWorkDouble), numberColumns, fp); |
| 56 | fwrite(upperSlack_ + numberColumns, sizeof(CoinWorkDouble), numberRows, fp); |
| 57 | fwrite(lowerSlack_, sizeof(CoinWorkDouble), numberColumns, fp); |
| 58 | fwrite(lowerSlack_ + numberColumns, sizeof(CoinWorkDouble), numberRows, fp); |
| 59 | fclose(fp); |
| 60 | } else { |
| 61 | std::cout << "Unable to open file " << fileName << std::endl; |
| 62 | } |
| 63 | } |
| 64 | #endif |
| 65 | // Could change on CLP_LONG_CHOLESKY or COIN_LONG_WORK? |
| 66 | static CoinWorkDouble eScale = 1.0e27; |
| 67 | static CoinWorkDouble eBaseCaution = 1.0e-12; |
| 68 | static CoinWorkDouble eBase = 1.0e-12; |
| 69 | static CoinWorkDouble eRatio = 1.0e40; |
| 70 | static CoinWorkDouble eRatioCaution = 1.0e25; |
| 71 | static CoinWorkDouble eDiagonal = 1.0e25; |
| 72 | static CoinWorkDouble eDiagonalCaution = 1.0e18; |
| 73 | static CoinWorkDouble = 1.0e-12; |
| 74 | |
| 75 | // main function |
| 76 | |
| 77 | int ClpPredictorCorrector::solve ( ) |
| 78 | { |
| 79 | problemStatus_ = -1; |
| 80 | algorithm_ = 1; |
| 81 | //create all regions |
| 82 | if (!createWorkingData()) { |
| 83 | problemStatus_ = 4; |
| 84 | return 2; |
| 85 | } |
| 86 | #if COIN_LONG_WORK |
| 87 | // reallocate some regions |
| 88 | double * dualSave = dual_; |
| 89 | dual_ = reinterpret_cast<double *>(new CoinWorkDouble[numberRows_]); |
| 90 | double * reducedCostSave = reducedCost_; |
| 91 | reducedCost_ = reinterpret_cast<double *>(new CoinWorkDouble[numberColumns_]); |
| 92 | #endif |
| 93 | //diagonalPerturbation_=1.0e-25; |
| 94 | ClpMatrixBase * saveMatrix = NULL; |
| 95 | // If quadratic then make copy so we can actually scale or normalize |
| 96 | #ifndef NO_RTTI |
| 97 | ClpQuadraticObjective * quadraticObj = (dynamic_cast< ClpQuadraticObjective*>(objective_)); |
| 98 | #else |
| 99 | ClpQuadraticObjective * quadraticObj = NULL; |
| 100 | if (objective_->type() == 2) |
| 101 | quadraticObj = (static_cast< ClpQuadraticObjective*>(objective_)); |
| 102 | #endif |
| 103 | /* If modeSwitch is : |
| 104 | 0 - normal |
| 105 | 1 - bit switch off centering |
| 106 | 2 - bit always do type 2 |
| 107 | 4 - accept corrector nearly always |
| 108 | */ |
| 109 | int modeSwitch = 0; |
| 110 | //if (quadraticObj) |
| 111 | //modeSwitch |= 1; // switch off centring for now |
| 112 | //if (quadraticObj) |
| 113 | //modeSwitch |=4; |
| 114 | ClpObjective * saveObjective = NULL; |
| 115 | if (quadraticObj) { |
| 116 | // check KKT is on |
| 117 | if (!cholesky_->kkt()) { |
| 118 | //No! |
| 119 | handler_->message(CLP_BARRIER_KKT, messages_) |
| 120 | << CoinMessageEol; |
| 121 | return -1; |
| 122 | } |
| 123 | saveObjective = objective_; |
| 124 | // We are going to make matrix full rather half |
| 125 | objective_ = new ClpQuadraticObjective(*quadraticObj, 1); |
| 126 | } |
| 127 | bool allowIncreasingGap = (modeSwitch & 4) != 0; |
| 128 | // If scaled then really scale matrix |
| 129 | if (scalingFlag_ > 0 && rowScale_) { |
| 130 | saveMatrix = matrix_; |
| 131 | matrix_ = matrix_->scaledColumnCopy(this); |
| 132 | } |
| 133 | //initializeFeasible(); - this just set fixed flag |
| 134 | smallestInfeasibility_ = COIN_DBL_MAX; |
| 135 | int i; |
| 136 | for (i = 0; i < LENGTH_HISTORY; i++) |
| 137 | historyInfeasibility_[i] = COIN_DBL_MAX; |
| 138 | |
| 139 | //bool firstTime=true; |
| 140 | //firstFactorization(true); |
| 141 | int returnCode = cholesky_->order(this); |
| 142 | if (returnCode || cholesky_->symbolic()) { |
| 143 | COIN_DETAIL_PRINT(printf("Error return from symbolic - probably not enough memory\n" )); |
| 144 | problemStatus_ = 4; |
| 145 | //delete all temporary regions |
| 146 | deleteWorkingData(); |
| 147 | if (saveMatrix) { |
| 148 | // restore normal copy |
| 149 | delete matrix_; |
| 150 | matrix_ = saveMatrix; |
| 151 | } |
| 152 | // Restore quadratic objective if necessary |
| 153 | if (saveObjective) { |
| 154 | delete objective_; |
| 155 | objective_ = saveObjective; |
| 156 | } |
| 157 | return -1; |
| 158 | } |
| 159 | mu_ = 1.0e10; |
| 160 | diagonalScaleFactor_ = 1.0; |
| 161 | //set iterations |
| 162 | numberIterations_ = -1; |
| 163 | int numberTotal = numberRows_ + numberColumns_; |
| 164 | //initialize solution here |
| 165 | if(createSolution() < 0) { |
| 166 | COIN_DETAIL_PRINT(printf("Not enough memory\n" )); |
| 167 | problemStatus_ = 4; |
| 168 | //delete all temporary regions |
| 169 | deleteWorkingData(); |
| 170 | if (saveMatrix) { |
| 171 | // restore normal copy |
| 172 | delete matrix_; |
| 173 | matrix_ = saveMatrix; |
| 174 | } |
| 175 | return -1; |
| 176 | } |
| 177 | CoinWorkDouble * dualArray = reinterpret_cast<CoinWorkDouble *>(dual_); |
| 178 | // Could try centering steps without any original step i.e. just center |
| 179 | //firstFactorization(false); |
| 180 | CoinZeroN(dualArray, numberRows_); |
| 181 | multiplyAdd(solution_ + numberColumns_, numberRows_, -1.0, errorRegion_, 0.0); |
| 182 | matrix_->times(1.0, solution_, errorRegion_); |
| 183 | maximumRHSError_ = maximumAbsElement(errorRegion_, numberRows_); |
| 184 | maximumBoundInfeasibility_ = maximumRHSError_; |
| 185 | //CoinWorkDouble maximumDualError_=COIN_DBL_MAX; |
| 186 | //initialize |
| 187 | actualDualStep_ = 0.0; |
| 188 | actualPrimalStep_ = 0.0; |
| 189 | gonePrimalFeasible_ = false; |
| 190 | goneDualFeasible_ = false; |
| 191 | //bool hadGoodSolution=false; |
| 192 | diagonalNorm_ = solutionNorm_; |
| 193 | mu_ = solutionNorm_; |
| 194 | int numberFixed = updateSolution(-COIN_DBL_MAX); |
| 195 | int numberFixedTotal = numberFixed; |
| 196 | //int numberRows_DroppedBefore=0; |
| 197 | //CoinWorkDouble extra=eExtra; |
| 198 | //CoinWorkDouble maximumPerturbation=COIN_DBL_MAX; |
| 199 | //constants for infeas interior point |
| 200 | const CoinWorkDouble beta2 = 0.99995; |
| 201 | const CoinWorkDouble tau = 0.00002; |
| 202 | CoinWorkDouble lastComplementarityGap = COIN_DBL_MAX * 1.0e-20; |
| 203 | CoinWorkDouble lastStep = 1.0; |
| 204 | // use to see if to take affine |
| 205 | CoinWorkDouble checkGap = COIN_DBL_MAX; |
| 206 | int lastGoodIteration = 0; |
| 207 | CoinWorkDouble bestObjectiveGap = COIN_DBL_MAX; |
| 208 | CoinWorkDouble bestObjective = COIN_DBL_MAX; |
| 209 | int bestKilled = -1; |
| 210 | int saveIteration = -1; |
| 211 | int saveIteration2 = -1; |
| 212 | bool sloppyOptimal = false; |
| 213 | CoinWorkDouble * savePi = NULL; |
| 214 | CoinWorkDouble * savePrimal = NULL; |
| 215 | CoinWorkDouble * savePi2 = NULL; |
| 216 | CoinWorkDouble * savePrimal2 = NULL; |
| 217 | // Extra regions for centering |
| 218 | CoinWorkDouble * saveX = new CoinWorkDouble[numberTotal]; |
| 219 | CoinWorkDouble * saveY = new CoinWorkDouble[numberRows_]; |
| 220 | CoinWorkDouble * saveZ = new CoinWorkDouble[numberTotal]; |
| 221 | CoinWorkDouble * saveW = new CoinWorkDouble[numberTotal]; |
| 222 | CoinWorkDouble * saveSL = new CoinWorkDouble[numberTotal]; |
| 223 | CoinWorkDouble * saveSU = new CoinWorkDouble[numberTotal]; |
| 224 | // Save smallest mu used in primal dual moves |
| 225 | CoinWorkDouble smallestPrimalDualMu = COIN_DBL_MAX; |
| 226 | CoinWorkDouble objScale = optimizationDirection_ / |
| 227 | (rhsScale_ * objectiveScale_); |
| 228 | while (problemStatus_ < 0) { |
| 229 | //#define FULL_DEBUG |
| 230 | #ifdef FULL_DEBUG |
| 231 | { |
| 232 | int i; |
| 233 | printf("row pi artvec rhsfx\n" ); |
| 234 | for (i = 0; i < numberRows_; i++) { |
| 235 | printf("%d %g %g %g\n" , i, dual_[i], errorRegion_[i], rhsFixRegion_[i]); |
| 236 | } |
| 237 | printf(" col dsol ddiag dwvec dzvec dbdslu dbdsll\n" ); |
| 238 | for (i = 0; i < numberColumns_ + numberRows_; i++) { |
| 239 | printf(" %d %g %g %g %g %g %g\n" , i, solution_[i], diagonal_[i], wVec_[i], |
| 240 | zVec_[i], upperSlack_[i], lowerSlack_[i]); |
| 241 | } |
| 242 | } |
| 243 | #endif |
| 244 | complementarityGap_ = complementarityGap(numberComplementarityPairs_, |
| 245 | numberComplementarityItems_, 0); |
| 246 | handler_->message(CLP_BARRIER_ITERATION, messages_) |
| 247 | << numberIterations_ |
| 248 | << static_cast<double>(primalObjective_ * objScale - dblParam_[ClpObjOffset]) |
| 249 | << static_cast<double>(dualObjective_ * objScale - dblParam_[ClpObjOffset]) |
| 250 | << static_cast<double>(complementarityGap_) |
| 251 | << numberFixedTotal |
| 252 | << cholesky_->rank() |
| 253 | << CoinMessageEol; |
| 254 | #if 0 |
| 255 | if (numberIterations_ == -1) { |
| 256 | saveSolution("xxx.sav" ); |
| 257 | if (yyyyyy) |
| 258 | exit(99); |
| 259 | } |
| 260 | #endif |
| 261 | // move up history |
| 262 | for (i = 1; i < LENGTH_HISTORY; i++) |
| 263 | historyInfeasibility_[i-1] = historyInfeasibility_[i]; |
| 264 | historyInfeasibility_[LENGTH_HISTORY-1] = complementarityGap_; |
| 265 | // switch off saved if changes |
| 266 | //if (saveIteration+10<numberIterations_&& |
| 267 | //complementarityGap_*2.0<historyInfeasibility_[0]) |
| 268 | //saveIteration=-1; |
| 269 | lastStep = CoinMin(actualPrimalStep_, actualDualStep_); |
| 270 | CoinWorkDouble goodGapChange; |
| 271 | //#define KEEP_GOING_IF_FIXED 5 |
| 272 | #ifndef KEEP_GOING_IF_FIXED |
| 273 | #define KEEP_GOING_IF_FIXED 10000 |
| 274 | #endif |
| 275 | if (!sloppyOptimal) { |
| 276 | goodGapChange = 0.93; |
| 277 | } else { |
| 278 | goodGapChange = 0.7; |
| 279 | if (numberFixed > KEEP_GOING_IF_FIXED) |
| 280 | goodGapChange = 0.99; // make more likely to carry on |
| 281 | } |
| 282 | CoinWorkDouble gapO; |
| 283 | CoinWorkDouble lastGood = bestObjectiveGap; |
| 284 | if (gonePrimalFeasible_ && goneDualFeasible_) { |
| 285 | CoinWorkDouble largestObjective; |
| 286 | if (CoinAbs(primalObjective_) > CoinAbs(dualObjective_)) { |
| 287 | largestObjective = CoinAbs(primalObjective_); |
| 288 | } else { |
| 289 | largestObjective = CoinAbs(dualObjective_); |
| 290 | } |
| 291 | if (largestObjective < 1.0) { |
| 292 | largestObjective = 1.0; |
| 293 | } |
| 294 | gapO = CoinAbs(primalObjective_ - dualObjective_) / largestObjective; |
| 295 | handler_->message(CLP_BARRIER_OBJECTIVE_GAP, messages_) |
| 296 | << static_cast<double>(gapO) |
| 297 | << CoinMessageEol; |
| 298 | //start saving best |
| 299 | bool saveIt = false; |
| 300 | if (gapO < bestObjectiveGap) { |
| 301 | bestObjectiveGap = gapO; |
| 302 | #ifndef SAVE_ON_OBJ |
| 303 | saveIt = true; |
| 304 | #endif |
| 305 | } |
| 306 | if (primalObjective_ < bestObjective) { |
| 307 | bestObjective = primalObjective_; |
| 308 | #ifdef SAVE_ON_OBJ |
| 309 | saveIt = true; |
| 310 | #endif |
| 311 | } |
| 312 | if (numberFixedTotal > bestKilled) { |
| 313 | bestKilled = numberFixedTotal; |
| 314 | #if KEEP_GOING_IF_FIXED<10 |
| 315 | saveIt = true; |
| 316 | #endif |
| 317 | } |
| 318 | if (saveIt) { |
| 319 | #if KEEP_GOING_IF_FIXED<10 |
| 320 | COIN_DETAIL_PRINT(printf("saving\n" )); |
| 321 | #endif |
| 322 | saveIteration = numberIterations_; |
| 323 | if (!savePi) { |
| 324 | savePi = new CoinWorkDouble[numberRows_]; |
| 325 | savePrimal = new CoinWorkDouble [numberTotal]; |
| 326 | } |
| 327 | CoinMemcpyN(dualArray, numberRows_, savePi); |
| 328 | CoinMemcpyN(solution_, numberTotal, savePrimal); |
| 329 | } else if(gapO > 2.0 * bestObjectiveGap) { |
| 330 | //maybe be more sophisticated e.g. re-initialize having |
| 331 | //fixed variables and dropped rows |
| 332 | //std::cout <<" gap increasing "<<std::endl; |
| 333 | } |
| 334 | //std::cout <<"could stop"<<std::endl; |
| 335 | //gapO=0.0; |
| 336 | if (CoinAbs(primalObjective_ - dualObjective_) < dualTolerance()) { |
| 337 | gapO = 0.0; |
| 338 | } |
| 339 | } else { |
| 340 | gapO = COIN_DBL_MAX; |
| 341 | if (saveIteration >= 0) { |
| 342 | handler_->message(CLP_BARRIER_GONE_INFEASIBLE, messages_) |
| 343 | << CoinMessageEol; |
| 344 | CoinWorkDouble scaledRHSError = maximumRHSError_ / (solutionNorm_ + 10.0); |
| 345 | // save alternate |
| 346 | if (numberFixedTotal > bestKilled && |
| 347 | maximumBoundInfeasibility_ < 1.0e-6 && |
| 348 | scaledRHSError < 1.0e-2) { |
| 349 | bestKilled = numberFixedTotal; |
| 350 | #if KEEP_GOING_IF_FIXED<10 |
| 351 | COIN_DETAIL_PRINT(printf("saving alternate\n" )); |
| 352 | #endif |
| 353 | saveIteration2 = numberIterations_; |
| 354 | if (!savePi2) { |
| 355 | savePi2 = new CoinWorkDouble[numberRows_]; |
| 356 | savePrimal2 = new CoinWorkDouble [numberTotal]; |
| 357 | } |
| 358 | CoinMemcpyN(dualArray, numberRows_, savePi2); |
| 359 | CoinMemcpyN(solution_, numberTotal, savePrimal2); |
| 360 | } |
| 361 | if (sloppyOptimal) { |
| 362 | // vaguely optimal |
| 363 | if (maximumBoundInfeasibility_ > 1.0e-2 || |
| 364 | scaledRHSError > 1.0e-2 || |
| 365 | maximumDualError_ > objectiveNorm_ * 1.0e-2) { |
| 366 | handler_->message(CLP_BARRIER_EXIT2, messages_) |
| 367 | << saveIteration |
| 368 | << CoinMessageEol; |
| 369 | problemStatus_ = 0; // benefit of doubt |
| 370 | break; |
| 371 | } |
| 372 | } else { |
| 373 | // not close to optimal but check if getting bad |
| 374 | CoinWorkDouble scaledRHSError = maximumRHSError_ / (solutionNorm_ + 10.0); |
| 375 | if ((maximumBoundInfeasibility_ > 1.0e-1 || |
| 376 | scaledRHSError > 1.0e-1 || |
| 377 | maximumDualError_ > objectiveNorm_ * 1.0e-1) |
| 378 | && (numberIterations_ > 50 |
| 379 | && complementarityGap_ > 0.9 * historyInfeasibility_[0])) { |
| 380 | handler_->message(CLP_BARRIER_EXIT2, messages_) |
| 381 | << saveIteration |
| 382 | << CoinMessageEol; |
| 383 | break; |
| 384 | } |
| 385 | if (complementarityGap_ > 0.95 * checkGap && bestObjectiveGap < 1.0e-3 && |
| 386 | (numberIterations_ > saveIteration + 5 || numberIterations_ > 100)) { |
| 387 | handler_->message(CLP_BARRIER_EXIT2, messages_) |
| 388 | << saveIteration |
| 389 | << CoinMessageEol; |
| 390 | break; |
| 391 | } |
| 392 | } |
| 393 | } |
| 394 | if (complementarityGap_ > 0.5 * checkGap && primalObjective_ > |
| 395 | bestObjective + 1.0e-9 && |
| 396 | (numberIterations_ > saveIteration + 5 || numberIterations_ > 100)) { |
| 397 | handler_->message(CLP_BARRIER_EXIT2, messages_) |
| 398 | << saveIteration |
| 399 | << CoinMessageEol; |
| 400 | break; |
| 401 | } |
| 402 | } |
| 403 | if ((gapO < 1.0e-6 || (gapO < 1.0e-4 && complementarityGap_ < 0.1)) && !sloppyOptimal) { |
| 404 | sloppyOptimal = true; |
| 405 | handler_->message(CLP_BARRIER_CLOSE_TO_OPTIMAL, messages_) |
| 406 | << numberIterations_ << static_cast<double>(complementarityGap_) |
| 407 | << CoinMessageEol; |
| 408 | } |
| 409 | int numberBack = quadraticObj ? 10 : 5; |
| 410 | //tryJustPredictor=true; |
| 411 | //printf("trying just predictor\n"); |
| 412 | //} |
| 413 | if (complementarityGap_ >= 1.05 * lastComplementarityGap) { |
| 414 | handler_->message(CLP_BARRIER_COMPLEMENTARITY, messages_) |
| 415 | << static_cast<double>(complementarityGap_) << "increasing" |
| 416 | << CoinMessageEol; |
| 417 | if (saveIteration >= 0 && sloppyOptimal) { |
| 418 | handler_->message(CLP_BARRIER_EXIT2, messages_) |
| 419 | << saveIteration |
| 420 | << CoinMessageEol; |
| 421 | break; |
| 422 | } else if (numberIterations_ - lastGoodIteration >= numberBack && |
| 423 | complementarityGap_ < 1.0e-6) { |
| 424 | break; // not doing very well - give up |
| 425 | } |
| 426 | } else if (complementarityGap_ < goodGapChange * lastComplementarityGap) { |
| 427 | lastGoodIteration = numberIterations_; |
| 428 | lastComplementarityGap = complementarityGap_; |
| 429 | } else if (numberIterations_ - lastGoodIteration >= numberBack && |
| 430 | complementarityGap_ < 1.0e-3) { |
| 431 | handler_->message(CLP_BARRIER_COMPLEMENTARITY, messages_) |
| 432 | << static_cast<double>(complementarityGap_) << "not decreasing" |
| 433 | << CoinMessageEol; |
| 434 | if (gapO > 0.75 * lastGood && numberFixed < KEEP_GOING_IF_FIXED) { |
| 435 | break; |
| 436 | } |
| 437 | } else if (numberIterations_ - lastGoodIteration >= 2 && |
| 438 | complementarityGap_ < 1.0e-6) { |
| 439 | handler_->message(CLP_BARRIER_COMPLEMENTARITY, messages_) |
| 440 | << static_cast<double>(complementarityGap_) << "not decreasing" |
| 441 | << CoinMessageEol; |
| 442 | break; |
| 443 | } |
| 444 | if (numberIterations_ > maximumBarrierIterations_ || hitMaximumIterations()) { |
| 445 | handler_->message(CLP_BARRIER_STOPPING, messages_) |
| 446 | << CoinMessageEol; |
| 447 | problemStatus_ = 3; |
| 448 | onStopped(); // set secondary status |
| 449 | break; |
| 450 | } |
| 451 | if (gapO < targetGap_) { |
| 452 | problemStatus_ = 0; |
| 453 | handler_->message(CLP_BARRIER_EXIT, messages_) |
| 454 | << " " |
| 455 | << CoinMessageEol; |
| 456 | break;//finished |
| 457 | } |
| 458 | if (complementarityGap_ < 1.0e-12) { |
| 459 | problemStatus_ = 0; |
| 460 | handler_->message(CLP_BARRIER_EXIT, messages_) |
| 461 | << "- small complementarity gap" |
| 462 | << CoinMessageEol; |
| 463 | break;//finished |
| 464 | } |
| 465 | if (complementarityGap_ < 1.0e-10 && gapO < 1.0e-10) { |
| 466 | problemStatus_ = 0; |
| 467 | handler_->message(CLP_BARRIER_EXIT, messages_) |
| 468 | << "- objective gap and complementarity gap both small" |
| 469 | << CoinMessageEol; |
| 470 | break;//finished |
| 471 | } |
| 472 | if (gapO < 1.0e-9) { |
| 473 | CoinWorkDouble value = gapO * complementarityGap_; |
| 474 | value *= actualPrimalStep_; |
| 475 | value *= actualDualStep_; |
| 476 | //std::cout<<value<<std::endl; |
| 477 | if (value < 1.0e-17 && numberIterations_ > lastGoodIteration) { |
| 478 | problemStatus_ = 0; |
| 479 | handler_->message(CLP_BARRIER_EXIT, messages_) |
| 480 | << "- objective gap and complementarity gap both smallish and small steps" |
| 481 | << CoinMessageEol; |
| 482 | break;//finished |
| 483 | } |
| 484 | } |
| 485 | CoinWorkDouble nextGap = COIN_DBL_MAX; |
| 486 | int nextNumber = 0; |
| 487 | int nextNumberItems = 0; |
| 488 | worstDirectionAccuracy_ = 0.0; |
| 489 | int newDropped = 0; |
| 490 | //Predictor step |
| 491 | //prepare for cholesky. Set up scaled diagonal in deltaX |
| 492 | // ** for efficiency may be better if scale factor known before |
| 493 | CoinWorkDouble norm2 = 0.0; |
| 494 | CoinWorkDouble maximumValue; |
| 495 | getNorms(diagonal_, numberTotal, maximumValue, norm2); |
| 496 | diagonalNorm_ = CoinSqrt(norm2 / numberComplementarityPairs_); |
| 497 | diagonalScaleFactor_ = 1.0; |
| 498 | CoinWorkDouble maximumAllowable = eScale; |
| 499 | //scale so largest is less than allowable ? could do better |
| 500 | CoinWorkDouble factor = 0.5; |
| 501 | while (maximumValue > maximumAllowable) { |
| 502 | diagonalScaleFactor_ *= factor; |
| 503 | maximumValue *= factor; |
| 504 | } /* endwhile */ |
| 505 | if (diagonalScaleFactor_ != 1.0) { |
| 506 | handler_->message(CLP_BARRIER_SCALING, messages_) |
| 507 | << "diagonal" << static_cast<double>(diagonalScaleFactor_) |
| 508 | << CoinMessageEol; |
| 509 | diagonalNorm_ *= diagonalScaleFactor_; |
| 510 | } |
| 511 | multiplyAdd(NULL, numberTotal, 0.0, diagonal_, |
| 512 | diagonalScaleFactor_); |
| 513 | int * rowsDroppedThisTime = new int [numberRows_]; |
| 514 | newDropped = cholesky_->factorize(diagonal_, rowsDroppedThisTime); |
| 515 | if (newDropped) { |
| 516 | if (newDropped == -1) { |
| 517 | COIN_DETAIL_PRINT(printf("Out of memory\n" )); |
| 518 | problemStatus_ = 4; |
| 519 | //delete all temporary regions |
| 520 | deleteWorkingData(); |
| 521 | if (saveMatrix) { |
| 522 | // restore normal copy |
| 523 | delete matrix_; |
| 524 | matrix_ = saveMatrix; |
| 525 | } |
| 526 | return -1; |
| 527 | } else { |
| 528 | #ifndef NDEBUG |
| 529 | //int newDropped2=cholesky_->factorize(diagonal_,rowsDroppedThisTime); |
| 530 | //assert(!newDropped2); |
| 531 | #endif |
| 532 | if (newDropped < 0 && 0) { |
| 533 | //replace dropped |
| 534 | newDropped = -newDropped; |
| 535 | //off 1 to allow for reset all |
| 536 | newDropped--; |
| 537 | //set all bits false |
| 538 | cholesky_->resetRowsDropped(); |
| 539 | } |
| 540 | } |
| 541 | } |
| 542 | delete [] rowsDroppedThisTime; |
| 543 | if (cholesky_->status()) { |
| 544 | std::cout << "bad cholesky?" << std::endl; |
| 545 | abort(); |
| 546 | } |
| 547 | int phase = 0; // predictor, corrector , primal dual |
| 548 | CoinWorkDouble directionAccuracy = 0.0; |
| 549 | bool doCorrector = true; |
| 550 | bool goodMove = true; |
| 551 | //set up for affine direction |
| 552 | setupForSolve(phase); |
| 553 | if ((modeSwitch & 2) == 0) { |
| 554 | directionAccuracy = findDirectionVector(phase); |
| 555 | if (directionAccuracy > worstDirectionAccuracy_) { |
| 556 | worstDirectionAccuracy_ = directionAccuracy; |
| 557 | } |
| 558 | if (saveIteration > 0 && directionAccuracy > 1.0) { |
| 559 | handler_->message(CLP_BARRIER_EXIT2, messages_) |
| 560 | << saveIteration |
| 561 | << CoinMessageEol; |
| 562 | break; |
| 563 | } |
| 564 | findStepLength(phase); |
| 565 | nextGap = complementarityGap(nextNumber, nextNumberItems, 1); |
| 566 | debugMove(0, actualPrimalStep_, actualDualStep_); |
| 567 | debugMove(0, 1.0e-2, 1.0e-2); |
| 568 | } |
| 569 | CoinWorkDouble affineGap = nextGap; |
| 570 | int bestPhase = 0; |
| 571 | CoinWorkDouble bestNextGap = nextGap; |
| 572 | // ? |
| 573 | bestNextGap = CoinMax(nextGap, 0.8 * complementarityGap_); |
| 574 | if (quadraticObj) |
| 575 | bestNextGap = CoinMax(nextGap, 0.99 * complementarityGap_); |
| 576 | if (complementarityGap_ > 1.0e-4 * numberComplementarityPairs_) { |
| 577 | //std::cout <<"predicted duality gap "<<nextGap<<std::endl; |
| 578 | CoinWorkDouble part1 = nextGap / numberComplementarityPairs_; |
| 579 | part1 = nextGap / numberComplementarityItems_; |
| 580 | CoinWorkDouble part2 = nextGap / complementarityGap_; |
| 581 | mu_ = part1 * part2 * part2; |
| 582 | #if 0 |
| 583 | CoinWorkDouble papermu = complementarityGap_ / numberComplementarityPairs_; |
| 584 | CoinWorkDouble affmu = nextGap / nextNumber; |
| 585 | CoinWorkDouble sigma = pow(affmu / papermu, 3); |
| 586 | printf("mu %g, papermu %g, affmu %g, sigma %g sigmamu %g\n" , |
| 587 | mu_, papermu, affmu, sigma, sigma * papermu); |
| 588 | #endif |
| 589 | //printf("paper mu %g\n",(nextGap*nextGap*nextGap)/(complementarityGap_*complementarityGap_* |
| 590 | // (CoinWorkDouble) numberComplementarityPairs_)); |
| 591 | } else { |
| 592 | CoinWorkDouble phi; |
| 593 | if (numberComplementarityPairs_ <= 5000) { |
| 594 | phi = pow(static_cast<CoinWorkDouble> (numberComplementarityPairs_), 2.0); |
| 595 | } else { |
| 596 | phi = pow(static_cast<CoinWorkDouble> (numberComplementarityPairs_), 1.5); |
| 597 | if (phi < 500.0 * 500.0) { |
| 598 | phi = 500.0 * 500.0; |
| 599 | } |
| 600 | } |
| 601 | mu_ = complementarityGap_ / phi; |
| 602 | } |
| 603 | //save information |
| 604 | CoinWorkDouble product = affineProduct(); |
| 605 | #if 0 |
| 606 | //can we do corrector step? |
| 607 | CoinWorkDouble xx = complementarityGap_ * (beta2 - tau) + product; |
| 608 | if (xx > 0.0) { |
| 609 | CoinWorkDouble saveMu = mu_; |
| 610 | CoinWorkDouble mu2 = numberComplementarityPairs_; |
| 611 | mu2 = xx / mu2; |
| 612 | if (mu2 > mu_) { |
| 613 | //std::cout<<" could increase to "<<mu2<<std::endl; |
| 614 | //was mu2=mu2*0.25; |
| 615 | mu2 = mu2 * 0.99; |
| 616 | if (mu2 < mu_) { |
| 617 | mu_ = mu2; |
| 618 | //std::cout<<" changing mu to "<<mu_<<std::endl; |
| 619 | } else { |
| 620 | //std::cout<<std::endl; |
| 621 | } |
| 622 | } else { |
| 623 | //std::cout<<" should decrease to "<<mu2<<std::endl; |
| 624 | mu_ = 0.5 * mu2; |
| 625 | //std::cout<<" changing mu to "<<mu_<<std::endl; |
| 626 | } |
| 627 | handler_->message(CLP_BARRIER_MU, messages_) |
| 628 | << saveMu << mu_ |
| 629 | << CoinMessageEol; |
| 630 | } else { |
| 631 | //std::cout<<" bad by any standards"<<std::endl; |
| 632 | } |
| 633 | #endif |
| 634 | if (complementarityGap_*(beta2 - tau) + product - mu_ * numberComplementarityPairs_ < 0.0 && 0) { |
| 635 | #ifdef SOME_DEBUG |
| 636 | printf("failed 1 product %.18g mu %.18g - %.18g < 0.0, nextGap %.18g\n" , product, mu_, |
| 637 | complementarityGap_*(beta2 - tau) + product - mu_ * numberComplementarityPairs_, |
| 638 | nextGap); |
| 639 | #endif |
| 640 | doCorrector = false; |
| 641 | if (nextGap > 0.9 * complementarityGap_ || 1) { |
| 642 | goodMove = false; |
| 643 | bestNextGap = COIN_DBL_MAX; |
| 644 | } |
| 645 | //CoinWorkDouble floatNumber = 2.0*numberComplementarityPairs_; |
| 646 | //floatNumber = 1.0*numberComplementarityItems_; |
| 647 | //mu_=nextGap/floatNumber; |
| 648 | handler_->message(CLP_BARRIER_INFO, messages_) |
| 649 | << "no corrector step" |
| 650 | << CoinMessageEol; |
| 651 | } else { |
| 652 | phase = 1; |
| 653 | } |
| 654 | // If bad gap - try standard primal dual |
| 655 | if (nextGap > complementarityGap_ * 1.001) |
| 656 | goodMove = false; |
| 657 | if ((modeSwitch & 2) != 0) |
| 658 | goodMove = false; |
| 659 | if (goodMove && doCorrector) { |
| 660 | CoinMemcpyN(deltaX_, numberTotal, saveX); |
| 661 | CoinMemcpyN(deltaY_, numberRows_, saveY); |
| 662 | CoinMemcpyN(deltaZ_, numberTotal, saveZ); |
| 663 | CoinMemcpyN(deltaW_, numberTotal, saveW); |
| 664 | CoinMemcpyN(deltaSL_, numberTotal, saveSL); |
| 665 | CoinMemcpyN(deltaSU_, numberTotal, saveSU); |
| 666 | #ifdef HALVE |
| 667 | CoinWorkDouble savePrimalStep = actualPrimalStep_; |
| 668 | CoinWorkDouble saveDualStep = actualDualStep_; |
| 669 | CoinWorkDouble saveMu = mu_; |
| 670 | #endif |
| 671 | //set up for next step |
| 672 | setupForSolve(phase); |
| 673 | CoinWorkDouble directionAccuracy2 = findDirectionVector(phase); |
| 674 | if (directionAccuracy2 > worstDirectionAccuracy_) { |
| 675 | worstDirectionAccuracy_ = directionAccuracy2; |
| 676 | } |
| 677 | CoinWorkDouble testValue = 1.0e2 * directionAccuracy; |
| 678 | if (1.0e2 * projectionTolerance_ > testValue) { |
| 679 | testValue = 1.0e2 * projectionTolerance_; |
| 680 | } |
| 681 | if (primalTolerance() > testValue) { |
| 682 | testValue = primalTolerance(); |
| 683 | } |
| 684 | if (maximumRHSError_ > testValue) { |
| 685 | testValue = maximumRHSError_; |
| 686 | } |
| 687 | if (directionAccuracy2 > testValue && numberIterations_ >= -77) { |
| 688 | goodMove = false; |
| 689 | #ifdef SOME_DEBUG |
| 690 | printf("accuracy %g phase 1 failed, test value %g\n" , |
| 691 | directionAccuracy2, testValue); |
| 692 | #endif |
| 693 | } |
| 694 | if (goodMove) { |
| 695 | phase = 1; |
| 696 | CoinWorkDouble norm = findStepLength(phase); |
| 697 | nextGap = complementarityGap(nextNumber, nextNumberItems, 1); |
| 698 | debugMove(1, actualPrimalStep_, actualDualStep_); |
| 699 | //debugMove(1,1.0e-7,1.0e-7); |
| 700 | goodMove = checkGoodMove(true, bestNextGap, allowIncreasingGap); |
| 701 | if (norm < 0) |
| 702 | goodMove = false; |
| 703 | if (!goodMove) { |
| 704 | #ifdef SOME_DEBUG |
| 705 | printf("checkGoodMove failed\n" ); |
| 706 | #endif |
| 707 | } |
| 708 | } |
| 709 | #ifdef HALVE |
| 710 | int nHalve = 0; |
| 711 | // relax test |
| 712 | bestNextGap = CoinMax(bestNextGap, 0.9 * complementarityGap_); |
| 713 | while (!goodMove) { |
| 714 | mu_ = saveMu; |
| 715 | actualPrimalStep_ = savePrimalStep; |
| 716 | actualDualStep_ = saveDualStep; |
| 717 | int i; |
| 718 | //printf("halve %d\n",nHalve); |
| 719 | nHalve++; |
| 720 | const CoinWorkDouble lambda = 0.5; |
| 721 | for (i = 0; i < numberRows_; i++) |
| 722 | deltaY_[i] = lambda * deltaY_[i] + (1.0 - lambda) * saveY[i]; |
| 723 | for (i = 0; i < numberTotal; i++) { |
| 724 | deltaX_[i] = lambda * deltaX_[i] + (1.0 - lambda) * saveX[i]; |
| 725 | deltaZ_[i] = lambda * deltaZ_[i] + (1.0 - lambda) * saveZ[i]; |
| 726 | deltaW_[i] = lambda * deltaW_[i] + (1.0 - lambda) * saveW[i]; |
| 727 | deltaSL_[i] = lambda * deltaSL_[i] + (1.0 - lambda) * saveSL[i]; |
| 728 | deltaSU_[i] = lambda * deltaSU_[i] + (1.0 - lambda) * saveSU[i]; |
| 729 | } |
| 730 | CoinMemcpyN(saveX, numberTotal, deltaX_); |
| 731 | CoinMemcpyN(saveY, numberRows_, deltaY_); |
| 732 | CoinMemcpyN(saveZ, numberTotal, deltaZ_); |
| 733 | CoinMemcpyN(saveW, numberTotal, deltaW_); |
| 734 | CoinMemcpyN(saveSL, numberTotal, deltaSL_); |
| 735 | CoinMemcpyN(saveSU, numberTotal, deltaSU_); |
| 736 | findStepLength(1); |
| 737 | nextGap = complementarityGap(nextNumber, nextNumberItems, 1); |
| 738 | goodMove = checkGoodMove(true, bestNextGap, allowIncreasingGap); |
| 739 | if (nHalve > 10) |
| 740 | break; |
| 741 | //assert (goodMove); |
| 742 | } |
| 743 | if (nHalve && handler_->logLevel() > 2) |
| 744 | printf("halved %d times\n" , nHalve); |
| 745 | #endif |
| 746 | } |
| 747 | //bestPhase=-1; |
| 748 | //goodMove=false; |
| 749 | if (!goodMove) { |
| 750 | // Just primal dual step |
| 751 | CoinWorkDouble floatNumber; |
| 752 | floatNumber = 2.0 * numberComplementarityPairs_; |
| 753 | //floatNumber = numberComplementarityItems_; |
| 754 | CoinWorkDouble saveMu = mu_; // use one from predictor corrector |
| 755 | mu_ = complementarityGap_ / floatNumber; |
| 756 | // If going well try small mu |
| 757 | mu_ *= CoinSqrt((1.0 - lastStep) / (1.0 + 10.0 * lastStep)); |
| 758 | CoinWorkDouble mu1 = mu_; |
| 759 | CoinWorkDouble phi; |
| 760 | if (numberComplementarityPairs_ <= 500) { |
| 761 | phi = pow(static_cast<CoinWorkDouble> (numberComplementarityPairs_), 2.0); |
| 762 | } else { |
| 763 | phi = pow(static_cast<CoinWorkDouble> (numberComplementarityPairs_), 1.5); |
| 764 | if (phi < 500.0 * 500.0) { |
| 765 | phi = 500.0 * 500.0; |
| 766 | } |
| 767 | } |
| 768 | mu_ = complementarityGap_ / phi; |
| 769 | //printf("pd mu %g, alternate %g, smallest %g\n", |
| 770 | // mu_,mu1,smallestPrimalDualMu); |
| 771 | mu_ = CoinSqrt(mu_ * mu1); |
| 772 | mu_ = mu1; |
| 773 | if ((numberIterations_ & 1) == 0 || numberIterations_ < 10) |
| 774 | mu_ = saveMu; |
| 775 | //mu_=CoinMin(smallestPrimalDualMu*0.95,mu_); |
| 776 | smallestPrimalDualMu = mu_; |
| 777 | // Try simpler |
| 778 | floatNumber = numberComplementarityItems_; |
| 779 | mu_ = 0.5 * complementarityGap_ / floatNumber; |
| 780 | //if ((modeSwitch&2)==0) { |
| 781 | //if ((numberIterations_&1)==0) |
| 782 | // mu_ *= 0.5; |
| 783 | //} else { |
| 784 | //mu_ *= 0.8; |
| 785 | //} |
| 786 | //set up for next step |
| 787 | setupForSolve(2); |
| 788 | findDirectionVector(2); |
| 789 | CoinWorkDouble norm = findStepLength(2); |
| 790 | // just for debug |
| 791 | bestNextGap = complementarityGap_ * 1.0005; |
| 792 | //bestNextGap=COIN_DBL_MAX; |
| 793 | nextGap = complementarityGap(nextNumber, nextNumberItems, 2); |
| 794 | debugMove(2, actualPrimalStep_, actualDualStep_); |
| 795 | //debugMove(2,1.0e-7,1.0e-7); |
| 796 | checkGoodMove(false, bestNextGap, allowIncreasingGap); |
| 797 | if ((nextGap > 0.9 * complementarityGap_ && bestPhase == 0 && affineGap < nextGap |
| 798 | && (numberIterations_ > 80 || (numberIterations_ > 20 && quadraticObj))) || norm < 0.0) { |
| 799 | // Back to affine |
| 800 | phase = 0; |
| 801 | setupForSolve(phase); |
| 802 | directionAccuracy = findDirectionVector(phase); |
| 803 | findStepLength(phase); |
| 804 | nextGap = complementarityGap(nextNumber, nextNumberItems, 1); |
| 805 | bestNextGap = complementarityGap_; |
| 806 | //checkGoodMove(false, bestNextGap,allowIncreasingGap); |
| 807 | } |
| 808 | } |
| 809 | if (numberIterations_ == 0) |
| 810 | smallestPrimalDualMu = mu_; |
| 811 | if (!goodMove) |
| 812 | mu_ = nextGap / (static_cast<CoinWorkDouble> (nextNumber) * 1.1); |
| 813 | //if (quadraticObj) |
| 814 | //goodMove=true; |
| 815 | //goodMove=false; //TEMP |
| 816 | // Do centering steps |
| 817 | int numberTries = 0; |
| 818 | CoinWorkDouble nextCenterGap = 0.0; |
| 819 | int numberGoodTries = 0; |
| 820 | #ifdef COIN_DETAIL |
| 821 | CoinWorkDouble originalDualStep = actualDualStep_; |
| 822 | CoinWorkDouble originalPrimalStep = actualPrimalStep_; |
| 823 | #endif |
| 824 | if (actualDualStep_ > 0.9 && actualPrimalStep_ > 0.9) |
| 825 | goodMove = false; // don't bother |
| 826 | if ((modeSwitch & 1) != 0) |
| 827 | goodMove = false; |
| 828 | while (goodMove && numberTries < 5) { |
| 829 | goodMove = false; |
| 830 | numberTries++; |
| 831 | CoinMemcpyN(deltaX_, numberTotal, saveX); |
| 832 | CoinMemcpyN(deltaY_, numberRows_, saveY); |
| 833 | CoinMemcpyN(deltaZ_, numberTotal, saveZ); |
| 834 | CoinMemcpyN(deltaW_, numberTotal, saveW); |
| 835 | CoinWorkDouble savePrimalStep = actualPrimalStep_; |
| 836 | CoinWorkDouble saveDualStep = actualDualStep_; |
| 837 | CoinWorkDouble saveMu = mu_; |
| 838 | setupForSolve(3); |
| 839 | findDirectionVector(3); |
| 840 | findStepLength(3); |
| 841 | debugMove(3, actualPrimalStep_, actualDualStep_); |
| 842 | //debugMove(3,1.0e-7,1.0e-7); |
| 843 | CoinWorkDouble xGap = complementarityGap(nextNumber, nextNumberItems, 3); |
| 844 | // If one small then that's the one that counts |
| 845 | CoinWorkDouble checkDual = saveDualStep; |
| 846 | CoinWorkDouble checkPrimal = savePrimalStep; |
| 847 | if (checkDual > 5.0 * checkPrimal) { |
| 848 | checkDual = 2.0 * checkPrimal; |
| 849 | } else if (checkPrimal > 5.0 * checkDual) { |
| 850 | checkPrimal = 2.0 * checkDual; |
| 851 | } |
| 852 | if (actualPrimalStep_ < checkPrimal || |
| 853 | actualDualStep_ < checkDual || |
| 854 | (xGap > nextGap && xGap > 0.9 * complementarityGap_)) { |
| 855 | //if (actualPrimalStep_<=checkPrimal|| |
| 856 | //actualDualStep_<=checkDual) { |
| 857 | #ifdef SOME_DEBUG |
| 858 | printf("PP rejected gap %.18g, steps %.18g %.18g, 2 gap %.18g, steps %.18g %.18g\n" , xGap, |
| 859 | actualPrimalStep_, actualDualStep_, nextGap, savePrimalStep, saveDualStep); |
| 860 | #endif |
| 861 | mu_ = saveMu; |
| 862 | actualPrimalStep_ = savePrimalStep; |
| 863 | actualDualStep_ = saveDualStep; |
| 864 | CoinMemcpyN(saveX, numberTotal, deltaX_); |
| 865 | CoinMemcpyN(saveY, numberRows_, deltaY_); |
| 866 | CoinMemcpyN(saveZ, numberTotal, deltaZ_); |
| 867 | CoinMemcpyN(saveW, numberTotal, deltaW_); |
| 868 | } else { |
| 869 | #ifdef SOME_DEBUG |
| 870 | printf("PPphase 3 gap %.18g, steps %.18g %.18g, 2 gap %.18g, steps %.18g %.18g\n" , xGap, |
| 871 | actualPrimalStep_, actualDualStep_, nextGap, savePrimalStep, saveDualStep); |
| 872 | #endif |
| 873 | numberGoodTries++; |
| 874 | nextCenterGap = xGap; |
| 875 | // See if big enough change |
| 876 | if (actualPrimalStep_ < 1.01 * checkPrimal || |
| 877 | actualDualStep_ < 1.01 * checkDual) { |
| 878 | // stop now |
| 879 | } else { |
| 880 | // carry on |
| 881 | goodMove = true; |
| 882 | } |
| 883 | } |
| 884 | } |
| 885 | if (numberGoodTries && handler_->logLevel() > 1) { |
| 886 | COIN_DETAIL_PRINT(printf("%d centering steps moved from (gap %.18g, dual %.18g, primal %.18g) to (gap %.18g, dual %.18g, primal %.18g)\n" , |
| 887 | numberGoodTries, static_cast<double>(nextGap), static_cast<double>(originalDualStep), |
| 888 | static_cast<double>(originalPrimalStep), |
| 889 | static_cast<double>(nextCenterGap), static_cast<double>(actualDualStep_), |
| 890 | static_cast<double>(actualPrimalStep_))); |
| 891 | } |
| 892 | // save last gap |
| 893 | checkGap = complementarityGap_; |
| 894 | numberFixed = updateSolution(nextGap); |
| 895 | numberFixedTotal += numberFixed; |
| 896 | } /* endwhile */ |
| 897 | delete [] saveX; |
| 898 | delete [] saveY; |
| 899 | delete [] saveZ; |
| 900 | delete [] saveW; |
| 901 | delete [] saveSL; |
| 902 | delete [] saveSU; |
| 903 | if (savePi) { |
| 904 | if (numberIterations_ - saveIteration > 20 && |
| 905 | numberIterations_ - saveIteration2 < 5) { |
| 906 | #if KEEP_GOING_IF_FIXED<10 |
| 907 | std::cout << "Restoring2 from iteration " << saveIteration2 << std::endl; |
| 908 | #endif |
| 909 | CoinMemcpyN(savePi2, numberRows_, dualArray); |
| 910 | CoinMemcpyN(savePrimal2, numberTotal, solution_); |
| 911 | } else { |
| 912 | #if KEEP_GOING_IF_FIXED<10 |
| 913 | std::cout << "Restoring from iteration " << saveIteration << std::endl; |
| 914 | #endif |
| 915 | CoinMemcpyN(savePi, numberRows_, dualArray); |
| 916 | CoinMemcpyN(savePrimal, numberTotal, solution_); |
| 917 | } |
| 918 | delete [] savePi; |
| 919 | delete [] savePrimal; |
| 920 | } |
| 921 | delete [] savePi2; |
| 922 | delete [] savePrimal2; |
| 923 | //recompute slacks |
| 924 | // Split out solution |
| 925 | CoinZeroN(rowActivity_, numberRows_); |
| 926 | CoinMemcpyN(solution_, numberColumns_, columnActivity_); |
| 927 | matrix_->times(1.0, columnActivity_, rowActivity_); |
| 928 | //unscale objective |
| 929 | multiplyAdd(NULL, numberTotal, 0.0, cost_, scaleFactor_); |
| 930 | multiplyAdd(NULL, numberRows_, 0, dualArray, scaleFactor_); |
| 931 | checkSolution(); |
| 932 | //CoinMemcpyN(reducedCost_,numberColumns_,dj_); |
| 933 | // If quadratic use last solution |
| 934 | // Restore quadratic objective if necessary |
| 935 | if (saveObjective) { |
| 936 | delete objective_; |
| 937 | objective_ = saveObjective; |
| 938 | objectiveValue_ = 0.5 * (primalObjective_ + dualObjective_); |
| 939 | } |
| 940 | handler_->message(CLP_BARRIER_END, messages_) |
| 941 | << static_cast<double>(sumPrimalInfeasibilities_) |
| 942 | << static_cast<double>(sumDualInfeasibilities_) |
| 943 | << static_cast<double>(complementarityGap_) |
| 944 | << static_cast<double>(objectiveValue()) |
| 945 | << CoinMessageEol; |
| 946 | //#ifdef SOME_DEBUG |
| 947 | if (handler_->logLevel() > 1) |
| 948 | COIN_DETAIL_PRINT(printf("ENDRUN status %d after %d iterations\n" , problemStatus_, numberIterations_)); |
| 949 | //#endif |
| 950 | //std::cout<<"Absolute primal infeasibility at end "<<sumPrimalInfeasibilities_<<std::endl; |
| 951 | //std::cout<<"Absolute dual infeasibility at end "<<sumDualInfeasibilities_<<std::endl; |
| 952 | //std::cout<<"Absolute complementarity at end "<<complementarityGap_<<std::endl; |
| 953 | //std::cout<<"Primal objective "<<objectiveValue()<<std::endl; |
| 954 | //std::cout<<"maximum complementarity "<<worstComplementarity_<<std::endl; |
| 955 | #if COIN_LONG_WORK |
| 956 | // put back dual |
| 957 | delete [] dual_; |
| 958 | delete [] reducedCost_; |
| 959 | dual_ = dualSave; |
| 960 | reducedCost_ = reducedCostSave; |
| 961 | #endif |
| 962 | //delete all temporary regions |
| 963 | deleteWorkingData(); |
| 964 | #if KEEP_GOING_IF_FIXED<10 |
| 965 | #if 0 //ndef NDEBUG |
| 966 | { |
| 967 | static int kk = 0; |
| 968 | char name[20]; |
| 969 | sprintf(name, "save.sol.%d" , kk); |
| 970 | kk++; |
| 971 | printf("saving to file %s\n" , name); |
| 972 | FILE * fp = fopen(name, "wb" ); |
| 973 | int numberWritten; |
| 974 | numberWritten = fwrite(&numberColumns_, sizeof(int), 1, fp); |
| 975 | assert (numberWritten == 1); |
| 976 | numberWritten = fwrite(columnActivity_, sizeof(double), numberColumns_, fp); |
| 977 | assert (numberWritten == numberColumns_); |
| 978 | fclose(fp); |
| 979 | } |
| 980 | #endif |
| 981 | #endif |
| 982 | if (saveMatrix) { |
| 983 | // restore normal copy |
| 984 | delete matrix_; |
| 985 | matrix_ = saveMatrix; |
| 986 | } |
| 987 | return problemStatus_; |
| 988 | } |
| 989 | // findStepLength. |
| 990 | //phase - 0 predictor |
| 991 | // 1 corrector |
| 992 | // 2 primal dual |
| 993 | CoinWorkDouble ClpPredictorCorrector::findStepLength( int phase) |
| 994 | { |
| 995 | CoinWorkDouble directionNorm = 0.0; |
| 996 | CoinWorkDouble maximumPrimalStep = COIN_DBL_MAX * 1.0e-20; |
| 997 | CoinWorkDouble maximumDualStep = COIN_DBL_MAX; |
| 998 | int numberTotal = numberRows_ + numberColumns_; |
| 999 | CoinWorkDouble tolerance = 1.0e-12; |
| 1000 | int chosenPrimalSequence = -1; |
| 1001 | int chosenDualSequence = -1; |
| 1002 | bool lowPrimal = false; |
| 1003 | bool lowDual = false; |
| 1004 | // If done many iterations then allow to hit boundary |
| 1005 | CoinWorkDouble hitTolerance; |
| 1006 | //printf("objective norm %g\n",objectiveNorm_); |
| 1007 | if (numberIterations_ < 80 || !gonePrimalFeasible_) |
| 1008 | hitTolerance = COIN_DBL_MAX; |
| 1009 | else |
| 1010 | hitTolerance = CoinMax(1.0e3, 1.0e-3 * objectiveNorm_); |
| 1011 | int iColumn; |
| 1012 | //printf("dual value %g\n",dual_[0]); |
| 1013 | //printf(" X dX lS dlS uS dUs dj Z dZ t dT\n"); |
| 1014 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 1015 | if (!flagged(iColumn)) { |
| 1016 | CoinWorkDouble directionElement = deltaX_[iColumn]; |
| 1017 | if (directionNorm < CoinAbs(directionElement)) { |
| 1018 | directionNorm = CoinAbs(directionElement); |
| 1019 | } |
| 1020 | if (lowerBound(iColumn)) { |
| 1021 | CoinWorkDouble delta = - deltaSL_[iColumn]; |
| 1022 | CoinWorkDouble z1 = deltaZ_[iColumn]; |
| 1023 | CoinWorkDouble newZ = zVec_[iColumn] + z1; |
| 1024 | if (zVec_[iColumn] > tolerance) { |
| 1025 | if (zVec_[iColumn] < -z1 * maximumDualStep) { |
| 1026 | maximumDualStep = -zVec_[iColumn] / z1; |
| 1027 | chosenDualSequence = iColumn; |
| 1028 | lowDual = true; |
| 1029 | } |
| 1030 | } |
| 1031 | if (lowerSlack_[iColumn] < maximumPrimalStep * delta) { |
| 1032 | CoinWorkDouble newStep = lowerSlack_[iColumn] / delta; |
| 1033 | if (newStep > 0.2 || newZ < hitTolerance || delta > 1.0e3 || delta <= 1.0e-6 || dj_[iColumn] < hitTolerance) { |
| 1034 | maximumPrimalStep = newStep; |
| 1035 | chosenPrimalSequence = iColumn; |
| 1036 | lowPrimal = true; |
| 1037 | } else { |
| 1038 | //printf("small %d delta %g newZ %g step %g\n",iColumn,delta,newZ,newStep); |
| 1039 | } |
| 1040 | } |
| 1041 | } |
| 1042 | if (upperBound(iColumn)) { |
| 1043 | CoinWorkDouble delta = - deltaSU_[iColumn]; |
| 1044 | CoinWorkDouble w1 = deltaW_[iColumn]; |
| 1045 | CoinWorkDouble newT = wVec_[iColumn] + w1; |
| 1046 | if (wVec_[iColumn] > tolerance) { |
| 1047 | if (wVec_[iColumn] < -w1 * maximumDualStep) { |
| 1048 | maximumDualStep = -wVec_[iColumn] / w1; |
| 1049 | chosenDualSequence = iColumn; |
| 1050 | lowDual = false; |
| 1051 | } |
| 1052 | } |
| 1053 | if (upperSlack_[iColumn] < maximumPrimalStep * delta) { |
| 1054 | CoinWorkDouble newStep = upperSlack_[iColumn] / delta; |
| 1055 | if (newStep > 0.2 || newT < hitTolerance || delta > 1.0e3 || delta <= 1.0e-6 || dj_[iColumn] > -hitTolerance) { |
| 1056 | maximumPrimalStep = newStep; |
| 1057 | chosenPrimalSequence = iColumn; |
| 1058 | lowPrimal = false; |
| 1059 | } else { |
| 1060 | //printf("small %d delta %g newT %g step %g\n",iColumn,delta,newT,newStep); |
| 1061 | } |
| 1062 | } |
| 1063 | } |
| 1064 | } |
| 1065 | } |
| 1066 | #ifdef SOME_DEBUG |
| 1067 | printf("new step - phase %d, norm %.18g, dual step %.18g, primal step %.18g\n" , |
| 1068 | phase, directionNorm, maximumDualStep, maximumPrimalStep); |
| 1069 | if (lowDual) |
| 1070 | printf("ld %d %g %g => %g (dj %g,sol %g) " , |
| 1071 | chosenDualSequence, zVec_[chosenDualSequence], |
| 1072 | deltaZ_[chosenDualSequence], zVec_[chosenDualSequence] + |
| 1073 | maximumDualStep * deltaZ_[chosenDualSequence], dj_[chosenDualSequence], |
| 1074 | solution_[chosenDualSequence]); |
| 1075 | else |
| 1076 | printf("ud %d %g %g => %g (dj %g,sol %g) " , |
| 1077 | chosenDualSequence, wVec_[chosenDualSequence], |
| 1078 | deltaW_[chosenDualSequence], wVec_[chosenDualSequence] + |
| 1079 | maximumDualStep * deltaW_[chosenDualSequence], dj_[chosenDualSequence], |
| 1080 | solution_[chosenDualSequence]); |
| 1081 | if (lowPrimal) |
| 1082 | printf("lp %d %g %g => %g (dj %g,sol %g)\n" , |
| 1083 | chosenPrimalSequence, lowerSlack_[chosenPrimalSequence], |
| 1084 | deltaSL_[chosenPrimalSequence], lowerSlack_[chosenPrimalSequence] + |
| 1085 | maximumPrimalStep * deltaSL_[chosenPrimalSequence], |
| 1086 | dj_[chosenPrimalSequence], solution_[chosenPrimalSequence]); |
| 1087 | else |
| 1088 | printf("up %d %g %g => %g (dj %g,sol %g)\n" , |
| 1089 | chosenPrimalSequence, upperSlack_[chosenPrimalSequence], |
| 1090 | deltaSU_[chosenPrimalSequence], upperSlack_[chosenPrimalSequence] + |
| 1091 | maximumPrimalStep * deltaSU_[chosenPrimalSequence], |
| 1092 | dj_[chosenPrimalSequence], solution_[chosenPrimalSequence]); |
| 1093 | #endif |
| 1094 | actualPrimalStep_ = stepLength_ * maximumPrimalStep; |
| 1095 | if (phase >= 0 && actualPrimalStep_ > 1.0) { |
| 1096 | actualPrimalStep_ = 1.0; |
| 1097 | } |
| 1098 | actualDualStep_ = stepLength_ * maximumDualStep; |
| 1099 | if (phase >= 0 && actualDualStep_ > 1.0) { |
| 1100 | actualDualStep_ = 1.0; |
| 1101 | } |
| 1102 | // See if quadratic objective |
| 1103 | #ifndef NO_RTTI |
| 1104 | ClpQuadraticObjective * quadraticObj = (dynamic_cast< ClpQuadraticObjective*>(objective_)); |
| 1105 | #else |
| 1106 | ClpQuadraticObjective * quadraticObj = NULL; |
| 1107 | if (objective_->type() == 2) |
| 1108 | quadraticObj = (static_cast< ClpQuadraticObjective*>(objective_)); |
| 1109 | #endif |
| 1110 | if (quadraticObj) { |
| 1111 | // Use smaller unless very small |
| 1112 | CoinWorkDouble smallerStep = CoinMin(actualDualStep_, actualPrimalStep_); |
| 1113 | if (smallerStep > 0.0001) { |
| 1114 | actualDualStep_ = smallerStep; |
| 1115 | actualPrimalStep_ = smallerStep; |
| 1116 | } |
| 1117 | } |
| 1118 | #define OFFQ |
| 1119 | #ifndef OFFQ |
| 1120 | if (quadraticObj) { |
| 1121 | // Don't bother if phase 0 or 3 or large gap |
| 1122 | //if ((phase==1||phase==2||phase==0)&&maximumDualError_>0.1*complementarityGap_ |
| 1123 | //&&smallerStep>0.001) { |
| 1124 | if ((phase == 1 || phase == 2 || phase == 0 || phase == 3)) { |
| 1125 | // minimize complementarity + norm*dual inf ? primal inf |
| 1126 | // at first - just check better - if not |
| 1127 | // Complementarity gap will be a*change*change + b*change +c |
| 1128 | CoinWorkDouble a = 0.0; |
| 1129 | CoinWorkDouble b = 0.0; |
| 1130 | CoinWorkDouble c = 0.0; |
| 1131 | /* SQUARE of dual infeasibility will be: |
| 1132 | square of dj - ...... |
| 1133 | */ |
| 1134 | CoinWorkDouble aq = 0.0; |
| 1135 | CoinWorkDouble bq = 0.0; |
| 1136 | CoinWorkDouble cq = 0.0; |
| 1137 | CoinWorkDouble gamma2 = gamma_ * gamma_; // gamma*gamma will be added to diagonal |
| 1138 | CoinWorkDouble * linearDjChange = new CoinWorkDouble[numberTotal]; |
| 1139 | CoinZeroN(linearDjChange, numberColumns_); |
| 1140 | multiplyAdd(deltaY_, numberRows_, 1.0, linearDjChange + numberColumns_, 0.0); |
| 1141 | matrix_->transposeTimes(-1.0, deltaY_, linearDjChange); |
| 1142 | CoinPackedMatrix * quadratic = quadraticObj->quadraticObjective(); |
| 1143 | const int * columnQuadratic = quadratic->getIndices(); |
| 1144 | const CoinBigIndex * columnQuadraticStart = quadratic->getVectorStarts(); |
| 1145 | const int * columnQuadraticLength = quadratic->getVectorLengths(); |
| 1146 | CoinWorkDouble * quadraticElement = quadratic->getMutableElements(); |
| 1147 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 1148 | CoinWorkDouble oldPrimal = solution_[iColumn]; |
| 1149 | if (!flagged(iColumn)) { |
| 1150 | if (lowerBound(iColumn)) { |
| 1151 | CoinWorkDouble change = oldPrimal + deltaX_[iColumn] - lowerSlack_[iColumn] - lower_[iColumn]; |
| 1152 | c += lowerSlack_[iColumn] * zVec_[iColumn]; |
| 1153 | b += lowerSlack_[iColumn] * deltaZ_[iColumn] + zVec_[iColumn] * change; |
| 1154 | a += deltaZ_[iColumn] * change; |
| 1155 | } |
| 1156 | if (upperBound(iColumn)) { |
| 1157 | CoinWorkDouble change = upper_[iColumn] - oldPrimal - deltaX_[iColumn] - upperSlack_[iColumn]; |
| 1158 | c += upperSlack_[iColumn] * wVec_[iColumn]; |
| 1159 | b += upperSlack_[iColumn] * deltaW_[iColumn] + wVec_[iColumn] * change; |
| 1160 | a += deltaW_[iColumn] * change; |
| 1161 | } |
| 1162 | // new djs are dj_ + change*value |
| 1163 | CoinWorkDouble djChange = linearDjChange[iColumn]; |
| 1164 | if (iColumn < numberColumns_) { |
| 1165 | for (CoinBigIndex j = columnQuadraticStart[iColumn]; |
| 1166 | j < columnQuadraticStart[iColumn] + columnQuadraticLength[iColumn]; j++) { |
| 1167 | int jColumn = columnQuadratic[j]; |
| 1168 | CoinWorkDouble changeJ = deltaX_[jColumn]; |
| 1169 | CoinWorkDouble elementValue = quadraticElement[j]; |
| 1170 | djChange += changeJ * elementValue; |
| 1171 | } |
| 1172 | } |
| 1173 | CoinWorkDouble gammaTerm = gamma2; |
| 1174 | if (primalR_) { |
| 1175 | gammaTerm += primalR_[iColumn]; |
| 1176 | } |
| 1177 | djChange += gammaTerm; |
| 1178 | // and dual infeasibility |
| 1179 | CoinWorkDouble oldInf = dj_[iColumn] - zVec_[iColumn] + wVec_[iColumn] + |
| 1180 | gammaTerm * solution_[iColumn]; |
| 1181 | CoinWorkDouble changeInf = djChange - deltaZ_[iColumn] + deltaW_[iColumn]; |
| 1182 | cq += oldInf * oldInf; |
| 1183 | bq += 2.0 * oldInf * changeInf; |
| 1184 | aq += changeInf * changeInf; |
| 1185 | } else { |
| 1186 | // fixed |
| 1187 | if (lowerBound(iColumn)) { |
| 1188 | c += lowerSlack_[iColumn] * zVec_[iColumn]; |
| 1189 | } |
| 1190 | if (upperBound(iColumn)) { |
| 1191 | c += upperSlack_[iColumn] * wVec_[iColumn]; |
| 1192 | } |
| 1193 | // new djs are dj_ + change*value |
| 1194 | CoinWorkDouble djChange = linearDjChange[iColumn]; |
| 1195 | if (iColumn < numberColumns_) { |
| 1196 | for (CoinBigIndex j = columnQuadraticStart[iColumn]; |
| 1197 | j < columnQuadraticStart[iColumn] + columnQuadraticLength[iColumn]; j++) { |
| 1198 | int jColumn = columnQuadratic[j]; |
| 1199 | CoinWorkDouble changeJ = deltaX_[jColumn]; |
| 1200 | CoinWorkDouble elementValue = quadraticElement[j]; |
| 1201 | djChange += changeJ * elementValue; |
| 1202 | } |
| 1203 | } |
| 1204 | CoinWorkDouble gammaTerm = gamma2; |
| 1205 | if (primalR_) { |
| 1206 | gammaTerm += primalR_[iColumn]; |
| 1207 | } |
| 1208 | djChange += gammaTerm; |
| 1209 | // and dual infeasibility |
| 1210 | CoinWorkDouble oldInf = dj_[iColumn] - zVec_[iColumn] + wVec_[iColumn] + |
| 1211 | gammaTerm * solution_[iColumn]; |
| 1212 | CoinWorkDouble changeInf = djChange - deltaZ_[iColumn] + deltaW_[iColumn]; |
| 1213 | cq += oldInf * oldInf; |
| 1214 | bq += 2.0 * oldInf * changeInf; |
| 1215 | aq += changeInf * changeInf; |
| 1216 | } |
| 1217 | } |
| 1218 | delete [] linearDjChange; |
| 1219 | // ? We want to minimize complementarityGap + solutionNorm_*square of inf ?? |
| 1220 | // maybe use inf and do line search |
| 1221 | // To check see if matches at current step |
| 1222 | CoinWorkDouble step = actualPrimalStep_; |
| 1223 | //Current gap + solutionNorm_ * CoinSqrt (sum square inf) |
| 1224 | CoinWorkDouble multiplier = solutionNorm_; |
| 1225 | multiplier *= 0.01; |
| 1226 | multiplier = 1.0; |
| 1227 | CoinWorkDouble currentInf = multiplier * CoinSqrt(cq); |
| 1228 | CoinWorkDouble nextInf = multiplier * CoinSqrt(CoinMax(cq + step * bq + step * step * aq, 0.0)); |
| 1229 | CoinWorkDouble allowedIncrease = 1.4; |
| 1230 | #ifdef SOME_DEBUG |
| 1231 | printf("lin %g %g %g -> %g\n" , a, b, c, |
| 1232 | c + b * step + a * step * step); |
| 1233 | printf("quad %g %g %g -> %g\n" , aq, bq, cq, |
| 1234 | cq + bq * step + aq * step * step); |
| 1235 | debugMove(7, step, step); |
| 1236 | printf ("current dualInf %g, with step of %g is %g\n" , |
| 1237 | currentInf, step, nextInf); |
| 1238 | #endif |
| 1239 | if (b > -1.0e-6) { |
| 1240 | if (phase != 0) |
| 1241 | directionNorm = -1.0; |
| 1242 | } |
| 1243 | if ((phase == 1 || phase == 2 || phase == 0 || phase == 3) && nextInf > 0.1 * complementarityGap_ && |
| 1244 | nextInf > currentInf * allowedIncrease) { |
| 1245 | //cq = CoinMax(cq,10.0); |
| 1246 | // convert to (x+q)*(x+q) = w |
| 1247 | CoinWorkDouble q = bq / (1.0 * aq); |
| 1248 | CoinWorkDouble w = CoinMax(q * q + (cq / aq) * (allowedIncrease - 1.0), 0.0); |
| 1249 | w = CoinSqrt(w); |
| 1250 | CoinWorkDouble stepX = w - q; |
| 1251 | step = stepX; |
| 1252 | nextInf = |
| 1253 | multiplier * CoinSqrt(CoinMax(cq + step * bq + step * step * aq, 0.0)); |
| 1254 | #ifdef SOME_DEBUG |
| 1255 | printf ("with step of %g dualInf is %g\n" , |
| 1256 | step, nextInf); |
| 1257 | #endif |
| 1258 | actualDualStep_ = CoinMin(step, actualDualStep_); |
| 1259 | actualPrimalStep_ = CoinMin(step, actualPrimalStep_); |
| 1260 | } |
| 1261 | } |
| 1262 | } else { |
| 1263 | // probably pointless as linear |
| 1264 | // minimize complementarity |
| 1265 | // Complementarity gap will be a*change*change + b*change +c |
| 1266 | CoinWorkDouble a = 0.0; |
| 1267 | CoinWorkDouble b = 0.0; |
| 1268 | CoinWorkDouble c = 0.0; |
| 1269 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 1270 | CoinWorkDouble oldPrimal = solution_[iColumn]; |
| 1271 | if (!flagged(iColumn)) { |
| 1272 | if (lowerBound(iColumn)) { |
| 1273 | CoinWorkDouble change = oldPrimal + deltaX_[iColumn] - lowerSlack_[iColumn] - lower_[iColumn]; |
| 1274 | c += lowerSlack_[iColumn] * zVec_[iColumn]; |
| 1275 | b += lowerSlack_[iColumn] * deltaZ_[iColumn] + zVec_[iColumn] * change; |
| 1276 | a += deltaZ_[iColumn] * change; |
| 1277 | } |
| 1278 | if (upperBound(iColumn)) { |
| 1279 | CoinWorkDouble change = upper_[iColumn] - oldPrimal - deltaX_[iColumn] - upperSlack_[iColumn]; |
| 1280 | c += upperSlack_[iColumn] * wVec_[iColumn]; |
| 1281 | b += upperSlack_[iColumn] * deltaW_[iColumn] + wVec_[iColumn] * change; |
| 1282 | a += deltaW_[iColumn] * change; |
| 1283 | } |
| 1284 | } else { |
| 1285 | // fixed |
| 1286 | if (lowerBound(iColumn)) { |
| 1287 | c += lowerSlack_[iColumn] * zVec_[iColumn]; |
| 1288 | } |
| 1289 | if (upperBound(iColumn)) { |
| 1290 | c += upperSlack_[iColumn] * wVec_[iColumn]; |
| 1291 | } |
| 1292 | } |
| 1293 | } |
| 1294 | // ? We want to minimize complementarityGap; |
| 1295 | // maybe use inf and do line search |
| 1296 | // To check see if matches at current step |
| 1297 | CoinWorkDouble step = CoinMin(actualPrimalStep_, actualDualStep_); |
| 1298 | CoinWorkDouble next = c + b * step + a * step * step; |
| 1299 | #ifdef SOME_DEBUG |
| 1300 | printf("lin %g %g %g -> %g\n" , a, b, c, |
| 1301 | c + b * step + a * step * step); |
| 1302 | debugMove(7, step, step); |
| 1303 | #endif |
| 1304 | if (b > -1.0e-6) { |
| 1305 | if (phase == 0) { |
| 1306 | #ifdef SOME_DEBUG |
| 1307 | printf("*** odd phase 0 direction\n" ); |
| 1308 | #endif |
| 1309 | } else { |
| 1310 | directionNorm = -1.0; |
| 1311 | } |
| 1312 | } |
| 1313 | // and with ratio |
| 1314 | a = 0.0; |
| 1315 | b = 0.0; |
| 1316 | CoinWorkDouble ratio = actualDualStep_ / actualPrimalStep_; |
| 1317 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 1318 | CoinWorkDouble oldPrimal = solution_[iColumn]; |
| 1319 | if (!flagged(iColumn)) { |
| 1320 | if (lowerBound(iColumn)) { |
| 1321 | CoinWorkDouble change = oldPrimal + deltaX_[iColumn] - lowerSlack_[iColumn] - lower_[iColumn]; |
| 1322 | b += lowerSlack_[iColumn] * deltaZ_[iColumn] * ratio + zVec_[iColumn] * change; |
| 1323 | a += deltaZ_[iColumn] * change * ratio; |
| 1324 | } |
| 1325 | if (upperBound(iColumn)) { |
| 1326 | CoinWorkDouble change = upper_[iColumn] - oldPrimal - deltaX_[iColumn] - upperSlack_[iColumn]; |
| 1327 | b += upperSlack_[iColumn] * deltaW_[iColumn] * ratio + wVec_[iColumn] * change; |
| 1328 | a += deltaW_[iColumn] * change * ratio; |
| 1329 | } |
| 1330 | } |
| 1331 | } |
| 1332 | // ? We want to minimize complementarityGap; |
| 1333 | // maybe use inf and do line search |
| 1334 | // To check see if matches at current step |
| 1335 | step = actualPrimalStep_; |
| 1336 | CoinWorkDouble next2 = c + b * step + a * step * step; |
| 1337 | if (next2 > next) { |
| 1338 | actualPrimalStep_ = CoinMin(actualPrimalStep_, actualDualStep_); |
| 1339 | actualDualStep_ = actualPrimalStep_; |
| 1340 | } |
| 1341 | #ifdef SOME_DEBUG |
| 1342 | printf("linb %g %g %g -> %g\n" , a, b, c, |
| 1343 | c + b * step + a * step * step); |
| 1344 | debugMove(7, actualPrimalStep_, actualDualStep_); |
| 1345 | #endif |
| 1346 | if (b > -1.0e-6) { |
| 1347 | if (phase == 0) { |
| 1348 | #ifdef SOME_DEBUG |
| 1349 | printf("*** odd phase 0 direction\n" ); |
| 1350 | #endif |
| 1351 | } else { |
| 1352 | directionNorm = -1.0; |
| 1353 | } |
| 1354 | } |
| 1355 | } |
| 1356 | #else |
| 1357 | //actualPrimalStep_ =0.5*actualDualStep_; |
| 1358 | #endif |
| 1359 | #ifdef FULL_DEBUG |
| 1360 | if (phase == 3) { |
| 1361 | CoinWorkDouble minBeta = 0.1 * mu_; |
| 1362 | CoinWorkDouble maxBeta = 10.0 * mu_; |
| 1363 | for (iColumn = 0; iColumn < numberRows_ + numberColumns_; iColumn++) { |
| 1364 | if (!flagged(iColumn)) { |
| 1365 | if (lowerBound(iColumn)) { |
| 1366 | CoinWorkDouble change = -rhsL_[iColumn] + deltaX_[iColumn]; |
| 1367 | CoinWorkDouble dualValue = zVec_[iColumn] + actualDualStep_ * deltaZ_[iColumn]; |
| 1368 | CoinWorkDouble primalValue = lowerSlack_[iColumn] + actualPrimalStep_ * change; |
| 1369 | CoinWorkDouble gapProduct = dualValue * primalValue; |
| 1370 | if (delta2Z_[iColumn] < minBeta || delta2Z_[iColumn] > maxBeta) |
| 1371 | printf("3lower %d primal %g, dual %g, gap %g, old gap %g\n" , |
| 1372 | iColumn, primalValue, dualValue, gapProduct, delta2Z_[iColumn]); |
| 1373 | } |
| 1374 | if (upperBound(iColumn)) { |
| 1375 | CoinWorkDouble change = rhsU_[iColumn] - deltaX_[iColumn]; |
| 1376 | CoinWorkDouble dualValue = wVec_[iColumn] + actualDualStep_ * deltaW_[iColumn]; |
| 1377 | CoinWorkDouble primalValue = upperSlack_[iColumn] + actualPrimalStep_ * change; |
| 1378 | CoinWorkDouble gapProduct = dualValue * primalValue; |
| 1379 | if (delta2W_[iColumn] < minBeta || delta2W_[iColumn] > maxBeta) |
| 1380 | printf("3upper %d primal %g, dual %g, gap %g, old gap %g\n" , |
| 1381 | iColumn, primalValue, dualValue, gapProduct, delta2W_[iColumn]); |
| 1382 | } |
| 1383 | } |
| 1384 | } |
| 1385 | } |
| 1386 | #endif |
| 1387 | #ifdef SOME_DEBUG_not |
| 1388 | { |
| 1389 | CoinWorkDouble largestL = 0.0; |
| 1390 | CoinWorkDouble smallestL = COIN_DBL_MAX; |
| 1391 | CoinWorkDouble largestU = 0.0; |
| 1392 | CoinWorkDouble smallestU = COIN_DBL_MAX; |
| 1393 | CoinWorkDouble sumL = 0.0; |
| 1394 | CoinWorkDouble sumU = 0.0; |
| 1395 | int nL = 0; |
| 1396 | int nU = 0; |
| 1397 | for (iColumn = 0; iColumn < numberRows_ + numberColumns_; iColumn++) { |
| 1398 | if (!flagged(iColumn)) { |
| 1399 | if (lowerBound(iColumn)) { |
| 1400 | CoinWorkDouble change = -rhsL_[iColumn] + deltaX_[iColumn]; |
| 1401 | CoinWorkDouble dualValue = zVec_[iColumn] + actualDualStep_ * deltaZ_[iColumn]; |
| 1402 | CoinWorkDouble primalValue = lowerSlack_[iColumn] + actualPrimalStep_ * change; |
| 1403 | CoinWorkDouble gapProduct = dualValue * primalValue; |
| 1404 | largestL = CoinMax(largestL, gapProduct); |
| 1405 | smallestL = CoinMin(smallestL, gapProduct); |
| 1406 | nL++; |
| 1407 | sumL += gapProduct; |
| 1408 | } |
| 1409 | if (upperBound(iColumn)) { |
| 1410 | CoinWorkDouble change = rhsU_[iColumn] - deltaX_[iColumn]; |
| 1411 | CoinWorkDouble dualValue = wVec_[iColumn] + actualDualStep_ * deltaW_[iColumn]; |
| 1412 | CoinWorkDouble primalValue = upperSlack_[iColumn] + actualPrimalStep_ * change; |
| 1413 | CoinWorkDouble gapProduct = dualValue * primalValue; |
| 1414 | largestU = CoinMax(largestU, gapProduct); |
| 1415 | smallestU = CoinMin(smallestU, gapProduct); |
| 1416 | nU++; |
| 1417 | sumU += gapProduct; |
| 1418 | } |
| 1419 | } |
| 1420 | } |
| 1421 | CoinWorkDouble mu = (sumL + sumU) / (static_cast<CoinWorkDouble> (nL + nU)); |
| 1422 | |
| 1423 | CoinWorkDouble minBeta = 0.1 * mu; |
| 1424 | CoinWorkDouble maxBeta = 10.0 * mu; |
| 1425 | int nBL = 0; |
| 1426 | int nAL = 0; |
| 1427 | int nBU = 0; |
| 1428 | int nAU = 0; |
| 1429 | for (iColumn = 0; iColumn < numberRows_ + numberColumns_; iColumn++) { |
| 1430 | if (!flagged(iColumn)) { |
| 1431 | if (lowerBound(iColumn)) { |
| 1432 | CoinWorkDouble change = -rhsL_[iColumn] + deltaX_[iColumn]; |
| 1433 | CoinWorkDouble dualValue = zVec_[iColumn] + actualDualStep_ * deltaZ_[iColumn]; |
| 1434 | CoinWorkDouble primalValue = lowerSlack_[iColumn] + actualPrimalStep_ * change; |
| 1435 | CoinWorkDouble gapProduct = dualValue * primalValue; |
| 1436 | if (gapProduct < minBeta) |
| 1437 | nBL++; |
| 1438 | else if (gapProduct > maxBeta) |
| 1439 | nAL++; |
| 1440 | //if (gapProduct<0.1*minBeta) |
| 1441 | //printf("Lsmall one %d dual %g primal %g\n",iColumn, |
| 1442 | // dualValue,primalValue); |
| 1443 | } |
| 1444 | if (upperBound(iColumn)) { |
| 1445 | CoinWorkDouble change = rhsU_[iColumn] - deltaX_[iColumn]; |
| 1446 | CoinWorkDouble dualValue = wVec_[iColumn] + actualDualStep_ * deltaW_[iColumn]; |
| 1447 | CoinWorkDouble primalValue = upperSlack_[iColumn] + actualPrimalStep_ * change; |
| 1448 | CoinWorkDouble gapProduct = dualValue * primalValue; |
| 1449 | if (gapProduct < minBeta) |
| 1450 | nBU++; |
| 1451 | else if (gapProduct > maxBeta) |
| 1452 | nAU++; |
| 1453 | //if (gapProduct<0.1*minBeta) |
| 1454 | //printf("Usmall one %d dual %g primal %g\n",iColumn, |
| 1455 | // dualValue,primalValue); |
| 1456 | } |
| 1457 | } |
| 1458 | } |
| 1459 | printf("phase %d new mu %.18g new gap %.18g\n" , phase, mu, sumL + sumU); |
| 1460 | printf(" %d lower, smallest %.18g, %d below - largest %.18g, %d above\n" , |
| 1461 | nL, smallestL, nBL, largestL, nAL); |
| 1462 | printf(" %d upper, smallest %.18g, %d below - largest %.18g, %d above\n" , |
| 1463 | nU, smallestU, nBU, largestU, nAU); |
| 1464 | } |
| 1465 | #endif |
| 1466 | return directionNorm; |
| 1467 | } |
| 1468 | /* Does solve. region1 is for deltaX (columns+rows), region2 for deltaPi (rows) */ |
| 1469 | void |
| 1470 | ClpPredictorCorrector::solveSystem(CoinWorkDouble * region1, CoinWorkDouble * region2, |
| 1471 | const CoinWorkDouble * region1In, const CoinWorkDouble * region2In, |
| 1472 | const CoinWorkDouble * saveRegion1, const CoinWorkDouble * saveRegion2, |
| 1473 | bool gentleRefine) |
| 1474 | { |
| 1475 | int iRow; |
| 1476 | int numberTotal = numberRows_ + numberColumns_; |
| 1477 | if (region2In) { |
| 1478 | // normal |
| 1479 | for (iRow = 0; iRow < numberRows_; iRow++) |
| 1480 | region2[iRow] = region2In[iRow]; |
| 1481 | } else { |
| 1482 | // initial solution - (diagonal is 1 or 0) |
| 1483 | CoinZeroN(region2, numberRows_); |
| 1484 | } |
| 1485 | int iColumn; |
| 1486 | if (cholesky_->type() < 20) { |
| 1487 | // not KKT |
| 1488 | for (iColumn = 0; iColumn < numberTotal; iColumn++) |
| 1489 | region1[iColumn] = region1In[iColumn] * diagonal_[iColumn]; |
| 1490 | multiplyAdd(region1 + numberColumns_, numberRows_, -1.0, region2, 1.0); |
| 1491 | matrix_->times(1.0, region1, region2); |
| 1492 | CoinWorkDouble maximumRHS = maximumAbsElement(region2, numberRows_); |
| 1493 | CoinWorkDouble scale = 1.0; |
| 1494 | CoinWorkDouble unscale = 1.0; |
| 1495 | if (maximumRHS > 1.0e-30) { |
| 1496 | if (maximumRHS <= 0.5) { |
| 1497 | CoinWorkDouble factor = 2.0; |
| 1498 | while (maximumRHS <= 0.5) { |
| 1499 | maximumRHS *= factor; |
| 1500 | scale *= factor; |
| 1501 | } /* endwhile */ |
| 1502 | } else if (maximumRHS >= 2.0 && maximumRHS <= COIN_DBL_MAX) { |
| 1503 | CoinWorkDouble factor = 0.5; |
| 1504 | while (maximumRHS >= 2.0) { |
| 1505 | maximumRHS *= factor; |
| 1506 | scale *= factor; |
| 1507 | } /* endwhile */ |
| 1508 | } |
| 1509 | unscale = diagonalScaleFactor_ / scale; |
| 1510 | } else { |
| 1511 | //effectively zero |
| 1512 | scale = 0.0; |
| 1513 | unscale = 0.0; |
| 1514 | } |
| 1515 | multiplyAdd(NULL, numberRows_, 0.0, region2, scale); |
| 1516 | cholesky_->solve(region2); |
| 1517 | multiplyAdd(NULL, numberRows_, 0.0, region2, unscale); |
| 1518 | multiplyAdd(region2, numberRows_, -1.0, region1 + numberColumns_, 0.0); |
| 1519 | CoinZeroN(region1, numberColumns_); |
| 1520 | matrix_->transposeTimes(1.0, region2, region1); |
| 1521 | for (iColumn = 0; iColumn < numberTotal; iColumn++) |
| 1522 | region1[iColumn] = (region1[iColumn] - region1In[iColumn]) * diagonal_[iColumn]; |
| 1523 | } else { |
| 1524 | for (iColumn = 0; iColumn < numberTotal; iColumn++) |
| 1525 | region1[iColumn] = region1In[iColumn]; |
| 1526 | cholesky_->solveKKT(region1, region2, diagonal_, diagonalScaleFactor_); |
| 1527 | } |
| 1528 | if (saveRegion2) { |
| 1529 | //refine? |
| 1530 | CoinWorkDouble scaleX = 1.0; |
| 1531 | if (gentleRefine) |
| 1532 | scaleX = 0.8; |
| 1533 | multiplyAdd(saveRegion2, numberRows_, 1.0, region2, scaleX); |
| 1534 | assert (saveRegion1); |
| 1535 | multiplyAdd(saveRegion1, numberTotal, 1.0, region1, scaleX); |
| 1536 | } |
| 1537 | } |
| 1538 | // findDirectionVector. |
| 1539 | CoinWorkDouble ClpPredictorCorrector::findDirectionVector(const int phase) |
| 1540 | { |
| 1541 | CoinWorkDouble projectionTolerance = projectionTolerance_; |
| 1542 | //temporary |
| 1543 | //projectionTolerance=1.0e-15; |
| 1544 | CoinWorkDouble errorCheck = 0.9 * maximumRHSError_ / solutionNorm_; |
| 1545 | if (errorCheck > primalTolerance()) { |
| 1546 | if (errorCheck < projectionTolerance) { |
| 1547 | projectionTolerance = errorCheck; |
| 1548 | } |
| 1549 | } else { |
| 1550 | if (primalTolerance() < projectionTolerance) { |
| 1551 | projectionTolerance = primalTolerance(); |
| 1552 | } |
| 1553 | } |
| 1554 | CoinWorkDouble * newError = new CoinWorkDouble [numberRows_]; |
| 1555 | int numberTotal = numberRows_ + numberColumns_; |
| 1556 | //if flagged then entries zero so can do |
| 1557 | // For KKT separate out |
| 1558 | CoinWorkDouble * region1Save = NULL; //for refinement |
| 1559 | int iColumn; |
| 1560 | if (cholesky_->type() < 20) { |
| 1561 | int iColumn; |
| 1562 | for (iColumn = 0; iColumn < numberTotal; iColumn++) |
| 1563 | deltaX_[iColumn] = workArray_[iColumn] - solution_[iColumn]; |
| 1564 | multiplyAdd(deltaX_ + numberColumns_, numberRows_, -1.0, deltaY_, 0.0); |
| 1565 | matrix_->times(1.0, deltaX_, deltaY_); |
| 1566 | } else { |
| 1567 | // regions in will be workArray and newError |
| 1568 | // regions out deltaX_ and deltaY_ |
| 1569 | multiplyAdd(solution_ + numberColumns_, numberRows_, 1.0, newError, 0.0); |
| 1570 | matrix_->times(-1.0, solution_, newError); |
| 1571 | // This is inefficient but just for now get values which will be in deltay |
| 1572 | int iColumn; |
| 1573 | for (iColumn = 0; iColumn < numberTotal; iColumn++) |
| 1574 | deltaX_[iColumn] = workArray_[iColumn] - solution_[iColumn]; |
| 1575 | multiplyAdd(deltaX_ + numberColumns_, numberRows_, -1.0, deltaY_, 0.0); |
| 1576 | matrix_->times(1.0, deltaX_, deltaY_); |
| 1577 | } |
| 1578 | bool goodSolve = false; |
| 1579 | CoinWorkDouble * regionSave = NULL; //for refinement |
| 1580 | int numberTries = 0; |
| 1581 | CoinWorkDouble relativeError = COIN_DBL_MAX; |
| 1582 | CoinWorkDouble tryError = 1.0e31; |
| 1583 | CoinWorkDouble saveMaximum = 0.0; |
| 1584 | double firstError = 0.0; |
| 1585 | double lastError2 = 0.0; |
| 1586 | while (!goodSolve && numberTries < 30) { |
| 1587 | CoinWorkDouble lastError = relativeError; |
| 1588 | goodSolve = true; |
| 1589 | CoinWorkDouble maximumRHS; |
| 1590 | maximumRHS = CoinMax(maximumAbsElement(deltaY_, numberRows_), 1.0e-12); |
| 1591 | if (!numberTries) |
| 1592 | saveMaximum = maximumRHS; |
| 1593 | if (cholesky_->type() < 20) { |
| 1594 | // no kkt |
| 1595 | CoinWorkDouble scale = 1.0; |
| 1596 | CoinWorkDouble unscale = 1.0; |
| 1597 | if (maximumRHS > 1.0e-30) { |
| 1598 | if (maximumRHS <= 0.5) { |
| 1599 | CoinWorkDouble factor = 2.0; |
| 1600 | while (maximumRHS <= 0.5) { |
| 1601 | maximumRHS *= factor; |
| 1602 | scale *= factor; |
| 1603 | } /* endwhile */ |
| 1604 | } else if (maximumRHS >= 2.0 && maximumRHS <= COIN_DBL_MAX) { |
| 1605 | CoinWorkDouble factor = 0.5; |
| 1606 | while (maximumRHS >= 2.0) { |
| 1607 | maximumRHS *= factor; |
| 1608 | scale *= factor; |
| 1609 | } /* endwhile */ |
| 1610 | } |
| 1611 | unscale = diagonalScaleFactor_ / scale; |
| 1612 | } else { |
| 1613 | //effectively zero |
| 1614 | scale = 0.0; |
| 1615 | unscale = 0.0; |
| 1616 | } |
| 1617 | //printf("--putting scales to 1.0\n"); |
| 1618 | //scale=1.0; |
| 1619 | //unscale=1.0; |
| 1620 | multiplyAdd(NULL, numberRows_, 0.0, deltaY_, scale); |
| 1621 | cholesky_->solve(deltaY_); |
| 1622 | multiplyAdd(NULL, numberRows_, 0.0, deltaY_, unscale); |
| 1623 | #if 0 |
| 1624 | { |
| 1625 | printf("deltay\n" ); |
| 1626 | for (int i = 0; i < numberRows_; i++) |
| 1627 | printf("%d %.18g\n" , i, deltaY_[i]); |
| 1628 | } |
| 1629 | exit(66); |
| 1630 | #endif |
| 1631 | if (numberTries) { |
| 1632 | //refine? |
| 1633 | CoinWorkDouble scaleX = 1.0; |
| 1634 | if (lastError > 1.0e-5) |
| 1635 | scaleX = 0.8; |
| 1636 | multiplyAdd(regionSave, numberRows_, 1.0, deltaY_, scaleX); |
| 1637 | } |
| 1638 | //CoinZeroN(newError,numberRows_); |
| 1639 | multiplyAdd(deltaY_, numberRows_, -1.0, deltaX_ + numberColumns_, 0.0); |
| 1640 | CoinZeroN(deltaX_, numberColumns_); |
| 1641 | matrix_->transposeTimes(1.0, deltaY_, deltaX_); |
| 1642 | //if flagged then entries zero so can do |
| 1643 | for (iColumn = 0; iColumn < numberTotal; iColumn++) |
| 1644 | deltaX_[iColumn] = deltaX_[iColumn] * diagonal_[iColumn] |
| 1645 | - workArray_[iColumn]; |
| 1646 | } else { |
| 1647 | // KKT |
| 1648 | solveSystem(deltaX_, deltaY_, |
| 1649 | workArray_, newError, region1Save, regionSave, lastError > 1.0e-5); |
| 1650 | } |
| 1651 | multiplyAdd(deltaX_ + numberColumns_, numberRows_, -1.0, newError, 0.0); |
| 1652 | matrix_->times(1.0, deltaX_, newError); |
| 1653 | numberTries++; |
| 1654 | |
| 1655 | //now add in old Ax - doing extra checking |
| 1656 | CoinWorkDouble maximumRHSError = 0.0; |
| 1657 | CoinWorkDouble maximumRHSChange = 0.0; |
| 1658 | int iRow; |
| 1659 | char * dropped = cholesky_->rowsDropped(); |
| 1660 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 1661 | if (!dropped[iRow]) { |
| 1662 | CoinWorkDouble newValue = newError[iRow]; |
| 1663 | CoinWorkDouble oldValue = errorRegion_[iRow]; |
| 1664 | //severity of errors depend on signs |
| 1665 | //**later */ |
| 1666 | if (CoinAbs(newValue) > maximumRHSChange) { |
| 1667 | maximumRHSChange = CoinAbs(newValue); |
| 1668 | } |
| 1669 | CoinWorkDouble result = newValue + oldValue; |
| 1670 | if (CoinAbs(result) > maximumRHSError) { |
| 1671 | maximumRHSError = CoinAbs(result); |
| 1672 | } |
| 1673 | newError[iRow] = result; |
| 1674 | } else { |
| 1675 | CoinWorkDouble newValue = newError[iRow]; |
| 1676 | CoinWorkDouble oldValue = errorRegion_[iRow]; |
| 1677 | if (CoinAbs(newValue) > maximumRHSChange) { |
| 1678 | maximumRHSChange = CoinAbs(newValue); |
| 1679 | } |
| 1680 | CoinWorkDouble result = newValue + oldValue; |
| 1681 | newError[iRow] = result; |
| 1682 | //newError[iRow]=0.0; |
| 1683 | //assert(deltaY_[iRow]==0.0); |
| 1684 | deltaY_[iRow] = 0.0; |
| 1685 | } |
| 1686 | } |
| 1687 | relativeError = maximumRHSError / solutionNorm_; |
| 1688 | relativeError = maximumRHSError / saveMaximum; |
| 1689 | if (relativeError > tryError) |
| 1690 | relativeError = tryError; |
| 1691 | if (numberTries == 1) |
| 1692 | firstError = relativeError; |
| 1693 | if (relativeError < lastError) { |
| 1694 | lastError2 = relativeError; |
| 1695 | maximumRHSChange_ = maximumRHSChange; |
| 1696 | if (relativeError > projectionTolerance && numberTries <= 3) { |
| 1697 | //try and refine |
| 1698 | goodSolve = false; |
| 1699 | } |
| 1700 | //*** extra test here |
| 1701 | if (!goodSolve) { |
| 1702 | if (!regionSave) { |
| 1703 | regionSave = new CoinWorkDouble [numberRows_]; |
| 1704 | if (cholesky_->type() >= 20) |
| 1705 | region1Save = new CoinWorkDouble [numberTotal]; |
| 1706 | } |
| 1707 | CoinMemcpyN(deltaY_, numberRows_, regionSave); |
| 1708 | if (cholesky_->type() < 20) { |
| 1709 | // not KKT |
| 1710 | multiplyAdd(newError, numberRows_, -1.0, deltaY_, 0.0); |
| 1711 | } else { |
| 1712 | // KKT |
| 1713 | CoinMemcpyN(deltaX_, numberTotal, region1Save); |
| 1714 | // and back to input region |
| 1715 | CoinMemcpyN(deltaY_, numberRows_, newError); |
| 1716 | } |
| 1717 | } |
| 1718 | } else { |
| 1719 | //std::cout <<" worse residual = "<<relativeError; |
| 1720 | //bring back previous |
| 1721 | relativeError = lastError; |
| 1722 | if (regionSave) { |
| 1723 | CoinMemcpyN(regionSave, numberRows_, deltaY_); |
| 1724 | if (cholesky_->type() < 20) { |
| 1725 | // not KKT |
| 1726 | multiplyAdd(deltaY_, numberRows_, -1.0, deltaX_ + numberColumns_, 0.0); |
| 1727 | CoinZeroN(deltaX_, numberColumns_); |
| 1728 | matrix_->transposeTimes(1.0, deltaY_, deltaX_); |
| 1729 | //if flagged then entries zero so can do |
| 1730 | for (iColumn = 0; iColumn < numberTotal; iColumn++) |
| 1731 | deltaX_[iColumn] = deltaX_[iColumn] * diagonal_[iColumn] |
| 1732 | - workArray_[iColumn]; |
| 1733 | } else { |
| 1734 | // KKT |
| 1735 | CoinMemcpyN(region1Save, numberTotal, deltaX_); |
| 1736 | } |
| 1737 | } else { |
| 1738 | // disaster |
| 1739 | CoinFillN(deltaX_, numberTotal, static_cast<CoinWorkDouble>(1.0)); |
| 1740 | CoinFillN(deltaY_, numberRows_, static_cast<CoinWorkDouble>(1.0)); |
| 1741 | COIN_DETAIL_PRINT(printf("bad cholesky\n" )); |
| 1742 | } |
| 1743 | } |
| 1744 | } /* endwhile */ |
| 1745 | if (firstError > 1.0e-8 || numberTries > 1) { |
| 1746 | handler_->message(CLP_BARRIER_ACCURACY, messages_) |
| 1747 | << phase << numberTries << static_cast<double>(firstError) |
| 1748 | << static_cast<double>(lastError2) |
| 1749 | << CoinMessageEol; |
| 1750 | } |
| 1751 | delete [] regionSave; |
| 1752 | delete [] region1Save; |
| 1753 | delete [] newError; |
| 1754 | // now rest |
| 1755 | CoinWorkDouble = eExtra; |
| 1756 | //multiplyAdd(deltaY_,numberRows_,1.0,deltaW_+numberColumns_,0.0); |
| 1757 | //CoinZeroN(deltaW_,numberColumns_); |
| 1758 | //matrix_->transposeTimes(-1.0,deltaY_,deltaW_); |
| 1759 | |
| 1760 | for (iColumn = 0; iColumn < numberRows_ + numberColumns_; iColumn++) { |
| 1761 | deltaSU_[iColumn] = 0.0; |
| 1762 | deltaSL_[iColumn] = 0.0; |
| 1763 | deltaZ_[iColumn] = 0.0; |
| 1764 | CoinWorkDouble dd = deltaW_[iColumn]; |
| 1765 | deltaW_[iColumn] = 0.0; |
| 1766 | if (!flagged(iColumn)) { |
| 1767 | CoinWorkDouble deltaX = deltaX_[iColumn]; |
| 1768 | if (lowerBound(iColumn)) { |
| 1769 | CoinWorkDouble zValue = rhsZ_[iColumn]; |
| 1770 | CoinWorkDouble gHat = zValue + zVec_[iColumn] * rhsL_[iColumn]; |
| 1771 | CoinWorkDouble slack = lowerSlack_[iColumn] + extra; |
| 1772 | deltaSL_[iColumn] = -rhsL_[iColumn] + deltaX; |
| 1773 | deltaZ_[iColumn] = (gHat - zVec_[iColumn] * deltaX) / slack; |
| 1774 | } |
| 1775 | if (upperBound(iColumn)) { |
| 1776 | CoinWorkDouble wValue = rhsW_[iColumn]; |
| 1777 | CoinWorkDouble hHat = wValue - wVec_[iColumn] * rhsU_[iColumn]; |
| 1778 | CoinWorkDouble slack = upperSlack_[iColumn] + extra; |
| 1779 | deltaSU_[iColumn] = rhsU_[iColumn] - deltaX; |
| 1780 | deltaW_[iColumn] = (hHat + wVec_[iColumn] * deltaX) / slack; |
| 1781 | } |
| 1782 | if (0) { |
| 1783 | // different way of calculating |
| 1784 | CoinWorkDouble gamma2 = gamma_ * gamma_; |
| 1785 | CoinWorkDouble dZ = 0.0; |
| 1786 | CoinWorkDouble dW = 0.0; |
| 1787 | CoinWorkDouble zValue = rhsZ_[iColumn]; |
| 1788 | CoinWorkDouble gHat = zValue + zVec_[iColumn] * rhsL_[iColumn]; |
| 1789 | CoinWorkDouble slackL = lowerSlack_[iColumn] + extra; |
| 1790 | CoinWorkDouble wValue = rhsW_[iColumn]; |
| 1791 | CoinWorkDouble hHat = wValue - wVec_[iColumn] * rhsU_[iColumn]; |
| 1792 | CoinWorkDouble slackU = upperSlack_[iColumn] + extra; |
| 1793 | CoinWorkDouble q = rhsC_[iColumn] + gamma2 * deltaX + dd; |
| 1794 | if (primalR_) |
| 1795 | q += deltaX * primalR_[iColumn]; |
| 1796 | dW = (gHat + hHat - slackL * q + (wValue - zValue) * deltaX) / (slackL + slackU); |
| 1797 | dZ = dW + q; |
| 1798 | //printf("B %d old %g %g new %g %g\n",iColumn,deltaZ_[iColumn], |
| 1799 | //deltaW_[iColumn],dZ,dW); |
| 1800 | if (lowerBound(iColumn)) { |
| 1801 | if (upperBound(iColumn)) { |
| 1802 | //printf("B %d old %g %g new %g %g\n",iColumn,deltaZ_[iColumn], |
| 1803 | //deltaW_[iColumn],dZ,dW); |
| 1804 | deltaW_[iColumn] = dW; |
| 1805 | deltaZ_[iColumn] = dZ; |
| 1806 | } else { |
| 1807 | // just lower |
| 1808 | //printf("L %d old %g new %g\n",iColumn,deltaZ_[iColumn], |
| 1809 | //dZ); |
| 1810 | } |
| 1811 | } else { |
| 1812 | assert (upperBound(iColumn)); |
| 1813 | //printf("U %d old %g new %g\n",iColumn,deltaW_[iColumn], |
| 1814 | //dW); |
| 1815 | } |
| 1816 | } |
| 1817 | } |
| 1818 | } |
| 1819 | #if 0 |
| 1820 | CoinWorkDouble * check = new CoinWorkDouble[numberTotal]; |
| 1821 | // Check out rhsC_ |
| 1822 | multiplyAdd(deltaY_, numberRows_, -1.0, check + numberColumns_, 0.0); |
| 1823 | CoinZeroN(check, numberColumns_); |
| 1824 | matrix_->transposeTimes(1.0, deltaY_, check); |
| 1825 | quadraticDjs(check, deltaX_, -1.0); |
| 1826 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 1827 | check[iColumn] += deltaZ_[iColumn] - deltaW_[iColumn]; |
| 1828 | if (CoinAbs(check[iColumn] - rhsC_[iColumn]) > 1.0e-3) |
| 1829 | printf("rhsC %d %g %g\n" , iColumn, check[iColumn], rhsC_[iColumn]); |
| 1830 | } |
| 1831 | // Check out rhsZ_ |
| 1832 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 1833 | check[iColumn] += lowerSlack_[iColumn] * deltaZ_[iColumn] + |
| 1834 | zVec_[iColumn] * deltaSL_[iColumn]; |
| 1835 | if (CoinAbs(check[iColumn] - rhsZ_[iColumn]) > 1.0e-3) |
| 1836 | printf("rhsZ %d %g %g\n" , iColumn, check[iColumn], rhsZ_[iColumn]); |
| 1837 | } |
| 1838 | // Check out rhsW_ |
| 1839 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 1840 | check[iColumn] += upperSlack_[iColumn] * deltaW_[iColumn] + |
| 1841 | wVec_[iColumn] * deltaSU_[iColumn]; |
| 1842 | if (CoinAbs(check[iColumn] - rhsW_[iColumn]) > 1.0e-3) |
| 1843 | printf("rhsW %d %g %g\n" , iColumn, check[iColumn], rhsW_[iColumn]); |
| 1844 | } |
| 1845 | delete [] check; |
| 1846 | #endif |
| 1847 | return relativeError; |
| 1848 | } |
| 1849 | // createSolution. Creates solution from scratch |
| 1850 | int ClpPredictorCorrector::createSolution() |
| 1851 | { |
| 1852 | int numberTotal = numberRows_ + numberColumns_; |
| 1853 | int iColumn; |
| 1854 | CoinWorkDouble tolerance = primalTolerance(); |
| 1855 | // See if quadratic objective |
| 1856 | #ifndef NO_RTTI |
| 1857 | ClpQuadraticObjective * quadraticObj = (dynamic_cast< ClpQuadraticObjective*>(objective_)); |
| 1858 | #else |
| 1859 | ClpQuadraticObjective * quadraticObj = NULL; |
| 1860 | if (objective_->type() == 2) |
| 1861 | quadraticObj = (static_cast< ClpQuadraticObjective*>(objective_)); |
| 1862 | #endif |
| 1863 | if (!quadraticObj) { |
| 1864 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 1865 | if (upper_[iColumn] - lower_[iColumn] > tolerance) |
| 1866 | clearFixed(iColumn); |
| 1867 | else |
| 1868 | setFixed(iColumn); |
| 1869 | } |
| 1870 | } else { |
| 1871 | // try leaving fixed |
| 1872 | for (iColumn = 0; iColumn < numberTotal; iColumn++) |
| 1873 | clearFixed(iColumn); |
| 1874 | } |
| 1875 | |
| 1876 | CoinWorkDouble maximumObjective = 0.0; |
| 1877 | CoinWorkDouble objectiveNorm2 = 0.0; |
| 1878 | getNorms(cost_, numberTotal, maximumObjective, objectiveNorm2); |
| 1879 | if (!maximumObjective) { |
| 1880 | maximumObjective = 1.0; // objective all zero |
| 1881 | } |
| 1882 | objectiveNorm2 = CoinSqrt(objectiveNorm2) / static_cast<CoinWorkDouble> (numberTotal); |
| 1883 | objectiveNorm_ = maximumObjective; |
| 1884 | scaleFactor_ = 1.0; |
| 1885 | if (maximumObjective > 0.0) { |
| 1886 | if (maximumObjective < 1.0) { |
| 1887 | scaleFactor_ = maximumObjective; |
| 1888 | } else if (maximumObjective > 1.0e4) { |
| 1889 | scaleFactor_ = maximumObjective / 1.0e4; |
| 1890 | } |
| 1891 | } |
| 1892 | if (scaleFactor_ != 1.0) { |
| 1893 | objectiveNorm2 *= scaleFactor_; |
| 1894 | multiplyAdd(NULL, numberTotal, 0.0, cost_, 1.0 / scaleFactor_); |
| 1895 | objectiveNorm_ = maximumObjective / scaleFactor_; |
| 1896 | } |
| 1897 | // See if quadratic objective |
| 1898 | if (quadraticObj) { |
| 1899 | // If scaled then really scale matrix |
| 1900 | CoinWorkDouble scaleFactor = |
| 1901 | scaleFactor_ * optimizationDirection_ * objectiveScale_ * |
| 1902 | rhsScale_; |
| 1903 | if ((scalingFlag_ > 0 && rowScale_) || scaleFactor != 1.0) { |
| 1904 | CoinPackedMatrix * quadratic = quadraticObj->quadraticObjective(); |
| 1905 | const int * columnQuadratic = quadratic->getIndices(); |
| 1906 | const CoinBigIndex * columnQuadraticStart = quadratic->getVectorStarts(); |
| 1907 | const int * columnQuadraticLength = quadratic->getVectorLengths(); |
| 1908 | double * quadraticElement = quadratic->getMutableElements(); |
| 1909 | int numberColumns = quadratic->getNumCols(); |
| 1910 | CoinWorkDouble scale = 1.0 / scaleFactor; |
| 1911 | if (scalingFlag_ > 0 && rowScale_) { |
| 1912 | for (int iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 1913 | CoinWorkDouble scaleI = columnScale_[iColumn] * scale; |
| 1914 | for (CoinBigIndex j = columnQuadraticStart[iColumn]; |
| 1915 | j < columnQuadraticStart[iColumn] + columnQuadraticLength[iColumn]; j++) { |
| 1916 | int jColumn = columnQuadratic[j]; |
| 1917 | CoinWorkDouble scaleJ = columnScale_[jColumn]; |
| 1918 | quadraticElement[j] *= scaleI * scaleJ; |
| 1919 | objectiveNorm_ = CoinMax(objectiveNorm_, CoinAbs(quadraticElement[j])); |
| 1920 | } |
| 1921 | } |
| 1922 | } else { |
| 1923 | // not scaled |
| 1924 | for (int iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 1925 | for (CoinBigIndex j = columnQuadraticStart[iColumn]; |
| 1926 | j < columnQuadraticStart[iColumn] + columnQuadraticLength[iColumn]; j++) { |
| 1927 | quadraticElement[j] *= scale; |
| 1928 | objectiveNorm_ = CoinMax(objectiveNorm_, CoinAbs(quadraticElement[j])); |
| 1929 | } |
| 1930 | } |
| 1931 | } |
| 1932 | } |
| 1933 | } |
| 1934 | baseObjectiveNorm_ = objectiveNorm_; |
| 1935 | //accumulate fixed in dj region (as spare) |
| 1936 | //accumulate primal solution in primal region |
| 1937 | //DZ in lowerDual |
| 1938 | //DW in upperDual |
| 1939 | CoinWorkDouble infiniteCheck = 1.0e40; |
| 1940 | //CoinWorkDouble fakeCheck=1.0e10; |
| 1941 | //use deltaX region for work region |
| 1942 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 1943 | CoinWorkDouble primalValue = solution_[iColumn]; |
| 1944 | clearFlagged(iColumn); |
| 1945 | clearFixedOrFree(iColumn); |
| 1946 | clearLowerBound(iColumn); |
| 1947 | clearUpperBound(iColumn); |
| 1948 | clearFakeLower(iColumn); |
| 1949 | clearFakeUpper(iColumn); |
| 1950 | if (!fixed(iColumn)) { |
| 1951 | dj_[iColumn] = 0.0; |
| 1952 | diagonal_[iColumn] = 1.0; |
| 1953 | deltaX_[iColumn] = 1.0; |
| 1954 | CoinWorkDouble lowerValue = lower_[iColumn]; |
| 1955 | CoinWorkDouble upperValue = upper_[iColumn]; |
| 1956 | if (lowerValue > -infiniteCheck) { |
| 1957 | if (upperValue < infiniteCheck) { |
| 1958 | //upper and lower bounds |
| 1959 | setLowerBound(iColumn); |
| 1960 | setUpperBound(iColumn); |
| 1961 | if (lowerValue >= 0.0) { |
| 1962 | solution_[iColumn] = lowerValue; |
| 1963 | } else if (upperValue <= 0.0) { |
| 1964 | solution_[iColumn] = upperValue; |
| 1965 | } else { |
| 1966 | solution_[iColumn] = 0.0; |
| 1967 | } |
| 1968 | } else { |
| 1969 | //just lower bound |
| 1970 | setLowerBound(iColumn); |
| 1971 | if (lowerValue >= 0.0) { |
| 1972 | solution_[iColumn] = lowerValue; |
| 1973 | } else { |
| 1974 | solution_[iColumn] = 0.0; |
| 1975 | } |
| 1976 | } |
| 1977 | } else { |
| 1978 | if (upperValue < infiniteCheck) { |
| 1979 | //just upper bound |
| 1980 | setUpperBound(iColumn); |
| 1981 | if (upperValue <= 0.0) { |
| 1982 | solution_[iColumn] = upperValue; |
| 1983 | } else { |
| 1984 | solution_[iColumn] = 0.0; |
| 1985 | } |
| 1986 | } else { |
| 1987 | //free |
| 1988 | setFixedOrFree(iColumn); |
| 1989 | solution_[iColumn] = 0.0; |
| 1990 | //std::cout<<" free "<<i<<std::endl; |
| 1991 | } |
| 1992 | } |
| 1993 | } else { |
| 1994 | setFlagged(iColumn); |
| 1995 | setFixedOrFree(iColumn); |
| 1996 | setLowerBound(iColumn); |
| 1997 | setUpperBound(iColumn); |
| 1998 | dj_[iColumn] = primalValue; |
| 1999 | solution_[iColumn] = lower_[iColumn]; |
| 2000 | diagonal_[iColumn] = 0.0; |
| 2001 | deltaX_[iColumn] = 0.0; |
| 2002 | } |
| 2003 | } |
| 2004 | // modify fixed RHS |
| 2005 | multiplyAdd(dj_ + numberColumns_, numberRows_, -1.0, rhsFixRegion_, 0.0); |
| 2006 | // create plausible RHS? |
| 2007 | matrix_->times(-1.0, dj_, rhsFixRegion_); |
| 2008 | multiplyAdd(solution_ + numberColumns_, numberRows_, 1.0, errorRegion_, 0.0); |
| 2009 | matrix_->times(-1.0, solution_, errorRegion_); |
| 2010 | rhsNorm_ = maximumAbsElement(errorRegion_, numberRows_); |
| 2011 | if (rhsNorm_ < 1.0) { |
| 2012 | rhsNorm_ = 1.0; |
| 2013 | } |
| 2014 | int * rowsDropped = new int [numberRows_]; |
| 2015 | int returnCode = cholesky_->factorize(diagonal_, rowsDropped); |
| 2016 | if (returnCode == -1) { |
| 2017 | COIN_DETAIL_PRINT(printf("Out of memory\n" )); |
| 2018 | problemStatus_ = 4; |
| 2019 | return -1; |
| 2020 | } |
| 2021 | if (cholesky_->status()) { |
| 2022 | std::cout << "singular on initial cholesky?" << std::endl; |
| 2023 | cholesky_->resetRowsDropped(); |
| 2024 | //cholesky_->factorize(rowDropped_); |
| 2025 | //if (cholesky_->status()) { |
| 2026 | //std::cout << "bad cholesky??? (after retry)" <<std::endl; |
| 2027 | //abort(); |
| 2028 | //} |
| 2029 | } |
| 2030 | delete [] rowsDropped; |
| 2031 | if (cholesky_->type() < 20) { |
| 2032 | // not KKT |
| 2033 | cholesky_->solve(errorRegion_); |
| 2034 | //create information for solution |
| 2035 | multiplyAdd(errorRegion_, numberRows_, -1.0, deltaX_ + numberColumns_, 0.0); |
| 2036 | CoinZeroN(deltaX_, numberColumns_); |
| 2037 | matrix_->transposeTimes(1.0, errorRegion_, deltaX_); |
| 2038 | } else { |
| 2039 | // KKT |
| 2040 | // reverse sign on solution |
| 2041 | multiplyAdd(NULL, numberRows_ + numberColumns_, 0.0, solution_, -1.0); |
| 2042 | solveSystem(deltaX_, errorRegion_, solution_, NULL, NULL, NULL, false); |
| 2043 | } |
| 2044 | CoinWorkDouble initialValue = 1.0e2; |
| 2045 | if (rhsNorm_ * 1.0e-2 > initialValue) { |
| 2046 | initialValue = rhsNorm_ * 1.0e-2; |
| 2047 | } |
| 2048 | //initialValue = CoinMax(1.0,rhsNorm_); |
| 2049 | CoinWorkDouble smallestBoundDifference = COIN_DBL_MAX; |
| 2050 | CoinWorkDouble * fakeSolution = deltaX_; |
| 2051 | for ( iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 2052 | if (!flagged(iColumn)) { |
| 2053 | if (lower_[iColumn] - fakeSolution[iColumn] > initialValue) { |
| 2054 | initialValue = lower_[iColumn] - fakeSolution[iColumn]; |
| 2055 | } |
| 2056 | if (fakeSolution[iColumn] - upper_[iColumn] > initialValue) { |
| 2057 | initialValue = fakeSolution[iColumn] - upper_[iColumn]; |
| 2058 | } |
| 2059 | if (upper_[iColumn] - lower_[iColumn] < smallestBoundDifference) { |
| 2060 | smallestBoundDifference = upper_[iColumn] - lower_[iColumn]; |
| 2061 | } |
| 2062 | } |
| 2063 | } |
| 2064 | solutionNorm_ = 1.0e-12; |
| 2065 | handler_->message(CLP_BARRIER_SAFE, messages_) |
| 2066 | << static_cast<double>(initialValue) << static_cast<double>(objectiveNorm_) |
| 2067 | << CoinMessageEol; |
| 2068 | CoinWorkDouble = 1.0e-10; |
| 2069 | CoinWorkDouble largeGap = 1.0e15; |
| 2070 | //CoinWorkDouble safeObjectiveValue=2.0*objectiveNorm_; |
| 2071 | CoinWorkDouble safeObjectiveValue = objectiveNorm_ + 1.0; |
| 2072 | CoinWorkDouble safeFree = 1.0e-1 * initialValue; |
| 2073 | //printf("normal safe dual value of %g, primal value of %g\n", |
| 2074 | // safeObjectiveValue,initialValue); |
| 2075 | //safeObjectiveValue=CoinMax(2.0,1.0e-1*safeObjectiveValue); |
| 2076 | //initialValue=CoinMax(100.0,1.0e-1*initialValue); |
| 2077 | //printf("temp safe dual value of %g, primal value of %g\n", |
| 2078 | // safeObjectiveValue,initialValue); |
| 2079 | CoinWorkDouble zwLarge = 1.0e2 * initialValue; |
| 2080 | //zwLarge=1.0e40; |
| 2081 | if (cholesky_->choleskyCondition() < 0.0 && cholesky_->type() < 20) { |
| 2082 | // looks bad - play safe |
| 2083 | initialValue *= 10.0; |
| 2084 | safeObjectiveValue *= 10.0; |
| 2085 | safeFree *= 10.0; |
| 2086 | } |
| 2087 | CoinWorkDouble gamma2 = gamma_ * gamma_; // gamma*gamma will be added to diagonal |
| 2088 | // First do primal side |
| 2089 | for ( iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 2090 | if (!flagged(iColumn)) { |
| 2091 | CoinWorkDouble lowerValue = lower_[iColumn]; |
| 2092 | CoinWorkDouble upperValue = upper_[iColumn]; |
| 2093 | CoinWorkDouble newValue; |
| 2094 | CoinWorkDouble setPrimal = initialValue; |
| 2095 | if (quadraticObj) { |
| 2096 | // perturb primal solution a bit |
| 2097 | //fakeSolution[iColumn] *= 0.002*CoinDrand48()+0.999; |
| 2098 | } |
| 2099 | if (lowerBound(iColumn)) { |
| 2100 | if (upperBound(iColumn)) { |
| 2101 | //upper and lower bounds |
| 2102 | if (upperValue - lowerValue > 2.0 * setPrimal) { |
| 2103 | CoinWorkDouble fakeValue = fakeSolution[iColumn]; |
| 2104 | if (fakeValue < lowerValue + setPrimal) { |
| 2105 | fakeValue = lowerValue + setPrimal; |
| 2106 | } |
| 2107 | if (fakeValue > upperValue - setPrimal) { |
| 2108 | fakeValue = upperValue - setPrimal; |
| 2109 | } |
| 2110 | newValue = fakeValue; |
| 2111 | } else { |
| 2112 | newValue = 0.5 * (upperValue + lowerValue); |
| 2113 | } |
| 2114 | } else { |
| 2115 | //just lower bound |
| 2116 | CoinWorkDouble fakeValue = fakeSolution[iColumn]; |
| 2117 | if (fakeValue < lowerValue + setPrimal) { |
| 2118 | fakeValue = lowerValue + setPrimal; |
| 2119 | } |
| 2120 | newValue = fakeValue; |
| 2121 | } |
| 2122 | } else { |
| 2123 | if (upperBound(iColumn)) { |
| 2124 | //just upper bound |
| 2125 | CoinWorkDouble fakeValue = fakeSolution[iColumn]; |
| 2126 | if (fakeValue > upperValue - setPrimal) { |
| 2127 | fakeValue = upperValue - setPrimal; |
| 2128 | } |
| 2129 | newValue = fakeValue; |
| 2130 | } else { |
| 2131 | //free |
| 2132 | newValue = fakeSolution[iColumn]; |
| 2133 | if (newValue >= 0.0) { |
| 2134 | if (newValue < safeFree) { |
| 2135 | newValue = safeFree; |
| 2136 | } |
| 2137 | } else { |
| 2138 | if (newValue > -safeFree) { |
| 2139 | newValue = -safeFree; |
| 2140 | } |
| 2141 | } |
| 2142 | } |
| 2143 | } |
| 2144 | solution_[iColumn] = newValue; |
| 2145 | } else { |
| 2146 | // fixed |
| 2147 | lowerSlack_[iColumn] = 0.0; |
| 2148 | upperSlack_[iColumn] = 0.0; |
| 2149 | solution_[iColumn] = lower_[iColumn]; |
| 2150 | zVec_[iColumn] = 0.0; |
| 2151 | wVec_[iColumn] = 0.0; |
| 2152 | diagonal_[iColumn] = 0.0; |
| 2153 | } |
| 2154 | } |
| 2155 | solutionNorm_ = maximumAbsElement(solution_, numberTotal); |
| 2156 | // Set bounds and do dj including quadratic |
| 2157 | largeGap = CoinMax(1.0e7, 1.02 * solutionNorm_); |
| 2158 | CoinPackedMatrix * quadratic = NULL; |
| 2159 | const int * columnQuadratic = NULL; |
| 2160 | const CoinBigIndex * columnQuadraticStart = NULL; |
| 2161 | const int * columnQuadraticLength = NULL; |
| 2162 | const double * quadraticElement = NULL; |
| 2163 | if (quadraticObj) { |
| 2164 | quadratic = quadraticObj->quadraticObjective(); |
| 2165 | columnQuadratic = quadratic->getIndices(); |
| 2166 | columnQuadraticStart = quadratic->getVectorStarts(); |
| 2167 | columnQuadraticLength = quadratic->getVectorLengths(); |
| 2168 | quadraticElement = quadratic->getElements(); |
| 2169 | } |
| 2170 | CoinWorkDouble quadraticNorm = 0.0; |
| 2171 | for ( iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 2172 | if (!flagged(iColumn)) { |
| 2173 | CoinWorkDouble primalValue = solution_[iColumn]; |
| 2174 | CoinWorkDouble lowerValue = lower_[iColumn]; |
| 2175 | CoinWorkDouble upperValue = upper_[iColumn]; |
| 2176 | // Do dj |
| 2177 | CoinWorkDouble reducedCost = cost_[iColumn]; |
| 2178 | if (lowerBound(iColumn)) { |
| 2179 | reducedCost += linearPerturbation_; |
| 2180 | } |
| 2181 | if (upperBound(iColumn)) { |
| 2182 | reducedCost -= linearPerturbation_; |
| 2183 | } |
| 2184 | if (quadraticObj && iColumn < numberColumns_) { |
| 2185 | for (CoinBigIndex j = columnQuadraticStart[iColumn]; |
| 2186 | j < columnQuadraticStart[iColumn] + columnQuadraticLength[iColumn]; j++) { |
| 2187 | int jColumn = columnQuadratic[j]; |
| 2188 | CoinWorkDouble valueJ = solution_[jColumn]; |
| 2189 | CoinWorkDouble elementValue = quadraticElement[j]; |
| 2190 | reducedCost += valueJ * elementValue; |
| 2191 | } |
| 2192 | quadraticNorm = CoinMax(quadraticNorm, CoinAbs(reducedCost)); |
| 2193 | } |
| 2194 | dj_[iColumn] = reducedCost; |
| 2195 | if (primalValue > lowerValue + largeGap && primalValue < upperValue - largeGap) { |
| 2196 | clearFixedOrFree(iColumn); |
| 2197 | setLowerBound(iColumn); |
| 2198 | setUpperBound(iColumn); |
| 2199 | lowerValue = CoinMax(lowerValue, primalValue - largeGap); |
| 2200 | upperValue = CoinMin(upperValue, primalValue + largeGap); |
| 2201 | lower_[iColumn] = lowerValue; |
| 2202 | upper_[iColumn] = upperValue; |
| 2203 | } |
| 2204 | } |
| 2205 | } |
| 2206 | safeObjectiveValue = CoinMax(safeObjectiveValue, quadraticNorm); |
| 2207 | for ( iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 2208 | if (!flagged(iColumn)) { |
| 2209 | CoinWorkDouble primalValue = solution_[iColumn]; |
| 2210 | CoinWorkDouble lowerValue = lower_[iColumn]; |
| 2211 | CoinWorkDouble upperValue = upper_[iColumn]; |
| 2212 | CoinWorkDouble reducedCost = dj_[iColumn]; |
| 2213 | CoinWorkDouble low = 0.0; |
| 2214 | CoinWorkDouble high = 0.0; |
| 2215 | if (lowerBound(iColumn)) { |
| 2216 | if (upperBound(iColumn)) { |
| 2217 | //upper and lower bounds |
| 2218 | if (upperValue - lowerValue > 2.0 * initialValue) { |
| 2219 | low = primalValue - lowerValue; |
| 2220 | high = upperValue - primalValue; |
| 2221 | } else { |
| 2222 | low = initialValue; |
| 2223 | high = initialValue; |
| 2224 | } |
| 2225 | CoinWorkDouble s = low + extra; |
| 2226 | CoinWorkDouble ratioZ; |
| 2227 | if (s < zwLarge) { |
| 2228 | ratioZ = 1.0; |
| 2229 | } else { |
| 2230 | ratioZ = CoinSqrt(zwLarge / s); |
| 2231 | } |
| 2232 | CoinWorkDouble t = high + extra; |
| 2233 | CoinWorkDouble ratioT; |
| 2234 | if (t < zwLarge) { |
| 2235 | ratioT = 1.0; |
| 2236 | } else { |
| 2237 | ratioT = CoinSqrt(zwLarge / t); |
| 2238 | } |
| 2239 | //modify s and t |
| 2240 | if (s > largeGap) { |
| 2241 | s = largeGap; |
| 2242 | } |
| 2243 | if (t > largeGap) { |
| 2244 | t = largeGap; |
| 2245 | } |
| 2246 | //modify if long long way away from bound |
| 2247 | if (reducedCost >= 0.0) { |
| 2248 | zVec_[iColumn] = reducedCost + safeObjectiveValue * ratioZ; |
| 2249 | zVec_[iColumn] = CoinMax(reducedCost, safeObjectiveValue * ratioZ); |
| 2250 | wVec_[iColumn] = safeObjectiveValue * ratioT; |
| 2251 | } else { |
| 2252 | zVec_[iColumn] = safeObjectiveValue * ratioZ; |
| 2253 | wVec_[iColumn] = -reducedCost + safeObjectiveValue * ratioT; |
| 2254 | wVec_[iColumn] = CoinMax(-reducedCost , safeObjectiveValue * ratioT); |
| 2255 | } |
| 2256 | CoinWorkDouble gammaTerm = gamma2; |
| 2257 | if (primalR_) |
| 2258 | gammaTerm += primalR_[iColumn]; |
| 2259 | diagonal_[iColumn] = (t * s) / |
| 2260 | (s * wVec_[iColumn] + t * zVec_[iColumn] + gammaTerm * t * s); |
| 2261 | } else { |
| 2262 | //just lower bound |
| 2263 | low = primalValue - lowerValue; |
| 2264 | high = 0.0; |
| 2265 | CoinWorkDouble s = low + extra; |
| 2266 | CoinWorkDouble ratioZ; |
| 2267 | if (s < zwLarge) { |
| 2268 | ratioZ = 1.0; |
| 2269 | } else { |
| 2270 | ratioZ = CoinSqrt(zwLarge / s); |
| 2271 | } |
| 2272 | //modify s |
| 2273 | if (s > largeGap) { |
| 2274 | s = largeGap; |
| 2275 | } |
| 2276 | if (reducedCost >= 0.0) { |
| 2277 | zVec_[iColumn] = reducedCost + safeObjectiveValue * ratioZ; |
| 2278 | zVec_[iColumn] = CoinMax(reducedCost , safeObjectiveValue * ratioZ); |
| 2279 | wVec_[iColumn] = 0.0; |
| 2280 | } else { |
| 2281 | zVec_[iColumn] = safeObjectiveValue * ratioZ; |
| 2282 | wVec_[iColumn] = 0.0; |
| 2283 | } |
| 2284 | CoinWorkDouble gammaTerm = gamma2; |
| 2285 | if (primalR_) |
| 2286 | gammaTerm += primalR_[iColumn]; |
| 2287 | diagonal_[iColumn] = s / (zVec_[iColumn] + s * gammaTerm); |
| 2288 | } |
| 2289 | } else { |
| 2290 | if (upperBound(iColumn)) { |
| 2291 | //just upper bound |
| 2292 | low = 0.0; |
| 2293 | high = upperValue - primalValue; |
| 2294 | CoinWorkDouble t = high + extra; |
| 2295 | CoinWorkDouble ratioT; |
| 2296 | if (t < zwLarge) { |
| 2297 | ratioT = 1.0; |
| 2298 | } else { |
| 2299 | ratioT = CoinSqrt(zwLarge / t); |
| 2300 | } |
| 2301 | //modify t |
| 2302 | if (t > largeGap) { |
| 2303 | t = largeGap; |
| 2304 | } |
| 2305 | if (reducedCost >= 0.0) { |
| 2306 | zVec_[iColumn] = 0.0; |
| 2307 | wVec_[iColumn] = safeObjectiveValue * ratioT; |
| 2308 | } else { |
| 2309 | zVec_[iColumn] = 0.0; |
| 2310 | wVec_[iColumn] = -reducedCost + safeObjectiveValue * ratioT; |
| 2311 | wVec_[iColumn] = CoinMax(-reducedCost , safeObjectiveValue * ratioT); |
| 2312 | } |
| 2313 | CoinWorkDouble gammaTerm = gamma2; |
| 2314 | if (primalR_) |
| 2315 | gammaTerm += primalR_[iColumn]; |
| 2316 | diagonal_[iColumn] = t / (wVec_[iColumn] + t * gammaTerm); |
| 2317 | } |
| 2318 | } |
| 2319 | lowerSlack_[iColumn] = low; |
| 2320 | upperSlack_[iColumn] = high; |
| 2321 | } |
| 2322 | } |
| 2323 | #if 0 |
| 2324 | if (solution_[0] > 0.0) { |
| 2325 | for (int i = 0; i < numberTotal; i++) |
| 2326 | printf("%d %.18g %.18g %.18g %.18g %.18g %.18g %.18g\n" , i, CoinAbs(solution_[i]), |
| 2327 | diagonal_[i], CoinAbs(dj_[i]), |
| 2328 | lowerSlack_[i], zVec_[i], |
| 2329 | upperSlack_[i], wVec_[i]); |
| 2330 | } else { |
| 2331 | for (int i = 0; i < numberTotal; i++) |
| 2332 | printf("%d %.18g %.18g %.18g %.18g %.18g %.18g %.18g\n" , i, CoinAbs(solution_[i]), |
| 2333 | diagonal_[i], CoinAbs(dj_[i]), |
| 2334 | upperSlack_[i], wVec_[i], |
| 2335 | lowerSlack_[i], zVec_[i] ); |
| 2336 | } |
| 2337 | exit(66); |
| 2338 | #endif |
| 2339 | return 0; |
| 2340 | } |
| 2341 | // complementarityGap. Computes gap |
| 2342 | //phase 0=as is , 1 = after predictor , 2 after corrector |
| 2343 | CoinWorkDouble ClpPredictorCorrector::complementarityGap(int & numberComplementarityPairs, |
| 2344 | int & numberComplementarityItems, |
| 2345 | const int phase) |
| 2346 | { |
| 2347 | CoinWorkDouble gap = 0.0; |
| 2348 | //seems to be same coding for phase = 1 or 2 |
| 2349 | numberComplementarityPairs = 0; |
| 2350 | numberComplementarityItems = 0; |
| 2351 | int numberTotal = numberRows_ + numberColumns_; |
| 2352 | CoinWorkDouble toleranceGap = 0.0; |
| 2353 | CoinWorkDouble largestGap = 0.0; |
| 2354 | CoinWorkDouble smallestGap = COIN_DBL_MAX; |
| 2355 | //seems to be same coding for phase = 1 or 2 |
| 2356 | int numberNegativeGaps = 0; |
| 2357 | CoinWorkDouble sumNegativeGap = 0.0; |
| 2358 | CoinWorkDouble largeGap = 1.0e2 * solutionNorm_; |
| 2359 | if (largeGap < 1.0e10) { |
| 2360 | largeGap = 1.0e10; |
| 2361 | } |
| 2362 | largeGap = 1.0e30; |
| 2363 | CoinWorkDouble dualTolerance = dblParam_[ClpDualTolerance]; |
| 2364 | CoinWorkDouble primalTolerance = dblParam_[ClpPrimalTolerance]; |
| 2365 | dualTolerance = dualTolerance / scaleFactor_; |
| 2366 | for (int iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 2367 | if (!fixedOrFree(iColumn)) { |
| 2368 | numberComplementarityPairs++; |
| 2369 | //can collapse as if no lower bound both zVec and deltaZ 0.0 |
| 2370 | CoinWorkDouble newZ = 0.0; |
| 2371 | CoinWorkDouble newW = 0.0; |
| 2372 | if (lowerBound(iColumn)) { |
| 2373 | numberComplementarityItems++; |
| 2374 | CoinWorkDouble dualValue; |
| 2375 | CoinWorkDouble primalValue; |
| 2376 | if (!phase) { |
| 2377 | dualValue = zVec_[iColumn]; |
| 2378 | primalValue = lowerSlack_[iColumn]; |
| 2379 | } else { |
| 2380 | CoinWorkDouble change; |
| 2381 | change = solution_[iColumn] + deltaX_[iColumn] - lowerSlack_[iColumn] - lower_[iColumn]; |
| 2382 | dualValue = zVec_[iColumn] + actualDualStep_ * deltaZ_[iColumn]; |
| 2383 | newZ = dualValue; |
| 2384 | primalValue = lowerSlack_[iColumn] + actualPrimalStep_ * change; |
| 2385 | } |
| 2386 | //reduce primalValue |
| 2387 | if (primalValue > largeGap) { |
| 2388 | primalValue = largeGap; |
| 2389 | } |
| 2390 | CoinWorkDouble gapProduct = dualValue * primalValue; |
| 2391 | if (gapProduct < 0.0) { |
| 2392 | //cout<<"negative gap component "<<iColumn<<" "<<dualValue<<" "<< |
| 2393 | //primalValue<<endl; |
| 2394 | numberNegativeGaps++; |
| 2395 | sumNegativeGap -= gapProduct; |
| 2396 | gapProduct = 0.0; |
| 2397 | } |
| 2398 | gap += gapProduct; |
| 2399 | //printf("l %d prim %g dual %g totalGap %g\n", |
| 2400 | // iColumn,primalValue,dualValue,gap); |
| 2401 | if (gapProduct > largestGap) { |
| 2402 | largestGap = gapProduct; |
| 2403 | } |
| 2404 | smallestGap = CoinMin(smallestGap, gapProduct); |
| 2405 | if (dualValue > dualTolerance && primalValue > primalTolerance) { |
| 2406 | toleranceGap += dualValue * primalValue; |
| 2407 | } |
| 2408 | } |
| 2409 | if (upperBound(iColumn)) { |
| 2410 | numberComplementarityItems++; |
| 2411 | CoinWorkDouble dualValue; |
| 2412 | CoinWorkDouble primalValue; |
| 2413 | if (!phase) { |
| 2414 | dualValue = wVec_[iColumn]; |
| 2415 | primalValue = upperSlack_[iColumn]; |
| 2416 | } else { |
| 2417 | CoinWorkDouble change; |
| 2418 | change = upper_[iColumn] - solution_[iColumn] - deltaX_[iColumn] - upperSlack_[iColumn]; |
| 2419 | dualValue = wVec_[iColumn] + actualDualStep_ * deltaW_[iColumn]; |
| 2420 | newW = dualValue; |
| 2421 | primalValue = upperSlack_[iColumn] + actualPrimalStep_ * change; |
| 2422 | } |
| 2423 | //reduce primalValue |
| 2424 | if (primalValue > largeGap) { |
| 2425 | primalValue = largeGap; |
| 2426 | } |
| 2427 | CoinWorkDouble gapProduct = dualValue * primalValue; |
| 2428 | if (gapProduct < 0.0) { |
| 2429 | //cout<<"negative gap component "<<iColumn<<" "<<dualValue<<" "<< |
| 2430 | //primalValue<<endl; |
| 2431 | numberNegativeGaps++; |
| 2432 | sumNegativeGap -= gapProduct; |
| 2433 | gapProduct = 0.0; |
| 2434 | } |
| 2435 | gap += gapProduct; |
| 2436 | //printf("u %d prim %g dual %g totalGap %g\n", |
| 2437 | // iColumn,primalValue,dualValue,gap); |
| 2438 | if (gapProduct > largestGap) { |
| 2439 | largestGap = gapProduct; |
| 2440 | } |
| 2441 | if (dualValue > dualTolerance && primalValue > primalTolerance) { |
| 2442 | toleranceGap += dualValue * primalValue; |
| 2443 | } |
| 2444 | } |
| 2445 | } |
| 2446 | } |
| 2447 | //if (numberIterations_>4) |
| 2448 | //exit(9); |
| 2449 | if (!phase && numberNegativeGaps) { |
| 2450 | handler_->message(CLP_BARRIER_NEGATIVE_GAPS, messages_) |
| 2451 | << numberNegativeGaps << static_cast<double>(sumNegativeGap) |
| 2452 | << CoinMessageEol; |
| 2453 | } |
| 2454 | |
| 2455 | //in case all free! |
| 2456 | if (!numberComplementarityPairs) { |
| 2457 | numberComplementarityPairs = 1; |
| 2458 | } |
| 2459 | #ifdef SOME_DEBUG |
| 2460 | printf("with d,p steps %g,%g gap %g - smallest %g, largest %g, pairs %d\n" , |
| 2461 | actualDualStep_, actualPrimalStep_, |
| 2462 | gap, smallestGap, largestGap, numberComplementarityPairs); |
| 2463 | #endif |
| 2464 | return gap; |
| 2465 | } |
| 2466 | // setupForSolve. |
| 2467 | //phase 0=affine , 1 = corrector , 2 = primal-dual |
| 2468 | void ClpPredictorCorrector::setupForSolve(const int phase) |
| 2469 | { |
| 2470 | CoinWorkDouble = eExtra; |
| 2471 | int numberTotal = numberRows_ + numberColumns_; |
| 2472 | int iColumn; |
| 2473 | #ifdef SOME_DEBUG |
| 2474 | printf("phase %d in setupForSolve, mu %.18g\n" , phase, mu_); |
| 2475 | #endif |
| 2476 | CoinWorkDouble gamma2 = gamma_ * gamma_; // gamma*gamma will be added to diagonal |
| 2477 | CoinWorkDouble * dualArray = reinterpret_cast<CoinWorkDouble *>(dual_); |
| 2478 | switch (phase) { |
| 2479 | case 0: |
| 2480 | CoinMemcpyN(errorRegion_, numberRows_, rhsB_); |
| 2481 | if (delta_ || dualR_) { |
| 2482 | // add in regularization |
| 2483 | CoinWorkDouble delta2 = delta_ * delta_; |
| 2484 | for (int iRow = 0; iRow < numberRows_; iRow++) { |
| 2485 | rhsB_[iRow] -= delta2 * dualArray[iRow]; |
| 2486 | if (dualR_) |
| 2487 | rhsB_[iRow] -= dualR_[iRow] * dualArray[iRow]; |
| 2488 | } |
| 2489 | } |
| 2490 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 2491 | rhsC_[iColumn] = 0.0; |
| 2492 | rhsU_[iColumn] = 0.0; |
| 2493 | rhsL_[iColumn] = 0.0; |
| 2494 | rhsZ_[iColumn] = 0.0; |
| 2495 | rhsW_[iColumn] = 0.0; |
| 2496 | if (!flagged(iColumn)) { |
| 2497 | rhsC_[iColumn] = dj_[iColumn] - zVec_[iColumn] + wVec_[iColumn]; |
| 2498 | rhsC_[iColumn] += gamma2 * solution_[iColumn]; |
| 2499 | if (primalR_) |
| 2500 | rhsC_[iColumn] += primalR_[iColumn] * solution_[iColumn]; |
| 2501 | if (lowerBound(iColumn)) { |
| 2502 | rhsZ_[iColumn] = -zVec_[iColumn] * (lowerSlack_[iColumn] + extra); |
| 2503 | rhsL_[iColumn] = CoinMax(0.0, (lower_[iColumn] + lowerSlack_[iColumn]) - solution_[iColumn]); |
| 2504 | } |
| 2505 | if (upperBound(iColumn)) { |
| 2506 | rhsW_[iColumn] = -wVec_[iColumn] * (upperSlack_[iColumn] + extra); |
| 2507 | rhsU_[iColumn] = CoinMin(0.0, (upper_[iColumn] - upperSlack_[iColumn]) - solution_[iColumn]); |
| 2508 | } |
| 2509 | } |
| 2510 | } |
| 2511 | #if 0 |
| 2512 | for (int i = 0; i < 3; i++) { |
| 2513 | if (!CoinAbs(rhsZ_[i])) |
| 2514 | rhsZ_[i] = 0.0; |
| 2515 | if (!CoinAbs(rhsW_[i])) |
| 2516 | rhsW_[i] = 0.0; |
| 2517 | if (!CoinAbs(rhsU_[i])) |
| 2518 | rhsU_[i] = 0.0; |
| 2519 | if (!CoinAbs(rhsL_[i])) |
| 2520 | rhsL_[i] = 0.0; |
| 2521 | } |
| 2522 | if (solution_[0] > 0.0) { |
| 2523 | for (int i = 0; i < 3; i++) |
| 2524 | printf("%d %.18g %.18g %.18g %.18g %.18g %.18g %.18g\n" , i, solution_[i], |
| 2525 | diagonal_[i], dj_[i], |
| 2526 | lowerSlack_[i], zVec_[i], |
| 2527 | upperSlack_[i], wVec_[i]); |
| 2528 | for (int i = 0; i < 3; i++) |
| 2529 | printf("%d %.18g %.18g %.18g %.18g %.18g\n" , i, rhsC_[i], |
| 2530 | rhsZ_[i], rhsL_[i], |
| 2531 | rhsW_[i], rhsU_[i]); |
| 2532 | } else { |
| 2533 | for (int i = 0; i < 3; i++) |
| 2534 | printf("%d %.18g %.18g %.18g %.18g %.18g %.18g %.18g\n" , i, solution_[i], |
| 2535 | diagonal_[i], dj_[i], |
| 2536 | lowerSlack_[i], zVec_[i], |
| 2537 | upperSlack_[i], wVec_[i]); |
| 2538 | for (int i = 0; i < 3; i++) |
| 2539 | printf("%d %.18g %.18g %.18g %.18g %.18g\n" , i, rhsC_[i], |
| 2540 | rhsZ_[i], rhsL_[i], |
| 2541 | rhsW_[i], rhsU_[i]); |
| 2542 | } |
| 2543 | #endif |
| 2544 | break; |
| 2545 | case 1: |
| 2546 | // could be stored in delta2? |
| 2547 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 2548 | rhsZ_[iColumn] = 0.0; |
| 2549 | rhsW_[iColumn] = 0.0; |
| 2550 | if (!flagged(iColumn)) { |
| 2551 | if (lowerBound(iColumn)) { |
| 2552 | rhsZ_[iColumn] = mu_ - zVec_[iColumn] * (lowerSlack_[iColumn] + extra) |
| 2553 | - deltaZ_[iColumn] * deltaX_[iColumn]; |
| 2554 | // To bring in line with OSL |
| 2555 | rhsZ_[iColumn] += deltaZ_[iColumn] * rhsL_[iColumn]; |
| 2556 | } |
| 2557 | if (upperBound(iColumn)) { |
| 2558 | rhsW_[iColumn] = mu_ - wVec_[iColumn] * (upperSlack_[iColumn] + extra) |
| 2559 | + deltaW_[iColumn] * deltaX_[iColumn]; |
| 2560 | // To bring in line with OSL |
| 2561 | rhsW_[iColumn] -= deltaW_[iColumn] * rhsU_[iColumn]; |
| 2562 | } |
| 2563 | } |
| 2564 | } |
| 2565 | #if 0 |
| 2566 | for (int i = 0; i < numberTotal; i++) { |
| 2567 | if (!CoinAbs(rhsZ_[i])) |
| 2568 | rhsZ_[i] = 0.0; |
| 2569 | if (!CoinAbs(rhsW_[i])) |
| 2570 | rhsW_[i] = 0.0; |
| 2571 | if (!CoinAbs(rhsU_[i])) |
| 2572 | rhsU_[i] = 0.0; |
| 2573 | if (!CoinAbs(rhsL_[i])) |
| 2574 | rhsL_[i] = 0.0; |
| 2575 | } |
| 2576 | if (solution_[0] > 0.0) { |
| 2577 | for (int i = 0; i < numberTotal; i++) |
| 2578 | printf("%d %.18g %.18g %.18g %.18g %.18g %.18g %.18g\n" , i, CoinAbs(solution_[i]), |
| 2579 | diagonal_[i], CoinAbs(dj_[i]), |
| 2580 | lowerSlack_[i], zVec_[i], |
| 2581 | upperSlack_[i], wVec_[i]); |
| 2582 | for (int i = 0; i < numberTotal; i++) |
| 2583 | printf("%d %.18g %.18g %.18g %.18g %.18g\n" , i, CoinAbs(rhsC_[i]), |
| 2584 | rhsZ_[i], rhsL_[i], |
| 2585 | rhsW_[i], rhsU_[i]); |
| 2586 | } else { |
| 2587 | for (int i = 0; i < numberTotal; i++) |
| 2588 | printf("%d %.18g %.18g %.18g %.18g %.18g %.18g %.18g\n" , i, CoinAbs(solution_[i]), |
| 2589 | diagonal_[i], CoinAbs(dj_[i]), |
| 2590 | upperSlack_[i], wVec_[i], |
| 2591 | lowerSlack_[i], zVec_[i] ); |
| 2592 | for (int i = 0; i < numberTotal; i++) |
| 2593 | printf("%d %.18g %.18g %.18g %.18g %.18g\n" , i, CoinAbs(rhsC_[i]), |
| 2594 | rhsW_[i], rhsU_[i], |
| 2595 | rhsZ_[i], rhsL_[i]); |
| 2596 | } |
| 2597 | exit(66); |
| 2598 | #endif |
| 2599 | break; |
| 2600 | case 2: |
| 2601 | CoinMemcpyN(errorRegion_, numberRows_, rhsB_); |
| 2602 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 2603 | rhsZ_[iColumn] = 0.0; |
| 2604 | rhsW_[iColumn] = 0.0; |
| 2605 | if (!flagged(iColumn)) { |
| 2606 | if (lowerBound(iColumn)) { |
| 2607 | rhsZ_[iColumn] = mu_ - zVec_[iColumn] * (lowerSlack_[iColumn] + extra); |
| 2608 | } |
| 2609 | if (upperBound(iColumn)) { |
| 2610 | rhsW_[iColumn] = mu_ - wVec_[iColumn] * (upperSlack_[iColumn] + extra); |
| 2611 | } |
| 2612 | } |
| 2613 | } |
| 2614 | break; |
| 2615 | case 3: { |
| 2616 | CoinWorkDouble minBeta = 0.1 * mu_; |
| 2617 | CoinWorkDouble maxBeta = 10.0 * mu_; |
| 2618 | CoinWorkDouble dualStep = CoinMin(1.0, actualDualStep_ + 0.1); |
| 2619 | CoinWorkDouble primalStep = CoinMin(1.0, actualPrimalStep_ + 0.1); |
| 2620 | #ifdef SOME_DEBUG |
| 2621 | printf("good complementarity range %g to %g\n" , minBeta, maxBeta); |
| 2622 | #endif |
| 2623 | //minBeta=0.0; |
| 2624 | //maxBeta=COIN_DBL_MAX; |
| 2625 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 2626 | if (!flagged(iColumn)) { |
| 2627 | if (lowerBound(iColumn)) { |
| 2628 | CoinWorkDouble change = -rhsL_[iColumn] + deltaX_[iColumn]; |
| 2629 | CoinWorkDouble dualValue = zVec_[iColumn] + dualStep * deltaZ_[iColumn]; |
| 2630 | CoinWorkDouble primalValue = lowerSlack_[iColumn] + primalStep * change; |
| 2631 | CoinWorkDouble gapProduct = dualValue * primalValue; |
| 2632 | if (gapProduct > 0.0 && dualValue < 0.0) |
| 2633 | gapProduct = - gapProduct; |
| 2634 | #ifdef FULL_DEBUG |
| 2635 | delta2Z_[iColumn] = gapProduct; |
| 2636 | if (delta2Z_[iColumn] < minBeta || delta2Z_[iColumn] > maxBeta) |
| 2637 | printf("lower %d primal %g, dual %g, gap %g\n" , |
| 2638 | iColumn, primalValue, dualValue, gapProduct); |
| 2639 | #endif |
| 2640 | CoinWorkDouble value = 0.0; |
| 2641 | if (gapProduct < minBeta) { |
| 2642 | value = 2.0 * (minBeta - gapProduct); |
| 2643 | value = (mu_ - gapProduct); |
| 2644 | value = (minBeta - gapProduct); |
| 2645 | assert (value > 0.0); |
| 2646 | } else if (gapProduct > maxBeta) { |
| 2647 | value = CoinMax(maxBeta - gapProduct, -maxBeta); |
| 2648 | assert (value < 0.0); |
| 2649 | } |
| 2650 | rhsZ_[iColumn] += value; |
| 2651 | } |
| 2652 | if (upperBound(iColumn)) { |
| 2653 | CoinWorkDouble change = rhsU_[iColumn] - deltaX_[iColumn]; |
| 2654 | CoinWorkDouble dualValue = wVec_[iColumn] + dualStep * deltaW_[iColumn]; |
| 2655 | CoinWorkDouble primalValue = upperSlack_[iColumn] + primalStep * change; |
| 2656 | CoinWorkDouble gapProduct = dualValue * primalValue; |
| 2657 | if (gapProduct > 0.0 && dualValue < 0.0) |
| 2658 | gapProduct = - gapProduct; |
| 2659 | #ifdef FULL_DEBUG |
| 2660 | delta2W_[iColumn] = gapProduct; |
| 2661 | if (delta2W_[iColumn] < minBeta || delta2W_[iColumn] > maxBeta) |
| 2662 | printf("upper %d primal %g, dual %g, gap %g\n" , |
| 2663 | iColumn, primalValue, dualValue, gapProduct); |
| 2664 | #endif |
| 2665 | CoinWorkDouble value = 0.0; |
| 2666 | if (gapProduct < minBeta) { |
| 2667 | value = (minBeta - gapProduct); |
| 2668 | assert (value > 0.0); |
| 2669 | } else if (gapProduct > maxBeta) { |
| 2670 | value = CoinMax(maxBeta - gapProduct, -maxBeta); |
| 2671 | assert (value < 0.0); |
| 2672 | } |
| 2673 | rhsW_[iColumn] += value; |
| 2674 | } |
| 2675 | } |
| 2676 | } |
| 2677 | } |
| 2678 | break; |
| 2679 | } /* endswitch */ |
| 2680 | if (cholesky_->type() < 20) { |
| 2681 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 2682 | CoinWorkDouble value = rhsC_[iColumn]; |
| 2683 | CoinWorkDouble zValue = rhsZ_[iColumn]; |
| 2684 | CoinWorkDouble wValue = rhsW_[iColumn]; |
| 2685 | #if 0 |
| 2686 | #if 1 |
| 2687 | if (phase == 0) { |
| 2688 | // more accurate |
| 2689 | value = dj[iColumn]; |
| 2690 | zValue = 0.0; |
| 2691 | wValue = 0.0; |
| 2692 | } else if (phase == 2) { |
| 2693 | // more accurate |
| 2694 | value = dj[iColumn]; |
| 2695 | zValue = mu_; |
| 2696 | wValue = mu_; |
| 2697 | } |
| 2698 | #endif |
| 2699 | assert (rhsL_[iColumn] >= 0.0); |
| 2700 | assert (rhsU_[iColumn] <= 0.0); |
| 2701 | if (lowerBound(iColumn)) { |
| 2702 | value += (-zVec_[iColumn] * rhsL_[iColumn] - zValue) / |
| 2703 | (lowerSlack_[iColumn] + extra); |
| 2704 | } |
| 2705 | if (upperBound(iColumn)) { |
| 2706 | value += (wValue - wVec_[iColumn] * rhsU_[iColumn]) / |
| 2707 | (upperSlack_[iColumn] + extra); |
| 2708 | } |
| 2709 | #else |
| 2710 | if (lowerBound(iColumn)) { |
| 2711 | CoinWorkDouble gHat = zValue + zVec_[iColumn] * rhsL_[iColumn]; |
| 2712 | value -= gHat / (lowerSlack_[iColumn] + extra); |
| 2713 | } |
| 2714 | if (upperBound(iColumn)) { |
| 2715 | CoinWorkDouble hHat = wValue - wVec_[iColumn] * rhsU_[iColumn]; |
| 2716 | value += hHat / (upperSlack_[iColumn] + extra); |
| 2717 | } |
| 2718 | #endif |
| 2719 | workArray_[iColumn] = diagonal_[iColumn] * value; |
| 2720 | } |
| 2721 | #if 0 |
| 2722 | if (solution_[0] > 0.0) { |
| 2723 | for (int i = 0; i < numberTotal; i++) |
| 2724 | printf("%d %.18g\n" , i, workArray_[i]); |
| 2725 | } else { |
| 2726 | for (int i = 0; i < numberTotal; i++) |
| 2727 | printf("%d %.18g\n" , i, workArray_[i]); |
| 2728 | } |
| 2729 | exit(66); |
| 2730 | #endif |
| 2731 | } else { |
| 2732 | // KKT |
| 2733 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 2734 | CoinWorkDouble value = rhsC_[iColumn]; |
| 2735 | CoinWorkDouble zValue = rhsZ_[iColumn]; |
| 2736 | CoinWorkDouble wValue = rhsW_[iColumn]; |
| 2737 | if (lowerBound(iColumn)) { |
| 2738 | CoinWorkDouble gHat = zValue + zVec_[iColumn] * rhsL_[iColumn]; |
| 2739 | value -= gHat / (lowerSlack_[iColumn] + extra); |
| 2740 | } |
| 2741 | if (upperBound(iColumn)) { |
| 2742 | CoinWorkDouble hHat = wValue - wVec_[iColumn] * rhsU_[iColumn]; |
| 2743 | value += hHat / (upperSlack_[iColumn] + extra); |
| 2744 | } |
| 2745 | workArray_[iColumn] = value; |
| 2746 | } |
| 2747 | } |
| 2748 | } |
| 2749 | //method: sees if looks plausible change in complementarity |
| 2750 | bool ClpPredictorCorrector::checkGoodMove(const bool doCorrector, |
| 2751 | CoinWorkDouble & bestNextGap, |
| 2752 | bool allowIncreasingGap) |
| 2753 | { |
| 2754 | const CoinWorkDouble beta3 = 0.99997; |
| 2755 | bool goodMove = false; |
| 2756 | int nextNumber; |
| 2757 | int nextNumberItems; |
| 2758 | int numberTotal = numberRows_ + numberColumns_; |
| 2759 | CoinWorkDouble returnGap = bestNextGap; |
| 2760 | CoinWorkDouble nextGap = complementarityGap(nextNumber, nextNumberItems, 2); |
| 2761 | #ifndef NO_RTTI |
| 2762 | ClpQuadraticObjective * quadraticObj = (dynamic_cast< ClpQuadraticObjective*>(objective_)); |
| 2763 | #else |
| 2764 | ClpQuadraticObjective * quadraticObj = NULL; |
| 2765 | if (objective_->type() == 2) |
| 2766 | quadraticObj = (static_cast< ClpQuadraticObjective*>(objective_)); |
| 2767 | #endif |
| 2768 | if (nextGap > bestNextGap && nextGap > 0.9 * complementarityGap_ && doCorrector |
| 2769 | && !quadraticObj && !allowIncreasingGap) { |
| 2770 | #ifdef SOME_DEBUG |
| 2771 | printf("checkGood phase 1 next gap %.18g, phase 0 %.18g, old gap %.18g\n" , |
| 2772 | nextGap, bestNextGap, complementarityGap_); |
| 2773 | #endif |
| 2774 | return false; |
| 2775 | } else { |
| 2776 | returnGap = nextGap; |
| 2777 | } |
| 2778 | CoinWorkDouble step; |
| 2779 | if (actualDualStep_ > actualPrimalStep_) { |
| 2780 | step = actualDualStep_; |
| 2781 | } else { |
| 2782 | step = actualPrimalStep_; |
| 2783 | } |
| 2784 | CoinWorkDouble testValue = 1.0 - step * (1.0 - beta3); |
| 2785 | //testValue=0.0; |
| 2786 | testValue *= complementarityGap_; |
| 2787 | if (nextGap < testValue) { |
| 2788 | //std::cout <<"predicted duality gap "<<nextGap<<std::endl; |
| 2789 | goodMove = true; |
| 2790 | } else if(doCorrector) { |
| 2791 | //if (actualDualStep_<actualPrimalStep_) { |
| 2792 | //step=actualDualStep_; |
| 2793 | //} else { |
| 2794 | //step=actualPrimalStep_; |
| 2795 | //} |
| 2796 | CoinWorkDouble gap = bestNextGap; |
| 2797 | goodMove = checkGoodMove2(step, gap, allowIncreasingGap); |
| 2798 | if (goodMove) |
| 2799 | returnGap = gap; |
| 2800 | } else { |
| 2801 | goodMove = true; |
| 2802 | } |
| 2803 | if (goodMove) |
| 2804 | goodMove = checkGoodMove2(step, bestNextGap, allowIncreasingGap); |
| 2805 | // Say good if small |
| 2806 | //if (quadraticObj) { |
| 2807 | if (CoinMax(actualDualStep_, actualPrimalStep_) < 1.0e-6) |
| 2808 | goodMove = true; |
| 2809 | if (!goodMove) { |
| 2810 | //try smaller of two |
| 2811 | if (actualDualStep_ < actualPrimalStep_) { |
| 2812 | step = actualDualStep_; |
| 2813 | } else { |
| 2814 | step = actualPrimalStep_; |
| 2815 | } |
| 2816 | if (step > 1.0) { |
| 2817 | step = 1.0; |
| 2818 | } |
| 2819 | actualPrimalStep_ = step; |
| 2820 | //if (quadraticObj) |
| 2821 | //actualPrimalStep_ *=0.5; |
| 2822 | actualDualStep_ = step; |
| 2823 | goodMove = checkGoodMove2(step, bestNextGap, allowIncreasingGap); |
| 2824 | int pass = 0; |
| 2825 | while (!goodMove) { |
| 2826 | pass++; |
| 2827 | CoinWorkDouble gap = bestNextGap; |
| 2828 | goodMove = checkGoodMove2(step, gap, allowIncreasingGap); |
| 2829 | if (goodMove || pass > 3) { |
| 2830 | returnGap = gap; |
| 2831 | break; |
| 2832 | } |
| 2833 | if (step < 1.0e-4) { |
| 2834 | break; |
| 2835 | } |
| 2836 | step *= 0.5; |
| 2837 | actualPrimalStep_ = step; |
| 2838 | //if (quadraticObj) |
| 2839 | //actualPrimalStep_ *=0.5; |
| 2840 | actualDualStep_ = step; |
| 2841 | } /* endwhile */ |
| 2842 | if (doCorrector) { |
| 2843 | //say bad move if both small |
| 2844 | if (numberIterations_ & 1) { |
| 2845 | if (actualPrimalStep_ < 1.0e-2 && actualDualStep_ < 1.0e-2) { |
| 2846 | goodMove = false; |
| 2847 | } |
| 2848 | } else { |
| 2849 | if (actualPrimalStep_ < 1.0e-5 && actualDualStep_ < 1.0e-5) { |
| 2850 | goodMove = false; |
| 2851 | } |
| 2852 | if (actualPrimalStep_ * actualDualStep_ < 1.0e-20) { |
| 2853 | goodMove = false; |
| 2854 | } |
| 2855 | } |
| 2856 | } |
| 2857 | } |
| 2858 | if (goodMove) { |
| 2859 | //compute delta in objectives |
| 2860 | CoinWorkDouble deltaObjectivePrimal = 0.0; |
| 2861 | CoinWorkDouble deltaObjectiveDual = |
| 2862 | innerProduct(deltaY_, numberRows_, |
| 2863 | rhsFixRegion_); |
| 2864 | CoinWorkDouble error = 0.0; |
| 2865 | CoinWorkDouble * workArray = workArray_; |
| 2866 | CoinZeroN(workArray, numberColumns_); |
| 2867 | CoinMemcpyN(deltaY_, numberRows_, workArray + numberColumns_); |
| 2868 | matrix_->transposeTimes(-1.0, deltaY_, workArray); |
| 2869 | //CoinWorkDouble sumPerturbCost=0.0; |
| 2870 | for (int iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 2871 | if (!flagged(iColumn)) { |
| 2872 | if (lowerBound(iColumn)) { |
| 2873 | //sumPerturbCost+=deltaX_[iColumn]; |
| 2874 | deltaObjectiveDual += deltaZ_[iColumn] * lower_[iColumn]; |
| 2875 | } |
| 2876 | if (upperBound(iColumn)) { |
| 2877 | //sumPerturbCost-=deltaX_[iColumn]; |
| 2878 | deltaObjectiveDual -= deltaW_[iColumn] * upper_[iColumn]; |
| 2879 | } |
| 2880 | CoinWorkDouble change = CoinAbs(workArray_[iColumn] - deltaZ_[iColumn] + deltaW_[iColumn]); |
| 2881 | error = CoinMax(change, error); |
| 2882 | } |
| 2883 | deltaObjectivePrimal += cost_[iColumn] * deltaX_[iColumn]; |
| 2884 | } |
| 2885 | //deltaObjectivePrimal+=sumPerturbCost*linearPerturbation_; |
| 2886 | CoinWorkDouble testValue; |
| 2887 | if (error > 0.0) { |
| 2888 | testValue = 1.0e1 * CoinMax(maximumDualError_, 1.0e-12) / error; |
| 2889 | } else { |
| 2890 | testValue = 1.0e1; |
| 2891 | } |
| 2892 | // If quadratic then primal step may compensate |
| 2893 | if (testValue < actualDualStep_ && !quadraticObj) { |
| 2894 | handler_->message(CLP_BARRIER_REDUCING, messages_) |
| 2895 | << "dual" << static_cast<double>(actualDualStep_) |
| 2896 | << static_cast<double>(testValue) |
| 2897 | << CoinMessageEol; |
| 2898 | actualDualStep_ = testValue; |
| 2899 | } |
| 2900 | } |
| 2901 | if (maximumRHSError_ < 1.0e1 * solutionNorm_ * primalTolerance() |
| 2902 | && maximumRHSChange_ > 1.0e-16 * solutionNorm_) { |
| 2903 | //check change in AX not too much |
| 2904 | //??? could be dropped row going infeasible |
| 2905 | CoinWorkDouble ratio = 1.0e1 * CoinMax(maximumRHSError_, 1.0e-12) / maximumRHSChange_; |
| 2906 | if (ratio < actualPrimalStep_) { |
| 2907 | handler_->message(CLP_BARRIER_REDUCING, messages_) |
| 2908 | << "primal" << static_cast<double>(actualPrimalStep_) |
| 2909 | << static_cast<double>(ratio) |
| 2910 | << CoinMessageEol; |
| 2911 | if (ratio > 1.0e-6) { |
| 2912 | actualPrimalStep_ = ratio; |
| 2913 | } else { |
| 2914 | actualPrimalStep_ = ratio; |
| 2915 | //std::cout <<"sign we should be stopping"<<std::endl; |
| 2916 | } |
| 2917 | } |
| 2918 | } |
| 2919 | if (goodMove) |
| 2920 | bestNextGap = returnGap; |
| 2921 | return goodMove; |
| 2922 | } |
| 2923 | //: checks for one step size |
| 2924 | bool ClpPredictorCorrector::checkGoodMove2(CoinWorkDouble move, |
| 2925 | CoinWorkDouble & bestNextGap, |
| 2926 | bool allowIncreasingGap) |
| 2927 | { |
| 2928 | CoinWorkDouble complementarityMultiplier = 1.0 / numberComplementarityPairs_; |
| 2929 | const CoinWorkDouble gamma = 1.0e-8; |
| 2930 | const CoinWorkDouble gammap = 1.0e-8; |
| 2931 | CoinWorkDouble gammad = 1.0e-8; |
| 2932 | int nextNumber; |
| 2933 | int nextNumberItems; |
| 2934 | CoinWorkDouble nextGap = complementarityGap(nextNumber, nextNumberItems, 2); |
| 2935 | if (nextGap > bestNextGap && !allowIncreasingGap) |
| 2936 | return false; |
| 2937 | CoinWorkDouble lowerBoundGap = gamma * nextGap * complementarityMultiplier; |
| 2938 | bool goodMove = true; |
| 2939 | int iColumn; |
| 2940 | for ( iColumn = 0; iColumn < numberRows_ + numberColumns_; iColumn++) { |
| 2941 | if (!flagged(iColumn)) { |
| 2942 | if (lowerBound(iColumn)) { |
| 2943 | CoinWorkDouble part1 = lowerSlack_[iColumn] + actualPrimalStep_ * deltaSL_[iColumn]; |
| 2944 | CoinWorkDouble part2 = zVec_[iColumn] + actualDualStep_ * deltaZ_[iColumn]; |
| 2945 | if (part1 * part2 < lowerBoundGap) { |
| 2946 | goodMove = false; |
| 2947 | break; |
| 2948 | } |
| 2949 | } |
| 2950 | if (upperBound(iColumn)) { |
| 2951 | CoinWorkDouble part1 = upperSlack_[iColumn] + actualPrimalStep_ * deltaSU_[iColumn]; |
| 2952 | CoinWorkDouble part2 = wVec_[iColumn] + actualDualStep_ * deltaW_[iColumn]; |
| 2953 | if (part1 * part2 < lowerBoundGap) { |
| 2954 | goodMove = false; |
| 2955 | break; |
| 2956 | } |
| 2957 | } |
| 2958 | } |
| 2959 | } |
| 2960 | CoinWorkDouble * nextDj = NULL; |
| 2961 | CoinWorkDouble maximumDualError = maximumDualError_; |
| 2962 | #ifndef NO_RTTI |
| 2963 | ClpQuadraticObjective * quadraticObj = (dynamic_cast< ClpQuadraticObjective*>(objective_)); |
| 2964 | #else |
| 2965 | ClpQuadraticObjective * quadraticObj = NULL; |
| 2966 | if (objective_->type() == 2) |
| 2967 | quadraticObj = (static_cast< ClpQuadraticObjective*>(objective_)); |
| 2968 | #endif |
| 2969 | CoinWorkDouble * dualArray = reinterpret_cast<CoinWorkDouble *>(dual_); |
| 2970 | if (quadraticObj) { |
| 2971 | // change gammad |
| 2972 | gammad = 1.0e-4; |
| 2973 | CoinWorkDouble gamma2 = gamma_ * gamma_; |
| 2974 | nextDj = new CoinWorkDouble [numberColumns_]; |
| 2975 | CoinWorkDouble * nextSolution = new CoinWorkDouble [numberColumns_]; |
| 2976 | // put next primal into nextSolution |
| 2977 | for ( iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 2978 | if (!flagged(iColumn)) { |
| 2979 | nextSolution[iColumn] = solution_[iColumn] + |
| 2980 | actualPrimalStep_ * deltaX_[iColumn]; |
| 2981 | } else { |
| 2982 | nextSolution[iColumn] = solution_[iColumn]; |
| 2983 | } |
| 2984 | } |
| 2985 | // do reduced costs |
| 2986 | CoinMemcpyN(cost_, numberColumns_, nextDj); |
| 2987 | matrix_->transposeTimes(-1.0, dualArray, nextDj); |
| 2988 | matrix_->transposeTimes(-actualDualStep_, deltaY_, nextDj); |
| 2989 | quadraticDjs(nextDj, nextSolution, 1.0); |
| 2990 | delete [] nextSolution; |
| 2991 | CoinPackedMatrix * quadratic = quadraticObj->quadraticObjective(); |
| 2992 | const int * columnQuadraticLength = quadratic->getVectorLengths(); |
| 2993 | for (int iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 2994 | if (!fixedOrFree(iColumn)) { |
| 2995 | CoinWorkDouble newZ = 0.0; |
| 2996 | CoinWorkDouble newW = 0.0; |
| 2997 | if (lowerBound(iColumn)) { |
| 2998 | newZ = zVec_[iColumn] + actualDualStep_ * deltaZ_[iColumn]; |
| 2999 | } |
| 3000 | if (upperBound(iColumn)) { |
| 3001 | newW = wVec_[iColumn] + actualDualStep_ * deltaW_[iColumn]; |
| 3002 | } |
| 3003 | if (columnQuadraticLength[iColumn]) { |
| 3004 | CoinWorkDouble gammaTerm = gamma2; |
| 3005 | if (primalR_) |
| 3006 | gammaTerm += primalR_[iColumn]; |
| 3007 | //CoinWorkDouble dualInfeasibility= |
| 3008 | //dj_[iColumn]-zVec_[iColumn]+wVec_[iColumn] |
| 3009 | //+gammaTerm*solution_[iColumn]; |
| 3010 | CoinWorkDouble newInfeasibility = |
| 3011 | nextDj[iColumn] - newZ + newW |
| 3012 | + gammaTerm * (solution_[iColumn] + actualPrimalStep_ * deltaX_[iColumn]); |
| 3013 | maximumDualError = CoinMax(maximumDualError, newInfeasibility); |
| 3014 | //if (CoinAbs(newInfeasibility)>CoinMax(2000.0*maximumDualError_,1.0e-2)) { |
| 3015 | //if (dualInfeasibility*newInfeasibility<0.0) { |
| 3016 | // printf("%d current %g next %g\n",iColumn,dualInfeasibility, |
| 3017 | // newInfeasibility); |
| 3018 | // goodMove=false; |
| 3019 | //} |
| 3020 | //} |
| 3021 | } |
| 3022 | } |
| 3023 | } |
| 3024 | delete [] nextDj; |
| 3025 | } |
| 3026 | // Satisfy g_p(alpha)? |
| 3027 | if (rhsNorm_ > solutionNorm_) { |
| 3028 | solutionNorm_ = rhsNorm_; |
| 3029 | } |
| 3030 | CoinWorkDouble errorCheck = maximumRHSError_ / solutionNorm_; |
| 3031 | if (errorCheck < maximumBoundInfeasibility_) { |
| 3032 | errorCheck = maximumBoundInfeasibility_; |
| 3033 | } |
| 3034 | // scale back move |
| 3035 | move = CoinMin(move, 0.95); |
| 3036 | //scale |
| 3037 | if ((1.0 - move)*errorCheck > primalTolerance()) { |
| 3038 | if (nextGap < gammap*(1.0 - move)*errorCheck) { |
| 3039 | goodMove = false; |
| 3040 | } |
| 3041 | } |
| 3042 | // Satisfy g_d(alpha)? |
| 3043 | errorCheck = maximumDualError / objectiveNorm_; |
| 3044 | if ((1.0 - move)*errorCheck > dualTolerance()) { |
| 3045 | if (nextGap < gammad*(1.0 - move)*errorCheck) { |
| 3046 | goodMove = false; |
| 3047 | } |
| 3048 | } |
| 3049 | if (goodMove) |
| 3050 | bestNextGap = nextGap; |
| 3051 | return goodMove; |
| 3052 | } |
| 3053 | // updateSolution. Updates solution at end of iteration |
| 3054 | //returns number fixed |
| 3055 | int ClpPredictorCorrector::updateSolution(CoinWorkDouble /*nextGap*/) |
| 3056 | { |
| 3057 | CoinWorkDouble * dualArray = reinterpret_cast<CoinWorkDouble *>(dual_); |
| 3058 | int numberTotal = numberRows_ + numberColumns_; |
| 3059 | //update pi |
| 3060 | multiplyAdd(deltaY_, numberRows_, actualDualStep_, dualArray, 1.0); |
| 3061 | CoinZeroN(errorRegion_, numberRows_); |
| 3062 | CoinZeroN(rhsFixRegion_, numberRows_); |
| 3063 | CoinWorkDouble maximumRhsInfeasibility = 0.0; |
| 3064 | CoinWorkDouble maximumBoundInfeasibility = 0.0; |
| 3065 | CoinWorkDouble maximumDualError = 1.0e-12; |
| 3066 | CoinWorkDouble primalObjectiveValue = 0.0; |
| 3067 | CoinWorkDouble dualObjectiveValue = 0.0; |
| 3068 | CoinWorkDouble solutionNorm = 1.0e-12; |
| 3069 | int numberKilled = 0; |
| 3070 | CoinWorkDouble freeMultiplier = 1.0e6; |
| 3071 | CoinWorkDouble trueNorm = diagonalNorm_ / diagonalScaleFactor_; |
| 3072 | if (freeMultiplier < trueNorm) { |
| 3073 | freeMultiplier = trueNorm; |
| 3074 | } |
| 3075 | if (freeMultiplier > 1.0e12) { |
| 3076 | freeMultiplier = 1.0e12; |
| 3077 | } |
| 3078 | freeMultiplier = 0.5 / freeMultiplier; |
| 3079 | CoinWorkDouble condition = CoinAbs(cholesky_->choleskyCondition()); |
| 3080 | bool caution; |
| 3081 | if ((condition < 1.0e10 && trueNorm < 1.0e12) || numberIterations_ < 20) { |
| 3082 | caution = false; |
| 3083 | } else { |
| 3084 | caution = true; |
| 3085 | } |
| 3086 | CoinWorkDouble = eExtra; |
| 3087 | const CoinWorkDouble largeFactor = 1.0e2; |
| 3088 | CoinWorkDouble largeGap = largeFactor * solutionNorm_; |
| 3089 | if (largeGap < largeFactor) { |
| 3090 | largeGap = largeFactor; |
| 3091 | } |
| 3092 | CoinWorkDouble dualFake = 0.0; |
| 3093 | CoinWorkDouble dualTolerance = dblParam_[ClpDualTolerance]; |
| 3094 | dualTolerance = dualTolerance / scaleFactor_; |
| 3095 | if (dualTolerance < 1.0e-12) { |
| 3096 | dualTolerance = 1.0e-12; |
| 3097 | } |
| 3098 | CoinWorkDouble offsetObjective = 0.0; |
| 3099 | CoinWorkDouble killTolerance = primalTolerance(); |
| 3100 | CoinWorkDouble qDiagonal; |
| 3101 | if (mu_ < 1.0) { |
| 3102 | qDiagonal = 1.0e-8; |
| 3103 | } else { |
| 3104 | qDiagonal = 1.0e-8 * mu_; |
| 3105 | } |
| 3106 | //CoinWorkDouble nextMu = nextGap/(static_cast<CoinWorkDouble>(2*numberComplementarityPairs_)); |
| 3107 | //printf("using gap of %g\n",nextMu); |
| 3108 | //qDiagonal *= 1.0e2; |
| 3109 | //largest allowable ratio of lowerSlack/zVec (etc) |
| 3110 | CoinWorkDouble largestRatio; |
| 3111 | CoinWorkDouble epsilonBase; |
| 3112 | CoinWorkDouble diagonalLimit; |
| 3113 | if (!caution) { |
| 3114 | epsilonBase = eBase; |
| 3115 | largestRatio = eRatio; |
| 3116 | diagonalLimit = eDiagonal; |
| 3117 | } else { |
| 3118 | epsilonBase = eBaseCaution; |
| 3119 | largestRatio = eRatioCaution; |
| 3120 | diagonalLimit = eDiagonalCaution; |
| 3121 | } |
| 3122 | CoinWorkDouble smallGap = 1.0e2; |
| 3123 | CoinWorkDouble maximumDJInfeasibility = 0.0; |
| 3124 | int numberIncreased = 0; |
| 3125 | int numberDecreased = 0; |
| 3126 | CoinWorkDouble largestDiagonal = 0.0; |
| 3127 | CoinWorkDouble smallestDiagonal = 1.0e50; |
| 3128 | CoinWorkDouble largeGap2 = CoinMax(1.0e7, 1.0e2 * solutionNorm_); |
| 3129 | //largeGap2 = 1.0e9; |
| 3130 | // When to start looking at killing (factor0 |
| 3131 | CoinWorkDouble killFactor; |
| 3132 | #ifndef NO_RTTI |
| 3133 | ClpQuadraticObjective * quadraticObj = (dynamic_cast< ClpQuadraticObjective*>(objective_)); |
| 3134 | #else |
| 3135 | ClpQuadraticObjective * quadraticObj = NULL; |
| 3136 | if (objective_->type() == 2) |
| 3137 | quadraticObj = (static_cast< ClpQuadraticObjective*>(objective_)); |
| 3138 | #endif |
| 3139 | #ifndef CLP_CAUTION |
| 3140 | #define KILL_ITERATION 50 |
| 3141 | #else |
| 3142 | #if CLP_CAUTION < 1 |
| 3143 | #define KILL_ITERATION 50 |
| 3144 | #else |
| 3145 | #define KILL_ITERATION 100 |
| 3146 | #endif |
| 3147 | #endif |
| 3148 | if (!quadraticObj || 1) { |
| 3149 | if (numberIterations_ < KILL_ITERATION) { |
| 3150 | killFactor = 1.0; |
| 3151 | } else if (numberIterations_ < 2 * KILL_ITERATION) { |
| 3152 | killFactor = 5.0; |
| 3153 | stepLength_ = CoinMax(stepLength_, 0.9995); |
| 3154 | } else if (numberIterations_ < 4 * KILL_ITERATION) { |
| 3155 | killFactor = 20.0; |
| 3156 | stepLength_ = CoinMax(stepLength_, 0.99995); |
| 3157 | } else { |
| 3158 | killFactor = 1.0e2; |
| 3159 | stepLength_ = CoinMax(stepLength_, 0.999995); |
| 3160 | } |
| 3161 | } else { |
| 3162 | killFactor = 1.0; |
| 3163 | } |
| 3164 | // put next primal into deltaSL_ |
| 3165 | int iColumn; |
| 3166 | int iRow; |
| 3167 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 3168 | CoinWorkDouble thisWeight = deltaX_[iColumn]; |
| 3169 | CoinWorkDouble newPrimal = solution_[iColumn] + 1.0 * actualPrimalStep_ * thisWeight; |
| 3170 | deltaSL_[iColumn] = newPrimal; |
| 3171 | } |
| 3172 | #if 0 |
| 3173 | // nice idea but doesn't work |
| 3174 | multiplyAdd(solution_ + numberColumns_, numberRows_, -1.0, errorRegion_, 0.0); |
| 3175 | matrix_->times(1.0, solution_, errorRegion_); |
| 3176 | multiplyAdd(deltaSL_ + numberColumns_, numberRows_, -1.0, rhsFixRegion_, 0.0); |
| 3177 | matrix_->times(1.0, deltaSL_, rhsFixRegion_); |
| 3178 | CoinWorkDouble newNorm = maximumAbsElement(deltaSL_, numberTotal); |
| 3179 | CoinWorkDouble tol = newNorm * primalTolerance(); |
| 3180 | bool goneInf = false; |
| 3181 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 3182 | CoinWorkDouble value = errorRegion_[iRow]; |
| 3183 | CoinWorkDouble valueNew = rhsFixRegion_[iRow]; |
| 3184 | if (CoinAbs(value) < tol && CoinAbs(valueNew) > tol) { |
| 3185 | printf("row %d old %g new %g\n" , iRow, value, valueNew); |
| 3186 | goneInf = true; |
| 3187 | } |
| 3188 | } |
| 3189 | if (goneInf) { |
| 3190 | actualPrimalStep_ *= 0.5; |
| 3191 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 3192 | CoinWorkDouble thisWeight = deltaX_[iColumn]; |
| 3193 | CoinWorkDouble newPrimal = solution_[iColumn] + 1.0 * actualPrimalStep_ * thisWeight; |
| 3194 | deltaSL_[iColumn] = newPrimal; |
| 3195 | } |
| 3196 | } |
| 3197 | CoinZeroN(errorRegion_, numberRows_); |
| 3198 | CoinZeroN(rhsFixRegion_, numberRows_); |
| 3199 | #endif |
| 3200 | // do reduced costs |
| 3201 | CoinMemcpyN(dualArray, numberRows_, dj_ + numberColumns_); |
| 3202 | CoinMemcpyN(cost_, numberColumns_, dj_); |
| 3203 | CoinWorkDouble quadraticOffset = quadraticDjs(dj_, deltaSL_, 1.0); |
| 3204 | // Save modified costs for fixed variables |
| 3205 | CoinMemcpyN(dj_, numberColumns_, deltaSU_); |
| 3206 | matrix_->transposeTimes(-1.0, dualArray, dj_); |
| 3207 | CoinWorkDouble gamma2 = gamma_ * gamma_; // gamma*gamma will be added to diagonal |
| 3208 | CoinWorkDouble gammaOffset = 0.0; |
| 3209 | #if 0 |
| 3210 | const CoinBigIndex * columnStart = matrix_->getVectorStarts(); |
| 3211 | const int * columnLength = matrix_->getVectorLengths(); |
| 3212 | const int * row = matrix_->getIndices(); |
| 3213 | const double * element = matrix_->getElements(); |
| 3214 | #endif |
| 3215 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 3216 | if (!flagged(iColumn)) { |
| 3217 | CoinWorkDouble reducedCost = dj_[iColumn]; |
| 3218 | bool thisKilled = false; |
| 3219 | CoinWorkDouble zValue = zVec_[iColumn] + actualDualStep_ * deltaZ_[iColumn]; |
| 3220 | CoinWorkDouble wValue = wVec_[iColumn] + actualDualStep_ * deltaW_[iColumn]; |
| 3221 | zVec_[iColumn] = zValue; |
| 3222 | wVec_[iColumn] = wValue; |
| 3223 | CoinWorkDouble thisWeight = deltaX_[iColumn]; |
| 3224 | CoinWorkDouble oldPrimal = solution_[iColumn]; |
| 3225 | CoinWorkDouble newPrimal = solution_[iColumn] + actualPrimalStep_ * thisWeight; |
| 3226 | CoinWorkDouble dualObjectiveThis = 0.0; |
| 3227 | CoinWorkDouble sUpper = extra; |
| 3228 | CoinWorkDouble sLower = extra; |
| 3229 | CoinWorkDouble kill; |
| 3230 | if (CoinAbs(newPrimal) > 1.0e4) { |
| 3231 | kill = killTolerance * 1.0e-4 * newPrimal; |
| 3232 | } else { |
| 3233 | kill = killTolerance; |
| 3234 | } |
| 3235 | kill *= 1.0e-3; //be conservative |
| 3236 | CoinWorkDouble smallerSlack = COIN_DBL_MAX; |
| 3237 | bool fakeOldBounds = false; |
| 3238 | bool fakeNewBounds = false; |
| 3239 | CoinWorkDouble trueLower; |
| 3240 | CoinWorkDouble trueUpper; |
| 3241 | if (iColumn < numberColumns_) { |
| 3242 | trueLower = columnLower_[iColumn]; |
| 3243 | trueUpper = columnUpper_[iColumn]; |
| 3244 | } else { |
| 3245 | trueLower = rowLower_[iColumn-numberColumns_]; |
| 3246 | trueUpper = rowUpper_[iColumn-numberColumns_]; |
| 3247 | } |
| 3248 | if (oldPrimal > trueLower + largeGap2 && |
| 3249 | oldPrimal < trueUpper - largeGap2) |
| 3250 | fakeOldBounds = true; |
| 3251 | if (newPrimal > trueLower + largeGap2 && |
| 3252 | newPrimal < trueUpper - largeGap2) |
| 3253 | fakeNewBounds = true; |
| 3254 | if (fakeOldBounds) { |
| 3255 | if (fakeNewBounds) { |
| 3256 | lower_[iColumn] = newPrimal - largeGap2; |
| 3257 | lowerSlack_[iColumn] = largeGap2; |
| 3258 | upper_[iColumn] = newPrimal + largeGap2; |
| 3259 | upperSlack_[iColumn] = largeGap2; |
| 3260 | } else { |
| 3261 | lower_[iColumn] = trueLower; |
| 3262 | setLowerBound(iColumn); |
| 3263 | lowerSlack_[iColumn] = CoinMax(newPrimal - trueLower, 1.0); |
| 3264 | upper_[iColumn] = trueUpper; |
| 3265 | setUpperBound(iColumn); |
| 3266 | upperSlack_[iColumn] = CoinMax(trueUpper - newPrimal, 1.0); |
| 3267 | } |
| 3268 | } else if (fakeNewBounds) { |
| 3269 | lower_[iColumn] = newPrimal - largeGap2; |
| 3270 | lowerSlack_[iColumn] = largeGap2; |
| 3271 | upper_[iColumn] = newPrimal + largeGap2; |
| 3272 | upperSlack_[iColumn] = largeGap2; |
| 3273 | // so we can just have one test |
| 3274 | fakeOldBounds = true; |
| 3275 | } |
| 3276 | CoinWorkDouble lowerBoundInfeasibility = 0.0; |
| 3277 | CoinWorkDouble upperBoundInfeasibility = 0.0; |
| 3278 | //double saveNewPrimal = newPrimal; |
| 3279 | if (lowerBound(iColumn)) { |
| 3280 | CoinWorkDouble oldSlack = lowerSlack_[iColumn]; |
| 3281 | CoinWorkDouble newSlack; |
| 3282 | newSlack = |
| 3283 | lowerSlack_[iColumn] + actualPrimalStep_ * (oldPrimal - oldSlack |
| 3284 | + thisWeight - lower_[iColumn]); |
| 3285 | if (fakeOldBounds) |
| 3286 | newSlack = lowerSlack_[iColumn]; |
| 3287 | CoinWorkDouble epsilon = CoinAbs(newSlack) * epsilonBase; |
| 3288 | epsilon = CoinMin(epsilon, 1.0e-5); |
| 3289 | //epsilon=1.0e-14; |
| 3290 | //make sure reasonable |
| 3291 | if (zValue < epsilon) { |
| 3292 | zValue = epsilon; |
| 3293 | } |
| 3294 | CoinWorkDouble feasibleSlack = newPrimal - lower_[iColumn]; |
| 3295 | if (feasibleSlack > 0.0 && newSlack > 0.0) { |
| 3296 | CoinWorkDouble smallGap2 = smallGap; |
| 3297 | if (CoinAbs(0.1 * newPrimal) > smallGap) { |
| 3298 | smallGap2 = 0.1 * CoinAbs(newPrimal); |
| 3299 | } |
| 3300 | CoinWorkDouble larger; |
| 3301 | if (newSlack > feasibleSlack) { |
| 3302 | larger = newSlack; |
| 3303 | } else { |
| 3304 | larger = feasibleSlack; |
| 3305 | } |
| 3306 | if (CoinAbs(feasibleSlack - newSlack) < 1.0e-6 * larger) { |
| 3307 | newSlack = feasibleSlack; |
| 3308 | } |
| 3309 | } |
| 3310 | if (zVec_[iColumn] > dualTolerance) { |
| 3311 | dualObjectiveThis += lower_[iColumn] * zVec_[iColumn]; |
| 3312 | } |
| 3313 | lowerSlack_[iColumn] = newSlack; |
| 3314 | if (newSlack < smallerSlack) { |
| 3315 | smallerSlack = newSlack; |
| 3316 | } |
| 3317 | lowerBoundInfeasibility = CoinAbs(newPrimal - lowerSlack_[iColumn] - lower_[iColumn]); |
| 3318 | if (lowerSlack_[iColumn] <= kill * killFactor && CoinAbs(newPrimal - lower_[iColumn]) <= kill * killFactor) { |
| 3319 | CoinWorkDouble step = CoinMin(actualPrimalStep_ * 1.1, 1.0); |
| 3320 | CoinWorkDouble newPrimal2 = solution_[iColumn] + step * thisWeight; |
| 3321 | if (newPrimal2 < newPrimal && dj_[iColumn] > 1.0e-5 && numberIterations_ > 50 - 40) { |
| 3322 | newPrimal = lower_[iColumn]; |
| 3323 | lowerSlack_[iColumn] = 0.0; |
| 3324 | //printf("fixing %d to lower\n",iColumn); |
| 3325 | } |
| 3326 | } |
| 3327 | if (lowerSlack_[iColumn] <= kill && CoinAbs(newPrimal - lower_[iColumn]) <= kill) { |
| 3328 | //may be better to leave at value? |
| 3329 | newPrimal = lower_[iColumn]; |
| 3330 | lowerSlack_[iColumn] = 0.0; |
| 3331 | thisKilled = true; |
| 3332 | //cout<<j<<" l "<<reducedCost<<" "<<zVec_[iColumn]<<endl; |
| 3333 | } else { |
| 3334 | sLower += lowerSlack_[iColumn]; |
| 3335 | } |
| 3336 | } |
| 3337 | if (upperBound(iColumn)) { |
| 3338 | CoinWorkDouble oldSlack = upperSlack_[iColumn]; |
| 3339 | CoinWorkDouble newSlack; |
| 3340 | newSlack = |
| 3341 | upperSlack_[iColumn] + actualPrimalStep_ * (-oldPrimal - oldSlack |
| 3342 | - thisWeight + upper_[iColumn]); |
| 3343 | if (fakeOldBounds) |
| 3344 | newSlack = upperSlack_[iColumn]; |
| 3345 | CoinWorkDouble epsilon = CoinAbs(newSlack) * epsilonBase; |
| 3346 | epsilon = CoinMin(epsilon, 1.0e-5); |
| 3347 | //make sure reasonable |
| 3348 | //epsilon=1.0e-14; |
| 3349 | if (wValue < epsilon) { |
| 3350 | wValue = epsilon; |
| 3351 | } |
| 3352 | CoinWorkDouble feasibleSlack = upper_[iColumn] - newPrimal; |
| 3353 | if (feasibleSlack > 0.0 && newSlack > 0.0) { |
| 3354 | CoinWorkDouble smallGap2 = smallGap; |
| 3355 | if (CoinAbs(0.1 * newPrimal) > smallGap) { |
| 3356 | smallGap2 = 0.1 * CoinAbs(newPrimal); |
| 3357 | } |
| 3358 | CoinWorkDouble larger; |
| 3359 | if (newSlack > feasibleSlack) { |
| 3360 | larger = newSlack; |
| 3361 | } else { |
| 3362 | larger = feasibleSlack; |
| 3363 | } |
| 3364 | if (CoinAbs(feasibleSlack - newSlack) < 1.0e-6 * larger) { |
| 3365 | newSlack = feasibleSlack; |
| 3366 | } |
| 3367 | } |
| 3368 | if (wVec_[iColumn] > dualTolerance) { |
| 3369 | dualObjectiveThis -= upper_[iColumn] * wVec_[iColumn]; |
| 3370 | } |
| 3371 | upperSlack_[iColumn] = newSlack; |
| 3372 | if (newSlack < smallerSlack) { |
| 3373 | smallerSlack = newSlack; |
| 3374 | } |
| 3375 | upperBoundInfeasibility = CoinAbs(newPrimal + upperSlack_[iColumn] - upper_[iColumn]); |
| 3376 | if (upperSlack_[iColumn] <= kill * killFactor && CoinAbs(newPrimal - upper_[iColumn]) <= kill * killFactor) { |
| 3377 | CoinWorkDouble step = CoinMin(actualPrimalStep_ * 1.1, 1.0); |
| 3378 | CoinWorkDouble newPrimal2 = solution_[iColumn] + step * thisWeight; |
| 3379 | if (newPrimal2 > newPrimal && dj_[iColumn] < -1.0e-5 && numberIterations_ > 50 - 40) { |
| 3380 | newPrimal = upper_[iColumn]; |
| 3381 | upperSlack_[iColumn] = 0.0; |
| 3382 | //printf("fixing %d to upper\n",iColumn); |
| 3383 | } |
| 3384 | } |
| 3385 | if (upperSlack_[iColumn] <= kill && CoinAbs(newPrimal - upper_[iColumn]) <= kill) { |
| 3386 | //may be better to leave at value? |
| 3387 | newPrimal = upper_[iColumn]; |
| 3388 | upperSlack_[iColumn] = 0.0; |
| 3389 | thisKilled = true; |
| 3390 | } else { |
| 3391 | sUpper += upperSlack_[iColumn]; |
| 3392 | } |
| 3393 | } |
| 3394 | #if 0 |
| 3395 | if (newPrimal != saveNewPrimal && iColumn < numberColumns_) { |
| 3396 | // adjust slacks |
| 3397 | double movement = newPrimal - saveNewPrimal; |
| 3398 | for (CoinBigIndex j = columnStart[iColumn]; |
| 3399 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
| 3400 | int iRow = row[j]; |
| 3401 | double slackMovement = element[j] * movement; |
| 3402 | solution_[iRow+numberColumns_] += slackMovement; // sign? |
| 3403 | } |
| 3404 | } |
| 3405 | #endif |
| 3406 | solution_[iColumn] = newPrimal; |
| 3407 | if (CoinAbs(newPrimal) > solutionNorm) { |
| 3408 | solutionNorm = CoinAbs(newPrimal); |
| 3409 | } |
| 3410 | if (!thisKilled) { |
| 3411 | CoinWorkDouble gammaTerm = gamma2; |
| 3412 | if (primalR_) { |
| 3413 | gammaTerm += primalR_[iColumn]; |
| 3414 | quadraticOffset += newPrimal * newPrimal * primalR_[iColumn]; |
| 3415 | } |
| 3416 | CoinWorkDouble dualInfeasibility = |
| 3417 | reducedCost - zVec_[iColumn] + wVec_[iColumn] + gammaTerm * newPrimal; |
| 3418 | if (CoinAbs(dualInfeasibility) > dualTolerance) { |
| 3419 | #if 0 |
| 3420 | if (dualInfeasibility > 0.0) { |
| 3421 | // To improve we could reduce t and/or increase z |
| 3422 | if (lowerBound(iColumn)) { |
| 3423 | CoinWorkDouble complementarity = zVec_[iColumn] * lowerSlack_[iColumn]; |
| 3424 | if (complementarity < nextMu) { |
| 3425 | CoinWorkDouble change = |
| 3426 | CoinMin(dualInfeasibility, |
| 3427 | (nextMu - complementarity) / lowerSlack_[iColumn]); |
| 3428 | dualInfeasibility -= change; |
| 3429 | COIN_DETAIL_PRINT(printf("%d lb locomp %g - dual inf from %g to %g\n" , |
| 3430 | iColumn, complementarity, dualInfeasibility + change, |
| 3431 | dualInfeasibility)); |
| 3432 | zVec_[iColumn] += change; |
| 3433 | zValue = CoinMax(zVec_[iColumn], 1.0e-12); |
| 3434 | } |
| 3435 | } |
| 3436 | if (upperBound(iColumn)) { |
| 3437 | CoinWorkDouble complementarity = wVec_[iColumn] * upperSlack_[iColumn]; |
| 3438 | if (complementarity > nextMu) { |
| 3439 | CoinWorkDouble change = |
| 3440 | CoinMin(dualInfeasibility, |
| 3441 | (complementarity - nextMu) / upperSlack_[iColumn]); |
| 3442 | dualInfeasibility -= change; |
| 3443 | COIN_DETAIL_PRINT(printf("%d ub hicomp %g - dual inf from %g to %g\n" , |
| 3444 | iColumn, complementarity, dualInfeasibility + change, |
| 3445 | dualInfeasibility)); |
| 3446 | wVec_[iColumn] -= change; |
| 3447 | wValue = CoinMax(wVec_[iColumn], 1.0e-12); |
| 3448 | } |
| 3449 | } |
| 3450 | } else { |
| 3451 | // To improve we could reduce z and/or increase t |
| 3452 | if (lowerBound(iColumn)) { |
| 3453 | CoinWorkDouble complementarity = zVec_[iColumn] * lowerSlack_[iColumn]; |
| 3454 | if (complementarity > nextMu) { |
| 3455 | CoinWorkDouble change = |
| 3456 | CoinMax(dualInfeasibility, |
| 3457 | (nextMu - complementarity) / lowerSlack_[iColumn]); |
| 3458 | dualInfeasibility -= change; |
| 3459 | COIN_DETAIL_PRINT(printf("%d lb hicomp %g - dual inf from %g to %g\n" , |
| 3460 | iColumn, complementarity, dualInfeasibility + change, |
| 3461 | dualInfeasibility)); |
| 3462 | zVec_[iColumn] += change; |
| 3463 | zValue = CoinMax(zVec_[iColumn], 1.0e-12); |
| 3464 | } |
| 3465 | } |
| 3466 | if (upperBound(iColumn)) { |
| 3467 | CoinWorkDouble complementarity = wVec_[iColumn] * upperSlack_[iColumn]; |
| 3468 | if (complementarity < nextMu) { |
| 3469 | CoinWorkDouble change = |
| 3470 | CoinMax(dualInfeasibility, |
| 3471 | (complementarity - nextMu) / upperSlack_[iColumn]); |
| 3472 | dualInfeasibility -= change; |
| 3473 | COIN_DETAIL_PRINT(printf("%d ub locomp %g - dual inf from %g to %g\n" , |
| 3474 | iColumn, complementarity, dualInfeasibility + change, |
| 3475 | dualInfeasibility)); |
| 3476 | wVec_[iColumn] -= change; |
| 3477 | wValue = CoinMax(wVec_[iColumn], 1.0e-12); |
| 3478 | } |
| 3479 | } |
| 3480 | } |
| 3481 | #endif |
| 3482 | dualFake += newPrimal * dualInfeasibility; |
| 3483 | } |
| 3484 | if (lowerBoundInfeasibility > maximumBoundInfeasibility) { |
| 3485 | maximumBoundInfeasibility = lowerBoundInfeasibility; |
| 3486 | } |
| 3487 | if (upperBoundInfeasibility > maximumBoundInfeasibility) { |
| 3488 | maximumBoundInfeasibility = upperBoundInfeasibility; |
| 3489 | } |
| 3490 | dualInfeasibility = CoinAbs(dualInfeasibility); |
| 3491 | if (dualInfeasibility > maximumDualError) { |
| 3492 | //printf("bad dual %d %g\n",iColumn, |
| 3493 | // reducedCost-zVec_[iColumn]+wVec_[iColumn]+gammaTerm*newPrimal); |
| 3494 | maximumDualError = dualInfeasibility; |
| 3495 | } |
| 3496 | dualObjectiveValue += dualObjectiveThis; |
| 3497 | gammaOffset += newPrimal * newPrimal; |
| 3498 | if (sLower > largeGap) { |
| 3499 | sLower = largeGap; |
| 3500 | } |
| 3501 | if (sUpper > largeGap) { |
| 3502 | sUpper = largeGap; |
| 3503 | } |
| 3504 | #if 1 |
| 3505 | CoinWorkDouble divisor = sLower * wValue + sUpper * zValue + gammaTerm * sLower * sUpper; |
| 3506 | CoinWorkDouble diagonalValue = (sUpper * sLower) / divisor; |
| 3507 | #else |
| 3508 | CoinWorkDouble divisor = sLower * wValue + sUpper * zValue + gammaTerm * sLower * sUpper; |
| 3509 | CoinWorkDouble diagonalValue2 = (sUpper * sLower) / divisor; |
| 3510 | CoinWorkDouble diagonalValue; |
| 3511 | if (!lowerBound(iColumn)) { |
| 3512 | diagonalValue = wValue / sUpper + gammaTerm; |
| 3513 | } else if (!upperBound(iColumn)) { |
| 3514 | diagonalValue = zValue / sLower + gammaTerm; |
| 3515 | } else { |
| 3516 | diagonalValue = zValue / sLower + wValue / sUpper + gammaTerm; |
| 3517 | } |
| 3518 | diagonalValue = 1.0 / diagonalValue; |
| 3519 | #endif |
| 3520 | diagonal_[iColumn] = diagonalValue; |
| 3521 | //FUDGE |
| 3522 | if (diagonalValue > diagonalLimit) { |
| 3523 | #ifdef COIN_DEVELOP |
| 3524 | std::cout << "large diagonal " << diagonalValue << std::endl; |
| 3525 | #endif |
| 3526 | diagonal_[iColumn] = diagonalLimit; |
| 3527 | } |
| 3528 | #ifdef COIN_DEVELOP |
| 3529 | if (diagonalValue < 1.0e-10) { |
| 3530 | //std::cout<<"small diagonal "<<diagonalValue<<std::endl; |
| 3531 | } |
| 3532 | #endif |
| 3533 | if (diagonalValue > largestDiagonal) { |
| 3534 | largestDiagonal = diagonalValue; |
| 3535 | } |
| 3536 | if (diagonalValue < smallestDiagonal) { |
| 3537 | smallestDiagonal = diagonalValue; |
| 3538 | } |
| 3539 | deltaX_[iColumn] = 0.0; |
| 3540 | } else { |
| 3541 | numberKilled++; |
| 3542 | if (solution_[iColumn] != lower_[iColumn] && |
| 3543 | solution_[iColumn] != upper_[iColumn]) { |
| 3544 | COIN_DETAIL_PRINT(printf("%d %g %g %g\n" , iColumn, static_cast<double>(lower_[iColumn]), |
| 3545 | static_cast<double>(solution_[iColumn]), static_cast<double>(upper_[iColumn]))); |
| 3546 | } |
| 3547 | diagonal_[iColumn] = 0.0; |
| 3548 | zVec_[iColumn] = 0.0; |
| 3549 | wVec_[iColumn] = 0.0; |
| 3550 | setFlagged(iColumn); |
| 3551 | setFixedOrFree(iColumn); |
| 3552 | deltaX_[iColumn] = newPrimal; |
| 3553 | offsetObjective += newPrimal * deltaSU_[iColumn]; |
| 3554 | } |
| 3555 | } else { |
| 3556 | deltaX_[iColumn] = solution_[iColumn]; |
| 3557 | diagonal_[iColumn] = 0.0; |
| 3558 | offsetObjective += solution_[iColumn] * deltaSU_[iColumn]; |
| 3559 | if (upper_[iColumn] - lower_[iColumn] > 1.0e-5) { |
| 3560 | if (solution_[iColumn] < lower_[iColumn] + 1.0e-8 && dj_[iColumn] < -1.0e-8) { |
| 3561 | if (-dj_[iColumn] > maximumDJInfeasibility) { |
| 3562 | maximumDJInfeasibility = -dj_[iColumn]; |
| 3563 | } |
| 3564 | } |
| 3565 | if (solution_[iColumn] > upper_[iColumn] - 1.0e-8 && dj_[iColumn] > 1.0e-8) { |
| 3566 | if (dj_[iColumn] > maximumDJInfeasibility) { |
| 3567 | maximumDJInfeasibility = dj_[iColumn]; |
| 3568 | } |
| 3569 | } |
| 3570 | } |
| 3571 | } |
| 3572 | primalObjectiveValue += solution_[iColumn] * cost_[iColumn]; |
| 3573 | } |
| 3574 | handler_->message(CLP_BARRIER_DIAGONAL, messages_) |
| 3575 | << static_cast<double>(largestDiagonal) << static_cast<double>(smallestDiagonal) |
| 3576 | << CoinMessageEol; |
| 3577 | #if 0 |
| 3578 | // If diagonal wild - kill some |
| 3579 | if (largestDiagonal > 1.0e17 * smallestDiagonal) { |
| 3580 | CoinWorkDouble killValue = largestDiagonal * 1.0e-17; |
| 3581 | for (int iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 3582 | if (CoinAbs(diagonal_[iColumn]) < killValue) |
| 3583 | diagonal_[iolumn] = 0.0; |
| 3584 | } |
| 3585 | } |
| 3586 | #endif |
| 3587 | // update rhs region |
| 3588 | multiplyAdd(deltaX_ + numberColumns_, numberRows_, -1.0, rhsFixRegion_, 1.0); |
| 3589 | matrix_->times(1.0, deltaX_, rhsFixRegion_); |
| 3590 | primalObjectiveValue += 0.5 * gamma2 * gammaOffset + 0.5 * quadraticOffset; |
| 3591 | if (quadraticOffset) { |
| 3592 | // printf("gamma offset %g %g, quadoffset %g\n",gammaOffset,gamma2*gammaOffset,quadraticOffset); |
| 3593 | } |
| 3594 | |
| 3595 | dualObjectiveValue += offsetObjective + dualFake; |
| 3596 | dualObjectiveValue -= 0.5 * gamma2 * gammaOffset + 0.5 * quadraticOffset; |
| 3597 | if (numberIncreased || numberDecreased) { |
| 3598 | handler_->message(CLP_BARRIER_SLACKS, messages_) |
| 3599 | << numberIncreased << numberDecreased |
| 3600 | << CoinMessageEol; |
| 3601 | } |
| 3602 | if (maximumDJInfeasibility) { |
| 3603 | handler_->message(CLP_BARRIER_DUALINF, messages_) |
| 3604 | << static_cast<double>(maximumDJInfeasibility) |
| 3605 | << CoinMessageEol; |
| 3606 | } |
| 3607 | // Need to rethink (but it is only for printing) |
| 3608 | sumPrimalInfeasibilities_ = maximumRhsInfeasibility; |
| 3609 | sumDualInfeasibilities_ = maximumDualError; |
| 3610 | maximumBoundInfeasibility_ = maximumBoundInfeasibility; |
| 3611 | //compute error and fixed RHS |
| 3612 | multiplyAdd(solution_ + numberColumns_, numberRows_, -1.0, errorRegion_, 0.0); |
| 3613 | matrix_->times(1.0, solution_, errorRegion_); |
| 3614 | maximumDualError_ = maximumDualError; |
| 3615 | maximumBoundInfeasibility_ = maximumBoundInfeasibility; |
| 3616 | solutionNorm_ = solutionNorm; |
| 3617 | //finish off objective computation |
| 3618 | primalObjective_ = primalObjectiveValue * scaleFactor_; |
| 3619 | CoinWorkDouble dualValue2 = innerProduct(dualArray, numberRows_, |
| 3620 | rhsFixRegion_); |
| 3621 | dualObjectiveValue -= dualValue2; |
| 3622 | dualObjective_ = dualObjectiveValue * scaleFactor_; |
| 3623 | if (numberKilled) { |
| 3624 | handler_->message(CLP_BARRIER_KILLED, messages_) |
| 3625 | << numberKilled |
| 3626 | << CoinMessageEol; |
| 3627 | } |
| 3628 | CoinWorkDouble maximumRHSError1 = 0.0; |
| 3629 | CoinWorkDouble maximumRHSError2 = 0.0; |
| 3630 | CoinWorkDouble primalOffset = 0.0; |
| 3631 | char * dropped = cholesky_->rowsDropped(); |
| 3632 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 3633 | CoinWorkDouble value = errorRegion_[iRow]; |
| 3634 | if (!dropped[iRow]) { |
| 3635 | if (CoinAbs(value) > maximumRHSError1) { |
| 3636 | maximumRHSError1 = CoinAbs(value); |
| 3637 | } |
| 3638 | } else { |
| 3639 | if (CoinAbs(value) > maximumRHSError2) { |
| 3640 | maximumRHSError2 = CoinAbs(value); |
| 3641 | } |
| 3642 | primalOffset += value * dualArray[iRow]; |
| 3643 | } |
| 3644 | } |
| 3645 | primalObjective_ -= primalOffset * scaleFactor_; |
| 3646 | if (maximumRHSError1 > maximumRHSError2) { |
| 3647 | maximumRHSError_ = maximumRHSError1; |
| 3648 | } else { |
| 3649 | maximumRHSError_ = maximumRHSError1; //note change |
| 3650 | if (maximumRHSError2 > primalTolerance()) { |
| 3651 | handler_->message(CLP_BARRIER_ABS_DROPPED, messages_) |
| 3652 | << static_cast<double>(maximumRHSError2) |
| 3653 | << CoinMessageEol; |
| 3654 | } |
| 3655 | } |
| 3656 | objectiveNorm_ = maximumAbsElement(dualArray, numberRows_); |
| 3657 | if (objectiveNorm_ < 1.0e-12) { |
| 3658 | objectiveNorm_ = 1.0e-12; |
| 3659 | } |
| 3660 | if (objectiveNorm_ < baseObjectiveNorm_) { |
| 3661 | //std::cout<<" base "<<baseObjectiveNorm_<<" "<<objectiveNorm_<<std::endl; |
| 3662 | if (objectiveNorm_ < baseObjectiveNorm_ * 1.0e-4) { |
| 3663 | objectiveNorm_ = baseObjectiveNorm_ * 1.0e-4; |
| 3664 | } |
| 3665 | } |
| 3666 | bool primalFeasible = true; |
| 3667 | if (maximumRHSError_ > primalTolerance() || |
| 3668 | maximumDualError_ > dualTolerance / scaleFactor_) { |
| 3669 | handler_->message(CLP_BARRIER_ABS_ERROR, messages_) |
| 3670 | << static_cast<double>(maximumRHSError_) << static_cast<double>(maximumDualError_) |
| 3671 | << CoinMessageEol; |
| 3672 | } |
| 3673 | if (rhsNorm_ > solutionNorm_) { |
| 3674 | solutionNorm_ = rhsNorm_; |
| 3675 | } |
| 3676 | CoinWorkDouble scaledRHSError = maximumRHSError_ / (solutionNorm_ + 10.0); |
| 3677 | bool dualFeasible = true; |
| 3678 | #if KEEP_GOING_IF_FIXED > 5 |
| 3679 | if (maximumBoundInfeasibility_ > primalTolerance() || |
| 3680 | scaledRHSError > primalTolerance()) |
| 3681 | primalFeasible = false; |
| 3682 | #else |
| 3683 | if (maximumBoundInfeasibility_ > primalTolerance() || |
| 3684 | scaledRHSError > CoinMax(CoinMin(100.0 * primalTolerance(), 1.0e-5), |
| 3685 | primalTolerance())) |
| 3686 | primalFeasible = false; |
| 3687 | #endif |
| 3688 | // relax dual test if obj big and gap smallish |
| 3689 | CoinWorkDouble gap = CoinAbs(primalObjective_ - dualObjective_); |
| 3690 | CoinWorkDouble sizeObj = CoinMin(CoinAbs(primalObjective_), CoinAbs(dualObjective_)) + 1.0e-50; |
| 3691 | //printf("gap %g sizeObj %g ratio %g comp %g\n", |
| 3692 | // gap,sizeObj,gap/sizeObj,complementarityGap_); |
| 3693 | if (numberIterations_ > 100 && gap / sizeObj < 1.0e-9 && complementarityGap_ < 1.0e-7 * sizeObj) |
| 3694 | dualTolerance *= 1.0e2; |
| 3695 | if (maximumDualError_ > objectiveNorm_ * dualTolerance) |
| 3696 | dualFeasible = false; |
| 3697 | if (!primalFeasible || !dualFeasible) { |
| 3698 | handler_->message(CLP_BARRIER_FEASIBLE, messages_) |
| 3699 | << static_cast<double>(maximumBoundInfeasibility_) << static_cast<double>(scaledRHSError) |
| 3700 | << static_cast<double>(maximumDualError_ / objectiveNorm_) |
| 3701 | << CoinMessageEol; |
| 3702 | } |
| 3703 | if (!gonePrimalFeasible_) { |
| 3704 | gonePrimalFeasible_ = primalFeasible; |
| 3705 | } else if (!primalFeasible) { |
| 3706 | gonePrimalFeasible_ = primalFeasible; |
| 3707 | if (!numberKilled) { |
| 3708 | handler_->message(CLP_BARRIER_GONE_INFEASIBLE, messages_) |
| 3709 | << CoinMessageEol; |
| 3710 | } |
| 3711 | } |
| 3712 | if (!goneDualFeasible_) { |
| 3713 | goneDualFeasible_ = dualFeasible; |
| 3714 | } else if (!dualFeasible) { |
| 3715 | handler_->message(CLP_BARRIER_GONE_INFEASIBLE, messages_) |
| 3716 | << CoinMessageEol; |
| 3717 | goneDualFeasible_ = dualFeasible; |
| 3718 | } |
| 3719 | //objectiveValue(); |
| 3720 | if (solutionNorm_ > 1.0e40) { |
| 3721 | std::cout << "primal off to infinity" << std::endl; |
| 3722 | abort(); |
| 3723 | } |
| 3724 | if (objectiveNorm_ > 1.0e40) { |
| 3725 | std::cout << "dual off to infinity" << std::endl; |
| 3726 | abort(); |
| 3727 | } |
| 3728 | handler_->message(CLP_BARRIER_STEP, messages_) |
| 3729 | << static_cast<double>(actualPrimalStep_) |
| 3730 | << static_cast<double>(actualDualStep_) |
| 3731 | << static_cast<double>(mu_) |
| 3732 | << CoinMessageEol; |
| 3733 | numberIterations_++; |
| 3734 | return numberKilled; |
| 3735 | } |
| 3736 | // Save info on products of affine deltaSU*deltaW and deltaSL*deltaZ |
| 3737 | CoinWorkDouble |
| 3738 | ClpPredictorCorrector::affineProduct() |
| 3739 | { |
| 3740 | CoinWorkDouble product = 0.0; |
| 3741 | //IF zVec starts as 0 then deltaZ always zero |
| 3742 | //(remember if free then zVec not 0) |
| 3743 | //I think free can be done with careful use of boundSlacks to zero |
| 3744 | //out all we want |
| 3745 | for (int iColumn = 0; iColumn < numberRows_ + numberColumns_; iColumn++) { |
| 3746 | CoinWorkDouble w3 = deltaZ_[iColumn] * deltaX_[iColumn]; |
| 3747 | CoinWorkDouble w4 = -deltaW_[iColumn] * deltaX_[iColumn]; |
| 3748 | if (lowerBound(iColumn)) { |
| 3749 | w3 += deltaZ_[iColumn] * (solution_[iColumn] - lowerSlack_[iColumn] - lower_[iColumn]); |
| 3750 | product += w3; |
| 3751 | } |
| 3752 | if (upperBound(iColumn)) { |
| 3753 | w4 += deltaW_[iColumn] * (-solution_[iColumn] - upperSlack_[iColumn] + upper_[iColumn]); |
| 3754 | product += w4; |
| 3755 | } |
| 3756 | } |
| 3757 | return product; |
| 3758 | } |
| 3759 | //See exactly what would happen given current deltas |
| 3760 | void |
| 3761 | ClpPredictorCorrector::debugMove(int /*phase*/, |
| 3762 | CoinWorkDouble primalStep, CoinWorkDouble dualStep) |
| 3763 | { |
| 3764 | #ifndef SOME_DEBUG |
| 3765 | return; |
| 3766 | #endif |
| 3767 | CoinWorkDouble * dualArray = reinterpret_cast<CoinWorkDouble *>(dual_); |
| 3768 | int numberTotal = numberRows_ + numberColumns_; |
| 3769 | CoinWorkDouble * dualNew = ClpCopyOfArray(dualArray, numberRows_); |
| 3770 | CoinWorkDouble * errorRegionNew = new CoinWorkDouble [numberRows_]; |
| 3771 | CoinWorkDouble * rhsFixRegionNew = new CoinWorkDouble [numberRows_]; |
| 3772 | CoinWorkDouble * primalNew = ClpCopyOfArray(solution_, numberTotal); |
| 3773 | CoinWorkDouble * djNew = new CoinWorkDouble[numberTotal]; |
| 3774 | //update pi |
| 3775 | multiplyAdd(deltaY_, numberRows_, dualStep, dualNew, 1.0); |
| 3776 | // do reduced costs |
| 3777 | CoinMemcpyN(dualNew, numberRows_, djNew + numberColumns_); |
| 3778 | CoinMemcpyN(cost_, numberColumns_, djNew); |
| 3779 | matrix_->transposeTimes(-1.0, dualNew, djNew); |
| 3780 | // update x |
| 3781 | int iColumn; |
| 3782 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 3783 | if (!flagged(iColumn)) |
| 3784 | primalNew[iColumn] += primalStep * deltaX_[iColumn]; |
| 3785 | } |
| 3786 | CoinWorkDouble quadraticOffset = quadraticDjs(djNew, primalNew, 1.0); |
| 3787 | CoinZeroN(errorRegionNew, numberRows_); |
| 3788 | CoinZeroN(rhsFixRegionNew, numberRows_); |
| 3789 | CoinWorkDouble maximumBoundInfeasibility = 0.0; |
| 3790 | CoinWorkDouble maximumDualError = 1.0e-12; |
| 3791 | CoinWorkDouble primalObjectiveValue = 0.0; |
| 3792 | CoinWorkDouble dualObjectiveValue = 0.0; |
| 3793 | CoinWorkDouble solutionNorm = 1.0e-12; |
| 3794 | const CoinWorkDouble largeFactor = 1.0e2; |
| 3795 | CoinWorkDouble largeGap = largeFactor * solutionNorm_; |
| 3796 | if (largeGap < largeFactor) { |
| 3797 | largeGap = largeFactor; |
| 3798 | } |
| 3799 | CoinWorkDouble dualFake = 0.0; |
| 3800 | CoinWorkDouble dualTolerance = dblParam_[ClpDualTolerance]; |
| 3801 | dualTolerance = dualTolerance / scaleFactor_; |
| 3802 | if (dualTolerance < 1.0e-12) { |
| 3803 | dualTolerance = 1.0e-12; |
| 3804 | } |
| 3805 | CoinWorkDouble newGap = 0.0; |
| 3806 | CoinWorkDouble offsetObjective = 0.0; |
| 3807 | CoinWorkDouble gamma2 = gamma_ * gamma_; // gamma*gamma will be added to diagonal |
| 3808 | CoinWorkDouble gammaOffset = 0.0; |
| 3809 | CoinWorkDouble maximumDjInfeasibility = 0.0; |
| 3810 | for ( iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 3811 | if (!flagged(iColumn)) { |
| 3812 | CoinWorkDouble reducedCost = djNew[iColumn]; |
| 3813 | CoinWorkDouble zValue = zVec_[iColumn] + dualStep * deltaZ_[iColumn]; |
| 3814 | CoinWorkDouble wValue = wVec_[iColumn] + dualStep * deltaW_[iColumn]; |
| 3815 | CoinWorkDouble thisWeight = deltaX_[iColumn]; |
| 3816 | CoinWorkDouble oldPrimal = solution_[iColumn]; |
| 3817 | CoinWorkDouble newPrimal = primalNew[iColumn]; |
| 3818 | CoinWorkDouble lowerBoundInfeasibility = 0.0; |
| 3819 | CoinWorkDouble upperBoundInfeasibility = 0.0; |
| 3820 | if (lowerBound(iColumn)) { |
| 3821 | CoinWorkDouble oldSlack = lowerSlack_[iColumn]; |
| 3822 | CoinWorkDouble newSlack = |
| 3823 | lowerSlack_[iColumn] + primalStep * (oldPrimal - oldSlack |
| 3824 | + thisWeight - lower_[iColumn]); |
| 3825 | if (zValue > dualTolerance) { |
| 3826 | dualObjectiveValue += lower_[iColumn] * zVec_[iColumn]; |
| 3827 | } |
| 3828 | lowerBoundInfeasibility = CoinAbs(newPrimal - newSlack - lower_[iColumn]); |
| 3829 | newGap += newSlack * zValue; |
| 3830 | } |
| 3831 | if (upperBound(iColumn)) { |
| 3832 | CoinWorkDouble oldSlack = upperSlack_[iColumn]; |
| 3833 | CoinWorkDouble newSlack = |
| 3834 | upperSlack_[iColumn] + primalStep * (-oldPrimal - oldSlack |
| 3835 | - thisWeight + upper_[iColumn]); |
| 3836 | if (wValue > dualTolerance) { |
| 3837 | dualObjectiveValue -= upper_[iColumn] * wVec_[iColumn]; |
| 3838 | } |
| 3839 | upperBoundInfeasibility = CoinAbs(newPrimal + newSlack - upper_[iColumn]); |
| 3840 | newGap += newSlack * wValue; |
| 3841 | } |
| 3842 | if (CoinAbs(newPrimal) > solutionNorm) { |
| 3843 | solutionNorm = CoinAbs(newPrimal); |
| 3844 | } |
| 3845 | CoinWorkDouble gammaTerm = gamma2; |
| 3846 | if (primalR_) { |
| 3847 | gammaTerm += primalR_[iColumn]; |
| 3848 | quadraticOffset += newPrimal * newPrimal * primalR_[iColumn]; |
| 3849 | } |
| 3850 | CoinWorkDouble dualInfeasibility = |
| 3851 | reducedCost - zValue + wValue + gammaTerm * newPrimal; |
| 3852 | if (CoinAbs(dualInfeasibility) > dualTolerance) { |
| 3853 | dualFake += newPrimal * dualInfeasibility; |
| 3854 | } |
| 3855 | if (lowerBoundInfeasibility > maximumBoundInfeasibility) { |
| 3856 | maximumBoundInfeasibility = lowerBoundInfeasibility; |
| 3857 | } |
| 3858 | if (upperBoundInfeasibility > maximumBoundInfeasibility) { |
| 3859 | maximumBoundInfeasibility = upperBoundInfeasibility; |
| 3860 | } |
| 3861 | dualInfeasibility = CoinAbs(dualInfeasibility); |
| 3862 | if (dualInfeasibility > maximumDualError) { |
| 3863 | //printf("bad dual %d %g\n",iColumn, |
| 3864 | // reducedCost-zVec_[iColumn]+wVec_[iColumn]+gammaTerm*newPrimal); |
| 3865 | maximumDualError = dualInfeasibility; |
| 3866 | } |
| 3867 | gammaOffset += newPrimal * newPrimal; |
| 3868 | djNew[iColumn] = 0.0; |
| 3869 | } else { |
| 3870 | offsetObjective += primalNew[iColumn] * cost_[iColumn]; |
| 3871 | if (upper_[iColumn] - lower_[iColumn] > 1.0e-5) { |
| 3872 | if (primalNew[iColumn] < lower_[iColumn] + 1.0e-8 && djNew[iColumn] < -1.0e-8) { |
| 3873 | if (-djNew[iColumn] > maximumDjInfeasibility) { |
| 3874 | maximumDjInfeasibility = -djNew[iColumn]; |
| 3875 | } |
| 3876 | } |
| 3877 | if (primalNew[iColumn] > upper_[iColumn] - 1.0e-8 && djNew[iColumn] > 1.0e-8) { |
| 3878 | if (djNew[iColumn] > maximumDjInfeasibility) { |
| 3879 | maximumDjInfeasibility = djNew[iColumn]; |
| 3880 | } |
| 3881 | } |
| 3882 | } |
| 3883 | djNew[iColumn] = primalNew[iColumn]; |
| 3884 | } |
| 3885 | primalObjectiveValue += solution_[iColumn] * cost_[iColumn]; |
| 3886 | } |
| 3887 | // update rhs region |
| 3888 | multiplyAdd(djNew + numberColumns_, numberRows_, -1.0, rhsFixRegionNew, 1.0); |
| 3889 | matrix_->times(1.0, djNew, rhsFixRegionNew); |
| 3890 | primalObjectiveValue += 0.5 * gamma2 * gammaOffset + 0.5 * quadraticOffset; |
| 3891 | dualObjectiveValue += offsetObjective + dualFake; |
| 3892 | dualObjectiveValue -= 0.5 * gamma2 * gammaOffset + 0.5 * quadraticOffset; |
| 3893 | // Need to rethink (but it is only for printing) |
| 3894 | //compute error and fixed RHS |
| 3895 | multiplyAdd(primalNew + numberColumns_, numberRows_, -1.0, errorRegionNew, 0.0); |
| 3896 | matrix_->times(1.0, primalNew, errorRegionNew); |
| 3897 | //finish off objective computation |
| 3898 | CoinWorkDouble primalObjectiveNew = primalObjectiveValue * scaleFactor_; |
| 3899 | CoinWorkDouble dualValue2 = innerProduct(dualNew, numberRows_, |
| 3900 | rhsFixRegionNew); |
| 3901 | dualObjectiveValue -= dualValue2; |
| 3902 | //CoinWorkDouble dualObjectiveNew=dualObjectiveValue*scaleFactor_; |
| 3903 | CoinWorkDouble maximumRHSError1 = 0.0; |
| 3904 | CoinWorkDouble maximumRHSError2 = 0.0; |
| 3905 | CoinWorkDouble primalOffset = 0.0; |
| 3906 | char * dropped = cholesky_->rowsDropped(); |
| 3907 | int iRow; |
| 3908 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 3909 | CoinWorkDouble value = errorRegionNew[iRow]; |
| 3910 | if (!dropped[iRow]) { |
| 3911 | if (CoinAbs(value) > maximumRHSError1) { |
| 3912 | maximumRHSError1 = CoinAbs(value); |
| 3913 | } |
| 3914 | } else { |
| 3915 | if (CoinAbs(value) > maximumRHSError2) { |
| 3916 | maximumRHSError2 = CoinAbs(value); |
| 3917 | } |
| 3918 | primalOffset += value * dualNew[iRow]; |
| 3919 | } |
| 3920 | } |
| 3921 | primalObjectiveNew -= primalOffset * scaleFactor_; |
| 3922 | CoinWorkDouble maximumRHSError; |
| 3923 | if (maximumRHSError1 > maximumRHSError2) { |
| 3924 | maximumRHSError = maximumRHSError1; |
| 3925 | } else { |
| 3926 | maximumRHSError = maximumRHSError1; //note change |
| 3927 | if (maximumRHSError2 > primalTolerance()) { |
| 3928 | handler_->message(CLP_BARRIER_ABS_DROPPED, messages_) |
| 3929 | << static_cast<double>(maximumRHSError2) |
| 3930 | << CoinMessageEol; |
| 3931 | } |
| 3932 | } |
| 3933 | /*printf("PH %d %g, %g new comp %g, b %g, p %g, d %g\n",phase, |
| 3934 | primalStep,dualStep,newGap,maximumBoundInfeasibility, |
| 3935 | maximumRHSError,maximumDualError); |
| 3936 | if (handler_->logLevel()>1) |
| 3937 | printf(" objs %g %g\n", |
| 3938 | primalObjectiveNew,dualObjectiveNew); |
| 3939 | if (maximumDjInfeasibility) { |
| 3940 | printf(" max dj error on fixed %g\n", |
| 3941 | maximumDjInfeasibility); |
| 3942 | } */ |
| 3943 | delete [] dualNew; |
| 3944 | delete [] errorRegionNew; |
| 3945 | delete [] rhsFixRegionNew; |
| 3946 | delete [] primalNew; |
| 3947 | delete [] djNew; |
| 3948 | } |
| 3949 | |