1 | /* $Id: ClpPredictorCorrector.cpp 1753 2011-06-19 16:27:26Z stefan $ */ |
2 | // Copyright (C) 2003, International Business Machines |
3 | // Corporation and others. All Rights Reserved. |
4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
5 | |
6 | /* |
7 | Implements crude primal dual predictor corrector algorithm |
8 | |
9 | */ |
10 | //#define SOME_DEBUG |
11 | |
12 | #include "CoinPragma.hpp" |
13 | #include <math.h> |
14 | |
15 | #include "CoinHelperFunctions.hpp" |
16 | #include "ClpPredictorCorrector.hpp" |
17 | #include "CoinPackedMatrix.hpp" |
18 | #include "ClpMessage.hpp" |
19 | #include "ClpCholeskyBase.hpp" |
20 | #include "ClpHelperFunctions.hpp" |
21 | #include "ClpQuadraticObjective.hpp" |
22 | #include <cfloat> |
23 | #include <cassert> |
24 | #include <string> |
25 | #include <cstdio> |
26 | #include <iostream> |
27 | #if 0 |
28 | static int yyyyyy = 0; |
29 | void ClpPredictorCorrector::saveSolution(std::string fileName) |
30 | { |
31 | FILE * fp = fopen(fileName.c_str(), "wb" ); |
32 | if (fp) { |
33 | int numberRows = numberRows_; |
34 | int numberColumns = numberColumns_; |
35 | fwrite(&numberRows, sizeof(int), 1, fp); |
36 | fwrite(&numberColumns, sizeof(int), 1, fp); |
37 | CoinWorkDouble dsave[20]; |
38 | memset(dsave, 0, sizeof(dsave)); |
39 | fwrite(dsave, sizeof(CoinWorkDouble), 20, fp); |
40 | int msave[20]; |
41 | memset(msave, 0, sizeof(msave)); |
42 | msave[0] = numberIterations_; |
43 | fwrite(msave, sizeof(int), 20, fp); |
44 | fwrite(dual_, sizeof(CoinWorkDouble), numberRows, fp); |
45 | fwrite(errorRegion_, sizeof(CoinWorkDouble), numberRows, fp); |
46 | fwrite(rhsFixRegion_, sizeof(CoinWorkDouble), numberRows, fp); |
47 | fwrite(solution_, sizeof(CoinWorkDouble), numberColumns, fp); |
48 | fwrite(solution_ + numberColumns, sizeof(CoinWorkDouble), numberRows, fp); |
49 | fwrite(diagonal_, sizeof(CoinWorkDouble), numberColumns, fp); |
50 | fwrite(diagonal_ + numberColumns, sizeof(CoinWorkDouble), numberRows, fp); |
51 | fwrite(wVec_, sizeof(CoinWorkDouble), numberColumns, fp); |
52 | fwrite(wVec_ + numberColumns, sizeof(CoinWorkDouble), numberRows, fp); |
53 | fwrite(zVec_, sizeof(CoinWorkDouble), numberColumns, fp); |
54 | fwrite(zVec_ + numberColumns, sizeof(CoinWorkDouble), numberRows, fp); |
55 | fwrite(upperSlack_, sizeof(CoinWorkDouble), numberColumns, fp); |
56 | fwrite(upperSlack_ + numberColumns, sizeof(CoinWorkDouble), numberRows, fp); |
57 | fwrite(lowerSlack_, sizeof(CoinWorkDouble), numberColumns, fp); |
58 | fwrite(lowerSlack_ + numberColumns, sizeof(CoinWorkDouble), numberRows, fp); |
59 | fclose(fp); |
60 | } else { |
61 | std::cout << "Unable to open file " << fileName << std::endl; |
62 | } |
63 | } |
64 | #endif |
65 | // Could change on CLP_LONG_CHOLESKY or COIN_LONG_WORK? |
66 | static CoinWorkDouble eScale = 1.0e27; |
67 | static CoinWorkDouble eBaseCaution = 1.0e-12; |
68 | static CoinWorkDouble eBase = 1.0e-12; |
69 | static CoinWorkDouble eRatio = 1.0e40; |
70 | static CoinWorkDouble eRatioCaution = 1.0e25; |
71 | static CoinWorkDouble eDiagonal = 1.0e25; |
72 | static CoinWorkDouble eDiagonalCaution = 1.0e18; |
73 | static CoinWorkDouble = 1.0e-12; |
74 | |
75 | // main function |
76 | |
77 | int ClpPredictorCorrector::solve ( ) |
78 | { |
79 | problemStatus_ = -1; |
80 | algorithm_ = 1; |
81 | //create all regions |
82 | if (!createWorkingData()) { |
83 | problemStatus_ = 4; |
84 | return 2; |
85 | } |
86 | #if COIN_LONG_WORK |
87 | // reallocate some regions |
88 | double * dualSave = dual_; |
89 | dual_ = reinterpret_cast<double *>(new CoinWorkDouble[numberRows_]); |
90 | double * reducedCostSave = reducedCost_; |
91 | reducedCost_ = reinterpret_cast<double *>(new CoinWorkDouble[numberColumns_]); |
92 | #endif |
93 | //diagonalPerturbation_=1.0e-25; |
94 | ClpMatrixBase * saveMatrix = NULL; |
95 | // If quadratic then make copy so we can actually scale or normalize |
96 | #ifndef NO_RTTI |
97 | ClpQuadraticObjective * quadraticObj = (dynamic_cast< ClpQuadraticObjective*>(objective_)); |
98 | #else |
99 | ClpQuadraticObjective * quadraticObj = NULL; |
100 | if (objective_->type() == 2) |
101 | quadraticObj = (static_cast< ClpQuadraticObjective*>(objective_)); |
102 | #endif |
103 | /* If modeSwitch is : |
104 | 0 - normal |
105 | 1 - bit switch off centering |
106 | 2 - bit always do type 2 |
107 | 4 - accept corrector nearly always |
108 | */ |
109 | int modeSwitch = 0; |
110 | //if (quadraticObj) |
111 | //modeSwitch |= 1; // switch off centring for now |
112 | //if (quadraticObj) |
113 | //modeSwitch |=4; |
114 | ClpObjective * saveObjective = NULL; |
115 | if (quadraticObj) { |
116 | // check KKT is on |
117 | if (!cholesky_->kkt()) { |
118 | //No! |
119 | handler_->message(CLP_BARRIER_KKT, messages_) |
120 | << CoinMessageEol; |
121 | return -1; |
122 | } |
123 | saveObjective = objective_; |
124 | // We are going to make matrix full rather half |
125 | objective_ = new ClpQuadraticObjective(*quadraticObj, 1); |
126 | } |
127 | bool allowIncreasingGap = (modeSwitch & 4) != 0; |
128 | // If scaled then really scale matrix |
129 | if (scalingFlag_ > 0 && rowScale_) { |
130 | saveMatrix = matrix_; |
131 | matrix_ = matrix_->scaledColumnCopy(this); |
132 | } |
133 | //initializeFeasible(); - this just set fixed flag |
134 | smallestInfeasibility_ = COIN_DBL_MAX; |
135 | int i; |
136 | for (i = 0; i < LENGTH_HISTORY; i++) |
137 | historyInfeasibility_[i] = COIN_DBL_MAX; |
138 | |
139 | //bool firstTime=true; |
140 | //firstFactorization(true); |
141 | int returnCode = cholesky_->order(this); |
142 | if (returnCode || cholesky_->symbolic()) { |
143 | COIN_DETAIL_PRINT(printf("Error return from symbolic - probably not enough memory\n" )); |
144 | problemStatus_ = 4; |
145 | //delete all temporary regions |
146 | deleteWorkingData(); |
147 | if (saveMatrix) { |
148 | // restore normal copy |
149 | delete matrix_; |
150 | matrix_ = saveMatrix; |
151 | } |
152 | // Restore quadratic objective if necessary |
153 | if (saveObjective) { |
154 | delete objective_; |
155 | objective_ = saveObjective; |
156 | } |
157 | return -1; |
158 | } |
159 | mu_ = 1.0e10; |
160 | diagonalScaleFactor_ = 1.0; |
161 | //set iterations |
162 | numberIterations_ = -1; |
163 | int numberTotal = numberRows_ + numberColumns_; |
164 | //initialize solution here |
165 | if(createSolution() < 0) { |
166 | COIN_DETAIL_PRINT(printf("Not enough memory\n" )); |
167 | problemStatus_ = 4; |
168 | //delete all temporary regions |
169 | deleteWorkingData(); |
170 | if (saveMatrix) { |
171 | // restore normal copy |
172 | delete matrix_; |
173 | matrix_ = saveMatrix; |
174 | } |
175 | return -1; |
176 | } |
177 | CoinWorkDouble * dualArray = reinterpret_cast<CoinWorkDouble *>(dual_); |
178 | // Could try centering steps without any original step i.e. just center |
179 | //firstFactorization(false); |
180 | CoinZeroN(dualArray, numberRows_); |
181 | multiplyAdd(solution_ + numberColumns_, numberRows_, -1.0, errorRegion_, 0.0); |
182 | matrix_->times(1.0, solution_, errorRegion_); |
183 | maximumRHSError_ = maximumAbsElement(errorRegion_, numberRows_); |
184 | maximumBoundInfeasibility_ = maximumRHSError_; |
185 | //CoinWorkDouble maximumDualError_=COIN_DBL_MAX; |
186 | //initialize |
187 | actualDualStep_ = 0.0; |
188 | actualPrimalStep_ = 0.0; |
189 | gonePrimalFeasible_ = false; |
190 | goneDualFeasible_ = false; |
191 | //bool hadGoodSolution=false; |
192 | diagonalNorm_ = solutionNorm_; |
193 | mu_ = solutionNorm_; |
194 | int numberFixed = updateSolution(-COIN_DBL_MAX); |
195 | int numberFixedTotal = numberFixed; |
196 | //int numberRows_DroppedBefore=0; |
197 | //CoinWorkDouble extra=eExtra; |
198 | //CoinWorkDouble maximumPerturbation=COIN_DBL_MAX; |
199 | //constants for infeas interior point |
200 | const CoinWorkDouble beta2 = 0.99995; |
201 | const CoinWorkDouble tau = 0.00002; |
202 | CoinWorkDouble lastComplementarityGap = COIN_DBL_MAX * 1.0e-20; |
203 | CoinWorkDouble lastStep = 1.0; |
204 | // use to see if to take affine |
205 | CoinWorkDouble checkGap = COIN_DBL_MAX; |
206 | int lastGoodIteration = 0; |
207 | CoinWorkDouble bestObjectiveGap = COIN_DBL_MAX; |
208 | CoinWorkDouble bestObjective = COIN_DBL_MAX; |
209 | int bestKilled = -1; |
210 | int saveIteration = -1; |
211 | int saveIteration2 = -1; |
212 | bool sloppyOptimal = false; |
213 | CoinWorkDouble * savePi = NULL; |
214 | CoinWorkDouble * savePrimal = NULL; |
215 | CoinWorkDouble * savePi2 = NULL; |
216 | CoinWorkDouble * savePrimal2 = NULL; |
217 | // Extra regions for centering |
218 | CoinWorkDouble * saveX = new CoinWorkDouble[numberTotal]; |
219 | CoinWorkDouble * saveY = new CoinWorkDouble[numberRows_]; |
220 | CoinWorkDouble * saveZ = new CoinWorkDouble[numberTotal]; |
221 | CoinWorkDouble * saveW = new CoinWorkDouble[numberTotal]; |
222 | CoinWorkDouble * saveSL = new CoinWorkDouble[numberTotal]; |
223 | CoinWorkDouble * saveSU = new CoinWorkDouble[numberTotal]; |
224 | // Save smallest mu used in primal dual moves |
225 | CoinWorkDouble smallestPrimalDualMu = COIN_DBL_MAX; |
226 | CoinWorkDouble objScale = optimizationDirection_ / |
227 | (rhsScale_ * objectiveScale_); |
228 | while (problemStatus_ < 0) { |
229 | //#define FULL_DEBUG |
230 | #ifdef FULL_DEBUG |
231 | { |
232 | int i; |
233 | printf("row pi artvec rhsfx\n" ); |
234 | for (i = 0; i < numberRows_; i++) { |
235 | printf("%d %g %g %g\n" , i, dual_[i], errorRegion_[i], rhsFixRegion_[i]); |
236 | } |
237 | printf(" col dsol ddiag dwvec dzvec dbdslu dbdsll\n" ); |
238 | for (i = 0; i < numberColumns_ + numberRows_; i++) { |
239 | printf(" %d %g %g %g %g %g %g\n" , i, solution_[i], diagonal_[i], wVec_[i], |
240 | zVec_[i], upperSlack_[i], lowerSlack_[i]); |
241 | } |
242 | } |
243 | #endif |
244 | complementarityGap_ = complementarityGap(numberComplementarityPairs_, |
245 | numberComplementarityItems_, 0); |
246 | handler_->message(CLP_BARRIER_ITERATION, messages_) |
247 | << numberIterations_ |
248 | << static_cast<double>(primalObjective_ * objScale - dblParam_[ClpObjOffset]) |
249 | << static_cast<double>(dualObjective_ * objScale - dblParam_[ClpObjOffset]) |
250 | << static_cast<double>(complementarityGap_) |
251 | << numberFixedTotal |
252 | << cholesky_->rank() |
253 | << CoinMessageEol; |
254 | #if 0 |
255 | if (numberIterations_ == -1) { |
256 | saveSolution("xxx.sav" ); |
257 | if (yyyyyy) |
258 | exit(99); |
259 | } |
260 | #endif |
261 | // move up history |
262 | for (i = 1; i < LENGTH_HISTORY; i++) |
263 | historyInfeasibility_[i-1] = historyInfeasibility_[i]; |
264 | historyInfeasibility_[LENGTH_HISTORY-1] = complementarityGap_; |
265 | // switch off saved if changes |
266 | //if (saveIteration+10<numberIterations_&& |
267 | //complementarityGap_*2.0<historyInfeasibility_[0]) |
268 | //saveIteration=-1; |
269 | lastStep = CoinMin(actualPrimalStep_, actualDualStep_); |
270 | CoinWorkDouble goodGapChange; |
271 | //#define KEEP_GOING_IF_FIXED 5 |
272 | #ifndef KEEP_GOING_IF_FIXED |
273 | #define KEEP_GOING_IF_FIXED 10000 |
274 | #endif |
275 | if (!sloppyOptimal) { |
276 | goodGapChange = 0.93; |
277 | } else { |
278 | goodGapChange = 0.7; |
279 | if (numberFixed > KEEP_GOING_IF_FIXED) |
280 | goodGapChange = 0.99; // make more likely to carry on |
281 | } |
282 | CoinWorkDouble gapO; |
283 | CoinWorkDouble lastGood = bestObjectiveGap; |
284 | if (gonePrimalFeasible_ && goneDualFeasible_) { |
285 | CoinWorkDouble largestObjective; |
286 | if (CoinAbs(primalObjective_) > CoinAbs(dualObjective_)) { |
287 | largestObjective = CoinAbs(primalObjective_); |
288 | } else { |
289 | largestObjective = CoinAbs(dualObjective_); |
290 | } |
291 | if (largestObjective < 1.0) { |
292 | largestObjective = 1.0; |
293 | } |
294 | gapO = CoinAbs(primalObjective_ - dualObjective_) / largestObjective; |
295 | handler_->message(CLP_BARRIER_OBJECTIVE_GAP, messages_) |
296 | << static_cast<double>(gapO) |
297 | << CoinMessageEol; |
298 | //start saving best |
299 | bool saveIt = false; |
300 | if (gapO < bestObjectiveGap) { |
301 | bestObjectiveGap = gapO; |
302 | #ifndef SAVE_ON_OBJ |
303 | saveIt = true; |
304 | #endif |
305 | } |
306 | if (primalObjective_ < bestObjective) { |
307 | bestObjective = primalObjective_; |
308 | #ifdef SAVE_ON_OBJ |
309 | saveIt = true; |
310 | #endif |
311 | } |
312 | if (numberFixedTotal > bestKilled) { |
313 | bestKilled = numberFixedTotal; |
314 | #if KEEP_GOING_IF_FIXED<10 |
315 | saveIt = true; |
316 | #endif |
317 | } |
318 | if (saveIt) { |
319 | #if KEEP_GOING_IF_FIXED<10 |
320 | COIN_DETAIL_PRINT(printf("saving\n" )); |
321 | #endif |
322 | saveIteration = numberIterations_; |
323 | if (!savePi) { |
324 | savePi = new CoinWorkDouble[numberRows_]; |
325 | savePrimal = new CoinWorkDouble [numberTotal]; |
326 | } |
327 | CoinMemcpyN(dualArray, numberRows_, savePi); |
328 | CoinMemcpyN(solution_, numberTotal, savePrimal); |
329 | } else if(gapO > 2.0 * bestObjectiveGap) { |
330 | //maybe be more sophisticated e.g. re-initialize having |
331 | //fixed variables and dropped rows |
332 | //std::cout <<" gap increasing "<<std::endl; |
333 | } |
334 | //std::cout <<"could stop"<<std::endl; |
335 | //gapO=0.0; |
336 | if (CoinAbs(primalObjective_ - dualObjective_) < dualTolerance()) { |
337 | gapO = 0.0; |
338 | } |
339 | } else { |
340 | gapO = COIN_DBL_MAX; |
341 | if (saveIteration >= 0) { |
342 | handler_->message(CLP_BARRIER_GONE_INFEASIBLE, messages_) |
343 | << CoinMessageEol; |
344 | CoinWorkDouble scaledRHSError = maximumRHSError_ / (solutionNorm_ + 10.0); |
345 | // save alternate |
346 | if (numberFixedTotal > bestKilled && |
347 | maximumBoundInfeasibility_ < 1.0e-6 && |
348 | scaledRHSError < 1.0e-2) { |
349 | bestKilled = numberFixedTotal; |
350 | #if KEEP_GOING_IF_FIXED<10 |
351 | COIN_DETAIL_PRINT(printf("saving alternate\n" )); |
352 | #endif |
353 | saveIteration2 = numberIterations_; |
354 | if (!savePi2) { |
355 | savePi2 = new CoinWorkDouble[numberRows_]; |
356 | savePrimal2 = new CoinWorkDouble [numberTotal]; |
357 | } |
358 | CoinMemcpyN(dualArray, numberRows_, savePi2); |
359 | CoinMemcpyN(solution_, numberTotal, savePrimal2); |
360 | } |
361 | if (sloppyOptimal) { |
362 | // vaguely optimal |
363 | if (maximumBoundInfeasibility_ > 1.0e-2 || |
364 | scaledRHSError > 1.0e-2 || |
365 | maximumDualError_ > objectiveNorm_ * 1.0e-2) { |
366 | handler_->message(CLP_BARRIER_EXIT2, messages_) |
367 | << saveIteration |
368 | << CoinMessageEol; |
369 | problemStatus_ = 0; // benefit of doubt |
370 | break; |
371 | } |
372 | } else { |
373 | // not close to optimal but check if getting bad |
374 | CoinWorkDouble scaledRHSError = maximumRHSError_ / (solutionNorm_ + 10.0); |
375 | if ((maximumBoundInfeasibility_ > 1.0e-1 || |
376 | scaledRHSError > 1.0e-1 || |
377 | maximumDualError_ > objectiveNorm_ * 1.0e-1) |
378 | && (numberIterations_ > 50 |
379 | && complementarityGap_ > 0.9 * historyInfeasibility_[0])) { |
380 | handler_->message(CLP_BARRIER_EXIT2, messages_) |
381 | << saveIteration |
382 | << CoinMessageEol; |
383 | break; |
384 | } |
385 | if (complementarityGap_ > 0.95 * checkGap && bestObjectiveGap < 1.0e-3 && |
386 | (numberIterations_ > saveIteration + 5 || numberIterations_ > 100)) { |
387 | handler_->message(CLP_BARRIER_EXIT2, messages_) |
388 | << saveIteration |
389 | << CoinMessageEol; |
390 | break; |
391 | } |
392 | } |
393 | } |
394 | if (complementarityGap_ > 0.5 * checkGap && primalObjective_ > |
395 | bestObjective + 1.0e-9 && |
396 | (numberIterations_ > saveIteration + 5 || numberIterations_ > 100)) { |
397 | handler_->message(CLP_BARRIER_EXIT2, messages_) |
398 | << saveIteration |
399 | << CoinMessageEol; |
400 | break; |
401 | } |
402 | } |
403 | if ((gapO < 1.0e-6 || (gapO < 1.0e-4 && complementarityGap_ < 0.1)) && !sloppyOptimal) { |
404 | sloppyOptimal = true; |
405 | handler_->message(CLP_BARRIER_CLOSE_TO_OPTIMAL, messages_) |
406 | << numberIterations_ << static_cast<double>(complementarityGap_) |
407 | << CoinMessageEol; |
408 | } |
409 | int numberBack = quadraticObj ? 10 : 5; |
410 | //tryJustPredictor=true; |
411 | //printf("trying just predictor\n"); |
412 | //} |
413 | if (complementarityGap_ >= 1.05 * lastComplementarityGap) { |
414 | handler_->message(CLP_BARRIER_COMPLEMENTARITY, messages_) |
415 | << static_cast<double>(complementarityGap_) << "increasing" |
416 | << CoinMessageEol; |
417 | if (saveIteration >= 0 && sloppyOptimal) { |
418 | handler_->message(CLP_BARRIER_EXIT2, messages_) |
419 | << saveIteration |
420 | << CoinMessageEol; |
421 | break; |
422 | } else if (numberIterations_ - lastGoodIteration >= numberBack && |
423 | complementarityGap_ < 1.0e-6) { |
424 | break; // not doing very well - give up |
425 | } |
426 | } else if (complementarityGap_ < goodGapChange * lastComplementarityGap) { |
427 | lastGoodIteration = numberIterations_; |
428 | lastComplementarityGap = complementarityGap_; |
429 | } else if (numberIterations_ - lastGoodIteration >= numberBack && |
430 | complementarityGap_ < 1.0e-3) { |
431 | handler_->message(CLP_BARRIER_COMPLEMENTARITY, messages_) |
432 | << static_cast<double>(complementarityGap_) << "not decreasing" |
433 | << CoinMessageEol; |
434 | if (gapO > 0.75 * lastGood && numberFixed < KEEP_GOING_IF_FIXED) { |
435 | break; |
436 | } |
437 | } else if (numberIterations_ - lastGoodIteration >= 2 && |
438 | complementarityGap_ < 1.0e-6) { |
439 | handler_->message(CLP_BARRIER_COMPLEMENTARITY, messages_) |
440 | << static_cast<double>(complementarityGap_) << "not decreasing" |
441 | << CoinMessageEol; |
442 | break; |
443 | } |
444 | if (numberIterations_ > maximumBarrierIterations_ || hitMaximumIterations()) { |
445 | handler_->message(CLP_BARRIER_STOPPING, messages_) |
446 | << CoinMessageEol; |
447 | problemStatus_ = 3; |
448 | onStopped(); // set secondary status |
449 | break; |
450 | } |
451 | if (gapO < targetGap_) { |
452 | problemStatus_ = 0; |
453 | handler_->message(CLP_BARRIER_EXIT, messages_) |
454 | << " " |
455 | << CoinMessageEol; |
456 | break;//finished |
457 | } |
458 | if (complementarityGap_ < 1.0e-12) { |
459 | problemStatus_ = 0; |
460 | handler_->message(CLP_BARRIER_EXIT, messages_) |
461 | << "- small complementarity gap" |
462 | << CoinMessageEol; |
463 | break;//finished |
464 | } |
465 | if (complementarityGap_ < 1.0e-10 && gapO < 1.0e-10) { |
466 | problemStatus_ = 0; |
467 | handler_->message(CLP_BARRIER_EXIT, messages_) |
468 | << "- objective gap and complementarity gap both small" |
469 | << CoinMessageEol; |
470 | break;//finished |
471 | } |
472 | if (gapO < 1.0e-9) { |
473 | CoinWorkDouble value = gapO * complementarityGap_; |
474 | value *= actualPrimalStep_; |
475 | value *= actualDualStep_; |
476 | //std::cout<<value<<std::endl; |
477 | if (value < 1.0e-17 && numberIterations_ > lastGoodIteration) { |
478 | problemStatus_ = 0; |
479 | handler_->message(CLP_BARRIER_EXIT, messages_) |
480 | << "- objective gap and complementarity gap both smallish and small steps" |
481 | << CoinMessageEol; |
482 | break;//finished |
483 | } |
484 | } |
485 | CoinWorkDouble nextGap = COIN_DBL_MAX; |
486 | int nextNumber = 0; |
487 | int nextNumberItems = 0; |
488 | worstDirectionAccuracy_ = 0.0; |
489 | int newDropped = 0; |
490 | //Predictor step |
491 | //prepare for cholesky. Set up scaled diagonal in deltaX |
492 | // ** for efficiency may be better if scale factor known before |
493 | CoinWorkDouble norm2 = 0.0; |
494 | CoinWorkDouble maximumValue; |
495 | getNorms(diagonal_, numberTotal, maximumValue, norm2); |
496 | diagonalNorm_ = CoinSqrt(norm2 / numberComplementarityPairs_); |
497 | diagonalScaleFactor_ = 1.0; |
498 | CoinWorkDouble maximumAllowable = eScale; |
499 | //scale so largest is less than allowable ? could do better |
500 | CoinWorkDouble factor = 0.5; |
501 | while (maximumValue > maximumAllowable) { |
502 | diagonalScaleFactor_ *= factor; |
503 | maximumValue *= factor; |
504 | } /* endwhile */ |
505 | if (diagonalScaleFactor_ != 1.0) { |
506 | handler_->message(CLP_BARRIER_SCALING, messages_) |
507 | << "diagonal" << static_cast<double>(diagonalScaleFactor_) |
508 | << CoinMessageEol; |
509 | diagonalNorm_ *= diagonalScaleFactor_; |
510 | } |
511 | multiplyAdd(NULL, numberTotal, 0.0, diagonal_, |
512 | diagonalScaleFactor_); |
513 | int * rowsDroppedThisTime = new int [numberRows_]; |
514 | newDropped = cholesky_->factorize(diagonal_, rowsDroppedThisTime); |
515 | if (newDropped) { |
516 | if (newDropped == -1) { |
517 | COIN_DETAIL_PRINT(printf("Out of memory\n" )); |
518 | problemStatus_ = 4; |
519 | //delete all temporary regions |
520 | deleteWorkingData(); |
521 | if (saveMatrix) { |
522 | // restore normal copy |
523 | delete matrix_; |
524 | matrix_ = saveMatrix; |
525 | } |
526 | return -1; |
527 | } else { |
528 | #ifndef NDEBUG |
529 | //int newDropped2=cholesky_->factorize(diagonal_,rowsDroppedThisTime); |
530 | //assert(!newDropped2); |
531 | #endif |
532 | if (newDropped < 0 && 0) { |
533 | //replace dropped |
534 | newDropped = -newDropped; |
535 | //off 1 to allow for reset all |
536 | newDropped--; |
537 | //set all bits false |
538 | cholesky_->resetRowsDropped(); |
539 | } |
540 | } |
541 | } |
542 | delete [] rowsDroppedThisTime; |
543 | if (cholesky_->status()) { |
544 | std::cout << "bad cholesky?" << std::endl; |
545 | abort(); |
546 | } |
547 | int phase = 0; // predictor, corrector , primal dual |
548 | CoinWorkDouble directionAccuracy = 0.0; |
549 | bool doCorrector = true; |
550 | bool goodMove = true; |
551 | //set up for affine direction |
552 | setupForSolve(phase); |
553 | if ((modeSwitch & 2) == 0) { |
554 | directionAccuracy = findDirectionVector(phase); |
555 | if (directionAccuracy > worstDirectionAccuracy_) { |
556 | worstDirectionAccuracy_ = directionAccuracy; |
557 | } |
558 | if (saveIteration > 0 && directionAccuracy > 1.0) { |
559 | handler_->message(CLP_BARRIER_EXIT2, messages_) |
560 | << saveIteration |
561 | << CoinMessageEol; |
562 | break; |
563 | } |
564 | findStepLength(phase); |
565 | nextGap = complementarityGap(nextNumber, nextNumberItems, 1); |
566 | debugMove(0, actualPrimalStep_, actualDualStep_); |
567 | debugMove(0, 1.0e-2, 1.0e-2); |
568 | } |
569 | CoinWorkDouble affineGap = nextGap; |
570 | int bestPhase = 0; |
571 | CoinWorkDouble bestNextGap = nextGap; |
572 | // ? |
573 | bestNextGap = CoinMax(nextGap, 0.8 * complementarityGap_); |
574 | if (quadraticObj) |
575 | bestNextGap = CoinMax(nextGap, 0.99 * complementarityGap_); |
576 | if (complementarityGap_ > 1.0e-4 * numberComplementarityPairs_) { |
577 | //std::cout <<"predicted duality gap "<<nextGap<<std::endl; |
578 | CoinWorkDouble part1 = nextGap / numberComplementarityPairs_; |
579 | part1 = nextGap / numberComplementarityItems_; |
580 | CoinWorkDouble part2 = nextGap / complementarityGap_; |
581 | mu_ = part1 * part2 * part2; |
582 | #if 0 |
583 | CoinWorkDouble papermu = complementarityGap_ / numberComplementarityPairs_; |
584 | CoinWorkDouble affmu = nextGap / nextNumber; |
585 | CoinWorkDouble sigma = pow(affmu / papermu, 3); |
586 | printf("mu %g, papermu %g, affmu %g, sigma %g sigmamu %g\n" , |
587 | mu_, papermu, affmu, sigma, sigma * papermu); |
588 | #endif |
589 | //printf("paper mu %g\n",(nextGap*nextGap*nextGap)/(complementarityGap_*complementarityGap_* |
590 | // (CoinWorkDouble) numberComplementarityPairs_)); |
591 | } else { |
592 | CoinWorkDouble phi; |
593 | if (numberComplementarityPairs_ <= 5000) { |
594 | phi = pow(static_cast<CoinWorkDouble> (numberComplementarityPairs_), 2.0); |
595 | } else { |
596 | phi = pow(static_cast<CoinWorkDouble> (numberComplementarityPairs_), 1.5); |
597 | if (phi < 500.0 * 500.0) { |
598 | phi = 500.0 * 500.0; |
599 | } |
600 | } |
601 | mu_ = complementarityGap_ / phi; |
602 | } |
603 | //save information |
604 | CoinWorkDouble product = affineProduct(); |
605 | #if 0 |
606 | //can we do corrector step? |
607 | CoinWorkDouble xx = complementarityGap_ * (beta2 - tau) + product; |
608 | if (xx > 0.0) { |
609 | CoinWorkDouble saveMu = mu_; |
610 | CoinWorkDouble mu2 = numberComplementarityPairs_; |
611 | mu2 = xx / mu2; |
612 | if (mu2 > mu_) { |
613 | //std::cout<<" could increase to "<<mu2<<std::endl; |
614 | //was mu2=mu2*0.25; |
615 | mu2 = mu2 * 0.99; |
616 | if (mu2 < mu_) { |
617 | mu_ = mu2; |
618 | //std::cout<<" changing mu to "<<mu_<<std::endl; |
619 | } else { |
620 | //std::cout<<std::endl; |
621 | } |
622 | } else { |
623 | //std::cout<<" should decrease to "<<mu2<<std::endl; |
624 | mu_ = 0.5 * mu2; |
625 | //std::cout<<" changing mu to "<<mu_<<std::endl; |
626 | } |
627 | handler_->message(CLP_BARRIER_MU, messages_) |
628 | << saveMu << mu_ |
629 | << CoinMessageEol; |
630 | } else { |
631 | //std::cout<<" bad by any standards"<<std::endl; |
632 | } |
633 | #endif |
634 | if (complementarityGap_*(beta2 - tau) + product - mu_ * numberComplementarityPairs_ < 0.0 && 0) { |
635 | #ifdef SOME_DEBUG |
636 | printf("failed 1 product %.18g mu %.18g - %.18g < 0.0, nextGap %.18g\n" , product, mu_, |
637 | complementarityGap_*(beta2 - tau) + product - mu_ * numberComplementarityPairs_, |
638 | nextGap); |
639 | #endif |
640 | doCorrector = false; |
641 | if (nextGap > 0.9 * complementarityGap_ || 1) { |
642 | goodMove = false; |
643 | bestNextGap = COIN_DBL_MAX; |
644 | } |
645 | //CoinWorkDouble floatNumber = 2.0*numberComplementarityPairs_; |
646 | //floatNumber = 1.0*numberComplementarityItems_; |
647 | //mu_=nextGap/floatNumber; |
648 | handler_->message(CLP_BARRIER_INFO, messages_) |
649 | << "no corrector step" |
650 | << CoinMessageEol; |
651 | } else { |
652 | phase = 1; |
653 | } |
654 | // If bad gap - try standard primal dual |
655 | if (nextGap > complementarityGap_ * 1.001) |
656 | goodMove = false; |
657 | if ((modeSwitch & 2) != 0) |
658 | goodMove = false; |
659 | if (goodMove && doCorrector) { |
660 | CoinMemcpyN(deltaX_, numberTotal, saveX); |
661 | CoinMemcpyN(deltaY_, numberRows_, saveY); |
662 | CoinMemcpyN(deltaZ_, numberTotal, saveZ); |
663 | CoinMemcpyN(deltaW_, numberTotal, saveW); |
664 | CoinMemcpyN(deltaSL_, numberTotal, saveSL); |
665 | CoinMemcpyN(deltaSU_, numberTotal, saveSU); |
666 | #ifdef HALVE |
667 | CoinWorkDouble savePrimalStep = actualPrimalStep_; |
668 | CoinWorkDouble saveDualStep = actualDualStep_; |
669 | CoinWorkDouble saveMu = mu_; |
670 | #endif |
671 | //set up for next step |
672 | setupForSolve(phase); |
673 | CoinWorkDouble directionAccuracy2 = findDirectionVector(phase); |
674 | if (directionAccuracy2 > worstDirectionAccuracy_) { |
675 | worstDirectionAccuracy_ = directionAccuracy2; |
676 | } |
677 | CoinWorkDouble testValue = 1.0e2 * directionAccuracy; |
678 | if (1.0e2 * projectionTolerance_ > testValue) { |
679 | testValue = 1.0e2 * projectionTolerance_; |
680 | } |
681 | if (primalTolerance() > testValue) { |
682 | testValue = primalTolerance(); |
683 | } |
684 | if (maximumRHSError_ > testValue) { |
685 | testValue = maximumRHSError_; |
686 | } |
687 | if (directionAccuracy2 > testValue && numberIterations_ >= -77) { |
688 | goodMove = false; |
689 | #ifdef SOME_DEBUG |
690 | printf("accuracy %g phase 1 failed, test value %g\n" , |
691 | directionAccuracy2, testValue); |
692 | #endif |
693 | } |
694 | if (goodMove) { |
695 | phase = 1; |
696 | CoinWorkDouble norm = findStepLength(phase); |
697 | nextGap = complementarityGap(nextNumber, nextNumberItems, 1); |
698 | debugMove(1, actualPrimalStep_, actualDualStep_); |
699 | //debugMove(1,1.0e-7,1.0e-7); |
700 | goodMove = checkGoodMove(true, bestNextGap, allowIncreasingGap); |
701 | if (norm < 0) |
702 | goodMove = false; |
703 | if (!goodMove) { |
704 | #ifdef SOME_DEBUG |
705 | printf("checkGoodMove failed\n" ); |
706 | #endif |
707 | } |
708 | } |
709 | #ifdef HALVE |
710 | int nHalve = 0; |
711 | // relax test |
712 | bestNextGap = CoinMax(bestNextGap, 0.9 * complementarityGap_); |
713 | while (!goodMove) { |
714 | mu_ = saveMu; |
715 | actualPrimalStep_ = savePrimalStep; |
716 | actualDualStep_ = saveDualStep; |
717 | int i; |
718 | //printf("halve %d\n",nHalve); |
719 | nHalve++; |
720 | const CoinWorkDouble lambda = 0.5; |
721 | for (i = 0; i < numberRows_; i++) |
722 | deltaY_[i] = lambda * deltaY_[i] + (1.0 - lambda) * saveY[i]; |
723 | for (i = 0; i < numberTotal; i++) { |
724 | deltaX_[i] = lambda * deltaX_[i] + (1.0 - lambda) * saveX[i]; |
725 | deltaZ_[i] = lambda * deltaZ_[i] + (1.0 - lambda) * saveZ[i]; |
726 | deltaW_[i] = lambda * deltaW_[i] + (1.0 - lambda) * saveW[i]; |
727 | deltaSL_[i] = lambda * deltaSL_[i] + (1.0 - lambda) * saveSL[i]; |
728 | deltaSU_[i] = lambda * deltaSU_[i] + (1.0 - lambda) * saveSU[i]; |
729 | } |
730 | CoinMemcpyN(saveX, numberTotal, deltaX_); |
731 | CoinMemcpyN(saveY, numberRows_, deltaY_); |
732 | CoinMemcpyN(saveZ, numberTotal, deltaZ_); |
733 | CoinMemcpyN(saveW, numberTotal, deltaW_); |
734 | CoinMemcpyN(saveSL, numberTotal, deltaSL_); |
735 | CoinMemcpyN(saveSU, numberTotal, deltaSU_); |
736 | findStepLength(1); |
737 | nextGap = complementarityGap(nextNumber, nextNumberItems, 1); |
738 | goodMove = checkGoodMove(true, bestNextGap, allowIncreasingGap); |
739 | if (nHalve > 10) |
740 | break; |
741 | //assert (goodMove); |
742 | } |
743 | if (nHalve && handler_->logLevel() > 2) |
744 | printf("halved %d times\n" , nHalve); |
745 | #endif |
746 | } |
747 | //bestPhase=-1; |
748 | //goodMove=false; |
749 | if (!goodMove) { |
750 | // Just primal dual step |
751 | CoinWorkDouble floatNumber; |
752 | floatNumber = 2.0 * numberComplementarityPairs_; |
753 | //floatNumber = numberComplementarityItems_; |
754 | CoinWorkDouble saveMu = mu_; // use one from predictor corrector |
755 | mu_ = complementarityGap_ / floatNumber; |
756 | // If going well try small mu |
757 | mu_ *= CoinSqrt((1.0 - lastStep) / (1.0 + 10.0 * lastStep)); |
758 | CoinWorkDouble mu1 = mu_; |
759 | CoinWorkDouble phi; |
760 | if (numberComplementarityPairs_ <= 500) { |
761 | phi = pow(static_cast<CoinWorkDouble> (numberComplementarityPairs_), 2.0); |
762 | } else { |
763 | phi = pow(static_cast<CoinWorkDouble> (numberComplementarityPairs_), 1.5); |
764 | if (phi < 500.0 * 500.0) { |
765 | phi = 500.0 * 500.0; |
766 | } |
767 | } |
768 | mu_ = complementarityGap_ / phi; |
769 | //printf("pd mu %g, alternate %g, smallest %g\n", |
770 | // mu_,mu1,smallestPrimalDualMu); |
771 | mu_ = CoinSqrt(mu_ * mu1); |
772 | mu_ = mu1; |
773 | if ((numberIterations_ & 1) == 0 || numberIterations_ < 10) |
774 | mu_ = saveMu; |
775 | //mu_=CoinMin(smallestPrimalDualMu*0.95,mu_); |
776 | smallestPrimalDualMu = mu_; |
777 | // Try simpler |
778 | floatNumber = numberComplementarityItems_; |
779 | mu_ = 0.5 * complementarityGap_ / floatNumber; |
780 | //if ((modeSwitch&2)==0) { |
781 | //if ((numberIterations_&1)==0) |
782 | // mu_ *= 0.5; |
783 | //} else { |
784 | //mu_ *= 0.8; |
785 | //} |
786 | //set up for next step |
787 | setupForSolve(2); |
788 | findDirectionVector(2); |
789 | CoinWorkDouble norm = findStepLength(2); |
790 | // just for debug |
791 | bestNextGap = complementarityGap_ * 1.0005; |
792 | //bestNextGap=COIN_DBL_MAX; |
793 | nextGap = complementarityGap(nextNumber, nextNumberItems, 2); |
794 | debugMove(2, actualPrimalStep_, actualDualStep_); |
795 | //debugMove(2,1.0e-7,1.0e-7); |
796 | checkGoodMove(false, bestNextGap, allowIncreasingGap); |
797 | if ((nextGap > 0.9 * complementarityGap_ && bestPhase == 0 && affineGap < nextGap |
798 | && (numberIterations_ > 80 || (numberIterations_ > 20 && quadraticObj))) || norm < 0.0) { |
799 | // Back to affine |
800 | phase = 0; |
801 | setupForSolve(phase); |
802 | directionAccuracy = findDirectionVector(phase); |
803 | findStepLength(phase); |
804 | nextGap = complementarityGap(nextNumber, nextNumberItems, 1); |
805 | bestNextGap = complementarityGap_; |
806 | //checkGoodMove(false, bestNextGap,allowIncreasingGap); |
807 | } |
808 | } |
809 | if (numberIterations_ == 0) |
810 | smallestPrimalDualMu = mu_; |
811 | if (!goodMove) |
812 | mu_ = nextGap / (static_cast<CoinWorkDouble> (nextNumber) * 1.1); |
813 | //if (quadraticObj) |
814 | //goodMove=true; |
815 | //goodMove=false; //TEMP |
816 | // Do centering steps |
817 | int numberTries = 0; |
818 | CoinWorkDouble nextCenterGap = 0.0; |
819 | int numberGoodTries = 0; |
820 | #ifdef COIN_DETAIL |
821 | CoinWorkDouble originalDualStep = actualDualStep_; |
822 | CoinWorkDouble originalPrimalStep = actualPrimalStep_; |
823 | #endif |
824 | if (actualDualStep_ > 0.9 && actualPrimalStep_ > 0.9) |
825 | goodMove = false; // don't bother |
826 | if ((modeSwitch & 1) != 0) |
827 | goodMove = false; |
828 | while (goodMove && numberTries < 5) { |
829 | goodMove = false; |
830 | numberTries++; |
831 | CoinMemcpyN(deltaX_, numberTotal, saveX); |
832 | CoinMemcpyN(deltaY_, numberRows_, saveY); |
833 | CoinMemcpyN(deltaZ_, numberTotal, saveZ); |
834 | CoinMemcpyN(deltaW_, numberTotal, saveW); |
835 | CoinWorkDouble savePrimalStep = actualPrimalStep_; |
836 | CoinWorkDouble saveDualStep = actualDualStep_; |
837 | CoinWorkDouble saveMu = mu_; |
838 | setupForSolve(3); |
839 | findDirectionVector(3); |
840 | findStepLength(3); |
841 | debugMove(3, actualPrimalStep_, actualDualStep_); |
842 | //debugMove(3,1.0e-7,1.0e-7); |
843 | CoinWorkDouble xGap = complementarityGap(nextNumber, nextNumberItems, 3); |
844 | // If one small then that's the one that counts |
845 | CoinWorkDouble checkDual = saveDualStep; |
846 | CoinWorkDouble checkPrimal = savePrimalStep; |
847 | if (checkDual > 5.0 * checkPrimal) { |
848 | checkDual = 2.0 * checkPrimal; |
849 | } else if (checkPrimal > 5.0 * checkDual) { |
850 | checkPrimal = 2.0 * checkDual; |
851 | } |
852 | if (actualPrimalStep_ < checkPrimal || |
853 | actualDualStep_ < checkDual || |
854 | (xGap > nextGap && xGap > 0.9 * complementarityGap_)) { |
855 | //if (actualPrimalStep_<=checkPrimal|| |
856 | //actualDualStep_<=checkDual) { |
857 | #ifdef SOME_DEBUG |
858 | printf("PP rejected gap %.18g, steps %.18g %.18g, 2 gap %.18g, steps %.18g %.18g\n" , xGap, |
859 | actualPrimalStep_, actualDualStep_, nextGap, savePrimalStep, saveDualStep); |
860 | #endif |
861 | mu_ = saveMu; |
862 | actualPrimalStep_ = savePrimalStep; |
863 | actualDualStep_ = saveDualStep; |
864 | CoinMemcpyN(saveX, numberTotal, deltaX_); |
865 | CoinMemcpyN(saveY, numberRows_, deltaY_); |
866 | CoinMemcpyN(saveZ, numberTotal, deltaZ_); |
867 | CoinMemcpyN(saveW, numberTotal, deltaW_); |
868 | } else { |
869 | #ifdef SOME_DEBUG |
870 | printf("PPphase 3 gap %.18g, steps %.18g %.18g, 2 gap %.18g, steps %.18g %.18g\n" , xGap, |
871 | actualPrimalStep_, actualDualStep_, nextGap, savePrimalStep, saveDualStep); |
872 | #endif |
873 | numberGoodTries++; |
874 | nextCenterGap = xGap; |
875 | // See if big enough change |
876 | if (actualPrimalStep_ < 1.01 * checkPrimal || |
877 | actualDualStep_ < 1.01 * checkDual) { |
878 | // stop now |
879 | } else { |
880 | // carry on |
881 | goodMove = true; |
882 | } |
883 | } |
884 | } |
885 | if (numberGoodTries && handler_->logLevel() > 1) { |
886 | COIN_DETAIL_PRINT(printf("%d centering steps moved from (gap %.18g, dual %.18g, primal %.18g) to (gap %.18g, dual %.18g, primal %.18g)\n" , |
887 | numberGoodTries, static_cast<double>(nextGap), static_cast<double>(originalDualStep), |
888 | static_cast<double>(originalPrimalStep), |
889 | static_cast<double>(nextCenterGap), static_cast<double>(actualDualStep_), |
890 | static_cast<double>(actualPrimalStep_))); |
891 | } |
892 | // save last gap |
893 | checkGap = complementarityGap_; |
894 | numberFixed = updateSolution(nextGap); |
895 | numberFixedTotal += numberFixed; |
896 | } /* endwhile */ |
897 | delete [] saveX; |
898 | delete [] saveY; |
899 | delete [] saveZ; |
900 | delete [] saveW; |
901 | delete [] saveSL; |
902 | delete [] saveSU; |
903 | if (savePi) { |
904 | if (numberIterations_ - saveIteration > 20 && |
905 | numberIterations_ - saveIteration2 < 5) { |
906 | #if KEEP_GOING_IF_FIXED<10 |
907 | std::cout << "Restoring2 from iteration " << saveIteration2 << std::endl; |
908 | #endif |
909 | CoinMemcpyN(savePi2, numberRows_, dualArray); |
910 | CoinMemcpyN(savePrimal2, numberTotal, solution_); |
911 | } else { |
912 | #if KEEP_GOING_IF_FIXED<10 |
913 | std::cout << "Restoring from iteration " << saveIteration << std::endl; |
914 | #endif |
915 | CoinMemcpyN(savePi, numberRows_, dualArray); |
916 | CoinMemcpyN(savePrimal, numberTotal, solution_); |
917 | } |
918 | delete [] savePi; |
919 | delete [] savePrimal; |
920 | } |
921 | delete [] savePi2; |
922 | delete [] savePrimal2; |
923 | //recompute slacks |
924 | // Split out solution |
925 | CoinZeroN(rowActivity_, numberRows_); |
926 | CoinMemcpyN(solution_, numberColumns_, columnActivity_); |
927 | matrix_->times(1.0, columnActivity_, rowActivity_); |
928 | //unscale objective |
929 | multiplyAdd(NULL, numberTotal, 0.0, cost_, scaleFactor_); |
930 | multiplyAdd(NULL, numberRows_, 0, dualArray, scaleFactor_); |
931 | checkSolution(); |
932 | //CoinMemcpyN(reducedCost_,numberColumns_,dj_); |
933 | // If quadratic use last solution |
934 | // Restore quadratic objective if necessary |
935 | if (saveObjective) { |
936 | delete objective_; |
937 | objective_ = saveObjective; |
938 | objectiveValue_ = 0.5 * (primalObjective_ + dualObjective_); |
939 | } |
940 | handler_->message(CLP_BARRIER_END, messages_) |
941 | << static_cast<double>(sumPrimalInfeasibilities_) |
942 | << static_cast<double>(sumDualInfeasibilities_) |
943 | << static_cast<double>(complementarityGap_) |
944 | << static_cast<double>(objectiveValue()) |
945 | << CoinMessageEol; |
946 | //#ifdef SOME_DEBUG |
947 | if (handler_->logLevel() > 1) |
948 | COIN_DETAIL_PRINT(printf("ENDRUN status %d after %d iterations\n" , problemStatus_, numberIterations_)); |
949 | //#endif |
950 | //std::cout<<"Absolute primal infeasibility at end "<<sumPrimalInfeasibilities_<<std::endl; |
951 | //std::cout<<"Absolute dual infeasibility at end "<<sumDualInfeasibilities_<<std::endl; |
952 | //std::cout<<"Absolute complementarity at end "<<complementarityGap_<<std::endl; |
953 | //std::cout<<"Primal objective "<<objectiveValue()<<std::endl; |
954 | //std::cout<<"maximum complementarity "<<worstComplementarity_<<std::endl; |
955 | #if COIN_LONG_WORK |
956 | // put back dual |
957 | delete [] dual_; |
958 | delete [] reducedCost_; |
959 | dual_ = dualSave; |
960 | reducedCost_ = reducedCostSave; |
961 | #endif |
962 | //delete all temporary regions |
963 | deleteWorkingData(); |
964 | #if KEEP_GOING_IF_FIXED<10 |
965 | #if 0 //ndef NDEBUG |
966 | { |
967 | static int kk = 0; |
968 | char name[20]; |
969 | sprintf(name, "save.sol.%d" , kk); |
970 | kk++; |
971 | printf("saving to file %s\n" , name); |
972 | FILE * fp = fopen(name, "wb" ); |
973 | int numberWritten; |
974 | numberWritten = fwrite(&numberColumns_, sizeof(int), 1, fp); |
975 | assert (numberWritten == 1); |
976 | numberWritten = fwrite(columnActivity_, sizeof(double), numberColumns_, fp); |
977 | assert (numberWritten == numberColumns_); |
978 | fclose(fp); |
979 | } |
980 | #endif |
981 | #endif |
982 | if (saveMatrix) { |
983 | // restore normal copy |
984 | delete matrix_; |
985 | matrix_ = saveMatrix; |
986 | } |
987 | return problemStatus_; |
988 | } |
989 | // findStepLength. |
990 | //phase - 0 predictor |
991 | // 1 corrector |
992 | // 2 primal dual |
993 | CoinWorkDouble ClpPredictorCorrector::findStepLength( int phase) |
994 | { |
995 | CoinWorkDouble directionNorm = 0.0; |
996 | CoinWorkDouble maximumPrimalStep = COIN_DBL_MAX * 1.0e-20; |
997 | CoinWorkDouble maximumDualStep = COIN_DBL_MAX; |
998 | int numberTotal = numberRows_ + numberColumns_; |
999 | CoinWorkDouble tolerance = 1.0e-12; |
1000 | int chosenPrimalSequence = -1; |
1001 | int chosenDualSequence = -1; |
1002 | bool lowPrimal = false; |
1003 | bool lowDual = false; |
1004 | // If done many iterations then allow to hit boundary |
1005 | CoinWorkDouble hitTolerance; |
1006 | //printf("objective norm %g\n",objectiveNorm_); |
1007 | if (numberIterations_ < 80 || !gonePrimalFeasible_) |
1008 | hitTolerance = COIN_DBL_MAX; |
1009 | else |
1010 | hitTolerance = CoinMax(1.0e3, 1.0e-3 * objectiveNorm_); |
1011 | int iColumn; |
1012 | //printf("dual value %g\n",dual_[0]); |
1013 | //printf(" X dX lS dlS uS dUs dj Z dZ t dT\n"); |
1014 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
1015 | if (!flagged(iColumn)) { |
1016 | CoinWorkDouble directionElement = deltaX_[iColumn]; |
1017 | if (directionNorm < CoinAbs(directionElement)) { |
1018 | directionNorm = CoinAbs(directionElement); |
1019 | } |
1020 | if (lowerBound(iColumn)) { |
1021 | CoinWorkDouble delta = - deltaSL_[iColumn]; |
1022 | CoinWorkDouble z1 = deltaZ_[iColumn]; |
1023 | CoinWorkDouble newZ = zVec_[iColumn] + z1; |
1024 | if (zVec_[iColumn] > tolerance) { |
1025 | if (zVec_[iColumn] < -z1 * maximumDualStep) { |
1026 | maximumDualStep = -zVec_[iColumn] / z1; |
1027 | chosenDualSequence = iColumn; |
1028 | lowDual = true; |
1029 | } |
1030 | } |
1031 | if (lowerSlack_[iColumn] < maximumPrimalStep * delta) { |
1032 | CoinWorkDouble newStep = lowerSlack_[iColumn] / delta; |
1033 | if (newStep > 0.2 || newZ < hitTolerance || delta > 1.0e3 || delta <= 1.0e-6 || dj_[iColumn] < hitTolerance) { |
1034 | maximumPrimalStep = newStep; |
1035 | chosenPrimalSequence = iColumn; |
1036 | lowPrimal = true; |
1037 | } else { |
1038 | //printf("small %d delta %g newZ %g step %g\n",iColumn,delta,newZ,newStep); |
1039 | } |
1040 | } |
1041 | } |
1042 | if (upperBound(iColumn)) { |
1043 | CoinWorkDouble delta = - deltaSU_[iColumn]; |
1044 | CoinWorkDouble w1 = deltaW_[iColumn]; |
1045 | CoinWorkDouble newT = wVec_[iColumn] + w1; |
1046 | if (wVec_[iColumn] > tolerance) { |
1047 | if (wVec_[iColumn] < -w1 * maximumDualStep) { |
1048 | maximumDualStep = -wVec_[iColumn] / w1; |
1049 | chosenDualSequence = iColumn; |
1050 | lowDual = false; |
1051 | } |
1052 | } |
1053 | if (upperSlack_[iColumn] < maximumPrimalStep * delta) { |
1054 | CoinWorkDouble newStep = upperSlack_[iColumn] / delta; |
1055 | if (newStep > 0.2 || newT < hitTolerance || delta > 1.0e3 || delta <= 1.0e-6 || dj_[iColumn] > -hitTolerance) { |
1056 | maximumPrimalStep = newStep; |
1057 | chosenPrimalSequence = iColumn; |
1058 | lowPrimal = false; |
1059 | } else { |
1060 | //printf("small %d delta %g newT %g step %g\n",iColumn,delta,newT,newStep); |
1061 | } |
1062 | } |
1063 | } |
1064 | } |
1065 | } |
1066 | #ifdef SOME_DEBUG |
1067 | printf("new step - phase %d, norm %.18g, dual step %.18g, primal step %.18g\n" , |
1068 | phase, directionNorm, maximumDualStep, maximumPrimalStep); |
1069 | if (lowDual) |
1070 | printf("ld %d %g %g => %g (dj %g,sol %g) " , |
1071 | chosenDualSequence, zVec_[chosenDualSequence], |
1072 | deltaZ_[chosenDualSequence], zVec_[chosenDualSequence] + |
1073 | maximumDualStep * deltaZ_[chosenDualSequence], dj_[chosenDualSequence], |
1074 | solution_[chosenDualSequence]); |
1075 | else |
1076 | printf("ud %d %g %g => %g (dj %g,sol %g) " , |
1077 | chosenDualSequence, wVec_[chosenDualSequence], |
1078 | deltaW_[chosenDualSequence], wVec_[chosenDualSequence] + |
1079 | maximumDualStep * deltaW_[chosenDualSequence], dj_[chosenDualSequence], |
1080 | solution_[chosenDualSequence]); |
1081 | if (lowPrimal) |
1082 | printf("lp %d %g %g => %g (dj %g,sol %g)\n" , |
1083 | chosenPrimalSequence, lowerSlack_[chosenPrimalSequence], |
1084 | deltaSL_[chosenPrimalSequence], lowerSlack_[chosenPrimalSequence] + |
1085 | maximumPrimalStep * deltaSL_[chosenPrimalSequence], |
1086 | dj_[chosenPrimalSequence], solution_[chosenPrimalSequence]); |
1087 | else |
1088 | printf("up %d %g %g => %g (dj %g,sol %g)\n" , |
1089 | chosenPrimalSequence, upperSlack_[chosenPrimalSequence], |
1090 | deltaSU_[chosenPrimalSequence], upperSlack_[chosenPrimalSequence] + |
1091 | maximumPrimalStep * deltaSU_[chosenPrimalSequence], |
1092 | dj_[chosenPrimalSequence], solution_[chosenPrimalSequence]); |
1093 | #endif |
1094 | actualPrimalStep_ = stepLength_ * maximumPrimalStep; |
1095 | if (phase >= 0 && actualPrimalStep_ > 1.0) { |
1096 | actualPrimalStep_ = 1.0; |
1097 | } |
1098 | actualDualStep_ = stepLength_ * maximumDualStep; |
1099 | if (phase >= 0 && actualDualStep_ > 1.0) { |
1100 | actualDualStep_ = 1.0; |
1101 | } |
1102 | // See if quadratic objective |
1103 | #ifndef NO_RTTI |
1104 | ClpQuadraticObjective * quadraticObj = (dynamic_cast< ClpQuadraticObjective*>(objective_)); |
1105 | #else |
1106 | ClpQuadraticObjective * quadraticObj = NULL; |
1107 | if (objective_->type() == 2) |
1108 | quadraticObj = (static_cast< ClpQuadraticObjective*>(objective_)); |
1109 | #endif |
1110 | if (quadraticObj) { |
1111 | // Use smaller unless very small |
1112 | CoinWorkDouble smallerStep = CoinMin(actualDualStep_, actualPrimalStep_); |
1113 | if (smallerStep > 0.0001) { |
1114 | actualDualStep_ = smallerStep; |
1115 | actualPrimalStep_ = smallerStep; |
1116 | } |
1117 | } |
1118 | #define OFFQ |
1119 | #ifndef OFFQ |
1120 | if (quadraticObj) { |
1121 | // Don't bother if phase 0 or 3 or large gap |
1122 | //if ((phase==1||phase==2||phase==0)&&maximumDualError_>0.1*complementarityGap_ |
1123 | //&&smallerStep>0.001) { |
1124 | if ((phase == 1 || phase == 2 || phase == 0 || phase == 3)) { |
1125 | // minimize complementarity + norm*dual inf ? primal inf |
1126 | // at first - just check better - if not |
1127 | // Complementarity gap will be a*change*change + b*change +c |
1128 | CoinWorkDouble a = 0.0; |
1129 | CoinWorkDouble b = 0.0; |
1130 | CoinWorkDouble c = 0.0; |
1131 | /* SQUARE of dual infeasibility will be: |
1132 | square of dj - ...... |
1133 | */ |
1134 | CoinWorkDouble aq = 0.0; |
1135 | CoinWorkDouble bq = 0.0; |
1136 | CoinWorkDouble cq = 0.0; |
1137 | CoinWorkDouble gamma2 = gamma_ * gamma_; // gamma*gamma will be added to diagonal |
1138 | CoinWorkDouble * linearDjChange = new CoinWorkDouble[numberTotal]; |
1139 | CoinZeroN(linearDjChange, numberColumns_); |
1140 | multiplyAdd(deltaY_, numberRows_, 1.0, linearDjChange + numberColumns_, 0.0); |
1141 | matrix_->transposeTimes(-1.0, deltaY_, linearDjChange); |
1142 | CoinPackedMatrix * quadratic = quadraticObj->quadraticObjective(); |
1143 | const int * columnQuadratic = quadratic->getIndices(); |
1144 | const CoinBigIndex * columnQuadraticStart = quadratic->getVectorStarts(); |
1145 | const int * columnQuadraticLength = quadratic->getVectorLengths(); |
1146 | CoinWorkDouble * quadraticElement = quadratic->getMutableElements(); |
1147 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
1148 | CoinWorkDouble oldPrimal = solution_[iColumn]; |
1149 | if (!flagged(iColumn)) { |
1150 | if (lowerBound(iColumn)) { |
1151 | CoinWorkDouble change = oldPrimal + deltaX_[iColumn] - lowerSlack_[iColumn] - lower_[iColumn]; |
1152 | c += lowerSlack_[iColumn] * zVec_[iColumn]; |
1153 | b += lowerSlack_[iColumn] * deltaZ_[iColumn] + zVec_[iColumn] * change; |
1154 | a += deltaZ_[iColumn] * change; |
1155 | } |
1156 | if (upperBound(iColumn)) { |
1157 | CoinWorkDouble change = upper_[iColumn] - oldPrimal - deltaX_[iColumn] - upperSlack_[iColumn]; |
1158 | c += upperSlack_[iColumn] * wVec_[iColumn]; |
1159 | b += upperSlack_[iColumn] * deltaW_[iColumn] + wVec_[iColumn] * change; |
1160 | a += deltaW_[iColumn] * change; |
1161 | } |
1162 | // new djs are dj_ + change*value |
1163 | CoinWorkDouble djChange = linearDjChange[iColumn]; |
1164 | if (iColumn < numberColumns_) { |
1165 | for (CoinBigIndex j = columnQuadraticStart[iColumn]; |
1166 | j < columnQuadraticStart[iColumn] + columnQuadraticLength[iColumn]; j++) { |
1167 | int jColumn = columnQuadratic[j]; |
1168 | CoinWorkDouble changeJ = deltaX_[jColumn]; |
1169 | CoinWorkDouble elementValue = quadraticElement[j]; |
1170 | djChange += changeJ * elementValue; |
1171 | } |
1172 | } |
1173 | CoinWorkDouble gammaTerm = gamma2; |
1174 | if (primalR_) { |
1175 | gammaTerm += primalR_[iColumn]; |
1176 | } |
1177 | djChange += gammaTerm; |
1178 | // and dual infeasibility |
1179 | CoinWorkDouble oldInf = dj_[iColumn] - zVec_[iColumn] + wVec_[iColumn] + |
1180 | gammaTerm * solution_[iColumn]; |
1181 | CoinWorkDouble changeInf = djChange - deltaZ_[iColumn] + deltaW_[iColumn]; |
1182 | cq += oldInf * oldInf; |
1183 | bq += 2.0 * oldInf * changeInf; |
1184 | aq += changeInf * changeInf; |
1185 | } else { |
1186 | // fixed |
1187 | if (lowerBound(iColumn)) { |
1188 | c += lowerSlack_[iColumn] * zVec_[iColumn]; |
1189 | } |
1190 | if (upperBound(iColumn)) { |
1191 | c += upperSlack_[iColumn] * wVec_[iColumn]; |
1192 | } |
1193 | // new djs are dj_ + change*value |
1194 | CoinWorkDouble djChange = linearDjChange[iColumn]; |
1195 | if (iColumn < numberColumns_) { |
1196 | for (CoinBigIndex j = columnQuadraticStart[iColumn]; |
1197 | j < columnQuadraticStart[iColumn] + columnQuadraticLength[iColumn]; j++) { |
1198 | int jColumn = columnQuadratic[j]; |
1199 | CoinWorkDouble changeJ = deltaX_[jColumn]; |
1200 | CoinWorkDouble elementValue = quadraticElement[j]; |
1201 | djChange += changeJ * elementValue; |
1202 | } |
1203 | } |
1204 | CoinWorkDouble gammaTerm = gamma2; |
1205 | if (primalR_) { |
1206 | gammaTerm += primalR_[iColumn]; |
1207 | } |
1208 | djChange += gammaTerm; |
1209 | // and dual infeasibility |
1210 | CoinWorkDouble oldInf = dj_[iColumn] - zVec_[iColumn] + wVec_[iColumn] + |
1211 | gammaTerm * solution_[iColumn]; |
1212 | CoinWorkDouble changeInf = djChange - deltaZ_[iColumn] + deltaW_[iColumn]; |
1213 | cq += oldInf * oldInf; |
1214 | bq += 2.0 * oldInf * changeInf; |
1215 | aq += changeInf * changeInf; |
1216 | } |
1217 | } |
1218 | delete [] linearDjChange; |
1219 | // ? We want to minimize complementarityGap + solutionNorm_*square of inf ?? |
1220 | // maybe use inf and do line search |
1221 | // To check see if matches at current step |
1222 | CoinWorkDouble step = actualPrimalStep_; |
1223 | //Current gap + solutionNorm_ * CoinSqrt (sum square inf) |
1224 | CoinWorkDouble multiplier = solutionNorm_; |
1225 | multiplier *= 0.01; |
1226 | multiplier = 1.0; |
1227 | CoinWorkDouble currentInf = multiplier * CoinSqrt(cq); |
1228 | CoinWorkDouble nextInf = multiplier * CoinSqrt(CoinMax(cq + step * bq + step * step * aq, 0.0)); |
1229 | CoinWorkDouble allowedIncrease = 1.4; |
1230 | #ifdef SOME_DEBUG |
1231 | printf("lin %g %g %g -> %g\n" , a, b, c, |
1232 | c + b * step + a * step * step); |
1233 | printf("quad %g %g %g -> %g\n" , aq, bq, cq, |
1234 | cq + bq * step + aq * step * step); |
1235 | debugMove(7, step, step); |
1236 | printf ("current dualInf %g, with step of %g is %g\n" , |
1237 | currentInf, step, nextInf); |
1238 | #endif |
1239 | if (b > -1.0e-6) { |
1240 | if (phase != 0) |
1241 | directionNorm = -1.0; |
1242 | } |
1243 | if ((phase == 1 || phase == 2 || phase == 0 || phase == 3) && nextInf > 0.1 * complementarityGap_ && |
1244 | nextInf > currentInf * allowedIncrease) { |
1245 | //cq = CoinMax(cq,10.0); |
1246 | // convert to (x+q)*(x+q) = w |
1247 | CoinWorkDouble q = bq / (1.0 * aq); |
1248 | CoinWorkDouble w = CoinMax(q * q + (cq / aq) * (allowedIncrease - 1.0), 0.0); |
1249 | w = CoinSqrt(w); |
1250 | CoinWorkDouble stepX = w - q; |
1251 | step = stepX; |
1252 | nextInf = |
1253 | multiplier * CoinSqrt(CoinMax(cq + step * bq + step * step * aq, 0.0)); |
1254 | #ifdef SOME_DEBUG |
1255 | printf ("with step of %g dualInf is %g\n" , |
1256 | step, nextInf); |
1257 | #endif |
1258 | actualDualStep_ = CoinMin(step, actualDualStep_); |
1259 | actualPrimalStep_ = CoinMin(step, actualPrimalStep_); |
1260 | } |
1261 | } |
1262 | } else { |
1263 | // probably pointless as linear |
1264 | // minimize complementarity |
1265 | // Complementarity gap will be a*change*change + b*change +c |
1266 | CoinWorkDouble a = 0.0; |
1267 | CoinWorkDouble b = 0.0; |
1268 | CoinWorkDouble c = 0.0; |
1269 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
1270 | CoinWorkDouble oldPrimal = solution_[iColumn]; |
1271 | if (!flagged(iColumn)) { |
1272 | if (lowerBound(iColumn)) { |
1273 | CoinWorkDouble change = oldPrimal + deltaX_[iColumn] - lowerSlack_[iColumn] - lower_[iColumn]; |
1274 | c += lowerSlack_[iColumn] * zVec_[iColumn]; |
1275 | b += lowerSlack_[iColumn] * deltaZ_[iColumn] + zVec_[iColumn] * change; |
1276 | a += deltaZ_[iColumn] * change; |
1277 | } |
1278 | if (upperBound(iColumn)) { |
1279 | CoinWorkDouble change = upper_[iColumn] - oldPrimal - deltaX_[iColumn] - upperSlack_[iColumn]; |
1280 | c += upperSlack_[iColumn] * wVec_[iColumn]; |
1281 | b += upperSlack_[iColumn] * deltaW_[iColumn] + wVec_[iColumn] * change; |
1282 | a += deltaW_[iColumn] * change; |
1283 | } |
1284 | } else { |
1285 | // fixed |
1286 | if (lowerBound(iColumn)) { |
1287 | c += lowerSlack_[iColumn] * zVec_[iColumn]; |
1288 | } |
1289 | if (upperBound(iColumn)) { |
1290 | c += upperSlack_[iColumn] * wVec_[iColumn]; |
1291 | } |
1292 | } |
1293 | } |
1294 | // ? We want to minimize complementarityGap; |
1295 | // maybe use inf and do line search |
1296 | // To check see if matches at current step |
1297 | CoinWorkDouble step = CoinMin(actualPrimalStep_, actualDualStep_); |
1298 | CoinWorkDouble next = c + b * step + a * step * step; |
1299 | #ifdef SOME_DEBUG |
1300 | printf("lin %g %g %g -> %g\n" , a, b, c, |
1301 | c + b * step + a * step * step); |
1302 | debugMove(7, step, step); |
1303 | #endif |
1304 | if (b > -1.0e-6) { |
1305 | if (phase == 0) { |
1306 | #ifdef SOME_DEBUG |
1307 | printf("*** odd phase 0 direction\n" ); |
1308 | #endif |
1309 | } else { |
1310 | directionNorm = -1.0; |
1311 | } |
1312 | } |
1313 | // and with ratio |
1314 | a = 0.0; |
1315 | b = 0.0; |
1316 | CoinWorkDouble ratio = actualDualStep_ / actualPrimalStep_; |
1317 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
1318 | CoinWorkDouble oldPrimal = solution_[iColumn]; |
1319 | if (!flagged(iColumn)) { |
1320 | if (lowerBound(iColumn)) { |
1321 | CoinWorkDouble change = oldPrimal + deltaX_[iColumn] - lowerSlack_[iColumn] - lower_[iColumn]; |
1322 | b += lowerSlack_[iColumn] * deltaZ_[iColumn] * ratio + zVec_[iColumn] * change; |
1323 | a += deltaZ_[iColumn] * change * ratio; |
1324 | } |
1325 | if (upperBound(iColumn)) { |
1326 | CoinWorkDouble change = upper_[iColumn] - oldPrimal - deltaX_[iColumn] - upperSlack_[iColumn]; |
1327 | b += upperSlack_[iColumn] * deltaW_[iColumn] * ratio + wVec_[iColumn] * change; |
1328 | a += deltaW_[iColumn] * change * ratio; |
1329 | } |
1330 | } |
1331 | } |
1332 | // ? We want to minimize complementarityGap; |
1333 | // maybe use inf and do line search |
1334 | // To check see if matches at current step |
1335 | step = actualPrimalStep_; |
1336 | CoinWorkDouble next2 = c + b * step + a * step * step; |
1337 | if (next2 > next) { |
1338 | actualPrimalStep_ = CoinMin(actualPrimalStep_, actualDualStep_); |
1339 | actualDualStep_ = actualPrimalStep_; |
1340 | } |
1341 | #ifdef SOME_DEBUG |
1342 | printf("linb %g %g %g -> %g\n" , a, b, c, |
1343 | c + b * step + a * step * step); |
1344 | debugMove(7, actualPrimalStep_, actualDualStep_); |
1345 | #endif |
1346 | if (b > -1.0e-6) { |
1347 | if (phase == 0) { |
1348 | #ifdef SOME_DEBUG |
1349 | printf("*** odd phase 0 direction\n" ); |
1350 | #endif |
1351 | } else { |
1352 | directionNorm = -1.0; |
1353 | } |
1354 | } |
1355 | } |
1356 | #else |
1357 | //actualPrimalStep_ =0.5*actualDualStep_; |
1358 | #endif |
1359 | #ifdef FULL_DEBUG |
1360 | if (phase == 3) { |
1361 | CoinWorkDouble minBeta = 0.1 * mu_; |
1362 | CoinWorkDouble maxBeta = 10.0 * mu_; |
1363 | for (iColumn = 0; iColumn < numberRows_ + numberColumns_; iColumn++) { |
1364 | if (!flagged(iColumn)) { |
1365 | if (lowerBound(iColumn)) { |
1366 | CoinWorkDouble change = -rhsL_[iColumn] + deltaX_[iColumn]; |
1367 | CoinWorkDouble dualValue = zVec_[iColumn] + actualDualStep_ * deltaZ_[iColumn]; |
1368 | CoinWorkDouble primalValue = lowerSlack_[iColumn] + actualPrimalStep_ * change; |
1369 | CoinWorkDouble gapProduct = dualValue * primalValue; |
1370 | if (delta2Z_[iColumn] < minBeta || delta2Z_[iColumn] > maxBeta) |
1371 | printf("3lower %d primal %g, dual %g, gap %g, old gap %g\n" , |
1372 | iColumn, primalValue, dualValue, gapProduct, delta2Z_[iColumn]); |
1373 | } |
1374 | if (upperBound(iColumn)) { |
1375 | CoinWorkDouble change = rhsU_[iColumn] - deltaX_[iColumn]; |
1376 | CoinWorkDouble dualValue = wVec_[iColumn] + actualDualStep_ * deltaW_[iColumn]; |
1377 | CoinWorkDouble primalValue = upperSlack_[iColumn] + actualPrimalStep_ * change; |
1378 | CoinWorkDouble gapProduct = dualValue * primalValue; |
1379 | if (delta2W_[iColumn] < minBeta || delta2W_[iColumn] > maxBeta) |
1380 | printf("3upper %d primal %g, dual %g, gap %g, old gap %g\n" , |
1381 | iColumn, primalValue, dualValue, gapProduct, delta2W_[iColumn]); |
1382 | } |
1383 | } |
1384 | } |
1385 | } |
1386 | #endif |
1387 | #ifdef SOME_DEBUG_not |
1388 | { |
1389 | CoinWorkDouble largestL = 0.0; |
1390 | CoinWorkDouble smallestL = COIN_DBL_MAX; |
1391 | CoinWorkDouble largestU = 0.0; |
1392 | CoinWorkDouble smallestU = COIN_DBL_MAX; |
1393 | CoinWorkDouble sumL = 0.0; |
1394 | CoinWorkDouble sumU = 0.0; |
1395 | int nL = 0; |
1396 | int nU = 0; |
1397 | for (iColumn = 0; iColumn < numberRows_ + numberColumns_; iColumn++) { |
1398 | if (!flagged(iColumn)) { |
1399 | if (lowerBound(iColumn)) { |
1400 | CoinWorkDouble change = -rhsL_[iColumn] + deltaX_[iColumn]; |
1401 | CoinWorkDouble dualValue = zVec_[iColumn] + actualDualStep_ * deltaZ_[iColumn]; |
1402 | CoinWorkDouble primalValue = lowerSlack_[iColumn] + actualPrimalStep_ * change; |
1403 | CoinWorkDouble gapProduct = dualValue * primalValue; |
1404 | largestL = CoinMax(largestL, gapProduct); |
1405 | smallestL = CoinMin(smallestL, gapProduct); |
1406 | nL++; |
1407 | sumL += gapProduct; |
1408 | } |
1409 | if (upperBound(iColumn)) { |
1410 | CoinWorkDouble change = rhsU_[iColumn] - deltaX_[iColumn]; |
1411 | CoinWorkDouble dualValue = wVec_[iColumn] + actualDualStep_ * deltaW_[iColumn]; |
1412 | CoinWorkDouble primalValue = upperSlack_[iColumn] + actualPrimalStep_ * change; |
1413 | CoinWorkDouble gapProduct = dualValue * primalValue; |
1414 | largestU = CoinMax(largestU, gapProduct); |
1415 | smallestU = CoinMin(smallestU, gapProduct); |
1416 | nU++; |
1417 | sumU += gapProduct; |
1418 | } |
1419 | } |
1420 | } |
1421 | CoinWorkDouble mu = (sumL + sumU) / (static_cast<CoinWorkDouble> (nL + nU)); |
1422 | |
1423 | CoinWorkDouble minBeta = 0.1 * mu; |
1424 | CoinWorkDouble maxBeta = 10.0 * mu; |
1425 | int nBL = 0; |
1426 | int nAL = 0; |
1427 | int nBU = 0; |
1428 | int nAU = 0; |
1429 | for (iColumn = 0; iColumn < numberRows_ + numberColumns_; iColumn++) { |
1430 | if (!flagged(iColumn)) { |
1431 | if (lowerBound(iColumn)) { |
1432 | CoinWorkDouble change = -rhsL_[iColumn] + deltaX_[iColumn]; |
1433 | CoinWorkDouble dualValue = zVec_[iColumn] + actualDualStep_ * deltaZ_[iColumn]; |
1434 | CoinWorkDouble primalValue = lowerSlack_[iColumn] + actualPrimalStep_ * change; |
1435 | CoinWorkDouble gapProduct = dualValue * primalValue; |
1436 | if (gapProduct < minBeta) |
1437 | nBL++; |
1438 | else if (gapProduct > maxBeta) |
1439 | nAL++; |
1440 | //if (gapProduct<0.1*minBeta) |
1441 | //printf("Lsmall one %d dual %g primal %g\n",iColumn, |
1442 | // dualValue,primalValue); |
1443 | } |
1444 | if (upperBound(iColumn)) { |
1445 | CoinWorkDouble change = rhsU_[iColumn] - deltaX_[iColumn]; |
1446 | CoinWorkDouble dualValue = wVec_[iColumn] + actualDualStep_ * deltaW_[iColumn]; |
1447 | CoinWorkDouble primalValue = upperSlack_[iColumn] + actualPrimalStep_ * change; |
1448 | CoinWorkDouble gapProduct = dualValue * primalValue; |
1449 | if (gapProduct < minBeta) |
1450 | nBU++; |
1451 | else if (gapProduct > maxBeta) |
1452 | nAU++; |
1453 | //if (gapProduct<0.1*minBeta) |
1454 | //printf("Usmall one %d dual %g primal %g\n",iColumn, |
1455 | // dualValue,primalValue); |
1456 | } |
1457 | } |
1458 | } |
1459 | printf("phase %d new mu %.18g new gap %.18g\n" , phase, mu, sumL + sumU); |
1460 | printf(" %d lower, smallest %.18g, %d below - largest %.18g, %d above\n" , |
1461 | nL, smallestL, nBL, largestL, nAL); |
1462 | printf(" %d upper, smallest %.18g, %d below - largest %.18g, %d above\n" , |
1463 | nU, smallestU, nBU, largestU, nAU); |
1464 | } |
1465 | #endif |
1466 | return directionNorm; |
1467 | } |
1468 | /* Does solve. region1 is for deltaX (columns+rows), region2 for deltaPi (rows) */ |
1469 | void |
1470 | ClpPredictorCorrector::solveSystem(CoinWorkDouble * region1, CoinWorkDouble * region2, |
1471 | const CoinWorkDouble * region1In, const CoinWorkDouble * region2In, |
1472 | const CoinWorkDouble * saveRegion1, const CoinWorkDouble * saveRegion2, |
1473 | bool gentleRefine) |
1474 | { |
1475 | int iRow; |
1476 | int numberTotal = numberRows_ + numberColumns_; |
1477 | if (region2In) { |
1478 | // normal |
1479 | for (iRow = 0; iRow < numberRows_; iRow++) |
1480 | region2[iRow] = region2In[iRow]; |
1481 | } else { |
1482 | // initial solution - (diagonal is 1 or 0) |
1483 | CoinZeroN(region2, numberRows_); |
1484 | } |
1485 | int iColumn; |
1486 | if (cholesky_->type() < 20) { |
1487 | // not KKT |
1488 | for (iColumn = 0; iColumn < numberTotal; iColumn++) |
1489 | region1[iColumn] = region1In[iColumn] * diagonal_[iColumn]; |
1490 | multiplyAdd(region1 + numberColumns_, numberRows_, -1.0, region2, 1.0); |
1491 | matrix_->times(1.0, region1, region2); |
1492 | CoinWorkDouble maximumRHS = maximumAbsElement(region2, numberRows_); |
1493 | CoinWorkDouble scale = 1.0; |
1494 | CoinWorkDouble unscale = 1.0; |
1495 | if (maximumRHS > 1.0e-30) { |
1496 | if (maximumRHS <= 0.5) { |
1497 | CoinWorkDouble factor = 2.0; |
1498 | while (maximumRHS <= 0.5) { |
1499 | maximumRHS *= factor; |
1500 | scale *= factor; |
1501 | } /* endwhile */ |
1502 | } else if (maximumRHS >= 2.0 && maximumRHS <= COIN_DBL_MAX) { |
1503 | CoinWorkDouble factor = 0.5; |
1504 | while (maximumRHS >= 2.0) { |
1505 | maximumRHS *= factor; |
1506 | scale *= factor; |
1507 | } /* endwhile */ |
1508 | } |
1509 | unscale = diagonalScaleFactor_ / scale; |
1510 | } else { |
1511 | //effectively zero |
1512 | scale = 0.0; |
1513 | unscale = 0.0; |
1514 | } |
1515 | multiplyAdd(NULL, numberRows_, 0.0, region2, scale); |
1516 | cholesky_->solve(region2); |
1517 | multiplyAdd(NULL, numberRows_, 0.0, region2, unscale); |
1518 | multiplyAdd(region2, numberRows_, -1.0, region1 + numberColumns_, 0.0); |
1519 | CoinZeroN(region1, numberColumns_); |
1520 | matrix_->transposeTimes(1.0, region2, region1); |
1521 | for (iColumn = 0; iColumn < numberTotal; iColumn++) |
1522 | region1[iColumn] = (region1[iColumn] - region1In[iColumn]) * diagonal_[iColumn]; |
1523 | } else { |
1524 | for (iColumn = 0; iColumn < numberTotal; iColumn++) |
1525 | region1[iColumn] = region1In[iColumn]; |
1526 | cholesky_->solveKKT(region1, region2, diagonal_, diagonalScaleFactor_); |
1527 | } |
1528 | if (saveRegion2) { |
1529 | //refine? |
1530 | CoinWorkDouble scaleX = 1.0; |
1531 | if (gentleRefine) |
1532 | scaleX = 0.8; |
1533 | multiplyAdd(saveRegion2, numberRows_, 1.0, region2, scaleX); |
1534 | assert (saveRegion1); |
1535 | multiplyAdd(saveRegion1, numberTotal, 1.0, region1, scaleX); |
1536 | } |
1537 | } |
1538 | // findDirectionVector. |
1539 | CoinWorkDouble ClpPredictorCorrector::findDirectionVector(const int phase) |
1540 | { |
1541 | CoinWorkDouble projectionTolerance = projectionTolerance_; |
1542 | //temporary |
1543 | //projectionTolerance=1.0e-15; |
1544 | CoinWorkDouble errorCheck = 0.9 * maximumRHSError_ / solutionNorm_; |
1545 | if (errorCheck > primalTolerance()) { |
1546 | if (errorCheck < projectionTolerance) { |
1547 | projectionTolerance = errorCheck; |
1548 | } |
1549 | } else { |
1550 | if (primalTolerance() < projectionTolerance) { |
1551 | projectionTolerance = primalTolerance(); |
1552 | } |
1553 | } |
1554 | CoinWorkDouble * newError = new CoinWorkDouble [numberRows_]; |
1555 | int numberTotal = numberRows_ + numberColumns_; |
1556 | //if flagged then entries zero so can do |
1557 | // For KKT separate out |
1558 | CoinWorkDouble * region1Save = NULL; //for refinement |
1559 | int iColumn; |
1560 | if (cholesky_->type() < 20) { |
1561 | int iColumn; |
1562 | for (iColumn = 0; iColumn < numberTotal; iColumn++) |
1563 | deltaX_[iColumn] = workArray_[iColumn] - solution_[iColumn]; |
1564 | multiplyAdd(deltaX_ + numberColumns_, numberRows_, -1.0, deltaY_, 0.0); |
1565 | matrix_->times(1.0, deltaX_, deltaY_); |
1566 | } else { |
1567 | // regions in will be workArray and newError |
1568 | // regions out deltaX_ and deltaY_ |
1569 | multiplyAdd(solution_ + numberColumns_, numberRows_, 1.0, newError, 0.0); |
1570 | matrix_->times(-1.0, solution_, newError); |
1571 | // This is inefficient but just for now get values which will be in deltay |
1572 | int iColumn; |
1573 | for (iColumn = 0; iColumn < numberTotal; iColumn++) |
1574 | deltaX_[iColumn] = workArray_[iColumn] - solution_[iColumn]; |
1575 | multiplyAdd(deltaX_ + numberColumns_, numberRows_, -1.0, deltaY_, 0.0); |
1576 | matrix_->times(1.0, deltaX_, deltaY_); |
1577 | } |
1578 | bool goodSolve = false; |
1579 | CoinWorkDouble * regionSave = NULL; //for refinement |
1580 | int numberTries = 0; |
1581 | CoinWorkDouble relativeError = COIN_DBL_MAX; |
1582 | CoinWorkDouble tryError = 1.0e31; |
1583 | CoinWorkDouble saveMaximum = 0.0; |
1584 | double firstError = 0.0; |
1585 | double lastError2 = 0.0; |
1586 | while (!goodSolve && numberTries < 30) { |
1587 | CoinWorkDouble lastError = relativeError; |
1588 | goodSolve = true; |
1589 | CoinWorkDouble maximumRHS; |
1590 | maximumRHS = CoinMax(maximumAbsElement(deltaY_, numberRows_), 1.0e-12); |
1591 | if (!numberTries) |
1592 | saveMaximum = maximumRHS; |
1593 | if (cholesky_->type() < 20) { |
1594 | // no kkt |
1595 | CoinWorkDouble scale = 1.0; |
1596 | CoinWorkDouble unscale = 1.0; |
1597 | if (maximumRHS > 1.0e-30) { |
1598 | if (maximumRHS <= 0.5) { |
1599 | CoinWorkDouble factor = 2.0; |
1600 | while (maximumRHS <= 0.5) { |
1601 | maximumRHS *= factor; |
1602 | scale *= factor; |
1603 | } /* endwhile */ |
1604 | } else if (maximumRHS >= 2.0 && maximumRHS <= COIN_DBL_MAX) { |
1605 | CoinWorkDouble factor = 0.5; |
1606 | while (maximumRHS >= 2.0) { |
1607 | maximumRHS *= factor; |
1608 | scale *= factor; |
1609 | } /* endwhile */ |
1610 | } |
1611 | unscale = diagonalScaleFactor_ / scale; |
1612 | } else { |
1613 | //effectively zero |
1614 | scale = 0.0; |
1615 | unscale = 0.0; |
1616 | } |
1617 | //printf("--putting scales to 1.0\n"); |
1618 | //scale=1.0; |
1619 | //unscale=1.0; |
1620 | multiplyAdd(NULL, numberRows_, 0.0, deltaY_, scale); |
1621 | cholesky_->solve(deltaY_); |
1622 | multiplyAdd(NULL, numberRows_, 0.0, deltaY_, unscale); |
1623 | #if 0 |
1624 | { |
1625 | printf("deltay\n" ); |
1626 | for (int i = 0; i < numberRows_; i++) |
1627 | printf("%d %.18g\n" , i, deltaY_[i]); |
1628 | } |
1629 | exit(66); |
1630 | #endif |
1631 | if (numberTries) { |
1632 | //refine? |
1633 | CoinWorkDouble scaleX = 1.0; |
1634 | if (lastError > 1.0e-5) |
1635 | scaleX = 0.8; |
1636 | multiplyAdd(regionSave, numberRows_, 1.0, deltaY_, scaleX); |
1637 | } |
1638 | //CoinZeroN(newError,numberRows_); |
1639 | multiplyAdd(deltaY_, numberRows_, -1.0, deltaX_ + numberColumns_, 0.0); |
1640 | CoinZeroN(deltaX_, numberColumns_); |
1641 | matrix_->transposeTimes(1.0, deltaY_, deltaX_); |
1642 | //if flagged then entries zero so can do |
1643 | for (iColumn = 0; iColumn < numberTotal; iColumn++) |
1644 | deltaX_[iColumn] = deltaX_[iColumn] * diagonal_[iColumn] |
1645 | - workArray_[iColumn]; |
1646 | } else { |
1647 | // KKT |
1648 | solveSystem(deltaX_, deltaY_, |
1649 | workArray_, newError, region1Save, regionSave, lastError > 1.0e-5); |
1650 | } |
1651 | multiplyAdd(deltaX_ + numberColumns_, numberRows_, -1.0, newError, 0.0); |
1652 | matrix_->times(1.0, deltaX_, newError); |
1653 | numberTries++; |
1654 | |
1655 | //now add in old Ax - doing extra checking |
1656 | CoinWorkDouble maximumRHSError = 0.0; |
1657 | CoinWorkDouble maximumRHSChange = 0.0; |
1658 | int iRow; |
1659 | char * dropped = cholesky_->rowsDropped(); |
1660 | for (iRow = 0; iRow < numberRows_; iRow++) { |
1661 | if (!dropped[iRow]) { |
1662 | CoinWorkDouble newValue = newError[iRow]; |
1663 | CoinWorkDouble oldValue = errorRegion_[iRow]; |
1664 | //severity of errors depend on signs |
1665 | //**later */ |
1666 | if (CoinAbs(newValue) > maximumRHSChange) { |
1667 | maximumRHSChange = CoinAbs(newValue); |
1668 | } |
1669 | CoinWorkDouble result = newValue + oldValue; |
1670 | if (CoinAbs(result) > maximumRHSError) { |
1671 | maximumRHSError = CoinAbs(result); |
1672 | } |
1673 | newError[iRow] = result; |
1674 | } else { |
1675 | CoinWorkDouble newValue = newError[iRow]; |
1676 | CoinWorkDouble oldValue = errorRegion_[iRow]; |
1677 | if (CoinAbs(newValue) > maximumRHSChange) { |
1678 | maximumRHSChange = CoinAbs(newValue); |
1679 | } |
1680 | CoinWorkDouble result = newValue + oldValue; |
1681 | newError[iRow] = result; |
1682 | //newError[iRow]=0.0; |
1683 | //assert(deltaY_[iRow]==0.0); |
1684 | deltaY_[iRow] = 0.0; |
1685 | } |
1686 | } |
1687 | relativeError = maximumRHSError / solutionNorm_; |
1688 | relativeError = maximumRHSError / saveMaximum; |
1689 | if (relativeError > tryError) |
1690 | relativeError = tryError; |
1691 | if (numberTries == 1) |
1692 | firstError = relativeError; |
1693 | if (relativeError < lastError) { |
1694 | lastError2 = relativeError; |
1695 | maximumRHSChange_ = maximumRHSChange; |
1696 | if (relativeError > projectionTolerance && numberTries <= 3) { |
1697 | //try and refine |
1698 | goodSolve = false; |
1699 | } |
1700 | //*** extra test here |
1701 | if (!goodSolve) { |
1702 | if (!regionSave) { |
1703 | regionSave = new CoinWorkDouble [numberRows_]; |
1704 | if (cholesky_->type() >= 20) |
1705 | region1Save = new CoinWorkDouble [numberTotal]; |
1706 | } |
1707 | CoinMemcpyN(deltaY_, numberRows_, regionSave); |
1708 | if (cholesky_->type() < 20) { |
1709 | // not KKT |
1710 | multiplyAdd(newError, numberRows_, -1.0, deltaY_, 0.0); |
1711 | } else { |
1712 | // KKT |
1713 | CoinMemcpyN(deltaX_, numberTotal, region1Save); |
1714 | // and back to input region |
1715 | CoinMemcpyN(deltaY_, numberRows_, newError); |
1716 | } |
1717 | } |
1718 | } else { |
1719 | //std::cout <<" worse residual = "<<relativeError; |
1720 | //bring back previous |
1721 | relativeError = lastError; |
1722 | if (regionSave) { |
1723 | CoinMemcpyN(regionSave, numberRows_, deltaY_); |
1724 | if (cholesky_->type() < 20) { |
1725 | // not KKT |
1726 | multiplyAdd(deltaY_, numberRows_, -1.0, deltaX_ + numberColumns_, 0.0); |
1727 | CoinZeroN(deltaX_, numberColumns_); |
1728 | matrix_->transposeTimes(1.0, deltaY_, deltaX_); |
1729 | //if flagged then entries zero so can do |
1730 | for (iColumn = 0; iColumn < numberTotal; iColumn++) |
1731 | deltaX_[iColumn] = deltaX_[iColumn] * diagonal_[iColumn] |
1732 | - workArray_[iColumn]; |
1733 | } else { |
1734 | // KKT |
1735 | CoinMemcpyN(region1Save, numberTotal, deltaX_); |
1736 | } |
1737 | } else { |
1738 | // disaster |
1739 | CoinFillN(deltaX_, numberTotal, static_cast<CoinWorkDouble>(1.0)); |
1740 | CoinFillN(deltaY_, numberRows_, static_cast<CoinWorkDouble>(1.0)); |
1741 | COIN_DETAIL_PRINT(printf("bad cholesky\n" )); |
1742 | } |
1743 | } |
1744 | } /* endwhile */ |
1745 | if (firstError > 1.0e-8 || numberTries > 1) { |
1746 | handler_->message(CLP_BARRIER_ACCURACY, messages_) |
1747 | << phase << numberTries << static_cast<double>(firstError) |
1748 | << static_cast<double>(lastError2) |
1749 | << CoinMessageEol; |
1750 | } |
1751 | delete [] regionSave; |
1752 | delete [] region1Save; |
1753 | delete [] newError; |
1754 | // now rest |
1755 | CoinWorkDouble = eExtra; |
1756 | //multiplyAdd(deltaY_,numberRows_,1.0,deltaW_+numberColumns_,0.0); |
1757 | //CoinZeroN(deltaW_,numberColumns_); |
1758 | //matrix_->transposeTimes(-1.0,deltaY_,deltaW_); |
1759 | |
1760 | for (iColumn = 0; iColumn < numberRows_ + numberColumns_; iColumn++) { |
1761 | deltaSU_[iColumn] = 0.0; |
1762 | deltaSL_[iColumn] = 0.0; |
1763 | deltaZ_[iColumn] = 0.0; |
1764 | CoinWorkDouble dd = deltaW_[iColumn]; |
1765 | deltaW_[iColumn] = 0.0; |
1766 | if (!flagged(iColumn)) { |
1767 | CoinWorkDouble deltaX = deltaX_[iColumn]; |
1768 | if (lowerBound(iColumn)) { |
1769 | CoinWorkDouble zValue = rhsZ_[iColumn]; |
1770 | CoinWorkDouble gHat = zValue + zVec_[iColumn] * rhsL_[iColumn]; |
1771 | CoinWorkDouble slack = lowerSlack_[iColumn] + extra; |
1772 | deltaSL_[iColumn] = -rhsL_[iColumn] + deltaX; |
1773 | deltaZ_[iColumn] = (gHat - zVec_[iColumn] * deltaX) / slack; |
1774 | } |
1775 | if (upperBound(iColumn)) { |
1776 | CoinWorkDouble wValue = rhsW_[iColumn]; |
1777 | CoinWorkDouble hHat = wValue - wVec_[iColumn] * rhsU_[iColumn]; |
1778 | CoinWorkDouble slack = upperSlack_[iColumn] + extra; |
1779 | deltaSU_[iColumn] = rhsU_[iColumn] - deltaX; |
1780 | deltaW_[iColumn] = (hHat + wVec_[iColumn] * deltaX) / slack; |
1781 | } |
1782 | if (0) { |
1783 | // different way of calculating |
1784 | CoinWorkDouble gamma2 = gamma_ * gamma_; |
1785 | CoinWorkDouble dZ = 0.0; |
1786 | CoinWorkDouble dW = 0.0; |
1787 | CoinWorkDouble zValue = rhsZ_[iColumn]; |
1788 | CoinWorkDouble gHat = zValue + zVec_[iColumn] * rhsL_[iColumn]; |
1789 | CoinWorkDouble slackL = lowerSlack_[iColumn] + extra; |
1790 | CoinWorkDouble wValue = rhsW_[iColumn]; |
1791 | CoinWorkDouble hHat = wValue - wVec_[iColumn] * rhsU_[iColumn]; |
1792 | CoinWorkDouble slackU = upperSlack_[iColumn] + extra; |
1793 | CoinWorkDouble q = rhsC_[iColumn] + gamma2 * deltaX + dd; |
1794 | if (primalR_) |
1795 | q += deltaX * primalR_[iColumn]; |
1796 | dW = (gHat + hHat - slackL * q + (wValue - zValue) * deltaX) / (slackL + slackU); |
1797 | dZ = dW + q; |
1798 | //printf("B %d old %g %g new %g %g\n",iColumn,deltaZ_[iColumn], |
1799 | //deltaW_[iColumn],dZ,dW); |
1800 | if (lowerBound(iColumn)) { |
1801 | if (upperBound(iColumn)) { |
1802 | //printf("B %d old %g %g new %g %g\n",iColumn,deltaZ_[iColumn], |
1803 | //deltaW_[iColumn],dZ,dW); |
1804 | deltaW_[iColumn] = dW; |
1805 | deltaZ_[iColumn] = dZ; |
1806 | } else { |
1807 | // just lower |
1808 | //printf("L %d old %g new %g\n",iColumn,deltaZ_[iColumn], |
1809 | //dZ); |
1810 | } |
1811 | } else { |
1812 | assert (upperBound(iColumn)); |
1813 | //printf("U %d old %g new %g\n",iColumn,deltaW_[iColumn], |
1814 | //dW); |
1815 | } |
1816 | } |
1817 | } |
1818 | } |
1819 | #if 0 |
1820 | CoinWorkDouble * check = new CoinWorkDouble[numberTotal]; |
1821 | // Check out rhsC_ |
1822 | multiplyAdd(deltaY_, numberRows_, -1.0, check + numberColumns_, 0.0); |
1823 | CoinZeroN(check, numberColumns_); |
1824 | matrix_->transposeTimes(1.0, deltaY_, check); |
1825 | quadraticDjs(check, deltaX_, -1.0); |
1826 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
1827 | check[iColumn] += deltaZ_[iColumn] - deltaW_[iColumn]; |
1828 | if (CoinAbs(check[iColumn] - rhsC_[iColumn]) > 1.0e-3) |
1829 | printf("rhsC %d %g %g\n" , iColumn, check[iColumn], rhsC_[iColumn]); |
1830 | } |
1831 | // Check out rhsZ_ |
1832 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
1833 | check[iColumn] += lowerSlack_[iColumn] * deltaZ_[iColumn] + |
1834 | zVec_[iColumn] * deltaSL_[iColumn]; |
1835 | if (CoinAbs(check[iColumn] - rhsZ_[iColumn]) > 1.0e-3) |
1836 | printf("rhsZ %d %g %g\n" , iColumn, check[iColumn], rhsZ_[iColumn]); |
1837 | } |
1838 | // Check out rhsW_ |
1839 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
1840 | check[iColumn] += upperSlack_[iColumn] * deltaW_[iColumn] + |
1841 | wVec_[iColumn] * deltaSU_[iColumn]; |
1842 | if (CoinAbs(check[iColumn] - rhsW_[iColumn]) > 1.0e-3) |
1843 | printf("rhsW %d %g %g\n" , iColumn, check[iColumn], rhsW_[iColumn]); |
1844 | } |
1845 | delete [] check; |
1846 | #endif |
1847 | return relativeError; |
1848 | } |
1849 | // createSolution. Creates solution from scratch |
1850 | int ClpPredictorCorrector::createSolution() |
1851 | { |
1852 | int numberTotal = numberRows_ + numberColumns_; |
1853 | int iColumn; |
1854 | CoinWorkDouble tolerance = primalTolerance(); |
1855 | // See if quadratic objective |
1856 | #ifndef NO_RTTI |
1857 | ClpQuadraticObjective * quadraticObj = (dynamic_cast< ClpQuadraticObjective*>(objective_)); |
1858 | #else |
1859 | ClpQuadraticObjective * quadraticObj = NULL; |
1860 | if (objective_->type() == 2) |
1861 | quadraticObj = (static_cast< ClpQuadraticObjective*>(objective_)); |
1862 | #endif |
1863 | if (!quadraticObj) { |
1864 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
1865 | if (upper_[iColumn] - lower_[iColumn] > tolerance) |
1866 | clearFixed(iColumn); |
1867 | else |
1868 | setFixed(iColumn); |
1869 | } |
1870 | } else { |
1871 | // try leaving fixed |
1872 | for (iColumn = 0; iColumn < numberTotal; iColumn++) |
1873 | clearFixed(iColumn); |
1874 | } |
1875 | |
1876 | CoinWorkDouble maximumObjective = 0.0; |
1877 | CoinWorkDouble objectiveNorm2 = 0.0; |
1878 | getNorms(cost_, numberTotal, maximumObjective, objectiveNorm2); |
1879 | if (!maximumObjective) { |
1880 | maximumObjective = 1.0; // objective all zero |
1881 | } |
1882 | objectiveNorm2 = CoinSqrt(objectiveNorm2) / static_cast<CoinWorkDouble> (numberTotal); |
1883 | objectiveNorm_ = maximumObjective; |
1884 | scaleFactor_ = 1.0; |
1885 | if (maximumObjective > 0.0) { |
1886 | if (maximumObjective < 1.0) { |
1887 | scaleFactor_ = maximumObjective; |
1888 | } else if (maximumObjective > 1.0e4) { |
1889 | scaleFactor_ = maximumObjective / 1.0e4; |
1890 | } |
1891 | } |
1892 | if (scaleFactor_ != 1.0) { |
1893 | objectiveNorm2 *= scaleFactor_; |
1894 | multiplyAdd(NULL, numberTotal, 0.0, cost_, 1.0 / scaleFactor_); |
1895 | objectiveNorm_ = maximumObjective / scaleFactor_; |
1896 | } |
1897 | // See if quadratic objective |
1898 | if (quadraticObj) { |
1899 | // If scaled then really scale matrix |
1900 | CoinWorkDouble scaleFactor = |
1901 | scaleFactor_ * optimizationDirection_ * objectiveScale_ * |
1902 | rhsScale_; |
1903 | if ((scalingFlag_ > 0 && rowScale_) || scaleFactor != 1.0) { |
1904 | CoinPackedMatrix * quadratic = quadraticObj->quadraticObjective(); |
1905 | const int * columnQuadratic = quadratic->getIndices(); |
1906 | const CoinBigIndex * columnQuadraticStart = quadratic->getVectorStarts(); |
1907 | const int * columnQuadraticLength = quadratic->getVectorLengths(); |
1908 | double * quadraticElement = quadratic->getMutableElements(); |
1909 | int numberColumns = quadratic->getNumCols(); |
1910 | CoinWorkDouble scale = 1.0 / scaleFactor; |
1911 | if (scalingFlag_ > 0 && rowScale_) { |
1912 | for (int iColumn = 0; iColumn < numberColumns; iColumn++) { |
1913 | CoinWorkDouble scaleI = columnScale_[iColumn] * scale; |
1914 | for (CoinBigIndex j = columnQuadraticStart[iColumn]; |
1915 | j < columnQuadraticStart[iColumn] + columnQuadraticLength[iColumn]; j++) { |
1916 | int jColumn = columnQuadratic[j]; |
1917 | CoinWorkDouble scaleJ = columnScale_[jColumn]; |
1918 | quadraticElement[j] *= scaleI * scaleJ; |
1919 | objectiveNorm_ = CoinMax(objectiveNorm_, CoinAbs(quadraticElement[j])); |
1920 | } |
1921 | } |
1922 | } else { |
1923 | // not scaled |
1924 | for (int iColumn = 0; iColumn < numberColumns; iColumn++) { |
1925 | for (CoinBigIndex j = columnQuadraticStart[iColumn]; |
1926 | j < columnQuadraticStart[iColumn] + columnQuadraticLength[iColumn]; j++) { |
1927 | quadraticElement[j] *= scale; |
1928 | objectiveNorm_ = CoinMax(objectiveNorm_, CoinAbs(quadraticElement[j])); |
1929 | } |
1930 | } |
1931 | } |
1932 | } |
1933 | } |
1934 | baseObjectiveNorm_ = objectiveNorm_; |
1935 | //accumulate fixed in dj region (as spare) |
1936 | //accumulate primal solution in primal region |
1937 | //DZ in lowerDual |
1938 | //DW in upperDual |
1939 | CoinWorkDouble infiniteCheck = 1.0e40; |
1940 | //CoinWorkDouble fakeCheck=1.0e10; |
1941 | //use deltaX region for work region |
1942 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
1943 | CoinWorkDouble primalValue = solution_[iColumn]; |
1944 | clearFlagged(iColumn); |
1945 | clearFixedOrFree(iColumn); |
1946 | clearLowerBound(iColumn); |
1947 | clearUpperBound(iColumn); |
1948 | clearFakeLower(iColumn); |
1949 | clearFakeUpper(iColumn); |
1950 | if (!fixed(iColumn)) { |
1951 | dj_[iColumn] = 0.0; |
1952 | diagonal_[iColumn] = 1.0; |
1953 | deltaX_[iColumn] = 1.0; |
1954 | CoinWorkDouble lowerValue = lower_[iColumn]; |
1955 | CoinWorkDouble upperValue = upper_[iColumn]; |
1956 | if (lowerValue > -infiniteCheck) { |
1957 | if (upperValue < infiniteCheck) { |
1958 | //upper and lower bounds |
1959 | setLowerBound(iColumn); |
1960 | setUpperBound(iColumn); |
1961 | if (lowerValue >= 0.0) { |
1962 | solution_[iColumn] = lowerValue; |
1963 | } else if (upperValue <= 0.0) { |
1964 | solution_[iColumn] = upperValue; |
1965 | } else { |
1966 | solution_[iColumn] = 0.0; |
1967 | } |
1968 | } else { |
1969 | //just lower bound |
1970 | setLowerBound(iColumn); |
1971 | if (lowerValue >= 0.0) { |
1972 | solution_[iColumn] = lowerValue; |
1973 | } else { |
1974 | solution_[iColumn] = 0.0; |
1975 | } |
1976 | } |
1977 | } else { |
1978 | if (upperValue < infiniteCheck) { |
1979 | //just upper bound |
1980 | setUpperBound(iColumn); |
1981 | if (upperValue <= 0.0) { |
1982 | solution_[iColumn] = upperValue; |
1983 | } else { |
1984 | solution_[iColumn] = 0.0; |
1985 | } |
1986 | } else { |
1987 | //free |
1988 | setFixedOrFree(iColumn); |
1989 | solution_[iColumn] = 0.0; |
1990 | //std::cout<<" free "<<i<<std::endl; |
1991 | } |
1992 | } |
1993 | } else { |
1994 | setFlagged(iColumn); |
1995 | setFixedOrFree(iColumn); |
1996 | setLowerBound(iColumn); |
1997 | setUpperBound(iColumn); |
1998 | dj_[iColumn] = primalValue; |
1999 | solution_[iColumn] = lower_[iColumn]; |
2000 | diagonal_[iColumn] = 0.0; |
2001 | deltaX_[iColumn] = 0.0; |
2002 | } |
2003 | } |
2004 | // modify fixed RHS |
2005 | multiplyAdd(dj_ + numberColumns_, numberRows_, -1.0, rhsFixRegion_, 0.0); |
2006 | // create plausible RHS? |
2007 | matrix_->times(-1.0, dj_, rhsFixRegion_); |
2008 | multiplyAdd(solution_ + numberColumns_, numberRows_, 1.0, errorRegion_, 0.0); |
2009 | matrix_->times(-1.0, solution_, errorRegion_); |
2010 | rhsNorm_ = maximumAbsElement(errorRegion_, numberRows_); |
2011 | if (rhsNorm_ < 1.0) { |
2012 | rhsNorm_ = 1.0; |
2013 | } |
2014 | int * rowsDropped = new int [numberRows_]; |
2015 | int returnCode = cholesky_->factorize(diagonal_, rowsDropped); |
2016 | if (returnCode == -1) { |
2017 | COIN_DETAIL_PRINT(printf("Out of memory\n" )); |
2018 | problemStatus_ = 4; |
2019 | return -1; |
2020 | } |
2021 | if (cholesky_->status()) { |
2022 | std::cout << "singular on initial cholesky?" << std::endl; |
2023 | cholesky_->resetRowsDropped(); |
2024 | //cholesky_->factorize(rowDropped_); |
2025 | //if (cholesky_->status()) { |
2026 | //std::cout << "bad cholesky??? (after retry)" <<std::endl; |
2027 | //abort(); |
2028 | //} |
2029 | } |
2030 | delete [] rowsDropped; |
2031 | if (cholesky_->type() < 20) { |
2032 | // not KKT |
2033 | cholesky_->solve(errorRegion_); |
2034 | //create information for solution |
2035 | multiplyAdd(errorRegion_, numberRows_, -1.0, deltaX_ + numberColumns_, 0.0); |
2036 | CoinZeroN(deltaX_, numberColumns_); |
2037 | matrix_->transposeTimes(1.0, errorRegion_, deltaX_); |
2038 | } else { |
2039 | // KKT |
2040 | // reverse sign on solution |
2041 | multiplyAdd(NULL, numberRows_ + numberColumns_, 0.0, solution_, -1.0); |
2042 | solveSystem(deltaX_, errorRegion_, solution_, NULL, NULL, NULL, false); |
2043 | } |
2044 | CoinWorkDouble initialValue = 1.0e2; |
2045 | if (rhsNorm_ * 1.0e-2 > initialValue) { |
2046 | initialValue = rhsNorm_ * 1.0e-2; |
2047 | } |
2048 | //initialValue = CoinMax(1.0,rhsNorm_); |
2049 | CoinWorkDouble smallestBoundDifference = COIN_DBL_MAX; |
2050 | CoinWorkDouble * fakeSolution = deltaX_; |
2051 | for ( iColumn = 0; iColumn < numberTotal; iColumn++) { |
2052 | if (!flagged(iColumn)) { |
2053 | if (lower_[iColumn] - fakeSolution[iColumn] > initialValue) { |
2054 | initialValue = lower_[iColumn] - fakeSolution[iColumn]; |
2055 | } |
2056 | if (fakeSolution[iColumn] - upper_[iColumn] > initialValue) { |
2057 | initialValue = fakeSolution[iColumn] - upper_[iColumn]; |
2058 | } |
2059 | if (upper_[iColumn] - lower_[iColumn] < smallestBoundDifference) { |
2060 | smallestBoundDifference = upper_[iColumn] - lower_[iColumn]; |
2061 | } |
2062 | } |
2063 | } |
2064 | solutionNorm_ = 1.0e-12; |
2065 | handler_->message(CLP_BARRIER_SAFE, messages_) |
2066 | << static_cast<double>(initialValue) << static_cast<double>(objectiveNorm_) |
2067 | << CoinMessageEol; |
2068 | CoinWorkDouble = 1.0e-10; |
2069 | CoinWorkDouble largeGap = 1.0e15; |
2070 | //CoinWorkDouble safeObjectiveValue=2.0*objectiveNorm_; |
2071 | CoinWorkDouble safeObjectiveValue = objectiveNorm_ + 1.0; |
2072 | CoinWorkDouble safeFree = 1.0e-1 * initialValue; |
2073 | //printf("normal safe dual value of %g, primal value of %g\n", |
2074 | // safeObjectiveValue,initialValue); |
2075 | //safeObjectiveValue=CoinMax(2.0,1.0e-1*safeObjectiveValue); |
2076 | //initialValue=CoinMax(100.0,1.0e-1*initialValue); |
2077 | //printf("temp safe dual value of %g, primal value of %g\n", |
2078 | // safeObjectiveValue,initialValue); |
2079 | CoinWorkDouble zwLarge = 1.0e2 * initialValue; |
2080 | //zwLarge=1.0e40; |
2081 | if (cholesky_->choleskyCondition() < 0.0 && cholesky_->type() < 20) { |
2082 | // looks bad - play safe |
2083 | initialValue *= 10.0; |
2084 | safeObjectiveValue *= 10.0; |
2085 | safeFree *= 10.0; |
2086 | } |
2087 | CoinWorkDouble gamma2 = gamma_ * gamma_; // gamma*gamma will be added to diagonal |
2088 | // First do primal side |
2089 | for ( iColumn = 0; iColumn < numberTotal; iColumn++) { |
2090 | if (!flagged(iColumn)) { |
2091 | CoinWorkDouble lowerValue = lower_[iColumn]; |
2092 | CoinWorkDouble upperValue = upper_[iColumn]; |
2093 | CoinWorkDouble newValue; |
2094 | CoinWorkDouble setPrimal = initialValue; |
2095 | if (quadraticObj) { |
2096 | // perturb primal solution a bit |
2097 | //fakeSolution[iColumn] *= 0.002*CoinDrand48()+0.999; |
2098 | } |
2099 | if (lowerBound(iColumn)) { |
2100 | if (upperBound(iColumn)) { |
2101 | //upper and lower bounds |
2102 | if (upperValue - lowerValue > 2.0 * setPrimal) { |
2103 | CoinWorkDouble fakeValue = fakeSolution[iColumn]; |
2104 | if (fakeValue < lowerValue + setPrimal) { |
2105 | fakeValue = lowerValue + setPrimal; |
2106 | } |
2107 | if (fakeValue > upperValue - setPrimal) { |
2108 | fakeValue = upperValue - setPrimal; |
2109 | } |
2110 | newValue = fakeValue; |
2111 | } else { |
2112 | newValue = 0.5 * (upperValue + lowerValue); |
2113 | } |
2114 | } else { |
2115 | //just lower bound |
2116 | CoinWorkDouble fakeValue = fakeSolution[iColumn]; |
2117 | if (fakeValue < lowerValue + setPrimal) { |
2118 | fakeValue = lowerValue + setPrimal; |
2119 | } |
2120 | newValue = fakeValue; |
2121 | } |
2122 | } else { |
2123 | if (upperBound(iColumn)) { |
2124 | //just upper bound |
2125 | CoinWorkDouble fakeValue = fakeSolution[iColumn]; |
2126 | if (fakeValue > upperValue - setPrimal) { |
2127 | fakeValue = upperValue - setPrimal; |
2128 | } |
2129 | newValue = fakeValue; |
2130 | } else { |
2131 | //free |
2132 | newValue = fakeSolution[iColumn]; |
2133 | if (newValue >= 0.0) { |
2134 | if (newValue < safeFree) { |
2135 | newValue = safeFree; |
2136 | } |
2137 | } else { |
2138 | if (newValue > -safeFree) { |
2139 | newValue = -safeFree; |
2140 | } |
2141 | } |
2142 | } |
2143 | } |
2144 | solution_[iColumn] = newValue; |
2145 | } else { |
2146 | // fixed |
2147 | lowerSlack_[iColumn] = 0.0; |
2148 | upperSlack_[iColumn] = 0.0; |
2149 | solution_[iColumn] = lower_[iColumn]; |
2150 | zVec_[iColumn] = 0.0; |
2151 | wVec_[iColumn] = 0.0; |
2152 | diagonal_[iColumn] = 0.0; |
2153 | } |
2154 | } |
2155 | solutionNorm_ = maximumAbsElement(solution_, numberTotal); |
2156 | // Set bounds and do dj including quadratic |
2157 | largeGap = CoinMax(1.0e7, 1.02 * solutionNorm_); |
2158 | CoinPackedMatrix * quadratic = NULL; |
2159 | const int * columnQuadratic = NULL; |
2160 | const CoinBigIndex * columnQuadraticStart = NULL; |
2161 | const int * columnQuadraticLength = NULL; |
2162 | const double * quadraticElement = NULL; |
2163 | if (quadraticObj) { |
2164 | quadratic = quadraticObj->quadraticObjective(); |
2165 | columnQuadratic = quadratic->getIndices(); |
2166 | columnQuadraticStart = quadratic->getVectorStarts(); |
2167 | columnQuadraticLength = quadratic->getVectorLengths(); |
2168 | quadraticElement = quadratic->getElements(); |
2169 | } |
2170 | CoinWorkDouble quadraticNorm = 0.0; |
2171 | for ( iColumn = 0; iColumn < numberTotal; iColumn++) { |
2172 | if (!flagged(iColumn)) { |
2173 | CoinWorkDouble primalValue = solution_[iColumn]; |
2174 | CoinWorkDouble lowerValue = lower_[iColumn]; |
2175 | CoinWorkDouble upperValue = upper_[iColumn]; |
2176 | // Do dj |
2177 | CoinWorkDouble reducedCost = cost_[iColumn]; |
2178 | if (lowerBound(iColumn)) { |
2179 | reducedCost += linearPerturbation_; |
2180 | } |
2181 | if (upperBound(iColumn)) { |
2182 | reducedCost -= linearPerturbation_; |
2183 | } |
2184 | if (quadraticObj && iColumn < numberColumns_) { |
2185 | for (CoinBigIndex j = columnQuadraticStart[iColumn]; |
2186 | j < columnQuadraticStart[iColumn] + columnQuadraticLength[iColumn]; j++) { |
2187 | int jColumn = columnQuadratic[j]; |
2188 | CoinWorkDouble valueJ = solution_[jColumn]; |
2189 | CoinWorkDouble elementValue = quadraticElement[j]; |
2190 | reducedCost += valueJ * elementValue; |
2191 | } |
2192 | quadraticNorm = CoinMax(quadraticNorm, CoinAbs(reducedCost)); |
2193 | } |
2194 | dj_[iColumn] = reducedCost; |
2195 | if (primalValue > lowerValue + largeGap && primalValue < upperValue - largeGap) { |
2196 | clearFixedOrFree(iColumn); |
2197 | setLowerBound(iColumn); |
2198 | setUpperBound(iColumn); |
2199 | lowerValue = CoinMax(lowerValue, primalValue - largeGap); |
2200 | upperValue = CoinMin(upperValue, primalValue + largeGap); |
2201 | lower_[iColumn] = lowerValue; |
2202 | upper_[iColumn] = upperValue; |
2203 | } |
2204 | } |
2205 | } |
2206 | safeObjectiveValue = CoinMax(safeObjectiveValue, quadraticNorm); |
2207 | for ( iColumn = 0; iColumn < numberTotal; iColumn++) { |
2208 | if (!flagged(iColumn)) { |
2209 | CoinWorkDouble primalValue = solution_[iColumn]; |
2210 | CoinWorkDouble lowerValue = lower_[iColumn]; |
2211 | CoinWorkDouble upperValue = upper_[iColumn]; |
2212 | CoinWorkDouble reducedCost = dj_[iColumn]; |
2213 | CoinWorkDouble low = 0.0; |
2214 | CoinWorkDouble high = 0.0; |
2215 | if (lowerBound(iColumn)) { |
2216 | if (upperBound(iColumn)) { |
2217 | //upper and lower bounds |
2218 | if (upperValue - lowerValue > 2.0 * initialValue) { |
2219 | low = primalValue - lowerValue; |
2220 | high = upperValue - primalValue; |
2221 | } else { |
2222 | low = initialValue; |
2223 | high = initialValue; |
2224 | } |
2225 | CoinWorkDouble s = low + extra; |
2226 | CoinWorkDouble ratioZ; |
2227 | if (s < zwLarge) { |
2228 | ratioZ = 1.0; |
2229 | } else { |
2230 | ratioZ = CoinSqrt(zwLarge / s); |
2231 | } |
2232 | CoinWorkDouble t = high + extra; |
2233 | CoinWorkDouble ratioT; |
2234 | if (t < zwLarge) { |
2235 | ratioT = 1.0; |
2236 | } else { |
2237 | ratioT = CoinSqrt(zwLarge / t); |
2238 | } |
2239 | //modify s and t |
2240 | if (s > largeGap) { |
2241 | s = largeGap; |
2242 | } |
2243 | if (t > largeGap) { |
2244 | t = largeGap; |
2245 | } |
2246 | //modify if long long way away from bound |
2247 | if (reducedCost >= 0.0) { |
2248 | zVec_[iColumn] = reducedCost + safeObjectiveValue * ratioZ; |
2249 | zVec_[iColumn] = CoinMax(reducedCost, safeObjectiveValue * ratioZ); |
2250 | wVec_[iColumn] = safeObjectiveValue * ratioT; |
2251 | } else { |
2252 | zVec_[iColumn] = safeObjectiveValue * ratioZ; |
2253 | wVec_[iColumn] = -reducedCost + safeObjectiveValue * ratioT; |
2254 | wVec_[iColumn] = CoinMax(-reducedCost , safeObjectiveValue * ratioT); |
2255 | } |
2256 | CoinWorkDouble gammaTerm = gamma2; |
2257 | if (primalR_) |
2258 | gammaTerm += primalR_[iColumn]; |
2259 | diagonal_[iColumn] = (t * s) / |
2260 | (s * wVec_[iColumn] + t * zVec_[iColumn] + gammaTerm * t * s); |
2261 | } else { |
2262 | //just lower bound |
2263 | low = primalValue - lowerValue; |
2264 | high = 0.0; |
2265 | CoinWorkDouble s = low + extra; |
2266 | CoinWorkDouble ratioZ; |
2267 | if (s < zwLarge) { |
2268 | ratioZ = 1.0; |
2269 | } else { |
2270 | ratioZ = CoinSqrt(zwLarge / s); |
2271 | } |
2272 | //modify s |
2273 | if (s > largeGap) { |
2274 | s = largeGap; |
2275 | } |
2276 | if (reducedCost >= 0.0) { |
2277 | zVec_[iColumn] = reducedCost + safeObjectiveValue * ratioZ; |
2278 | zVec_[iColumn] = CoinMax(reducedCost , safeObjectiveValue * ratioZ); |
2279 | wVec_[iColumn] = 0.0; |
2280 | } else { |
2281 | zVec_[iColumn] = safeObjectiveValue * ratioZ; |
2282 | wVec_[iColumn] = 0.0; |
2283 | } |
2284 | CoinWorkDouble gammaTerm = gamma2; |
2285 | if (primalR_) |
2286 | gammaTerm += primalR_[iColumn]; |
2287 | diagonal_[iColumn] = s / (zVec_[iColumn] + s * gammaTerm); |
2288 | } |
2289 | } else { |
2290 | if (upperBound(iColumn)) { |
2291 | //just upper bound |
2292 | low = 0.0; |
2293 | high = upperValue - primalValue; |
2294 | CoinWorkDouble t = high + extra; |
2295 | CoinWorkDouble ratioT; |
2296 | if (t < zwLarge) { |
2297 | ratioT = 1.0; |
2298 | } else { |
2299 | ratioT = CoinSqrt(zwLarge / t); |
2300 | } |
2301 | //modify t |
2302 | if (t > largeGap) { |
2303 | t = largeGap; |
2304 | } |
2305 | if (reducedCost >= 0.0) { |
2306 | zVec_[iColumn] = 0.0; |
2307 | wVec_[iColumn] = safeObjectiveValue * ratioT; |
2308 | } else { |
2309 | zVec_[iColumn] = 0.0; |
2310 | wVec_[iColumn] = -reducedCost + safeObjectiveValue * ratioT; |
2311 | wVec_[iColumn] = CoinMax(-reducedCost , safeObjectiveValue * ratioT); |
2312 | } |
2313 | CoinWorkDouble gammaTerm = gamma2; |
2314 | if (primalR_) |
2315 | gammaTerm += primalR_[iColumn]; |
2316 | diagonal_[iColumn] = t / (wVec_[iColumn] + t * gammaTerm); |
2317 | } |
2318 | } |
2319 | lowerSlack_[iColumn] = low; |
2320 | upperSlack_[iColumn] = high; |
2321 | } |
2322 | } |
2323 | #if 0 |
2324 | if (solution_[0] > 0.0) { |
2325 | for (int i = 0; i < numberTotal; i++) |
2326 | printf("%d %.18g %.18g %.18g %.18g %.18g %.18g %.18g\n" , i, CoinAbs(solution_[i]), |
2327 | diagonal_[i], CoinAbs(dj_[i]), |
2328 | lowerSlack_[i], zVec_[i], |
2329 | upperSlack_[i], wVec_[i]); |
2330 | } else { |
2331 | for (int i = 0; i < numberTotal; i++) |
2332 | printf("%d %.18g %.18g %.18g %.18g %.18g %.18g %.18g\n" , i, CoinAbs(solution_[i]), |
2333 | diagonal_[i], CoinAbs(dj_[i]), |
2334 | upperSlack_[i], wVec_[i], |
2335 | lowerSlack_[i], zVec_[i] ); |
2336 | } |
2337 | exit(66); |
2338 | #endif |
2339 | return 0; |
2340 | } |
2341 | // complementarityGap. Computes gap |
2342 | //phase 0=as is , 1 = after predictor , 2 after corrector |
2343 | CoinWorkDouble ClpPredictorCorrector::complementarityGap(int & numberComplementarityPairs, |
2344 | int & numberComplementarityItems, |
2345 | const int phase) |
2346 | { |
2347 | CoinWorkDouble gap = 0.0; |
2348 | //seems to be same coding for phase = 1 or 2 |
2349 | numberComplementarityPairs = 0; |
2350 | numberComplementarityItems = 0; |
2351 | int numberTotal = numberRows_ + numberColumns_; |
2352 | CoinWorkDouble toleranceGap = 0.0; |
2353 | CoinWorkDouble largestGap = 0.0; |
2354 | CoinWorkDouble smallestGap = COIN_DBL_MAX; |
2355 | //seems to be same coding for phase = 1 or 2 |
2356 | int numberNegativeGaps = 0; |
2357 | CoinWorkDouble sumNegativeGap = 0.0; |
2358 | CoinWorkDouble largeGap = 1.0e2 * solutionNorm_; |
2359 | if (largeGap < 1.0e10) { |
2360 | largeGap = 1.0e10; |
2361 | } |
2362 | largeGap = 1.0e30; |
2363 | CoinWorkDouble dualTolerance = dblParam_[ClpDualTolerance]; |
2364 | CoinWorkDouble primalTolerance = dblParam_[ClpPrimalTolerance]; |
2365 | dualTolerance = dualTolerance / scaleFactor_; |
2366 | for (int iColumn = 0; iColumn < numberTotal; iColumn++) { |
2367 | if (!fixedOrFree(iColumn)) { |
2368 | numberComplementarityPairs++; |
2369 | //can collapse as if no lower bound both zVec and deltaZ 0.0 |
2370 | CoinWorkDouble newZ = 0.0; |
2371 | CoinWorkDouble newW = 0.0; |
2372 | if (lowerBound(iColumn)) { |
2373 | numberComplementarityItems++; |
2374 | CoinWorkDouble dualValue; |
2375 | CoinWorkDouble primalValue; |
2376 | if (!phase) { |
2377 | dualValue = zVec_[iColumn]; |
2378 | primalValue = lowerSlack_[iColumn]; |
2379 | } else { |
2380 | CoinWorkDouble change; |
2381 | change = solution_[iColumn] + deltaX_[iColumn] - lowerSlack_[iColumn] - lower_[iColumn]; |
2382 | dualValue = zVec_[iColumn] + actualDualStep_ * deltaZ_[iColumn]; |
2383 | newZ = dualValue; |
2384 | primalValue = lowerSlack_[iColumn] + actualPrimalStep_ * change; |
2385 | } |
2386 | //reduce primalValue |
2387 | if (primalValue > largeGap) { |
2388 | primalValue = largeGap; |
2389 | } |
2390 | CoinWorkDouble gapProduct = dualValue * primalValue; |
2391 | if (gapProduct < 0.0) { |
2392 | //cout<<"negative gap component "<<iColumn<<" "<<dualValue<<" "<< |
2393 | //primalValue<<endl; |
2394 | numberNegativeGaps++; |
2395 | sumNegativeGap -= gapProduct; |
2396 | gapProduct = 0.0; |
2397 | } |
2398 | gap += gapProduct; |
2399 | //printf("l %d prim %g dual %g totalGap %g\n", |
2400 | // iColumn,primalValue,dualValue,gap); |
2401 | if (gapProduct > largestGap) { |
2402 | largestGap = gapProduct; |
2403 | } |
2404 | smallestGap = CoinMin(smallestGap, gapProduct); |
2405 | if (dualValue > dualTolerance && primalValue > primalTolerance) { |
2406 | toleranceGap += dualValue * primalValue; |
2407 | } |
2408 | } |
2409 | if (upperBound(iColumn)) { |
2410 | numberComplementarityItems++; |
2411 | CoinWorkDouble dualValue; |
2412 | CoinWorkDouble primalValue; |
2413 | if (!phase) { |
2414 | dualValue = wVec_[iColumn]; |
2415 | primalValue = upperSlack_[iColumn]; |
2416 | } else { |
2417 | CoinWorkDouble change; |
2418 | change = upper_[iColumn] - solution_[iColumn] - deltaX_[iColumn] - upperSlack_[iColumn]; |
2419 | dualValue = wVec_[iColumn] + actualDualStep_ * deltaW_[iColumn]; |
2420 | newW = dualValue; |
2421 | primalValue = upperSlack_[iColumn] + actualPrimalStep_ * change; |
2422 | } |
2423 | //reduce primalValue |
2424 | if (primalValue > largeGap) { |
2425 | primalValue = largeGap; |
2426 | } |
2427 | CoinWorkDouble gapProduct = dualValue * primalValue; |
2428 | if (gapProduct < 0.0) { |
2429 | //cout<<"negative gap component "<<iColumn<<" "<<dualValue<<" "<< |
2430 | //primalValue<<endl; |
2431 | numberNegativeGaps++; |
2432 | sumNegativeGap -= gapProduct; |
2433 | gapProduct = 0.0; |
2434 | } |
2435 | gap += gapProduct; |
2436 | //printf("u %d prim %g dual %g totalGap %g\n", |
2437 | // iColumn,primalValue,dualValue,gap); |
2438 | if (gapProduct > largestGap) { |
2439 | largestGap = gapProduct; |
2440 | } |
2441 | if (dualValue > dualTolerance && primalValue > primalTolerance) { |
2442 | toleranceGap += dualValue * primalValue; |
2443 | } |
2444 | } |
2445 | } |
2446 | } |
2447 | //if (numberIterations_>4) |
2448 | //exit(9); |
2449 | if (!phase && numberNegativeGaps) { |
2450 | handler_->message(CLP_BARRIER_NEGATIVE_GAPS, messages_) |
2451 | << numberNegativeGaps << static_cast<double>(sumNegativeGap) |
2452 | << CoinMessageEol; |
2453 | } |
2454 | |
2455 | //in case all free! |
2456 | if (!numberComplementarityPairs) { |
2457 | numberComplementarityPairs = 1; |
2458 | } |
2459 | #ifdef SOME_DEBUG |
2460 | printf("with d,p steps %g,%g gap %g - smallest %g, largest %g, pairs %d\n" , |
2461 | actualDualStep_, actualPrimalStep_, |
2462 | gap, smallestGap, largestGap, numberComplementarityPairs); |
2463 | #endif |
2464 | return gap; |
2465 | } |
2466 | // setupForSolve. |
2467 | //phase 0=affine , 1 = corrector , 2 = primal-dual |
2468 | void ClpPredictorCorrector::setupForSolve(const int phase) |
2469 | { |
2470 | CoinWorkDouble = eExtra; |
2471 | int numberTotal = numberRows_ + numberColumns_; |
2472 | int iColumn; |
2473 | #ifdef SOME_DEBUG |
2474 | printf("phase %d in setupForSolve, mu %.18g\n" , phase, mu_); |
2475 | #endif |
2476 | CoinWorkDouble gamma2 = gamma_ * gamma_; // gamma*gamma will be added to diagonal |
2477 | CoinWorkDouble * dualArray = reinterpret_cast<CoinWorkDouble *>(dual_); |
2478 | switch (phase) { |
2479 | case 0: |
2480 | CoinMemcpyN(errorRegion_, numberRows_, rhsB_); |
2481 | if (delta_ || dualR_) { |
2482 | // add in regularization |
2483 | CoinWorkDouble delta2 = delta_ * delta_; |
2484 | for (int iRow = 0; iRow < numberRows_; iRow++) { |
2485 | rhsB_[iRow] -= delta2 * dualArray[iRow]; |
2486 | if (dualR_) |
2487 | rhsB_[iRow] -= dualR_[iRow] * dualArray[iRow]; |
2488 | } |
2489 | } |
2490 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
2491 | rhsC_[iColumn] = 0.0; |
2492 | rhsU_[iColumn] = 0.0; |
2493 | rhsL_[iColumn] = 0.0; |
2494 | rhsZ_[iColumn] = 0.0; |
2495 | rhsW_[iColumn] = 0.0; |
2496 | if (!flagged(iColumn)) { |
2497 | rhsC_[iColumn] = dj_[iColumn] - zVec_[iColumn] + wVec_[iColumn]; |
2498 | rhsC_[iColumn] += gamma2 * solution_[iColumn]; |
2499 | if (primalR_) |
2500 | rhsC_[iColumn] += primalR_[iColumn] * solution_[iColumn]; |
2501 | if (lowerBound(iColumn)) { |
2502 | rhsZ_[iColumn] = -zVec_[iColumn] * (lowerSlack_[iColumn] + extra); |
2503 | rhsL_[iColumn] = CoinMax(0.0, (lower_[iColumn] + lowerSlack_[iColumn]) - solution_[iColumn]); |
2504 | } |
2505 | if (upperBound(iColumn)) { |
2506 | rhsW_[iColumn] = -wVec_[iColumn] * (upperSlack_[iColumn] + extra); |
2507 | rhsU_[iColumn] = CoinMin(0.0, (upper_[iColumn] - upperSlack_[iColumn]) - solution_[iColumn]); |
2508 | } |
2509 | } |
2510 | } |
2511 | #if 0 |
2512 | for (int i = 0; i < 3; i++) { |
2513 | if (!CoinAbs(rhsZ_[i])) |
2514 | rhsZ_[i] = 0.0; |
2515 | if (!CoinAbs(rhsW_[i])) |
2516 | rhsW_[i] = 0.0; |
2517 | if (!CoinAbs(rhsU_[i])) |
2518 | rhsU_[i] = 0.0; |
2519 | if (!CoinAbs(rhsL_[i])) |
2520 | rhsL_[i] = 0.0; |
2521 | } |
2522 | if (solution_[0] > 0.0) { |
2523 | for (int i = 0; i < 3; i++) |
2524 | printf("%d %.18g %.18g %.18g %.18g %.18g %.18g %.18g\n" , i, solution_[i], |
2525 | diagonal_[i], dj_[i], |
2526 | lowerSlack_[i], zVec_[i], |
2527 | upperSlack_[i], wVec_[i]); |
2528 | for (int i = 0; i < 3; i++) |
2529 | printf("%d %.18g %.18g %.18g %.18g %.18g\n" , i, rhsC_[i], |
2530 | rhsZ_[i], rhsL_[i], |
2531 | rhsW_[i], rhsU_[i]); |
2532 | } else { |
2533 | for (int i = 0; i < 3; i++) |
2534 | printf("%d %.18g %.18g %.18g %.18g %.18g %.18g %.18g\n" , i, solution_[i], |
2535 | diagonal_[i], dj_[i], |
2536 | lowerSlack_[i], zVec_[i], |
2537 | upperSlack_[i], wVec_[i]); |
2538 | for (int i = 0; i < 3; i++) |
2539 | printf("%d %.18g %.18g %.18g %.18g %.18g\n" , i, rhsC_[i], |
2540 | rhsZ_[i], rhsL_[i], |
2541 | rhsW_[i], rhsU_[i]); |
2542 | } |
2543 | #endif |
2544 | break; |
2545 | case 1: |
2546 | // could be stored in delta2? |
2547 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
2548 | rhsZ_[iColumn] = 0.0; |
2549 | rhsW_[iColumn] = 0.0; |
2550 | if (!flagged(iColumn)) { |
2551 | if (lowerBound(iColumn)) { |
2552 | rhsZ_[iColumn] = mu_ - zVec_[iColumn] * (lowerSlack_[iColumn] + extra) |
2553 | - deltaZ_[iColumn] * deltaX_[iColumn]; |
2554 | // To bring in line with OSL |
2555 | rhsZ_[iColumn] += deltaZ_[iColumn] * rhsL_[iColumn]; |
2556 | } |
2557 | if (upperBound(iColumn)) { |
2558 | rhsW_[iColumn] = mu_ - wVec_[iColumn] * (upperSlack_[iColumn] + extra) |
2559 | + deltaW_[iColumn] * deltaX_[iColumn]; |
2560 | // To bring in line with OSL |
2561 | rhsW_[iColumn] -= deltaW_[iColumn] * rhsU_[iColumn]; |
2562 | } |
2563 | } |
2564 | } |
2565 | #if 0 |
2566 | for (int i = 0; i < numberTotal; i++) { |
2567 | if (!CoinAbs(rhsZ_[i])) |
2568 | rhsZ_[i] = 0.0; |
2569 | if (!CoinAbs(rhsW_[i])) |
2570 | rhsW_[i] = 0.0; |
2571 | if (!CoinAbs(rhsU_[i])) |
2572 | rhsU_[i] = 0.0; |
2573 | if (!CoinAbs(rhsL_[i])) |
2574 | rhsL_[i] = 0.0; |
2575 | } |
2576 | if (solution_[0] > 0.0) { |
2577 | for (int i = 0; i < numberTotal; i++) |
2578 | printf("%d %.18g %.18g %.18g %.18g %.18g %.18g %.18g\n" , i, CoinAbs(solution_[i]), |
2579 | diagonal_[i], CoinAbs(dj_[i]), |
2580 | lowerSlack_[i], zVec_[i], |
2581 | upperSlack_[i], wVec_[i]); |
2582 | for (int i = 0; i < numberTotal; i++) |
2583 | printf("%d %.18g %.18g %.18g %.18g %.18g\n" , i, CoinAbs(rhsC_[i]), |
2584 | rhsZ_[i], rhsL_[i], |
2585 | rhsW_[i], rhsU_[i]); |
2586 | } else { |
2587 | for (int i = 0; i < numberTotal; i++) |
2588 | printf("%d %.18g %.18g %.18g %.18g %.18g %.18g %.18g\n" , i, CoinAbs(solution_[i]), |
2589 | diagonal_[i], CoinAbs(dj_[i]), |
2590 | upperSlack_[i], wVec_[i], |
2591 | lowerSlack_[i], zVec_[i] ); |
2592 | for (int i = 0; i < numberTotal; i++) |
2593 | printf("%d %.18g %.18g %.18g %.18g %.18g\n" , i, CoinAbs(rhsC_[i]), |
2594 | rhsW_[i], rhsU_[i], |
2595 | rhsZ_[i], rhsL_[i]); |
2596 | } |
2597 | exit(66); |
2598 | #endif |
2599 | break; |
2600 | case 2: |
2601 | CoinMemcpyN(errorRegion_, numberRows_, rhsB_); |
2602 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
2603 | rhsZ_[iColumn] = 0.0; |
2604 | rhsW_[iColumn] = 0.0; |
2605 | if (!flagged(iColumn)) { |
2606 | if (lowerBound(iColumn)) { |
2607 | rhsZ_[iColumn] = mu_ - zVec_[iColumn] * (lowerSlack_[iColumn] + extra); |
2608 | } |
2609 | if (upperBound(iColumn)) { |
2610 | rhsW_[iColumn] = mu_ - wVec_[iColumn] * (upperSlack_[iColumn] + extra); |
2611 | } |
2612 | } |
2613 | } |
2614 | break; |
2615 | case 3: { |
2616 | CoinWorkDouble minBeta = 0.1 * mu_; |
2617 | CoinWorkDouble maxBeta = 10.0 * mu_; |
2618 | CoinWorkDouble dualStep = CoinMin(1.0, actualDualStep_ + 0.1); |
2619 | CoinWorkDouble primalStep = CoinMin(1.0, actualPrimalStep_ + 0.1); |
2620 | #ifdef SOME_DEBUG |
2621 | printf("good complementarity range %g to %g\n" , minBeta, maxBeta); |
2622 | #endif |
2623 | //minBeta=0.0; |
2624 | //maxBeta=COIN_DBL_MAX; |
2625 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
2626 | if (!flagged(iColumn)) { |
2627 | if (lowerBound(iColumn)) { |
2628 | CoinWorkDouble change = -rhsL_[iColumn] + deltaX_[iColumn]; |
2629 | CoinWorkDouble dualValue = zVec_[iColumn] + dualStep * deltaZ_[iColumn]; |
2630 | CoinWorkDouble primalValue = lowerSlack_[iColumn] + primalStep * change; |
2631 | CoinWorkDouble gapProduct = dualValue * primalValue; |
2632 | if (gapProduct > 0.0 && dualValue < 0.0) |
2633 | gapProduct = - gapProduct; |
2634 | #ifdef FULL_DEBUG |
2635 | delta2Z_[iColumn] = gapProduct; |
2636 | if (delta2Z_[iColumn] < minBeta || delta2Z_[iColumn] > maxBeta) |
2637 | printf("lower %d primal %g, dual %g, gap %g\n" , |
2638 | iColumn, primalValue, dualValue, gapProduct); |
2639 | #endif |
2640 | CoinWorkDouble value = 0.0; |
2641 | if (gapProduct < minBeta) { |
2642 | value = 2.0 * (minBeta - gapProduct); |
2643 | value = (mu_ - gapProduct); |
2644 | value = (minBeta - gapProduct); |
2645 | assert (value > 0.0); |
2646 | } else if (gapProduct > maxBeta) { |
2647 | value = CoinMax(maxBeta - gapProduct, -maxBeta); |
2648 | assert (value < 0.0); |
2649 | } |
2650 | rhsZ_[iColumn] += value; |
2651 | } |
2652 | if (upperBound(iColumn)) { |
2653 | CoinWorkDouble change = rhsU_[iColumn] - deltaX_[iColumn]; |
2654 | CoinWorkDouble dualValue = wVec_[iColumn] + dualStep * deltaW_[iColumn]; |
2655 | CoinWorkDouble primalValue = upperSlack_[iColumn] + primalStep * change; |
2656 | CoinWorkDouble gapProduct = dualValue * primalValue; |
2657 | if (gapProduct > 0.0 && dualValue < 0.0) |
2658 | gapProduct = - gapProduct; |
2659 | #ifdef FULL_DEBUG |
2660 | delta2W_[iColumn] = gapProduct; |
2661 | if (delta2W_[iColumn] < minBeta || delta2W_[iColumn] > maxBeta) |
2662 | printf("upper %d primal %g, dual %g, gap %g\n" , |
2663 | iColumn, primalValue, dualValue, gapProduct); |
2664 | #endif |
2665 | CoinWorkDouble value = 0.0; |
2666 | if (gapProduct < minBeta) { |
2667 | value = (minBeta - gapProduct); |
2668 | assert (value > 0.0); |
2669 | } else if (gapProduct > maxBeta) { |
2670 | value = CoinMax(maxBeta - gapProduct, -maxBeta); |
2671 | assert (value < 0.0); |
2672 | } |
2673 | rhsW_[iColumn] += value; |
2674 | } |
2675 | } |
2676 | } |
2677 | } |
2678 | break; |
2679 | } /* endswitch */ |
2680 | if (cholesky_->type() < 20) { |
2681 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
2682 | CoinWorkDouble value = rhsC_[iColumn]; |
2683 | CoinWorkDouble zValue = rhsZ_[iColumn]; |
2684 | CoinWorkDouble wValue = rhsW_[iColumn]; |
2685 | #if 0 |
2686 | #if 1 |
2687 | if (phase == 0) { |
2688 | // more accurate |
2689 | value = dj[iColumn]; |
2690 | zValue = 0.0; |
2691 | wValue = 0.0; |
2692 | } else if (phase == 2) { |
2693 | // more accurate |
2694 | value = dj[iColumn]; |
2695 | zValue = mu_; |
2696 | wValue = mu_; |
2697 | } |
2698 | #endif |
2699 | assert (rhsL_[iColumn] >= 0.0); |
2700 | assert (rhsU_[iColumn] <= 0.0); |
2701 | if (lowerBound(iColumn)) { |
2702 | value += (-zVec_[iColumn] * rhsL_[iColumn] - zValue) / |
2703 | (lowerSlack_[iColumn] + extra); |
2704 | } |
2705 | if (upperBound(iColumn)) { |
2706 | value += (wValue - wVec_[iColumn] * rhsU_[iColumn]) / |
2707 | (upperSlack_[iColumn] + extra); |
2708 | } |
2709 | #else |
2710 | if (lowerBound(iColumn)) { |
2711 | CoinWorkDouble gHat = zValue + zVec_[iColumn] * rhsL_[iColumn]; |
2712 | value -= gHat / (lowerSlack_[iColumn] + extra); |
2713 | } |
2714 | if (upperBound(iColumn)) { |
2715 | CoinWorkDouble hHat = wValue - wVec_[iColumn] * rhsU_[iColumn]; |
2716 | value += hHat / (upperSlack_[iColumn] + extra); |
2717 | } |
2718 | #endif |
2719 | workArray_[iColumn] = diagonal_[iColumn] * value; |
2720 | } |
2721 | #if 0 |
2722 | if (solution_[0] > 0.0) { |
2723 | for (int i = 0; i < numberTotal; i++) |
2724 | printf("%d %.18g\n" , i, workArray_[i]); |
2725 | } else { |
2726 | for (int i = 0; i < numberTotal; i++) |
2727 | printf("%d %.18g\n" , i, workArray_[i]); |
2728 | } |
2729 | exit(66); |
2730 | #endif |
2731 | } else { |
2732 | // KKT |
2733 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
2734 | CoinWorkDouble value = rhsC_[iColumn]; |
2735 | CoinWorkDouble zValue = rhsZ_[iColumn]; |
2736 | CoinWorkDouble wValue = rhsW_[iColumn]; |
2737 | if (lowerBound(iColumn)) { |
2738 | CoinWorkDouble gHat = zValue + zVec_[iColumn] * rhsL_[iColumn]; |
2739 | value -= gHat / (lowerSlack_[iColumn] + extra); |
2740 | } |
2741 | if (upperBound(iColumn)) { |
2742 | CoinWorkDouble hHat = wValue - wVec_[iColumn] * rhsU_[iColumn]; |
2743 | value += hHat / (upperSlack_[iColumn] + extra); |
2744 | } |
2745 | workArray_[iColumn] = value; |
2746 | } |
2747 | } |
2748 | } |
2749 | //method: sees if looks plausible change in complementarity |
2750 | bool ClpPredictorCorrector::checkGoodMove(const bool doCorrector, |
2751 | CoinWorkDouble & bestNextGap, |
2752 | bool allowIncreasingGap) |
2753 | { |
2754 | const CoinWorkDouble beta3 = 0.99997; |
2755 | bool goodMove = false; |
2756 | int nextNumber; |
2757 | int nextNumberItems; |
2758 | int numberTotal = numberRows_ + numberColumns_; |
2759 | CoinWorkDouble returnGap = bestNextGap; |
2760 | CoinWorkDouble nextGap = complementarityGap(nextNumber, nextNumberItems, 2); |
2761 | #ifndef NO_RTTI |
2762 | ClpQuadraticObjective * quadraticObj = (dynamic_cast< ClpQuadraticObjective*>(objective_)); |
2763 | #else |
2764 | ClpQuadraticObjective * quadraticObj = NULL; |
2765 | if (objective_->type() == 2) |
2766 | quadraticObj = (static_cast< ClpQuadraticObjective*>(objective_)); |
2767 | #endif |
2768 | if (nextGap > bestNextGap && nextGap > 0.9 * complementarityGap_ && doCorrector |
2769 | && !quadraticObj && !allowIncreasingGap) { |
2770 | #ifdef SOME_DEBUG |
2771 | printf("checkGood phase 1 next gap %.18g, phase 0 %.18g, old gap %.18g\n" , |
2772 | nextGap, bestNextGap, complementarityGap_); |
2773 | #endif |
2774 | return false; |
2775 | } else { |
2776 | returnGap = nextGap; |
2777 | } |
2778 | CoinWorkDouble step; |
2779 | if (actualDualStep_ > actualPrimalStep_) { |
2780 | step = actualDualStep_; |
2781 | } else { |
2782 | step = actualPrimalStep_; |
2783 | } |
2784 | CoinWorkDouble testValue = 1.0 - step * (1.0 - beta3); |
2785 | //testValue=0.0; |
2786 | testValue *= complementarityGap_; |
2787 | if (nextGap < testValue) { |
2788 | //std::cout <<"predicted duality gap "<<nextGap<<std::endl; |
2789 | goodMove = true; |
2790 | } else if(doCorrector) { |
2791 | //if (actualDualStep_<actualPrimalStep_) { |
2792 | //step=actualDualStep_; |
2793 | //} else { |
2794 | //step=actualPrimalStep_; |
2795 | //} |
2796 | CoinWorkDouble gap = bestNextGap; |
2797 | goodMove = checkGoodMove2(step, gap, allowIncreasingGap); |
2798 | if (goodMove) |
2799 | returnGap = gap; |
2800 | } else { |
2801 | goodMove = true; |
2802 | } |
2803 | if (goodMove) |
2804 | goodMove = checkGoodMove2(step, bestNextGap, allowIncreasingGap); |
2805 | // Say good if small |
2806 | //if (quadraticObj) { |
2807 | if (CoinMax(actualDualStep_, actualPrimalStep_) < 1.0e-6) |
2808 | goodMove = true; |
2809 | if (!goodMove) { |
2810 | //try smaller of two |
2811 | if (actualDualStep_ < actualPrimalStep_) { |
2812 | step = actualDualStep_; |
2813 | } else { |
2814 | step = actualPrimalStep_; |
2815 | } |
2816 | if (step > 1.0) { |
2817 | step = 1.0; |
2818 | } |
2819 | actualPrimalStep_ = step; |
2820 | //if (quadraticObj) |
2821 | //actualPrimalStep_ *=0.5; |
2822 | actualDualStep_ = step; |
2823 | goodMove = checkGoodMove2(step, bestNextGap, allowIncreasingGap); |
2824 | int pass = 0; |
2825 | while (!goodMove) { |
2826 | pass++; |
2827 | CoinWorkDouble gap = bestNextGap; |
2828 | goodMove = checkGoodMove2(step, gap, allowIncreasingGap); |
2829 | if (goodMove || pass > 3) { |
2830 | returnGap = gap; |
2831 | break; |
2832 | } |
2833 | if (step < 1.0e-4) { |
2834 | break; |
2835 | } |
2836 | step *= 0.5; |
2837 | actualPrimalStep_ = step; |
2838 | //if (quadraticObj) |
2839 | //actualPrimalStep_ *=0.5; |
2840 | actualDualStep_ = step; |
2841 | } /* endwhile */ |
2842 | if (doCorrector) { |
2843 | //say bad move if both small |
2844 | if (numberIterations_ & 1) { |
2845 | if (actualPrimalStep_ < 1.0e-2 && actualDualStep_ < 1.0e-2) { |
2846 | goodMove = false; |
2847 | } |
2848 | } else { |
2849 | if (actualPrimalStep_ < 1.0e-5 && actualDualStep_ < 1.0e-5) { |
2850 | goodMove = false; |
2851 | } |
2852 | if (actualPrimalStep_ * actualDualStep_ < 1.0e-20) { |
2853 | goodMove = false; |
2854 | } |
2855 | } |
2856 | } |
2857 | } |
2858 | if (goodMove) { |
2859 | //compute delta in objectives |
2860 | CoinWorkDouble deltaObjectivePrimal = 0.0; |
2861 | CoinWorkDouble deltaObjectiveDual = |
2862 | innerProduct(deltaY_, numberRows_, |
2863 | rhsFixRegion_); |
2864 | CoinWorkDouble error = 0.0; |
2865 | CoinWorkDouble * workArray = workArray_; |
2866 | CoinZeroN(workArray, numberColumns_); |
2867 | CoinMemcpyN(deltaY_, numberRows_, workArray + numberColumns_); |
2868 | matrix_->transposeTimes(-1.0, deltaY_, workArray); |
2869 | //CoinWorkDouble sumPerturbCost=0.0; |
2870 | for (int iColumn = 0; iColumn < numberTotal; iColumn++) { |
2871 | if (!flagged(iColumn)) { |
2872 | if (lowerBound(iColumn)) { |
2873 | //sumPerturbCost+=deltaX_[iColumn]; |
2874 | deltaObjectiveDual += deltaZ_[iColumn] * lower_[iColumn]; |
2875 | } |
2876 | if (upperBound(iColumn)) { |
2877 | //sumPerturbCost-=deltaX_[iColumn]; |
2878 | deltaObjectiveDual -= deltaW_[iColumn] * upper_[iColumn]; |
2879 | } |
2880 | CoinWorkDouble change = CoinAbs(workArray_[iColumn] - deltaZ_[iColumn] + deltaW_[iColumn]); |
2881 | error = CoinMax(change, error); |
2882 | } |
2883 | deltaObjectivePrimal += cost_[iColumn] * deltaX_[iColumn]; |
2884 | } |
2885 | //deltaObjectivePrimal+=sumPerturbCost*linearPerturbation_; |
2886 | CoinWorkDouble testValue; |
2887 | if (error > 0.0) { |
2888 | testValue = 1.0e1 * CoinMax(maximumDualError_, 1.0e-12) / error; |
2889 | } else { |
2890 | testValue = 1.0e1; |
2891 | } |
2892 | // If quadratic then primal step may compensate |
2893 | if (testValue < actualDualStep_ && !quadraticObj) { |
2894 | handler_->message(CLP_BARRIER_REDUCING, messages_) |
2895 | << "dual" << static_cast<double>(actualDualStep_) |
2896 | << static_cast<double>(testValue) |
2897 | << CoinMessageEol; |
2898 | actualDualStep_ = testValue; |
2899 | } |
2900 | } |
2901 | if (maximumRHSError_ < 1.0e1 * solutionNorm_ * primalTolerance() |
2902 | && maximumRHSChange_ > 1.0e-16 * solutionNorm_) { |
2903 | //check change in AX not too much |
2904 | //??? could be dropped row going infeasible |
2905 | CoinWorkDouble ratio = 1.0e1 * CoinMax(maximumRHSError_, 1.0e-12) / maximumRHSChange_; |
2906 | if (ratio < actualPrimalStep_) { |
2907 | handler_->message(CLP_BARRIER_REDUCING, messages_) |
2908 | << "primal" << static_cast<double>(actualPrimalStep_) |
2909 | << static_cast<double>(ratio) |
2910 | << CoinMessageEol; |
2911 | if (ratio > 1.0e-6) { |
2912 | actualPrimalStep_ = ratio; |
2913 | } else { |
2914 | actualPrimalStep_ = ratio; |
2915 | //std::cout <<"sign we should be stopping"<<std::endl; |
2916 | } |
2917 | } |
2918 | } |
2919 | if (goodMove) |
2920 | bestNextGap = returnGap; |
2921 | return goodMove; |
2922 | } |
2923 | //: checks for one step size |
2924 | bool ClpPredictorCorrector::checkGoodMove2(CoinWorkDouble move, |
2925 | CoinWorkDouble & bestNextGap, |
2926 | bool allowIncreasingGap) |
2927 | { |
2928 | CoinWorkDouble complementarityMultiplier = 1.0 / numberComplementarityPairs_; |
2929 | const CoinWorkDouble gamma = 1.0e-8; |
2930 | const CoinWorkDouble gammap = 1.0e-8; |
2931 | CoinWorkDouble gammad = 1.0e-8; |
2932 | int nextNumber; |
2933 | int nextNumberItems; |
2934 | CoinWorkDouble nextGap = complementarityGap(nextNumber, nextNumberItems, 2); |
2935 | if (nextGap > bestNextGap && !allowIncreasingGap) |
2936 | return false; |
2937 | CoinWorkDouble lowerBoundGap = gamma * nextGap * complementarityMultiplier; |
2938 | bool goodMove = true; |
2939 | int iColumn; |
2940 | for ( iColumn = 0; iColumn < numberRows_ + numberColumns_; iColumn++) { |
2941 | if (!flagged(iColumn)) { |
2942 | if (lowerBound(iColumn)) { |
2943 | CoinWorkDouble part1 = lowerSlack_[iColumn] + actualPrimalStep_ * deltaSL_[iColumn]; |
2944 | CoinWorkDouble part2 = zVec_[iColumn] + actualDualStep_ * deltaZ_[iColumn]; |
2945 | if (part1 * part2 < lowerBoundGap) { |
2946 | goodMove = false; |
2947 | break; |
2948 | } |
2949 | } |
2950 | if (upperBound(iColumn)) { |
2951 | CoinWorkDouble part1 = upperSlack_[iColumn] + actualPrimalStep_ * deltaSU_[iColumn]; |
2952 | CoinWorkDouble part2 = wVec_[iColumn] + actualDualStep_ * deltaW_[iColumn]; |
2953 | if (part1 * part2 < lowerBoundGap) { |
2954 | goodMove = false; |
2955 | break; |
2956 | } |
2957 | } |
2958 | } |
2959 | } |
2960 | CoinWorkDouble * nextDj = NULL; |
2961 | CoinWorkDouble maximumDualError = maximumDualError_; |
2962 | #ifndef NO_RTTI |
2963 | ClpQuadraticObjective * quadraticObj = (dynamic_cast< ClpQuadraticObjective*>(objective_)); |
2964 | #else |
2965 | ClpQuadraticObjective * quadraticObj = NULL; |
2966 | if (objective_->type() == 2) |
2967 | quadraticObj = (static_cast< ClpQuadraticObjective*>(objective_)); |
2968 | #endif |
2969 | CoinWorkDouble * dualArray = reinterpret_cast<CoinWorkDouble *>(dual_); |
2970 | if (quadraticObj) { |
2971 | // change gammad |
2972 | gammad = 1.0e-4; |
2973 | CoinWorkDouble gamma2 = gamma_ * gamma_; |
2974 | nextDj = new CoinWorkDouble [numberColumns_]; |
2975 | CoinWorkDouble * nextSolution = new CoinWorkDouble [numberColumns_]; |
2976 | // put next primal into nextSolution |
2977 | for ( iColumn = 0; iColumn < numberColumns_; iColumn++) { |
2978 | if (!flagged(iColumn)) { |
2979 | nextSolution[iColumn] = solution_[iColumn] + |
2980 | actualPrimalStep_ * deltaX_[iColumn]; |
2981 | } else { |
2982 | nextSolution[iColumn] = solution_[iColumn]; |
2983 | } |
2984 | } |
2985 | // do reduced costs |
2986 | CoinMemcpyN(cost_, numberColumns_, nextDj); |
2987 | matrix_->transposeTimes(-1.0, dualArray, nextDj); |
2988 | matrix_->transposeTimes(-actualDualStep_, deltaY_, nextDj); |
2989 | quadraticDjs(nextDj, nextSolution, 1.0); |
2990 | delete [] nextSolution; |
2991 | CoinPackedMatrix * quadratic = quadraticObj->quadraticObjective(); |
2992 | const int * columnQuadraticLength = quadratic->getVectorLengths(); |
2993 | for (int iColumn = 0; iColumn < numberColumns_; iColumn++) { |
2994 | if (!fixedOrFree(iColumn)) { |
2995 | CoinWorkDouble newZ = 0.0; |
2996 | CoinWorkDouble newW = 0.0; |
2997 | if (lowerBound(iColumn)) { |
2998 | newZ = zVec_[iColumn] + actualDualStep_ * deltaZ_[iColumn]; |
2999 | } |
3000 | if (upperBound(iColumn)) { |
3001 | newW = wVec_[iColumn] + actualDualStep_ * deltaW_[iColumn]; |
3002 | } |
3003 | if (columnQuadraticLength[iColumn]) { |
3004 | CoinWorkDouble gammaTerm = gamma2; |
3005 | if (primalR_) |
3006 | gammaTerm += primalR_[iColumn]; |
3007 | //CoinWorkDouble dualInfeasibility= |
3008 | //dj_[iColumn]-zVec_[iColumn]+wVec_[iColumn] |
3009 | //+gammaTerm*solution_[iColumn]; |
3010 | CoinWorkDouble newInfeasibility = |
3011 | nextDj[iColumn] - newZ + newW |
3012 | + gammaTerm * (solution_[iColumn] + actualPrimalStep_ * deltaX_[iColumn]); |
3013 | maximumDualError = CoinMax(maximumDualError, newInfeasibility); |
3014 | //if (CoinAbs(newInfeasibility)>CoinMax(2000.0*maximumDualError_,1.0e-2)) { |
3015 | //if (dualInfeasibility*newInfeasibility<0.0) { |
3016 | // printf("%d current %g next %g\n",iColumn,dualInfeasibility, |
3017 | // newInfeasibility); |
3018 | // goodMove=false; |
3019 | //} |
3020 | //} |
3021 | } |
3022 | } |
3023 | } |
3024 | delete [] nextDj; |
3025 | } |
3026 | // Satisfy g_p(alpha)? |
3027 | if (rhsNorm_ > solutionNorm_) { |
3028 | solutionNorm_ = rhsNorm_; |
3029 | } |
3030 | CoinWorkDouble errorCheck = maximumRHSError_ / solutionNorm_; |
3031 | if (errorCheck < maximumBoundInfeasibility_) { |
3032 | errorCheck = maximumBoundInfeasibility_; |
3033 | } |
3034 | // scale back move |
3035 | move = CoinMin(move, 0.95); |
3036 | //scale |
3037 | if ((1.0 - move)*errorCheck > primalTolerance()) { |
3038 | if (nextGap < gammap*(1.0 - move)*errorCheck) { |
3039 | goodMove = false; |
3040 | } |
3041 | } |
3042 | // Satisfy g_d(alpha)? |
3043 | errorCheck = maximumDualError / objectiveNorm_; |
3044 | if ((1.0 - move)*errorCheck > dualTolerance()) { |
3045 | if (nextGap < gammad*(1.0 - move)*errorCheck) { |
3046 | goodMove = false; |
3047 | } |
3048 | } |
3049 | if (goodMove) |
3050 | bestNextGap = nextGap; |
3051 | return goodMove; |
3052 | } |
3053 | // updateSolution. Updates solution at end of iteration |
3054 | //returns number fixed |
3055 | int ClpPredictorCorrector::updateSolution(CoinWorkDouble /*nextGap*/) |
3056 | { |
3057 | CoinWorkDouble * dualArray = reinterpret_cast<CoinWorkDouble *>(dual_); |
3058 | int numberTotal = numberRows_ + numberColumns_; |
3059 | //update pi |
3060 | multiplyAdd(deltaY_, numberRows_, actualDualStep_, dualArray, 1.0); |
3061 | CoinZeroN(errorRegion_, numberRows_); |
3062 | CoinZeroN(rhsFixRegion_, numberRows_); |
3063 | CoinWorkDouble maximumRhsInfeasibility = 0.0; |
3064 | CoinWorkDouble maximumBoundInfeasibility = 0.0; |
3065 | CoinWorkDouble maximumDualError = 1.0e-12; |
3066 | CoinWorkDouble primalObjectiveValue = 0.0; |
3067 | CoinWorkDouble dualObjectiveValue = 0.0; |
3068 | CoinWorkDouble solutionNorm = 1.0e-12; |
3069 | int numberKilled = 0; |
3070 | CoinWorkDouble freeMultiplier = 1.0e6; |
3071 | CoinWorkDouble trueNorm = diagonalNorm_ / diagonalScaleFactor_; |
3072 | if (freeMultiplier < trueNorm) { |
3073 | freeMultiplier = trueNorm; |
3074 | } |
3075 | if (freeMultiplier > 1.0e12) { |
3076 | freeMultiplier = 1.0e12; |
3077 | } |
3078 | freeMultiplier = 0.5 / freeMultiplier; |
3079 | CoinWorkDouble condition = CoinAbs(cholesky_->choleskyCondition()); |
3080 | bool caution; |
3081 | if ((condition < 1.0e10 && trueNorm < 1.0e12) || numberIterations_ < 20) { |
3082 | caution = false; |
3083 | } else { |
3084 | caution = true; |
3085 | } |
3086 | CoinWorkDouble = eExtra; |
3087 | const CoinWorkDouble largeFactor = 1.0e2; |
3088 | CoinWorkDouble largeGap = largeFactor * solutionNorm_; |
3089 | if (largeGap < largeFactor) { |
3090 | largeGap = largeFactor; |
3091 | } |
3092 | CoinWorkDouble dualFake = 0.0; |
3093 | CoinWorkDouble dualTolerance = dblParam_[ClpDualTolerance]; |
3094 | dualTolerance = dualTolerance / scaleFactor_; |
3095 | if (dualTolerance < 1.0e-12) { |
3096 | dualTolerance = 1.0e-12; |
3097 | } |
3098 | CoinWorkDouble offsetObjective = 0.0; |
3099 | CoinWorkDouble killTolerance = primalTolerance(); |
3100 | CoinWorkDouble qDiagonal; |
3101 | if (mu_ < 1.0) { |
3102 | qDiagonal = 1.0e-8; |
3103 | } else { |
3104 | qDiagonal = 1.0e-8 * mu_; |
3105 | } |
3106 | //CoinWorkDouble nextMu = nextGap/(static_cast<CoinWorkDouble>(2*numberComplementarityPairs_)); |
3107 | //printf("using gap of %g\n",nextMu); |
3108 | //qDiagonal *= 1.0e2; |
3109 | //largest allowable ratio of lowerSlack/zVec (etc) |
3110 | CoinWorkDouble largestRatio; |
3111 | CoinWorkDouble epsilonBase; |
3112 | CoinWorkDouble diagonalLimit; |
3113 | if (!caution) { |
3114 | epsilonBase = eBase; |
3115 | largestRatio = eRatio; |
3116 | diagonalLimit = eDiagonal; |
3117 | } else { |
3118 | epsilonBase = eBaseCaution; |
3119 | largestRatio = eRatioCaution; |
3120 | diagonalLimit = eDiagonalCaution; |
3121 | } |
3122 | CoinWorkDouble smallGap = 1.0e2; |
3123 | CoinWorkDouble maximumDJInfeasibility = 0.0; |
3124 | int numberIncreased = 0; |
3125 | int numberDecreased = 0; |
3126 | CoinWorkDouble largestDiagonal = 0.0; |
3127 | CoinWorkDouble smallestDiagonal = 1.0e50; |
3128 | CoinWorkDouble largeGap2 = CoinMax(1.0e7, 1.0e2 * solutionNorm_); |
3129 | //largeGap2 = 1.0e9; |
3130 | // When to start looking at killing (factor0 |
3131 | CoinWorkDouble killFactor; |
3132 | #ifndef NO_RTTI |
3133 | ClpQuadraticObjective * quadraticObj = (dynamic_cast< ClpQuadraticObjective*>(objective_)); |
3134 | #else |
3135 | ClpQuadraticObjective * quadraticObj = NULL; |
3136 | if (objective_->type() == 2) |
3137 | quadraticObj = (static_cast< ClpQuadraticObjective*>(objective_)); |
3138 | #endif |
3139 | #ifndef CLP_CAUTION |
3140 | #define KILL_ITERATION 50 |
3141 | #else |
3142 | #if CLP_CAUTION < 1 |
3143 | #define KILL_ITERATION 50 |
3144 | #else |
3145 | #define KILL_ITERATION 100 |
3146 | #endif |
3147 | #endif |
3148 | if (!quadraticObj || 1) { |
3149 | if (numberIterations_ < KILL_ITERATION) { |
3150 | killFactor = 1.0; |
3151 | } else if (numberIterations_ < 2 * KILL_ITERATION) { |
3152 | killFactor = 5.0; |
3153 | stepLength_ = CoinMax(stepLength_, 0.9995); |
3154 | } else if (numberIterations_ < 4 * KILL_ITERATION) { |
3155 | killFactor = 20.0; |
3156 | stepLength_ = CoinMax(stepLength_, 0.99995); |
3157 | } else { |
3158 | killFactor = 1.0e2; |
3159 | stepLength_ = CoinMax(stepLength_, 0.999995); |
3160 | } |
3161 | } else { |
3162 | killFactor = 1.0; |
3163 | } |
3164 | // put next primal into deltaSL_ |
3165 | int iColumn; |
3166 | int iRow; |
3167 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
3168 | CoinWorkDouble thisWeight = deltaX_[iColumn]; |
3169 | CoinWorkDouble newPrimal = solution_[iColumn] + 1.0 * actualPrimalStep_ * thisWeight; |
3170 | deltaSL_[iColumn] = newPrimal; |
3171 | } |
3172 | #if 0 |
3173 | // nice idea but doesn't work |
3174 | multiplyAdd(solution_ + numberColumns_, numberRows_, -1.0, errorRegion_, 0.0); |
3175 | matrix_->times(1.0, solution_, errorRegion_); |
3176 | multiplyAdd(deltaSL_ + numberColumns_, numberRows_, -1.0, rhsFixRegion_, 0.0); |
3177 | matrix_->times(1.0, deltaSL_, rhsFixRegion_); |
3178 | CoinWorkDouble newNorm = maximumAbsElement(deltaSL_, numberTotal); |
3179 | CoinWorkDouble tol = newNorm * primalTolerance(); |
3180 | bool goneInf = false; |
3181 | for (iRow = 0; iRow < numberRows_; iRow++) { |
3182 | CoinWorkDouble value = errorRegion_[iRow]; |
3183 | CoinWorkDouble valueNew = rhsFixRegion_[iRow]; |
3184 | if (CoinAbs(value) < tol && CoinAbs(valueNew) > tol) { |
3185 | printf("row %d old %g new %g\n" , iRow, value, valueNew); |
3186 | goneInf = true; |
3187 | } |
3188 | } |
3189 | if (goneInf) { |
3190 | actualPrimalStep_ *= 0.5; |
3191 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
3192 | CoinWorkDouble thisWeight = deltaX_[iColumn]; |
3193 | CoinWorkDouble newPrimal = solution_[iColumn] + 1.0 * actualPrimalStep_ * thisWeight; |
3194 | deltaSL_[iColumn] = newPrimal; |
3195 | } |
3196 | } |
3197 | CoinZeroN(errorRegion_, numberRows_); |
3198 | CoinZeroN(rhsFixRegion_, numberRows_); |
3199 | #endif |
3200 | // do reduced costs |
3201 | CoinMemcpyN(dualArray, numberRows_, dj_ + numberColumns_); |
3202 | CoinMemcpyN(cost_, numberColumns_, dj_); |
3203 | CoinWorkDouble quadraticOffset = quadraticDjs(dj_, deltaSL_, 1.0); |
3204 | // Save modified costs for fixed variables |
3205 | CoinMemcpyN(dj_, numberColumns_, deltaSU_); |
3206 | matrix_->transposeTimes(-1.0, dualArray, dj_); |
3207 | CoinWorkDouble gamma2 = gamma_ * gamma_; // gamma*gamma will be added to diagonal |
3208 | CoinWorkDouble gammaOffset = 0.0; |
3209 | #if 0 |
3210 | const CoinBigIndex * columnStart = matrix_->getVectorStarts(); |
3211 | const int * columnLength = matrix_->getVectorLengths(); |
3212 | const int * row = matrix_->getIndices(); |
3213 | const double * element = matrix_->getElements(); |
3214 | #endif |
3215 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
3216 | if (!flagged(iColumn)) { |
3217 | CoinWorkDouble reducedCost = dj_[iColumn]; |
3218 | bool thisKilled = false; |
3219 | CoinWorkDouble zValue = zVec_[iColumn] + actualDualStep_ * deltaZ_[iColumn]; |
3220 | CoinWorkDouble wValue = wVec_[iColumn] + actualDualStep_ * deltaW_[iColumn]; |
3221 | zVec_[iColumn] = zValue; |
3222 | wVec_[iColumn] = wValue; |
3223 | CoinWorkDouble thisWeight = deltaX_[iColumn]; |
3224 | CoinWorkDouble oldPrimal = solution_[iColumn]; |
3225 | CoinWorkDouble newPrimal = solution_[iColumn] + actualPrimalStep_ * thisWeight; |
3226 | CoinWorkDouble dualObjectiveThis = 0.0; |
3227 | CoinWorkDouble sUpper = extra; |
3228 | CoinWorkDouble sLower = extra; |
3229 | CoinWorkDouble kill; |
3230 | if (CoinAbs(newPrimal) > 1.0e4) { |
3231 | kill = killTolerance * 1.0e-4 * newPrimal; |
3232 | } else { |
3233 | kill = killTolerance; |
3234 | } |
3235 | kill *= 1.0e-3; //be conservative |
3236 | CoinWorkDouble smallerSlack = COIN_DBL_MAX; |
3237 | bool fakeOldBounds = false; |
3238 | bool fakeNewBounds = false; |
3239 | CoinWorkDouble trueLower; |
3240 | CoinWorkDouble trueUpper; |
3241 | if (iColumn < numberColumns_) { |
3242 | trueLower = columnLower_[iColumn]; |
3243 | trueUpper = columnUpper_[iColumn]; |
3244 | } else { |
3245 | trueLower = rowLower_[iColumn-numberColumns_]; |
3246 | trueUpper = rowUpper_[iColumn-numberColumns_]; |
3247 | } |
3248 | if (oldPrimal > trueLower + largeGap2 && |
3249 | oldPrimal < trueUpper - largeGap2) |
3250 | fakeOldBounds = true; |
3251 | if (newPrimal > trueLower + largeGap2 && |
3252 | newPrimal < trueUpper - largeGap2) |
3253 | fakeNewBounds = true; |
3254 | if (fakeOldBounds) { |
3255 | if (fakeNewBounds) { |
3256 | lower_[iColumn] = newPrimal - largeGap2; |
3257 | lowerSlack_[iColumn] = largeGap2; |
3258 | upper_[iColumn] = newPrimal + largeGap2; |
3259 | upperSlack_[iColumn] = largeGap2; |
3260 | } else { |
3261 | lower_[iColumn] = trueLower; |
3262 | setLowerBound(iColumn); |
3263 | lowerSlack_[iColumn] = CoinMax(newPrimal - trueLower, 1.0); |
3264 | upper_[iColumn] = trueUpper; |
3265 | setUpperBound(iColumn); |
3266 | upperSlack_[iColumn] = CoinMax(trueUpper - newPrimal, 1.0); |
3267 | } |
3268 | } else if (fakeNewBounds) { |
3269 | lower_[iColumn] = newPrimal - largeGap2; |
3270 | lowerSlack_[iColumn] = largeGap2; |
3271 | upper_[iColumn] = newPrimal + largeGap2; |
3272 | upperSlack_[iColumn] = largeGap2; |
3273 | // so we can just have one test |
3274 | fakeOldBounds = true; |
3275 | } |
3276 | CoinWorkDouble lowerBoundInfeasibility = 0.0; |
3277 | CoinWorkDouble upperBoundInfeasibility = 0.0; |
3278 | //double saveNewPrimal = newPrimal; |
3279 | if (lowerBound(iColumn)) { |
3280 | CoinWorkDouble oldSlack = lowerSlack_[iColumn]; |
3281 | CoinWorkDouble newSlack; |
3282 | newSlack = |
3283 | lowerSlack_[iColumn] + actualPrimalStep_ * (oldPrimal - oldSlack |
3284 | + thisWeight - lower_[iColumn]); |
3285 | if (fakeOldBounds) |
3286 | newSlack = lowerSlack_[iColumn]; |
3287 | CoinWorkDouble epsilon = CoinAbs(newSlack) * epsilonBase; |
3288 | epsilon = CoinMin(epsilon, 1.0e-5); |
3289 | //epsilon=1.0e-14; |
3290 | //make sure reasonable |
3291 | if (zValue < epsilon) { |
3292 | zValue = epsilon; |
3293 | } |
3294 | CoinWorkDouble feasibleSlack = newPrimal - lower_[iColumn]; |
3295 | if (feasibleSlack > 0.0 && newSlack > 0.0) { |
3296 | CoinWorkDouble smallGap2 = smallGap; |
3297 | if (CoinAbs(0.1 * newPrimal) > smallGap) { |
3298 | smallGap2 = 0.1 * CoinAbs(newPrimal); |
3299 | } |
3300 | CoinWorkDouble larger; |
3301 | if (newSlack > feasibleSlack) { |
3302 | larger = newSlack; |
3303 | } else { |
3304 | larger = feasibleSlack; |
3305 | } |
3306 | if (CoinAbs(feasibleSlack - newSlack) < 1.0e-6 * larger) { |
3307 | newSlack = feasibleSlack; |
3308 | } |
3309 | } |
3310 | if (zVec_[iColumn] > dualTolerance) { |
3311 | dualObjectiveThis += lower_[iColumn] * zVec_[iColumn]; |
3312 | } |
3313 | lowerSlack_[iColumn] = newSlack; |
3314 | if (newSlack < smallerSlack) { |
3315 | smallerSlack = newSlack; |
3316 | } |
3317 | lowerBoundInfeasibility = CoinAbs(newPrimal - lowerSlack_[iColumn] - lower_[iColumn]); |
3318 | if (lowerSlack_[iColumn] <= kill * killFactor && CoinAbs(newPrimal - lower_[iColumn]) <= kill * killFactor) { |
3319 | CoinWorkDouble step = CoinMin(actualPrimalStep_ * 1.1, 1.0); |
3320 | CoinWorkDouble newPrimal2 = solution_[iColumn] + step * thisWeight; |
3321 | if (newPrimal2 < newPrimal && dj_[iColumn] > 1.0e-5 && numberIterations_ > 50 - 40) { |
3322 | newPrimal = lower_[iColumn]; |
3323 | lowerSlack_[iColumn] = 0.0; |
3324 | //printf("fixing %d to lower\n",iColumn); |
3325 | } |
3326 | } |
3327 | if (lowerSlack_[iColumn] <= kill && CoinAbs(newPrimal - lower_[iColumn]) <= kill) { |
3328 | //may be better to leave at value? |
3329 | newPrimal = lower_[iColumn]; |
3330 | lowerSlack_[iColumn] = 0.0; |
3331 | thisKilled = true; |
3332 | //cout<<j<<" l "<<reducedCost<<" "<<zVec_[iColumn]<<endl; |
3333 | } else { |
3334 | sLower += lowerSlack_[iColumn]; |
3335 | } |
3336 | } |
3337 | if (upperBound(iColumn)) { |
3338 | CoinWorkDouble oldSlack = upperSlack_[iColumn]; |
3339 | CoinWorkDouble newSlack; |
3340 | newSlack = |
3341 | upperSlack_[iColumn] + actualPrimalStep_ * (-oldPrimal - oldSlack |
3342 | - thisWeight + upper_[iColumn]); |
3343 | if (fakeOldBounds) |
3344 | newSlack = upperSlack_[iColumn]; |
3345 | CoinWorkDouble epsilon = CoinAbs(newSlack) * epsilonBase; |
3346 | epsilon = CoinMin(epsilon, 1.0e-5); |
3347 | //make sure reasonable |
3348 | //epsilon=1.0e-14; |
3349 | if (wValue < epsilon) { |
3350 | wValue = epsilon; |
3351 | } |
3352 | CoinWorkDouble feasibleSlack = upper_[iColumn] - newPrimal; |
3353 | if (feasibleSlack > 0.0 && newSlack > 0.0) { |
3354 | CoinWorkDouble smallGap2 = smallGap; |
3355 | if (CoinAbs(0.1 * newPrimal) > smallGap) { |
3356 | smallGap2 = 0.1 * CoinAbs(newPrimal); |
3357 | } |
3358 | CoinWorkDouble larger; |
3359 | if (newSlack > feasibleSlack) { |
3360 | larger = newSlack; |
3361 | } else { |
3362 | larger = feasibleSlack; |
3363 | } |
3364 | if (CoinAbs(feasibleSlack - newSlack) < 1.0e-6 * larger) { |
3365 | newSlack = feasibleSlack; |
3366 | } |
3367 | } |
3368 | if (wVec_[iColumn] > dualTolerance) { |
3369 | dualObjectiveThis -= upper_[iColumn] * wVec_[iColumn]; |
3370 | } |
3371 | upperSlack_[iColumn] = newSlack; |
3372 | if (newSlack < smallerSlack) { |
3373 | smallerSlack = newSlack; |
3374 | } |
3375 | upperBoundInfeasibility = CoinAbs(newPrimal + upperSlack_[iColumn] - upper_[iColumn]); |
3376 | if (upperSlack_[iColumn] <= kill * killFactor && CoinAbs(newPrimal - upper_[iColumn]) <= kill * killFactor) { |
3377 | CoinWorkDouble step = CoinMin(actualPrimalStep_ * 1.1, 1.0); |
3378 | CoinWorkDouble newPrimal2 = solution_[iColumn] + step * thisWeight; |
3379 | if (newPrimal2 > newPrimal && dj_[iColumn] < -1.0e-5 && numberIterations_ > 50 - 40) { |
3380 | newPrimal = upper_[iColumn]; |
3381 | upperSlack_[iColumn] = 0.0; |
3382 | //printf("fixing %d to upper\n",iColumn); |
3383 | } |
3384 | } |
3385 | if (upperSlack_[iColumn] <= kill && CoinAbs(newPrimal - upper_[iColumn]) <= kill) { |
3386 | //may be better to leave at value? |
3387 | newPrimal = upper_[iColumn]; |
3388 | upperSlack_[iColumn] = 0.0; |
3389 | thisKilled = true; |
3390 | } else { |
3391 | sUpper += upperSlack_[iColumn]; |
3392 | } |
3393 | } |
3394 | #if 0 |
3395 | if (newPrimal != saveNewPrimal && iColumn < numberColumns_) { |
3396 | // adjust slacks |
3397 | double movement = newPrimal - saveNewPrimal; |
3398 | for (CoinBigIndex j = columnStart[iColumn]; |
3399 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
3400 | int iRow = row[j]; |
3401 | double slackMovement = element[j] * movement; |
3402 | solution_[iRow+numberColumns_] += slackMovement; // sign? |
3403 | } |
3404 | } |
3405 | #endif |
3406 | solution_[iColumn] = newPrimal; |
3407 | if (CoinAbs(newPrimal) > solutionNorm) { |
3408 | solutionNorm = CoinAbs(newPrimal); |
3409 | } |
3410 | if (!thisKilled) { |
3411 | CoinWorkDouble gammaTerm = gamma2; |
3412 | if (primalR_) { |
3413 | gammaTerm += primalR_[iColumn]; |
3414 | quadraticOffset += newPrimal * newPrimal * primalR_[iColumn]; |
3415 | } |
3416 | CoinWorkDouble dualInfeasibility = |
3417 | reducedCost - zVec_[iColumn] + wVec_[iColumn] + gammaTerm * newPrimal; |
3418 | if (CoinAbs(dualInfeasibility) > dualTolerance) { |
3419 | #if 0 |
3420 | if (dualInfeasibility > 0.0) { |
3421 | // To improve we could reduce t and/or increase z |
3422 | if (lowerBound(iColumn)) { |
3423 | CoinWorkDouble complementarity = zVec_[iColumn] * lowerSlack_[iColumn]; |
3424 | if (complementarity < nextMu) { |
3425 | CoinWorkDouble change = |
3426 | CoinMin(dualInfeasibility, |
3427 | (nextMu - complementarity) / lowerSlack_[iColumn]); |
3428 | dualInfeasibility -= change; |
3429 | COIN_DETAIL_PRINT(printf("%d lb locomp %g - dual inf from %g to %g\n" , |
3430 | iColumn, complementarity, dualInfeasibility + change, |
3431 | dualInfeasibility)); |
3432 | zVec_[iColumn] += change; |
3433 | zValue = CoinMax(zVec_[iColumn], 1.0e-12); |
3434 | } |
3435 | } |
3436 | if (upperBound(iColumn)) { |
3437 | CoinWorkDouble complementarity = wVec_[iColumn] * upperSlack_[iColumn]; |
3438 | if (complementarity > nextMu) { |
3439 | CoinWorkDouble change = |
3440 | CoinMin(dualInfeasibility, |
3441 | (complementarity - nextMu) / upperSlack_[iColumn]); |
3442 | dualInfeasibility -= change; |
3443 | COIN_DETAIL_PRINT(printf("%d ub hicomp %g - dual inf from %g to %g\n" , |
3444 | iColumn, complementarity, dualInfeasibility + change, |
3445 | dualInfeasibility)); |
3446 | wVec_[iColumn] -= change; |
3447 | wValue = CoinMax(wVec_[iColumn], 1.0e-12); |
3448 | } |
3449 | } |
3450 | } else { |
3451 | // To improve we could reduce z and/or increase t |
3452 | if (lowerBound(iColumn)) { |
3453 | CoinWorkDouble complementarity = zVec_[iColumn] * lowerSlack_[iColumn]; |
3454 | if (complementarity > nextMu) { |
3455 | CoinWorkDouble change = |
3456 | CoinMax(dualInfeasibility, |
3457 | (nextMu - complementarity) / lowerSlack_[iColumn]); |
3458 | dualInfeasibility -= change; |
3459 | COIN_DETAIL_PRINT(printf("%d lb hicomp %g - dual inf from %g to %g\n" , |
3460 | iColumn, complementarity, dualInfeasibility + change, |
3461 | dualInfeasibility)); |
3462 | zVec_[iColumn] += change; |
3463 | zValue = CoinMax(zVec_[iColumn], 1.0e-12); |
3464 | } |
3465 | } |
3466 | if (upperBound(iColumn)) { |
3467 | CoinWorkDouble complementarity = wVec_[iColumn] * upperSlack_[iColumn]; |
3468 | if (complementarity < nextMu) { |
3469 | CoinWorkDouble change = |
3470 | CoinMax(dualInfeasibility, |
3471 | (complementarity - nextMu) / upperSlack_[iColumn]); |
3472 | dualInfeasibility -= change; |
3473 | COIN_DETAIL_PRINT(printf("%d ub locomp %g - dual inf from %g to %g\n" , |
3474 | iColumn, complementarity, dualInfeasibility + change, |
3475 | dualInfeasibility)); |
3476 | wVec_[iColumn] -= change; |
3477 | wValue = CoinMax(wVec_[iColumn], 1.0e-12); |
3478 | } |
3479 | } |
3480 | } |
3481 | #endif |
3482 | dualFake += newPrimal * dualInfeasibility; |
3483 | } |
3484 | if (lowerBoundInfeasibility > maximumBoundInfeasibility) { |
3485 | maximumBoundInfeasibility = lowerBoundInfeasibility; |
3486 | } |
3487 | if (upperBoundInfeasibility > maximumBoundInfeasibility) { |
3488 | maximumBoundInfeasibility = upperBoundInfeasibility; |
3489 | } |
3490 | dualInfeasibility = CoinAbs(dualInfeasibility); |
3491 | if (dualInfeasibility > maximumDualError) { |
3492 | //printf("bad dual %d %g\n",iColumn, |
3493 | // reducedCost-zVec_[iColumn]+wVec_[iColumn]+gammaTerm*newPrimal); |
3494 | maximumDualError = dualInfeasibility; |
3495 | } |
3496 | dualObjectiveValue += dualObjectiveThis; |
3497 | gammaOffset += newPrimal * newPrimal; |
3498 | if (sLower > largeGap) { |
3499 | sLower = largeGap; |
3500 | } |
3501 | if (sUpper > largeGap) { |
3502 | sUpper = largeGap; |
3503 | } |
3504 | #if 1 |
3505 | CoinWorkDouble divisor = sLower * wValue + sUpper * zValue + gammaTerm * sLower * sUpper; |
3506 | CoinWorkDouble diagonalValue = (sUpper * sLower) / divisor; |
3507 | #else |
3508 | CoinWorkDouble divisor = sLower * wValue + sUpper * zValue + gammaTerm * sLower * sUpper; |
3509 | CoinWorkDouble diagonalValue2 = (sUpper * sLower) / divisor; |
3510 | CoinWorkDouble diagonalValue; |
3511 | if (!lowerBound(iColumn)) { |
3512 | diagonalValue = wValue / sUpper + gammaTerm; |
3513 | } else if (!upperBound(iColumn)) { |
3514 | diagonalValue = zValue / sLower + gammaTerm; |
3515 | } else { |
3516 | diagonalValue = zValue / sLower + wValue / sUpper + gammaTerm; |
3517 | } |
3518 | diagonalValue = 1.0 / diagonalValue; |
3519 | #endif |
3520 | diagonal_[iColumn] = diagonalValue; |
3521 | //FUDGE |
3522 | if (diagonalValue > diagonalLimit) { |
3523 | #ifdef COIN_DEVELOP |
3524 | std::cout << "large diagonal " << diagonalValue << std::endl; |
3525 | #endif |
3526 | diagonal_[iColumn] = diagonalLimit; |
3527 | } |
3528 | #ifdef COIN_DEVELOP |
3529 | if (diagonalValue < 1.0e-10) { |
3530 | //std::cout<<"small diagonal "<<diagonalValue<<std::endl; |
3531 | } |
3532 | #endif |
3533 | if (diagonalValue > largestDiagonal) { |
3534 | largestDiagonal = diagonalValue; |
3535 | } |
3536 | if (diagonalValue < smallestDiagonal) { |
3537 | smallestDiagonal = diagonalValue; |
3538 | } |
3539 | deltaX_[iColumn] = 0.0; |
3540 | } else { |
3541 | numberKilled++; |
3542 | if (solution_[iColumn] != lower_[iColumn] && |
3543 | solution_[iColumn] != upper_[iColumn]) { |
3544 | COIN_DETAIL_PRINT(printf("%d %g %g %g\n" , iColumn, static_cast<double>(lower_[iColumn]), |
3545 | static_cast<double>(solution_[iColumn]), static_cast<double>(upper_[iColumn]))); |
3546 | } |
3547 | diagonal_[iColumn] = 0.0; |
3548 | zVec_[iColumn] = 0.0; |
3549 | wVec_[iColumn] = 0.0; |
3550 | setFlagged(iColumn); |
3551 | setFixedOrFree(iColumn); |
3552 | deltaX_[iColumn] = newPrimal; |
3553 | offsetObjective += newPrimal * deltaSU_[iColumn]; |
3554 | } |
3555 | } else { |
3556 | deltaX_[iColumn] = solution_[iColumn]; |
3557 | diagonal_[iColumn] = 0.0; |
3558 | offsetObjective += solution_[iColumn] * deltaSU_[iColumn]; |
3559 | if (upper_[iColumn] - lower_[iColumn] > 1.0e-5) { |
3560 | if (solution_[iColumn] < lower_[iColumn] + 1.0e-8 && dj_[iColumn] < -1.0e-8) { |
3561 | if (-dj_[iColumn] > maximumDJInfeasibility) { |
3562 | maximumDJInfeasibility = -dj_[iColumn]; |
3563 | } |
3564 | } |
3565 | if (solution_[iColumn] > upper_[iColumn] - 1.0e-8 && dj_[iColumn] > 1.0e-8) { |
3566 | if (dj_[iColumn] > maximumDJInfeasibility) { |
3567 | maximumDJInfeasibility = dj_[iColumn]; |
3568 | } |
3569 | } |
3570 | } |
3571 | } |
3572 | primalObjectiveValue += solution_[iColumn] * cost_[iColumn]; |
3573 | } |
3574 | handler_->message(CLP_BARRIER_DIAGONAL, messages_) |
3575 | << static_cast<double>(largestDiagonal) << static_cast<double>(smallestDiagonal) |
3576 | << CoinMessageEol; |
3577 | #if 0 |
3578 | // If diagonal wild - kill some |
3579 | if (largestDiagonal > 1.0e17 * smallestDiagonal) { |
3580 | CoinWorkDouble killValue = largestDiagonal * 1.0e-17; |
3581 | for (int iColumn = 0; iColumn < numberTotal; iColumn++) { |
3582 | if (CoinAbs(diagonal_[iColumn]) < killValue) |
3583 | diagonal_[iolumn] = 0.0; |
3584 | } |
3585 | } |
3586 | #endif |
3587 | // update rhs region |
3588 | multiplyAdd(deltaX_ + numberColumns_, numberRows_, -1.0, rhsFixRegion_, 1.0); |
3589 | matrix_->times(1.0, deltaX_, rhsFixRegion_); |
3590 | primalObjectiveValue += 0.5 * gamma2 * gammaOffset + 0.5 * quadraticOffset; |
3591 | if (quadraticOffset) { |
3592 | // printf("gamma offset %g %g, quadoffset %g\n",gammaOffset,gamma2*gammaOffset,quadraticOffset); |
3593 | } |
3594 | |
3595 | dualObjectiveValue += offsetObjective + dualFake; |
3596 | dualObjectiveValue -= 0.5 * gamma2 * gammaOffset + 0.5 * quadraticOffset; |
3597 | if (numberIncreased || numberDecreased) { |
3598 | handler_->message(CLP_BARRIER_SLACKS, messages_) |
3599 | << numberIncreased << numberDecreased |
3600 | << CoinMessageEol; |
3601 | } |
3602 | if (maximumDJInfeasibility) { |
3603 | handler_->message(CLP_BARRIER_DUALINF, messages_) |
3604 | << static_cast<double>(maximumDJInfeasibility) |
3605 | << CoinMessageEol; |
3606 | } |
3607 | // Need to rethink (but it is only for printing) |
3608 | sumPrimalInfeasibilities_ = maximumRhsInfeasibility; |
3609 | sumDualInfeasibilities_ = maximumDualError; |
3610 | maximumBoundInfeasibility_ = maximumBoundInfeasibility; |
3611 | //compute error and fixed RHS |
3612 | multiplyAdd(solution_ + numberColumns_, numberRows_, -1.0, errorRegion_, 0.0); |
3613 | matrix_->times(1.0, solution_, errorRegion_); |
3614 | maximumDualError_ = maximumDualError; |
3615 | maximumBoundInfeasibility_ = maximumBoundInfeasibility; |
3616 | solutionNorm_ = solutionNorm; |
3617 | //finish off objective computation |
3618 | primalObjective_ = primalObjectiveValue * scaleFactor_; |
3619 | CoinWorkDouble dualValue2 = innerProduct(dualArray, numberRows_, |
3620 | rhsFixRegion_); |
3621 | dualObjectiveValue -= dualValue2; |
3622 | dualObjective_ = dualObjectiveValue * scaleFactor_; |
3623 | if (numberKilled) { |
3624 | handler_->message(CLP_BARRIER_KILLED, messages_) |
3625 | << numberKilled |
3626 | << CoinMessageEol; |
3627 | } |
3628 | CoinWorkDouble maximumRHSError1 = 0.0; |
3629 | CoinWorkDouble maximumRHSError2 = 0.0; |
3630 | CoinWorkDouble primalOffset = 0.0; |
3631 | char * dropped = cholesky_->rowsDropped(); |
3632 | for (iRow = 0; iRow < numberRows_; iRow++) { |
3633 | CoinWorkDouble value = errorRegion_[iRow]; |
3634 | if (!dropped[iRow]) { |
3635 | if (CoinAbs(value) > maximumRHSError1) { |
3636 | maximumRHSError1 = CoinAbs(value); |
3637 | } |
3638 | } else { |
3639 | if (CoinAbs(value) > maximumRHSError2) { |
3640 | maximumRHSError2 = CoinAbs(value); |
3641 | } |
3642 | primalOffset += value * dualArray[iRow]; |
3643 | } |
3644 | } |
3645 | primalObjective_ -= primalOffset * scaleFactor_; |
3646 | if (maximumRHSError1 > maximumRHSError2) { |
3647 | maximumRHSError_ = maximumRHSError1; |
3648 | } else { |
3649 | maximumRHSError_ = maximumRHSError1; //note change |
3650 | if (maximumRHSError2 > primalTolerance()) { |
3651 | handler_->message(CLP_BARRIER_ABS_DROPPED, messages_) |
3652 | << static_cast<double>(maximumRHSError2) |
3653 | << CoinMessageEol; |
3654 | } |
3655 | } |
3656 | objectiveNorm_ = maximumAbsElement(dualArray, numberRows_); |
3657 | if (objectiveNorm_ < 1.0e-12) { |
3658 | objectiveNorm_ = 1.0e-12; |
3659 | } |
3660 | if (objectiveNorm_ < baseObjectiveNorm_) { |
3661 | //std::cout<<" base "<<baseObjectiveNorm_<<" "<<objectiveNorm_<<std::endl; |
3662 | if (objectiveNorm_ < baseObjectiveNorm_ * 1.0e-4) { |
3663 | objectiveNorm_ = baseObjectiveNorm_ * 1.0e-4; |
3664 | } |
3665 | } |
3666 | bool primalFeasible = true; |
3667 | if (maximumRHSError_ > primalTolerance() || |
3668 | maximumDualError_ > dualTolerance / scaleFactor_) { |
3669 | handler_->message(CLP_BARRIER_ABS_ERROR, messages_) |
3670 | << static_cast<double>(maximumRHSError_) << static_cast<double>(maximumDualError_) |
3671 | << CoinMessageEol; |
3672 | } |
3673 | if (rhsNorm_ > solutionNorm_) { |
3674 | solutionNorm_ = rhsNorm_; |
3675 | } |
3676 | CoinWorkDouble scaledRHSError = maximumRHSError_ / (solutionNorm_ + 10.0); |
3677 | bool dualFeasible = true; |
3678 | #if KEEP_GOING_IF_FIXED > 5 |
3679 | if (maximumBoundInfeasibility_ > primalTolerance() || |
3680 | scaledRHSError > primalTolerance()) |
3681 | primalFeasible = false; |
3682 | #else |
3683 | if (maximumBoundInfeasibility_ > primalTolerance() || |
3684 | scaledRHSError > CoinMax(CoinMin(100.0 * primalTolerance(), 1.0e-5), |
3685 | primalTolerance())) |
3686 | primalFeasible = false; |
3687 | #endif |
3688 | // relax dual test if obj big and gap smallish |
3689 | CoinWorkDouble gap = CoinAbs(primalObjective_ - dualObjective_); |
3690 | CoinWorkDouble sizeObj = CoinMin(CoinAbs(primalObjective_), CoinAbs(dualObjective_)) + 1.0e-50; |
3691 | //printf("gap %g sizeObj %g ratio %g comp %g\n", |
3692 | // gap,sizeObj,gap/sizeObj,complementarityGap_); |
3693 | if (numberIterations_ > 100 && gap / sizeObj < 1.0e-9 && complementarityGap_ < 1.0e-7 * sizeObj) |
3694 | dualTolerance *= 1.0e2; |
3695 | if (maximumDualError_ > objectiveNorm_ * dualTolerance) |
3696 | dualFeasible = false; |
3697 | if (!primalFeasible || !dualFeasible) { |
3698 | handler_->message(CLP_BARRIER_FEASIBLE, messages_) |
3699 | << static_cast<double>(maximumBoundInfeasibility_) << static_cast<double>(scaledRHSError) |
3700 | << static_cast<double>(maximumDualError_ / objectiveNorm_) |
3701 | << CoinMessageEol; |
3702 | } |
3703 | if (!gonePrimalFeasible_) { |
3704 | gonePrimalFeasible_ = primalFeasible; |
3705 | } else if (!primalFeasible) { |
3706 | gonePrimalFeasible_ = primalFeasible; |
3707 | if (!numberKilled) { |
3708 | handler_->message(CLP_BARRIER_GONE_INFEASIBLE, messages_) |
3709 | << CoinMessageEol; |
3710 | } |
3711 | } |
3712 | if (!goneDualFeasible_) { |
3713 | goneDualFeasible_ = dualFeasible; |
3714 | } else if (!dualFeasible) { |
3715 | handler_->message(CLP_BARRIER_GONE_INFEASIBLE, messages_) |
3716 | << CoinMessageEol; |
3717 | goneDualFeasible_ = dualFeasible; |
3718 | } |
3719 | //objectiveValue(); |
3720 | if (solutionNorm_ > 1.0e40) { |
3721 | std::cout << "primal off to infinity" << std::endl; |
3722 | abort(); |
3723 | } |
3724 | if (objectiveNorm_ > 1.0e40) { |
3725 | std::cout << "dual off to infinity" << std::endl; |
3726 | abort(); |
3727 | } |
3728 | handler_->message(CLP_BARRIER_STEP, messages_) |
3729 | << static_cast<double>(actualPrimalStep_) |
3730 | << static_cast<double>(actualDualStep_) |
3731 | << static_cast<double>(mu_) |
3732 | << CoinMessageEol; |
3733 | numberIterations_++; |
3734 | return numberKilled; |
3735 | } |
3736 | // Save info on products of affine deltaSU*deltaW and deltaSL*deltaZ |
3737 | CoinWorkDouble |
3738 | ClpPredictorCorrector::affineProduct() |
3739 | { |
3740 | CoinWorkDouble product = 0.0; |
3741 | //IF zVec starts as 0 then deltaZ always zero |
3742 | //(remember if free then zVec not 0) |
3743 | //I think free can be done with careful use of boundSlacks to zero |
3744 | //out all we want |
3745 | for (int iColumn = 0; iColumn < numberRows_ + numberColumns_; iColumn++) { |
3746 | CoinWorkDouble w3 = deltaZ_[iColumn] * deltaX_[iColumn]; |
3747 | CoinWorkDouble w4 = -deltaW_[iColumn] * deltaX_[iColumn]; |
3748 | if (lowerBound(iColumn)) { |
3749 | w3 += deltaZ_[iColumn] * (solution_[iColumn] - lowerSlack_[iColumn] - lower_[iColumn]); |
3750 | product += w3; |
3751 | } |
3752 | if (upperBound(iColumn)) { |
3753 | w4 += deltaW_[iColumn] * (-solution_[iColumn] - upperSlack_[iColumn] + upper_[iColumn]); |
3754 | product += w4; |
3755 | } |
3756 | } |
3757 | return product; |
3758 | } |
3759 | //See exactly what would happen given current deltas |
3760 | void |
3761 | ClpPredictorCorrector::debugMove(int /*phase*/, |
3762 | CoinWorkDouble primalStep, CoinWorkDouble dualStep) |
3763 | { |
3764 | #ifndef SOME_DEBUG |
3765 | return; |
3766 | #endif |
3767 | CoinWorkDouble * dualArray = reinterpret_cast<CoinWorkDouble *>(dual_); |
3768 | int numberTotal = numberRows_ + numberColumns_; |
3769 | CoinWorkDouble * dualNew = ClpCopyOfArray(dualArray, numberRows_); |
3770 | CoinWorkDouble * errorRegionNew = new CoinWorkDouble [numberRows_]; |
3771 | CoinWorkDouble * rhsFixRegionNew = new CoinWorkDouble [numberRows_]; |
3772 | CoinWorkDouble * primalNew = ClpCopyOfArray(solution_, numberTotal); |
3773 | CoinWorkDouble * djNew = new CoinWorkDouble[numberTotal]; |
3774 | //update pi |
3775 | multiplyAdd(deltaY_, numberRows_, dualStep, dualNew, 1.0); |
3776 | // do reduced costs |
3777 | CoinMemcpyN(dualNew, numberRows_, djNew + numberColumns_); |
3778 | CoinMemcpyN(cost_, numberColumns_, djNew); |
3779 | matrix_->transposeTimes(-1.0, dualNew, djNew); |
3780 | // update x |
3781 | int iColumn; |
3782 | for (iColumn = 0; iColumn < numberTotal; iColumn++) { |
3783 | if (!flagged(iColumn)) |
3784 | primalNew[iColumn] += primalStep * deltaX_[iColumn]; |
3785 | } |
3786 | CoinWorkDouble quadraticOffset = quadraticDjs(djNew, primalNew, 1.0); |
3787 | CoinZeroN(errorRegionNew, numberRows_); |
3788 | CoinZeroN(rhsFixRegionNew, numberRows_); |
3789 | CoinWorkDouble maximumBoundInfeasibility = 0.0; |
3790 | CoinWorkDouble maximumDualError = 1.0e-12; |
3791 | CoinWorkDouble primalObjectiveValue = 0.0; |
3792 | CoinWorkDouble dualObjectiveValue = 0.0; |
3793 | CoinWorkDouble solutionNorm = 1.0e-12; |
3794 | const CoinWorkDouble largeFactor = 1.0e2; |
3795 | CoinWorkDouble largeGap = largeFactor * solutionNorm_; |
3796 | if (largeGap < largeFactor) { |
3797 | largeGap = largeFactor; |
3798 | } |
3799 | CoinWorkDouble dualFake = 0.0; |
3800 | CoinWorkDouble dualTolerance = dblParam_[ClpDualTolerance]; |
3801 | dualTolerance = dualTolerance / scaleFactor_; |
3802 | if (dualTolerance < 1.0e-12) { |
3803 | dualTolerance = 1.0e-12; |
3804 | } |
3805 | CoinWorkDouble newGap = 0.0; |
3806 | CoinWorkDouble offsetObjective = 0.0; |
3807 | CoinWorkDouble gamma2 = gamma_ * gamma_; // gamma*gamma will be added to diagonal |
3808 | CoinWorkDouble gammaOffset = 0.0; |
3809 | CoinWorkDouble maximumDjInfeasibility = 0.0; |
3810 | for ( iColumn = 0; iColumn < numberTotal; iColumn++) { |
3811 | if (!flagged(iColumn)) { |
3812 | CoinWorkDouble reducedCost = djNew[iColumn]; |
3813 | CoinWorkDouble zValue = zVec_[iColumn] + dualStep * deltaZ_[iColumn]; |
3814 | CoinWorkDouble wValue = wVec_[iColumn] + dualStep * deltaW_[iColumn]; |
3815 | CoinWorkDouble thisWeight = deltaX_[iColumn]; |
3816 | CoinWorkDouble oldPrimal = solution_[iColumn]; |
3817 | CoinWorkDouble newPrimal = primalNew[iColumn]; |
3818 | CoinWorkDouble lowerBoundInfeasibility = 0.0; |
3819 | CoinWorkDouble upperBoundInfeasibility = 0.0; |
3820 | if (lowerBound(iColumn)) { |
3821 | CoinWorkDouble oldSlack = lowerSlack_[iColumn]; |
3822 | CoinWorkDouble newSlack = |
3823 | lowerSlack_[iColumn] + primalStep * (oldPrimal - oldSlack |
3824 | + thisWeight - lower_[iColumn]); |
3825 | if (zValue > dualTolerance) { |
3826 | dualObjectiveValue += lower_[iColumn] * zVec_[iColumn]; |
3827 | } |
3828 | lowerBoundInfeasibility = CoinAbs(newPrimal - newSlack - lower_[iColumn]); |
3829 | newGap += newSlack * zValue; |
3830 | } |
3831 | if (upperBound(iColumn)) { |
3832 | CoinWorkDouble oldSlack = upperSlack_[iColumn]; |
3833 | CoinWorkDouble newSlack = |
3834 | upperSlack_[iColumn] + primalStep * (-oldPrimal - oldSlack |
3835 | - thisWeight + upper_[iColumn]); |
3836 | if (wValue > dualTolerance) { |
3837 | dualObjectiveValue -= upper_[iColumn] * wVec_[iColumn]; |
3838 | } |
3839 | upperBoundInfeasibility = CoinAbs(newPrimal + newSlack - upper_[iColumn]); |
3840 | newGap += newSlack * wValue; |
3841 | } |
3842 | if (CoinAbs(newPrimal) > solutionNorm) { |
3843 | solutionNorm = CoinAbs(newPrimal); |
3844 | } |
3845 | CoinWorkDouble gammaTerm = gamma2; |
3846 | if (primalR_) { |
3847 | gammaTerm += primalR_[iColumn]; |
3848 | quadraticOffset += newPrimal * newPrimal * primalR_[iColumn]; |
3849 | } |
3850 | CoinWorkDouble dualInfeasibility = |
3851 | reducedCost - zValue + wValue + gammaTerm * newPrimal; |
3852 | if (CoinAbs(dualInfeasibility) > dualTolerance) { |
3853 | dualFake += newPrimal * dualInfeasibility; |
3854 | } |
3855 | if (lowerBoundInfeasibility > maximumBoundInfeasibility) { |
3856 | maximumBoundInfeasibility = lowerBoundInfeasibility; |
3857 | } |
3858 | if (upperBoundInfeasibility > maximumBoundInfeasibility) { |
3859 | maximumBoundInfeasibility = upperBoundInfeasibility; |
3860 | } |
3861 | dualInfeasibility = CoinAbs(dualInfeasibility); |
3862 | if (dualInfeasibility > maximumDualError) { |
3863 | //printf("bad dual %d %g\n",iColumn, |
3864 | // reducedCost-zVec_[iColumn]+wVec_[iColumn]+gammaTerm*newPrimal); |
3865 | maximumDualError = dualInfeasibility; |
3866 | } |
3867 | gammaOffset += newPrimal * newPrimal; |
3868 | djNew[iColumn] = 0.0; |
3869 | } else { |
3870 | offsetObjective += primalNew[iColumn] * cost_[iColumn]; |
3871 | if (upper_[iColumn] - lower_[iColumn] > 1.0e-5) { |
3872 | if (primalNew[iColumn] < lower_[iColumn] + 1.0e-8 && djNew[iColumn] < -1.0e-8) { |
3873 | if (-djNew[iColumn] > maximumDjInfeasibility) { |
3874 | maximumDjInfeasibility = -djNew[iColumn]; |
3875 | } |
3876 | } |
3877 | if (primalNew[iColumn] > upper_[iColumn] - 1.0e-8 && djNew[iColumn] > 1.0e-8) { |
3878 | if (djNew[iColumn] > maximumDjInfeasibility) { |
3879 | maximumDjInfeasibility = djNew[iColumn]; |
3880 | } |
3881 | } |
3882 | } |
3883 | djNew[iColumn] = primalNew[iColumn]; |
3884 | } |
3885 | primalObjectiveValue += solution_[iColumn] * cost_[iColumn]; |
3886 | } |
3887 | // update rhs region |
3888 | multiplyAdd(djNew + numberColumns_, numberRows_, -1.0, rhsFixRegionNew, 1.0); |
3889 | matrix_->times(1.0, djNew, rhsFixRegionNew); |
3890 | primalObjectiveValue += 0.5 * gamma2 * gammaOffset + 0.5 * quadraticOffset; |
3891 | dualObjectiveValue += offsetObjective + dualFake; |
3892 | dualObjectiveValue -= 0.5 * gamma2 * gammaOffset + 0.5 * quadraticOffset; |
3893 | // Need to rethink (but it is only for printing) |
3894 | //compute error and fixed RHS |
3895 | multiplyAdd(primalNew + numberColumns_, numberRows_, -1.0, errorRegionNew, 0.0); |
3896 | matrix_->times(1.0, primalNew, errorRegionNew); |
3897 | //finish off objective computation |
3898 | CoinWorkDouble primalObjectiveNew = primalObjectiveValue * scaleFactor_; |
3899 | CoinWorkDouble dualValue2 = innerProduct(dualNew, numberRows_, |
3900 | rhsFixRegionNew); |
3901 | dualObjectiveValue -= dualValue2; |
3902 | //CoinWorkDouble dualObjectiveNew=dualObjectiveValue*scaleFactor_; |
3903 | CoinWorkDouble maximumRHSError1 = 0.0; |
3904 | CoinWorkDouble maximumRHSError2 = 0.0; |
3905 | CoinWorkDouble primalOffset = 0.0; |
3906 | char * dropped = cholesky_->rowsDropped(); |
3907 | int iRow; |
3908 | for (iRow = 0; iRow < numberRows_; iRow++) { |
3909 | CoinWorkDouble value = errorRegionNew[iRow]; |
3910 | if (!dropped[iRow]) { |
3911 | if (CoinAbs(value) > maximumRHSError1) { |
3912 | maximumRHSError1 = CoinAbs(value); |
3913 | } |
3914 | } else { |
3915 | if (CoinAbs(value) > maximumRHSError2) { |
3916 | maximumRHSError2 = CoinAbs(value); |
3917 | } |
3918 | primalOffset += value * dualNew[iRow]; |
3919 | } |
3920 | } |
3921 | primalObjectiveNew -= primalOffset * scaleFactor_; |
3922 | CoinWorkDouble maximumRHSError; |
3923 | if (maximumRHSError1 > maximumRHSError2) { |
3924 | maximumRHSError = maximumRHSError1; |
3925 | } else { |
3926 | maximumRHSError = maximumRHSError1; //note change |
3927 | if (maximumRHSError2 > primalTolerance()) { |
3928 | handler_->message(CLP_BARRIER_ABS_DROPPED, messages_) |
3929 | << static_cast<double>(maximumRHSError2) |
3930 | << CoinMessageEol; |
3931 | } |
3932 | } |
3933 | /*printf("PH %d %g, %g new comp %g, b %g, p %g, d %g\n",phase, |
3934 | primalStep,dualStep,newGap,maximumBoundInfeasibility, |
3935 | maximumRHSError,maximumDualError); |
3936 | if (handler_->logLevel()>1) |
3937 | printf(" objs %g %g\n", |
3938 | primalObjectiveNew,dualObjectiveNew); |
3939 | if (maximumDjInfeasibility) { |
3940 | printf(" max dj error on fixed %g\n", |
3941 | maximumDjInfeasibility); |
3942 | } */ |
3943 | delete [] dualNew; |
3944 | delete [] errorRegionNew; |
3945 | delete [] rhsFixRegionNew; |
3946 | delete [] primalNew; |
3947 | delete [] djNew; |
3948 | } |
3949 | |