| 1 | /* $Id: ClpSimplexNonlinear.cpp 1665 2011-01-04 17:55:54Z lou $ */ |
| 2 | // Copyright (C) 2004, International Business Machines |
| 3 | // Corporation and others. All Rights Reserved. |
| 4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
| 5 | |
| 6 | #include "CoinPragma.hpp" |
| 7 | |
| 8 | #include <math.h> |
| 9 | #include "CoinHelperFunctions.hpp" |
| 10 | #include "ClpHelperFunctions.hpp" |
| 11 | #include "ClpSimplexNonlinear.hpp" |
| 12 | #include "ClpFactorization.hpp" |
| 13 | #include "ClpNonLinearCost.hpp" |
| 14 | #include "ClpLinearObjective.hpp" |
| 15 | #include "ClpConstraint.hpp" |
| 16 | #include "ClpQuadraticObjective.hpp" |
| 17 | #include "CoinPackedMatrix.hpp" |
| 18 | #include "CoinIndexedVector.hpp" |
| 19 | #include "ClpPrimalColumnPivot.hpp" |
| 20 | #include "ClpMessage.hpp" |
| 21 | #include "ClpEventHandler.hpp" |
| 22 | #include <cfloat> |
| 23 | #include <cassert> |
| 24 | #include <string> |
| 25 | #include <stdio.h> |
| 26 | #include <iostream> |
| 27 | #ifndef NDEBUG |
| 28 | #define CLP_DEBUG 1 |
| 29 | #endif |
| 30 | // primal |
| 31 | int ClpSimplexNonlinear::primal () |
| 32 | { |
| 33 | |
| 34 | int ifValuesPass = 1; |
| 35 | algorithm_ = +3; |
| 36 | |
| 37 | // save data |
| 38 | ClpDataSave data = saveData(); |
| 39 | matrix_->refresh(this); // make sure matrix okay |
| 40 | |
| 41 | // Save objective |
| 42 | ClpObjective * saveObjective = NULL; |
| 43 | if (objective_->type() > 1) { |
| 44 | // expand to full if quadratic |
| 45 | #ifndef NO_RTTI |
| 46 | ClpQuadraticObjective * quadraticObj = (dynamic_cast< ClpQuadraticObjective*>(objective_)); |
| 47 | #else |
| 48 | ClpQuadraticObjective * quadraticObj = NULL; |
| 49 | if (objective_->type() == 2) |
| 50 | quadraticObj = (static_cast< ClpQuadraticObjective*>(objective_)); |
| 51 | #endif |
| 52 | // for moment only if no scaling |
| 53 | // May be faster if switched off - but can't see why |
| 54 | if (!quadraticObj->fullMatrix() && (!rowScale_ && !scalingFlag_) && objectiveScale_ == 1.0) { |
| 55 | saveObjective = objective_; |
| 56 | objective_ = new ClpQuadraticObjective(*quadraticObj, 1); |
| 57 | } |
| 58 | } |
| 59 | double bestObjectiveWhenFlagged = COIN_DBL_MAX; |
| 60 | int pivotMode = 15; |
| 61 | //pivotMode=20; |
| 62 | |
| 63 | // initialize - maybe values pass and algorithm_ is +1 |
| 64 | // true does something (? perturbs) |
| 65 | if (!startup(true)) { |
| 66 | |
| 67 | // Set average theta |
| 68 | nonLinearCost_->setAverageTheta(1.0e3); |
| 69 | int lastCleaned = 0; // last time objective or bounds cleaned up |
| 70 | |
| 71 | // Say no pivot has occurred (for steepest edge and updates) |
| 72 | pivotRow_ = -2; |
| 73 | |
| 74 | // This says whether to restore things etc |
| 75 | int factorType = 0; |
| 76 | // Start check for cycles |
| 77 | progress_.startCheck(); |
| 78 | /* |
| 79 | Status of problem: |
| 80 | 0 - optimal |
| 81 | 1 - infeasible |
| 82 | 2 - unbounded |
| 83 | -1 - iterating |
| 84 | -2 - factorization wanted |
| 85 | -3 - redo checking without factorization |
| 86 | -4 - looks infeasible |
| 87 | -5 - looks unbounded |
| 88 | */ |
| 89 | while (problemStatus_ < 0) { |
| 90 | int iRow, iColumn; |
| 91 | // clear |
| 92 | for (iRow = 0; iRow < 4; iRow++) { |
| 93 | rowArray_[iRow]->clear(); |
| 94 | } |
| 95 | |
| 96 | for (iColumn = 0; iColumn < 2; iColumn++) { |
| 97 | columnArray_[iColumn]->clear(); |
| 98 | } |
| 99 | |
| 100 | // give matrix (and model costs and bounds a chance to be |
| 101 | // refreshed (normally null) |
| 102 | matrix_->refresh(this); |
| 103 | // If getting nowhere - why not give it a kick |
| 104 | // If we have done no iterations - special |
| 105 | if (lastGoodIteration_ == numberIterations_ && factorType) |
| 106 | factorType = 3; |
| 107 | |
| 108 | // may factorize, checks if problem finished |
| 109 | if (objective_->type() > 1 && lastFlaggedIteration_ >= 0 && |
| 110 | numberIterations_ > lastFlaggedIteration_ + 507) { |
| 111 | unflag(); |
| 112 | lastFlaggedIteration_ = numberIterations_; |
| 113 | if (pivotMode >= 10) { |
| 114 | pivotMode--; |
| 115 | #ifdef CLP_DEBUG |
| 116 | if (handler_->logLevel() & 32) |
| 117 | printf("pivot mode now %d\n" , pivotMode); |
| 118 | #endif |
| 119 | if (pivotMode == 9) |
| 120 | pivotMode = 0; // switch off fast attempt |
| 121 | } |
| 122 | } |
| 123 | statusOfProblemInPrimal(lastCleaned, factorType, &progress_, true, |
| 124 | bestObjectiveWhenFlagged); |
| 125 | |
| 126 | // Say good factorization |
| 127 | factorType = 1; |
| 128 | |
| 129 | // Say no pivot has occurred (for steepest edge and updates) |
| 130 | pivotRow_ = -2; |
| 131 | |
| 132 | // exit if victory declared |
| 133 | if (problemStatus_ >= 0) |
| 134 | break; |
| 135 | |
| 136 | // test for maximum iterations |
| 137 | if (hitMaximumIterations() || (ifValuesPass == 2 && firstFree_ < 0)) { |
| 138 | problemStatus_ = 3; |
| 139 | break; |
| 140 | } |
| 141 | |
| 142 | if (firstFree_ < 0) { |
| 143 | if (ifValuesPass) { |
| 144 | // end of values pass |
| 145 | ifValuesPass = 0; |
| 146 | int status = eventHandler_->event(ClpEventHandler::endOfValuesPass); |
| 147 | if (status >= 0) { |
| 148 | problemStatus_ = 5; |
| 149 | secondaryStatus_ = ClpEventHandler::endOfValuesPass; |
| 150 | break; |
| 151 | } |
| 152 | } |
| 153 | } |
| 154 | // Check event |
| 155 | { |
| 156 | int status = eventHandler_->event(ClpEventHandler::endOfFactorization); |
| 157 | if (status >= 0) { |
| 158 | problemStatus_ = 5; |
| 159 | secondaryStatus_ = ClpEventHandler::endOfFactorization; |
| 160 | break; |
| 161 | } |
| 162 | } |
| 163 | // Iterate |
| 164 | whileIterating(pivotMode); |
| 165 | } |
| 166 | } |
| 167 | // if infeasible get real values |
| 168 | if (problemStatus_ == 1) { |
| 169 | infeasibilityCost_ = 0.0; |
| 170 | createRim(1 + 4); |
| 171 | nonLinearCost_->checkInfeasibilities(0.0); |
| 172 | sumPrimalInfeasibilities_ = nonLinearCost_->sumInfeasibilities(); |
| 173 | numberPrimalInfeasibilities_ = nonLinearCost_->numberInfeasibilities(); |
| 174 | // and get good feasible duals |
| 175 | computeDuals(NULL); |
| 176 | } |
| 177 | // correct objective value |
| 178 | if (numberColumns_) |
| 179 | objectiveValue_ = nonLinearCost_->feasibleCost() + objective_->nonlinearOffset(); |
| 180 | objectiveValue_ /= (objectiveScale_ * rhsScale_); |
| 181 | // clean up |
| 182 | unflag(); |
| 183 | finish(); |
| 184 | restoreData(data); |
| 185 | // restore objective if full |
| 186 | if (saveObjective) { |
| 187 | delete objective_; |
| 188 | objective_ = saveObjective; |
| 189 | } |
| 190 | return problemStatus_; |
| 191 | } |
| 192 | /* Refactorizes if necessary |
| 193 | Checks if finished. Updates status. |
| 194 | lastCleaned refers to iteration at which some objective/feasibility |
| 195 | cleaning too place. |
| 196 | |
| 197 | type - 0 initial so set up save arrays etc |
| 198 | - 1 normal -if good update save |
| 199 | - 2 restoring from saved |
| 200 | */ |
| 201 | void |
| 202 | ClpSimplexNonlinear::statusOfProblemInPrimal(int & lastCleaned, int type, |
| 203 | ClpSimplexProgress * progress, |
| 204 | bool doFactorization, |
| 205 | double & bestObjectiveWhenFlagged) |
| 206 | { |
| 207 | int dummy; // for use in generalExpanded |
| 208 | if (type == 2) { |
| 209 | // trouble - restore solution |
| 210 | CoinMemcpyN(saveStatus_, (numberColumns_ + numberRows_), status_ ); |
| 211 | CoinMemcpyN(savedSolution_ + numberColumns_ , numberRows_, rowActivityWork_); |
| 212 | CoinMemcpyN(savedSolution_ , numberColumns_, columnActivityWork_); |
| 213 | // restore extra stuff |
| 214 | matrix_->generalExpanded(this, 6, dummy); |
| 215 | forceFactorization_ = 1; // a bit drastic but .. |
| 216 | pivotRow_ = -1; // say no weights update |
| 217 | changeMade_++; // say change made |
| 218 | } |
| 219 | int saveThreshold = factorization_->sparseThreshold(); |
| 220 | int tentativeStatus = problemStatus_; |
| 221 | int numberThrownOut = 1; // to loop round on bad factorization in values pass |
| 222 | while (numberThrownOut) { |
| 223 | if (problemStatus_ > -3 || problemStatus_ == -4) { |
| 224 | // factorize |
| 225 | // later on we will need to recover from singularities |
| 226 | // also we could skip if first time |
| 227 | // do weights |
| 228 | // This may save pivotRow_ for use |
| 229 | if (doFactorization) |
| 230 | primalColumnPivot_->saveWeights(this, 1); |
| 231 | |
| 232 | if (type && doFactorization) { |
| 233 | // is factorization okay? |
| 234 | int factorStatus = internalFactorize(1); |
| 235 | if (factorStatus) { |
| 236 | if (type != 1 || largestPrimalError_ > 1.0e3 |
| 237 | || largestDualError_ > 1.0e3) { |
| 238 | // was ||largestDualError_>1.0e3||objective_->type()>1) { |
| 239 | // switch off dense |
| 240 | int saveDense = factorization_->denseThreshold(); |
| 241 | factorization_->setDenseThreshold(0); |
| 242 | // make sure will do safe factorization |
| 243 | pivotVariable_[0] = -1; |
| 244 | internalFactorize(2); |
| 245 | factorization_->setDenseThreshold(saveDense); |
| 246 | // Go to safe |
| 247 | factorization_->pivotTolerance(0.99); |
| 248 | // restore extra stuff |
| 249 | matrix_->generalExpanded(this, 6, dummy); |
| 250 | } else { |
| 251 | // no - restore previous basis |
| 252 | CoinMemcpyN(saveStatus_, (numberColumns_ + numberRows_), status_ ); |
| 253 | CoinMemcpyN(savedSolution_ + numberColumns_ , numberRows_, rowActivityWork_); |
| 254 | CoinMemcpyN(savedSolution_ , numberColumns_, columnActivityWork_); |
| 255 | // restore extra stuff |
| 256 | matrix_->generalExpanded(this, 6, dummy); |
| 257 | matrix_->generalExpanded(this, 5, dummy); |
| 258 | forceFactorization_ = 1; // a bit drastic but .. |
| 259 | type = 2; |
| 260 | // Go to safe |
| 261 | factorization_->pivotTolerance(0.99); |
| 262 | if (internalFactorize(1) != 0) |
| 263 | largestPrimalError_ = 1.0e4; // force other type |
| 264 | } |
| 265 | // flag incoming |
| 266 | if (sequenceIn_ >= 0 && getStatus(sequenceIn_) != basic) { |
| 267 | setFlagged(sequenceIn_); |
| 268 | saveStatus_[sequenceIn_] = status_[sequenceIn_]; |
| 269 | } |
| 270 | changeMade_++; // say change made |
| 271 | } |
| 272 | } |
| 273 | if (problemStatus_ != -4) |
| 274 | problemStatus_ = -3; |
| 275 | } |
| 276 | // at this stage status is -3 or -5 if looks unbounded |
| 277 | // get primal and dual solutions |
| 278 | // put back original costs and then check |
| 279 | createRim(4); |
| 280 | // May need to do more if column generation |
| 281 | dummy = 4; |
| 282 | matrix_->generalExpanded(this, 9, dummy); |
| 283 | numberThrownOut = gutsOfSolution(NULL, NULL, (firstFree_ >= 0)); |
| 284 | if (numberThrownOut) { |
| 285 | problemStatus_ = tentativeStatus; |
| 286 | doFactorization = true; |
| 287 | } |
| 288 | } |
| 289 | // Double check reduced costs if no action |
| 290 | if (progress->lastIterationNumber(0) == numberIterations_) { |
| 291 | if (primalColumnPivot_->looksOptimal()) { |
| 292 | numberDualInfeasibilities_ = 0; |
| 293 | sumDualInfeasibilities_ = 0.0; |
| 294 | } |
| 295 | } |
| 296 | // Check if looping |
| 297 | int loop; |
| 298 | if (type != 2) |
| 299 | loop = progress->looping(); |
| 300 | else |
| 301 | loop = -1; |
| 302 | if (loop >= 0) { |
| 303 | if (!problemStatus_) { |
| 304 | // declaring victory |
| 305 | numberPrimalInfeasibilities_ = 0; |
| 306 | sumPrimalInfeasibilities_ = 0.0; |
| 307 | } else { |
| 308 | problemStatus_ = loop; //exit if in loop |
| 309 | problemStatus_ = 10; // instead - try other algorithm |
| 310 | } |
| 311 | problemStatus_ = 10; // instead - try other algorithm |
| 312 | return ; |
| 313 | } else if (loop < -1) { |
| 314 | // Is it time for drastic measures |
| 315 | if (nonLinearCost_->numberInfeasibilities() && progress->badTimes() > 5 && |
| 316 | progress->oddState() < 10 && progress->oddState() >= 0) { |
| 317 | progress->newOddState(); |
| 318 | nonLinearCost_->zapCosts(); |
| 319 | } |
| 320 | // something may have changed |
| 321 | gutsOfSolution(NULL, NULL, true); |
| 322 | } |
| 323 | // If progress then reset costs |
| 324 | if (loop == -1 && !nonLinearCost_->numberInfeasibilities() && progress->oddState() < 0) { |
| 325 | createRim(4, false); // costs back |
| 326 | delete nonLinearCost_; |
| 327 | nonLinearCost_ = new ClpNonLinearCost(this); |
| 328 | progress->endOddState(); |
| 329 | gutsOfSolution(NULL, NULL, true); |
| 330 | } |
| 331 | // Flag to say whether to go to dual to clean up |
| 332 | bool goToDual = false; |
| 333 | // really for free variables in |
| 334 | //if((progressFlag_&2)!=0) |
| 335 | //problemStatus_=-1; |
| 336 | progressFlag_ = 0; //reset progress flag |
| 337 | |
| 338 | handler_->message(CLP_SIMPLEX_STATUS, messages_) |
| 339 | << numberIterations_ << nonLinearCost_->feasibleReportCost(); |
| 340 | handler_->printing(nonLinearCost_->numberInfeasibilities() > 0) |
| 341 | << nonLinearCost_->sumInfeasibilities() << nonLinearCost_->numberInfeasibilities(); |
| 342 | handler_->printing(sumDualInfeasibilities_ > 0.0) |
| 343 | << sumDualInfeasibilities_ << numberDualInfeasibilities_; |
| 344 | handler_->printing(numberDualInfeasibilitiesWithoutFree_ |
| 345 | < numberDualInfeasibilities_) |
| 346 | << numberDualInfeasibilitiesWithoutFree_; |
| 347 | handler_->message() << CoinMessageEol; |
| 348 | if (!primalFeasible()) { |
| 349 | nonLinearCost_->checkInfeasibilities(primalTolerance_); |
| 350 | gutsOfSolution(NULL, NULL, true); |
| 351 | nonLinearCost_->checkInfeasibilities(primalTolerance_); |
| 352 | } |
| 353 | double trueInfeasibility = nonLinearCost_->sumInfeasibilities(); |
| 354 | if (trueInfeasibility > 1.0) { |
| 355 | // If infeasibility going up may change weights |
| 356 | double testValue = trueInfeasibility - 1.0e-4 * (10.0 + trueInfeasibility); |
| 357 | if(progress->lastInfeasibility() < testValue) { |
| 358 | if (infeasibilityCost_ < 1.0e14) { |
| 359 | infeasibilityCost_ *= 1.5; |
| 360 | if (handler_->logLevel() == 63) |
| 361 | printf("increasing weight to %g\n" , infeasibilityCost_); |
| 362 | gutsOfSolution(NULL, NULL, true); |
| 363 | } |
| 364 | } |
| 365 | } |
| 366 | // we may wish to say it is optimal even if infeasible |
| 367 | bool alwaysOptimal = (specialOptions_ & 1) != 0; |
| 368 | // give code benefit of doubt |
| 369 | if (sumOfRelaxedDualInfeasibilities_ == 0.0 && |
| 370 | sumOfRelaxedPrimalInfeasibilities_ == 0.0) { |
| 371 | // say optimal (with these bounds etc) |
| 372 | numberDualInfeasibilities_ = 0; |
| 373 | sumDualInfeasibilities_ = 0.0; |
| 374 | numberPrimalInfeasibilities_ = 0; |
| 375 | sumPrimalInfeasibilities_ = 0.0; |
| 376 | } |
| 377 | // had ||(type==3&&problemStatus_!=-5) -- ??? why ???? |
| 378 | if (dualFeasible() || problemStatus_ == -4) { |
| 379 | // see if extra helps |
| 380 | if (nonLinearCost_->numberInfeasibilities() && |
| 381 | (nonLinearCost_->sumInfeasibilities() > 1.0e-3 || sumOfRelaxedPrimalInfeasibilities_) |
| 382 | && !alwaysOptimal) { |
| 383 | //may need infeasiblity cost changed |
| 384 | // we can see if we can construct a ray |
| 385 | // make up a new objective |
| 386 | double saveWeight = infeasibilityCost_; |
| 387 | // save nonlinear cost as we are going to switch off costs |
| 388 | ClpNonLinearCost * nonLinear = nonLinearCost_; |
| 389 | // do twice to make sure Primal solution has settled |
| 390 | // put non-basics to bounds in case tolerance moved |
| 391 | // put back original costs |
| 392 | createRim(4); |
| 393 | nonLinearCost_->checkInfeasibilities(0.0); |
| 394 | gutsOfSolution(NULL, NULL, true); |
| 395 | |
| 396 | infeasibilityCost_ = 1.0e100; |
| 397 | // put back original costs |
| 398 | createRim(4); |
| 399 | nonLinearCost_->checkInfeasibilities(primalTolerance_); |
| 400 | // may have fixed infeasibilities - double check |
| 401 | if (nonLinearCost_->numberInfeasibilities() == 0) { |
| 402 | // carry on |
| 403 | problemStatus_ = -1; |
| 404 | infeasibilityCost_ = saveWeight; |
| 405 | nonLinearCost_->checkInfeasibilities(primalTolerance_); |
| 406 | } else { |
| 407 | nonLinearCost_ = NULL; |
| 408 | // scale |
| 409 | int i; |
| 410 | for (i = 0; i < numberRows_ + numberColumns_; i++) |
| 411 | cost_[i] *= 1.0e-95; |
| 412 | gutsOfSolution(NULL, NULL, false); |
| 413 | nonLinearCost_ = nonLinear; |
| 414 | infeasibilityCost_ = saveWeight; |
| 415 | if ((infeasibilityCost_ >= 1.0e18 || |
| 416 | numberDualInfeasibilities_ == 0) && perturbation_ == 101) { |
| 417 | goToDual = unPerturb(); // stop any further perturbation |
| 418 | if (nonLinearCost_->sumInfeasibilities() > 1.0e-1) |
| 419 | goToDual = false; |
| 420 | nonLinearCost_->checkInfeasibilities(primalTolerance_); |
| 421 | numberDualInfeasibilities_ = 1; // carry on |
| 422 | problemStatus_ = -1; |
| 423 | } |
| 424 | if (infeasibilityCost_ >= 1.0e20 || |
| 425 | numberDualInfeasibilities_ == 0) { |
| 426 | // we are infeasible - use as ray |
| 427 | delete [] ray_; |
| 428 | ray_ = new double [numberRows_]; |
| 429 | CoinMemcpyN(dual_, numberRows_, ray_); |
| 430 | // and get feasible duals |
| 431 | infeasibilityCost_ = 0.0; |
| 432 | createRim(4); |
| 433 | nonLinearCost_->checkInfeasibilities(primalTolerance_); |
| 434 | gutsOfSolution(NULL, NULL, true); |
| 435 | // so will exit |
| 436 | infeasibilityCost_ = 1.0e30; |
| 437 | // reset infeasibilities |
| 438 | sumPrimalInfeasibilities_ = nonLinearCost_->sumInfeasibilities(); |
| 439 | numberPrimalInfeasibilities_ = |
| 440 | nonLinearCost_->numberInfeasibilities(); |
| 441 | } |
| 442 | if (infeasibilityCost_ < 1.0e20) { |
| 443 | infeasibilityCost_ *= 5.0; |
| 444 | changeMade_++; // say change made |
| 445 | unflag(); |
| 446 | handler_->message(CLP_PRIMAL_WEIGHT, messages_) |
| 447 | << infeasibilityCost_ |
| 448 | << CoinMessageEol; |
| 449 | // put back original costs and then check |
| 450 | createRim(4); |
| 451 | nonLinearCost_->checkInfeasibilities(0.0); |
| 452 | gutsOfSolution(NULL, NULL, true); |
| 453 | problemStatus_ = -1; //continue |
| 454 | goToDual = false; |
| 455 | } else { |
| 456 | // say infeasible |
| 457 | problemStatus_ = 1; |
| 458 | } |
| 459 | } |
| 460 | } else { |
| 461 | // may be optimal |
| 462 | if (perturbation_ == 101) { |
| 463 | goToDual = unPerturb(); // stop any further perturbation |
| 464 | lastCleaned = -1; // carry on |
| 465 | } |
| 466 | bool unflagged = unflag() != 0; |
| 467 | if ( lastCleaned != numberIterations_ || unflagged) { |
| 468 | handler_->message(CLP_PRIMAL_OPTIMAL, messages_) |
| 469 | << primalTolerance_ |
| 470 | << CoinMessageEol; |
| 471 | double current = nonLinearCost_->feasibleReportCost(); |
| 472 | if (numberTimesOptimal_ < 4) { |
| 473 | if (bestObjectiveWhenFlagged <= current) { |
| 474 | numberTimesOptimal_++; |
| 475 | #ifdef CLP_DEBUG |
| 476 | if (handler_->logLevel() & 32) |
| 477 | printf("%d times optimal, current %g best %g\n" , numberTimesOptimal_, |
| 478 | current, bestObjectiveWhenFlagged); |
| 479 | #endif |
| 480 | } else { |
| 481 | bestObjectiveWhenFlagged = current; |
| 482 | } |
| 483 | changeMade_++; // say change made |
| 484 | if (numberTimesOptimal_ == 1) { |
| 485 | // better to have small tolerance even if slower |
| 486 | factorization_->zeroTolerance(CoinMin(factorization_->zeroTolerance(), 1.0e-15)); |
| 487 | } |
| 488 | lastCleaned = numberIterations_; |
| 489 | if (primalTolerance_ != dblParam_[ClpPrimalTolerance]) |
| 490 | handler_->message(CLP_PRIMAL_ORIGINAL, messages_) |
| 491 | << CoinMessageEol; |
| 492 | double oldTolerance = primalTolerance_; |
| 493 | primalTolerance_ = dblParam_[ClpPrimalTolerance]; |
| 494 | // put back original costs and then check |
| 495 | createRim(4); |
| 496 | nonLinearCost_->checkInfeasibilities(oldTolerance); |
| 497 | gutsOfSolution(NULL, NULL, true); |
| 498 | if (sumOfRelaxedDualInfeasibilities_ == 0.0 && |
| 499 | sumOfRelaxedPrimalInfeasibilities_ == 0.0) { |
| 500 | // say optimal (with these bounds etc) |
| 501 | numberDualInfeasibilities_ = 0; |
| 502 | sumDualInfeasibilities_ = 0.0; |
| 503 | numberPrimalInfeasibilities_ = 0; |
| 504 | sumPrimalInfeasibilities_ = 0.0; |
| 505 | } |
| 506 | if (dualFeasible() && !nonLinearCost_->numberInfeasibilities() && lastCleaned >= 0) |
| 507 | problemStatus_ = 0; |
| 508 | else |
| 509 | problemStatus_ = -1; |
| 510 | } else { |
| 511 | problemStatus_ = 0; // optimal |
| 512 | if (lastCleaned < numberIterations_) { |
| 513 | handler_->message(CLP_SIMPLEX_GIVINGUP, messages_) |
| 514 | << CoinMessageEol; |
| 515 | } |
| 516 | } |
| 517 | } else { |
| 518 | problemStatus_ = 0; // optimal |
| 519 | } |
| 520 | } |
| 521 | } else { |
| 522 | // see if looks unbounded |
| 523 | if (problemStatus_ == -5) { |
| 524 | if (nonLinearCost_->numberInfeasibilities()) { |
| 525 | if (infeasibilityCost_ > 1.0e18 && perturbation_ == 101) { |
| 526 | // back off weight |
| 527 | infeasibilityCost_ = 1.0e13; |
| 528 | unPerturb(); // stop any further perturbation |
| 529 | } |
| 530 | //we need infeasiblity cost changed |
| 531 | if (infeasibilityCost_ < 1.0e20) { |
| 532 | infeasibilityCost_ *= 5.0; |
| 533 | changeMade_++; // say change made |
| 534 | unflag(); |
| 535 | handler_->message(CLP_PRIMAL_WEIGHT, messages_) |
| 536 | << infeasibilityCost_ |
| 537 | << CoinMessageEol; |
| 538 | // put back original costs and then check |
| 539 | createRim(4); |
| 540 | gutsOfSolution(NULL, NULL, true); |
| 541 | problemStatus_ = -1; //continue |
| 542 | } else { |
| 543 | // say unbounded |
| 544 | problemStatus_ = 2; |
| 545 | } |
| 546 | } else { |
| 547 | // say unbounded |
| 548 | problemStatus_ = 2; |
| 549 | } |
| 550 | } else { |
| 551 | if(type == 3 && problemStatus_ != -5) |
| 552 | unflag(); // odd |
| 553 | // carry on |
| 554 | problemStatus_ = -1; |
| 555 | } |
| 556 | } |
| 557 | // save extra stuff |
| 558 | matrix_->generalExpanded(this, 5, dummy); |
| 559 | if (type == 0 || type == 1) { |
| 560 | if (type != 1 || !saveStatus_) { |
| 561 | // create save arrays |
| 562 | delete [] saveStatus_; |
| 563 | delete [] savedSolution_; |
| 564 | saveStatus_ = new unsigned char [numberRows_+numberColumns_]; |
| 565 | savedSolution_ = new double [numberRows_+numberColumns_]; |
| 566 | } |
| 567 | // save arrays |
| 568 | CoinMemcpyN(status_, (numberColumns_ + numberRows_), saveStatus_); |
| 569 | CoinMemcpyN(rowActivityWork_, numberRows_, savedSolution_ + numberColumns_ ); |
| 570 | CoinMemcpyN(columnActivityWork_, numberColumns_, savedSolution_ ); |
| 571 | } |
| 572 | if (doFactorization) { |
| 573 | // restore weights (if saved) - also recompute infeasibility list |
| 574 | if (tentativeStatus > -3) |
| 575 | primalColumnPivot_->saveWeights(this, (type < 2) ? 2 : 4); |
| 576 | else |
| 577 | primalColumnPivot_->saveWeights(this, 3); |
| 578 | if (saveThreshold) { |
| 579 | // use default at present |
| 580 | factorization_->sparseThreshold(0); |
| 581 | factorization_->goSparse(); |
| 582 | } |
| 583 | } |
| 584 | if (problemStatus_ < 0 && !changeMade_) { |
| 585 | problemStatus_ = 4; // unknown |
| 586 | } |
| 587 | lastGoodIteration_ = numberIterations_; |
| 588 | //if (goToDual) |
| 589 | //problemStatus_=10; // try dual |
| 590 | // Allow matrices to be sorted etc |
| 591 | int fake = -999; // signal sort |
| 592 | matrix_->correctSequence(this, fake, fake); |
| 593 | } |
| 594 | /* |
| 595 | Reasons to come out: |
| 596 | -1 iterations etc |
| 597 | -2 inaccuracy |
| 598 | -3 slight inaccuracy (and done iterations) |
| 599 | -4 end of values pass and done iterations |
| 600 | +0 looks optimal (might be infeasible - but we will investigate) |
| 601 | +2 looks unbounded |
| 602 | +3 max iterations |
| 603 | */ |
| 604 | int |
| 605 | ClpSimplexNonlinear::whileIterating(int & pivotMode) |
| 606 | { |
| 607 | // Say if values pass |
| 608 | //int ifValuesPass=(firstFree_>=0) ? 1 : 0; |
| 609 | int ifValuesPass = 1; |
| 610 | int returnCode = -1; |
| 611 | // status stays at -1 while iterating, >=0 finished, -2 to invert |
| 612 | // status -3 to go to top without an invert |
| 613 | int numberInterior = 0; |
| 614 | int nextUnflag = 10; |
| 615 | int nextUnflagIteration = numberIterations_ + 10; |
| 616 | // get two arrays |
| 617 | double * array1 = new double[2*(numberRows_+numberColumns_)]; |
| 618 | double solutionError = -1.0; |
| 619 | while (problemStatus_ == -1) { |
| 620 | int result; |
| 621 | rowArray_[1]->clear(); |
| 622 | //#define CLP_DEBUG |
| 623 | #if CLP_DEBUG > 1 |
| 624 | rowArray_[0]->checkClear(); |
| 625 | rowArray_[1]->checkClear(); |
| 626 | rowArray_[2]->checkClear(); |
| 627 | rowArray_[3]->checkClear(); |
| 628 | columnArray_[0]->checkClear(); |
| 629 | #endif |
| 630 | if (numberInterior >= 5) { |
| 631 | // this can go when we have better minimization |
| 632 | if (pivotMode < 10) |
| 633 | pivotMode = 1; |
| 634 | unflag(); |
| 635 | #ifdef CLP_DEBUG |
| 636 | if (handler_->logLevel() & 32) |
| 637 | printf("interior unflag\n" ); |
| 638 | #endif |
| 639 | numberInterior = 0; |
| 640 | nextUnflag = 10; |
| 641 | nextUnflagIteration = numberIterations_ + 10; |
| 642 | } else { |
| 643 | if (numberInterior > nextUnflag && |
| 644 | numberIterations_ > nextUnflagIteration) { |
| 645 | nextUnflagIteration = numberIterations_ + 10; |
| 646 | nextUnflag += 10; |
| 647 | unflag(); |
| 648 | #ifdef CLP_DEBUG |
| 649 | if (handler_->logLevel() & 32) |
| 650 | printf("unflagging as interior\n" ); |
| 651 | #endif |
| 652 | } |
| 653 | } |
| 654 | pivotRow_ = -1; |
| 655 | result = pivotColumn(rowArray_[3], rowArray_[0], |
| 656 | columnArray_[0], rowArray_[1], pivotMode, solutionError, |
| 657 | array1); |
| 658 | if (result) { |
| 659 | if (result == 2 && sequenceIn_ < 0) { |
| 660 | // does not look good |
| 661 | double currentObj; |
| 662 | double thetaObj; |
| 663 | double predictedObj; |
| 664 | objective_->stepLength(this, solution_, solution_, 0.0, |
| 665 | currentObj, thetaObj, predictedObj); |
| 666 | if (currentObj == predictedObj) { |
| 667 | #ifdef CLP_INVESTIGATE |
| 668 | printf("looks bad - no change in obj %g\n" , currentObj); |
| 669 | #endif |
| 670 | if (factorization_->pivots()) |
| 671 | result = 3; |
| 672 | else |
| 673 | problemStatus_ = 0; |
| 674 | } |
| 675 | } |
| 676 | if (result == 3) |
| 677 | break; // null vector not accurate |
| 678 | #ifdef CLP_DEBUG |
| 679 | if (handler_->logLevel() & 32) { |
| 680 | double currentObj; |
| 681 | double thetaObj; |
| 682 | double predictedObj; |
| 683 | objective_->stepLength(this, solution_, solution_, 0.0, |
| 684 | currentObj, thetaObj, predictedObj); |
| 685 | printf("obj %g after interior move\n" , currentObj); |
| 686 | } |
| 687 | #endif |
| 688 | // just move and try again |
| 689 | if (pivotMode < 10) { |
| 690 | pivotMode = result - 1; |
| 691 | numberInterior++; |
| 692 | } |
| 693 | continue; |
| 694 | } else { |
| 695 | if (pivotMode < 10) { |
| 696 | if (theta_ > 0.001) |
| 697 | pivotMode = 0; |
| 698 | else if (pivotMode == 2) |
| 699 | pivotMode = 1; |
| 700 | } |
| 701 | numberInterior = 0; |
| 702 | nextUnflag = 10; |
| 703 | nextUnflagIteration = numberIterations_ + 10; |
| 704 | } |
| 705 | sequenceOut_ = -1; |
| 706 | rowArray_[1]->clear(); |
| 707 | if (sequenceIn_ >= 0) { |
| 708 | // we found a pivot column |
| 709 | assert (!flagged(sequenceIn_)); |
| 710 | #ifdef CLP_DEBUG |
| 711 | if ((handler_->logLevel() & 32)) { |
| 712 | char x = isColumn(sequenceIn_) ? 'C' : 'R'; |
| 713 | std::cout << "pivot column " << |
| 714 | x << sequenceWithin(sequenceIn_) << std::endl; |
| 715 | } |
| 716 | #endif |
| 717 | // do second half of iteration |
| 718 | if (pivotRow_ < 0 && theta_ < 1.0e-8) { |
| 719 | assert (sequenceIn_ >= 0); |
| 720 | returnCode = pivotResult(ifValuesPass); |
| 721 | } else { |
| 722 | // specialized code |
| 723 | returnCode = pivotNonlinearResult(); |
| 724 | //printf("odd pivrow %d\n",sequenceOut_); |
| 725 | if (sequenceOut_ >= 0 && theta_ < 1.0e-5) { |
| 726 | if (getStatus(sequenceOut_) != isFixed) { |
| 727 | if (getStatus(sequenceOut_) == atUpperBound) |
| 728 | solution_[sequenceOut_] = upper_[sequenceOut_]; |
| 729 | else if (getStatus(sequenceOut_) == atLowerBound) |
| 730 | solution_[sequenceOut_] = lower_[sequenceOut_]; |
| 731 | setFlagged(sequenceOut_); |
| 732 | } |
| 733 | } |
| 734 | } |
| 735 | if (returnCode < -1 && returnCode > -5) { |
| 736 | problemStatus_ = -2; // |
| 737 | } else if (returnCode == -5) { |
| 738 | // something flagged - continue; |
| 739 | } else if (returnCode == 2) { |
| 740 | problemStatus_ = -5; // looks unbounded |
| 741 | } else if (returnCode == 4) { |
| 742 | problemStatus_ = -2; // looks unbounded but has iterated |
| 743 | } else if (returnCode != -1) { |
| 744 | assert(returnCode == 3); |
| 745 | problemStatus_ = 3; |
| 746 | } |
| 747 | } else { |
| 748 | // no pivot column |
| 749 | #ifdef CLP_DEBUG |
| 750 | if (handler_->logLevel() & 32) |
| 751 | printf("** no column pivot\n" ); |
| 752 | #endif |
| 753 | if (pivotMode < 10) { |
| 754 | // looks optimal |
| 755 | primalColumnPivot_->setLooksOptimal(true); |
| 756 | } else { |
| 757 | pivotMode--; |
| 758 | #ifdef CLP_DEBUG |
| 759 | if (handler_->logLevel() & 32) |
| 760 | printf("pivot mode now %d\n" , pivotMode); |
| 761 | #endif |
| 762 | if (pivotMode == 9) |
| 763 | pivotMode = 0; // switch off fast attempt |
| 764 | unflag(); |
| 765 | } |
| 766 | if (nonLinearCost_->numberInfeasibilities()) |
| 767 | problemStatus_ = -4; // might be infeasible |
| 768 | returnCode = 0; |
| 769 | break; |
| 770 | } |
| 771 | } |
| 772 | delete [] array1; |
| 773 | return returnCode; |
| 774 | } |
| 775 | // Creates direction vector |
| 776 | void |
| 777 | ClpSimplexNonlinear::directionVector (CoinIndexedVector * vectorArray, |
| 778 | CoinIndexedVector * spare1, CoinIndexedVector * spare2, |
| 779 | int pivotMode2, |
| 780 | double & normFlagged, double & normUnflagged, |
| 781 | int & numberNonBasic) |
| 782 | { |
| 783 | #if CLP_DEBUG > 1 |
| 784 | vectorArray->checkClear(); |
| 785 | spare1->checkClear(); |
| 786 | spare2->checkClear(); |
| 787 | #endif |
| 788 | double *array = vectorArray->denseVector(); |
| 789 | int * index = vectorArray->getIndices(); |
| 790 | int number = 0; |
| 791 | sequenceIn_ = -1; |
| 792 | normFlagged = 0.0; |
| 793 | normUnflagged = 1.0; |
| 794 | double dualTolerance2 = CoinMin(1.0e-8, 1.0e-2 * dualTolerance_); |
| 795 | double dualTolerance3 = CoinMin(1.0e-2, 1.0e3 * dualTolerance_); |
| 796 | if (!numberNonBasic) { |
| 797 | //if (nonLinearCost_->sumInfeasibilities()>1.0e-4) |
| 798 | //printf("infeasible\n"); |
| 799 | if (!pivotMode2 || pivotMode2 >= 10) { |
| 800 | normUnflagged = 0.0; |
| 801 | double bestDj = 0.0; |
| 802 | double bestSuper = 0.0; |
| 803 | double sumSuper = 0.0; |
| 804 | sequenceIn_ = -1; |
| 805 | int nSuper = 0; |
| 806 | for (int iSequence = 0; iSequence < numberColumns_ + numberRows_; iSequence++) { |
| 807 | array[iSequence] = 0.0; |
| 808 | if (flagged(iSequence)) { |
| 809 | // accumulate norm |
| 810 | switch(getStatus(iSequence)) { |
| 811 | |
| 812 | case basic: |
| 813 | case ClpSimplex::isFixed: |
| 814 | break; |
| 815 | case atUpperBound: |
| 816 | if (dj_[iSequence] > dualTolerance3) |
| 817 | normFlagged += dj_[iSequence] * dj_[iSequence]; |
| 818 | break; |
| 819 | case atLowerBound: |
| 820 | if (dj_[iSequence] < -dualTolerance3) |
| 821 | normFlagged += dj_[iSequence] * dj_[iSequence]; |
| 822 | break; |
| 823 | case isFree: |
| 824 | case superBasic: |
| 825 | if (fabs(dj_[iSequence]) > dualTolerance3) |
| 826 | normFlagged += dj_[iSequence] * dj_[iSequence]; |
| 827 | break; |
| 828 | } |
| 829 | continue; |
| 830 | } |
| 831 | switch(getStatus(iSequence)) { |
| 832 | |
| 833 | case basic: |
| 834 | case ClpSimplex::isFixed: |
| 835 | break; |
| 836 | case atUpperBound: |
| 837 | if (dj_[iSequence] > dualTolerance_) { |
| 838 | if (dj_[iSequence] > dualTolerance3) |
| 839 | normUnflagged += dj_[iSequence] * dj_[iSequence]; |
| 840 | if (pivotMode2 < 10) { |
| 841 | array[iSequence] = -dj_[iSequence]; |
| 842 | index[number++] = iSequence; |
| 843 | } else { |
| 844 | if (dj_[iSequence] > bestDj) { |
| 845 | bestDj = dj_[iSequence]; |
| 846 | sequenceIn_ = iSequence; |
| 847 | } |
| 848 | } |
| 849 | } |
| 850 | break; |
| 851 | case atLowerBound: |
| 852 | if (dj_[iSequence] < -dualTolerance_) { |
| 853 | if (dj_[iSequence] < -dualTolerance3) |
| 854 | normUnflagged += dj_[iSequence] * dj_[iSequence]; |
| 855 | if (pivotMode2 < 10) { |
| 856 | array[iSequence] = -dj_[iSequence]; |
| 857 | index[number++] = iSequence; |
| 858 | } else { |
| 859 | if (-dj_[iSequence] > bestDj) { |
| 860 | bestDj = -dj_[iSequence]; |
| 861 | sequenceIn_ = iSequence; |
| 862 | } |
| 863 | } |
| 864 | } |
| 865 | break; |
| 866 | case isFree: |
| 867 | case superBasic: |
| 868 | //#define ALLSUPER |
| 869 | #define NOSUPER |
| 870 | #ifndef ALLSUPER |
| 871 | if (fabs(dj_[iSequence]) > dualTolerance_) { |
| 872 | if (fabs(dj_[iSequence]) > dualTolerance3) |
| 873 | normUnflagged += dj_[iSequence] * dj_[iSequence]; |
| 874 | nSuper++; |
| 875 | bestSuper = CoinMax(fabs(dj_[iSequence]), bestSuper); |
| 876 | sumSuper += fabs(dj_[iSequence]); |
| 877 | } |
| 878 | if (fabs(dj_[iSequence]) > dualTolerance2) { |
| 879 | array[iSequence] = -dj_[iSequence]; |
| 880 | index[number++] = iSequence; |
| 881 | } |
| 882 | #else |
| 883 | array[iSequence] = -dj_[iSequence]; |
| 884 | index[number++] = iSequence; |
| 885 | if (pivotMode2 >= 10) |
| 886 | bestSuper = CoinMax(fabs(dj_[iSequence]), bestSuper); |
| 887 | #endif |
| 888 | break; |
| 889 | } |
| 890 | } |
| 891 | #ifdef NOSUPER |
| 892 | // redo |
| 893 | bestSuper = sumSuper; |
| 894 | if(sequenceIn_ >= 0 && bestDj > bestSuper) { |
| 895 | int j; |
| 896 | // get rid of superbasics |
| 897 | for (j = 0; j < number; j++) { |
| 898 | int iSequence = index[j]; |
| 899 | array[iSequence] = 0.0; |
| 900 | } |
| 901 | number = 0; |
| 902 | array[sequenceIn_] = -dj_[sequenceIn_]; |
| 903 | index[number++] = sequenceIn_; |
| 904 | } else { |
| 905 | sequenceIn_ = -1; |
| 906 | } |
| 907 | #else |
| 908 | if (pivotMode2 >= 10 || !nSuper) { |
| 909 | bool takeBest = true; |
| 910 | if (pivotMode2 == 100 && nSuper > 1) |
| 911 | takeBest = false; |
| 912 | if(sequenceIn_ >= 0 && takeBest) { |
| 913 | if (fabs(dj_[sequenceIn_]) > bestSuper) { |
| 914 | array[sequenceIn_] = -dj_[sequenceIn_]; |
| 915 | index[number++] = sequenceIn_; |
| 916 | } else { |
| 917 | sequenceIn_ = -1; |
| 918 | } |
| 919 | } else { |
| 920 | sequenceIn_ = -1; |
| 921 | } |
| 922 | } |
| 923 | #endif |
| 924 | #ifdef CLP_DEBUG |
| 925 | if (handler_->logLevel() & 32) { |
| 926 | if (sequenceIn_ >= 0) |
| 927 | printf("%d superBasic, chosen %d - dj %g\n" , nSuper, sequenceIn_, |
| 928 | dj_[sequenceIn_]); |
| 929 | else |
| 930 | printf("%d superBasic - none chosen\n" , nSuper); |
| 931 | } |
| 932 | #endif |
| 933 | } else { |
| 934 | double bestDj = 0.0; |
| 935 | double saveDj = 0.0; |
| 936 | if (sequenceOut_ >= 0) { |
| 937 | saveDj = dj_[sequenceOut_]; |
| 938 | dj_[sequenceOut_] = 0.0; |
| 939 | switch(getStatus(sequenceOut_)) { |
| 940 | |
| 941 | case basic: |
| 942 | sequenceOut_ = -1; |
| 943 | case ClpSimplex::isFixed: |
| 944 | break; |
| 945 | case atUpperBound: |
| 946 | if (dj_[sequenceOut_] > dualTolerance_) { |
| 947 | #ifdef CLP_DEBUG |
| 948 | if (handler_->logLevel() & 32) |
| 949 | printf("after pivot out %d values %g %g %g, dj %g\n" , |
| 950 | sequenceOut_, lower_[sequenceOut_], solution_[sequenceOut_], |
| 951 | upper_[sequenceOut_], dj_[sequenceOut_]); |
| 952 | #endif |
| 953 | } |
| 954 | break; |
| 955 | case atLowerBound: |
| 956 | if (dj_[sequenceOut_] < -dualTolerance_) { |
| 957 | #ifdef CLP_DEBUG |
| 958 | if (handler_->logLevel() & 32) |
| 959 | printf("after pivot out %d values %g %g %g, dj %g\n" , |
| 960 | sequenceOut_, lower_[sequenceOut_], solution_[sequenceOut_], |
| 961 | upper_[sequenceOut_], dj_[sequenceOut_]); |
| 962 | #endif |
| 963 | } |
| 964 | break; |
| 965 | case isFree: |
| 966 | case superBasic: |
| 967 | if (dj_[sequenceOut_] > dualTolerance_) { |
| 968 | #ifdef CLP_DEBUG |
| 969 | if (handler_->logLevel() & 32) |
| 970 | printf("after pivot out %d values %g %g %g, dj %g\n" , |
| 971 | sequenceOut_, lower_[sequenceOut_], solution_[sequenceOut_], |
| 972 | upper_[sequenceOut_], dj_[sequenceOut_]); |
| 973 | #endif |
| 974 | } else if (dj_[sequenceOut_] < -dualTolerance_) { |
| 975 | #ifdef CLP_DEBUG |
| 976 | if (handler_->logLevel() & 32) |
| 977 | printf("after pivot out %d values %g %g %g, dj %g\n" , |
| 978 | sequenceOut_, lower_[sequenceOut_], solution_[sequenceOut_], |
| 979 | upper_[sequenceOut_], dj_[sequenceOut_]); |
| 980 | #endif |
| 981 | } |
| 982 | break; |
| 983 | } |
| 984 | } |
| 985 | // Go for dj |
| 986 | pivotMode2 = 3; |
| 987 | for (int iSequence = 0; iSequence < numberColumns_ + numberRows_; iSequence++) { |
| 988 | array[iSequence] = 0.0; |
| 989 | if (flagged(iSequence)) |
| 990 | continue; |
| 991 | switch(getStatus(iSequence)) { |
| 992 | |
| 993 | case basic: |
| 994 | case ClpSimplex::isFixed: |
| 995 | break; |
| 996 | case atUpperBound: |
| 997 | if (dj_[iSequence] > dualTolerance_) { |
| 998 | double distance = CoinMin(1.0e-2, solution_[iSequence] - lower_[iSequence]); |
| 999 | double merit = distance * dj_[iSequence]; |
| 1000 | if (pivotMode2 == 1) |
| 1001 | merit *= 1.0e-20; // discourage |
| 1002 | if (pivotMode2 == 3) |
| 1003 | merit = fabs(dj_[iSequence]); |
| 1004 | if (merit > bestDj) { |
| 1005 | sequenceIn_ = iSequence; |
| 1006 | bestDj = merit; |
| 1007 | } |
| 1008 | } |
| 1009 | break; |
| 1010 | case atLowerBound: |
| 1011 | if (dj_[iSequence] < -dualTolerance_) { |
| 1012 | double distance = CoinMin(1.0e-2, upper_[iSequence] - solution_[iSequence]); |
| 1013 | double merit = -distance * dj_[iSequence]; |
| 1014 | if (pivotMode2 == 1) |
| 1015 | merit *= 1.0e-20; // discourage |
| 1016 | if (pivotMode2 == 3) |
| 1017 | merit = fabs(dj_[iSequence]); |
| 1018 | if (merit > bestDj) { |
| 1019 | sequenceIn_ = iSequence; |
| 1020 | bestDj = merit; |
| 1021 | } |
| 1022 | } |
| 1023 | break; |
| 1024 | case isFree: |
| 1025 | case superBasic: |
| 1026 | if (dj_[iSequence] > dualTolerance_) { |
| 1027 | double distance = CoinMin(1.0e-2, solution_[iSequence] - lower_[iSequence]); |
| 1028 | distance = CoinMin(solution_[iSequence] - lower_[iSequence], |
| 1029 | upper_[iSequence] - solution_[iSequence]); |
| 1030 | double merit = distance * dj_[iSequence]; |
| 1031 | if (pivotMode2 == 1) |
| 1032 | merit = distance; |
| 1033 | if (pivotMode2 == 3) |
| 1034 | merit = fabs(dj_[iSequence]); |
| 1035 | if (merit > bestDj) { |
| 1036 | sequenceIn_ = iSequence; |
| 1037 | bestDj = merit; |
| 1038 | } |
| 1039 | } else if (dj_[iSequence] < -dualTolerance_) { |
| 1040 | double distance = CoinMin(1.0e-2, upper_[iSequence] - solution_[iSequence]); |
| 1041 | distance = CoinMin(solution_[iSequence] - lower_[iSequence], |
| 1042 | upper_[iSequence] - solution_[iSequence]); |
| 1043 | double merit = -distance * dj_[iSequence]; |
| 1044 | if (pivotMode2 == 1) |
| 1045 | merit = distance; |
| 1046 | if (pivotMode2 == 3) |
| 1047 | merit = fabs(dj_[iSequence]); |
| 1048 | if (merit > bestDj) { |
| 1049 | sequenceIn_ = iSequence; |
| 1050 | bestDj = merit; |
| 1051 | } |
| 1052 | } |
| 1053 | break; |
| 1054 | } |
| 1055 | } |
| 1056 | if (sequenceOut_ >= 0) { |
| 1057 | dj_[sequenceOut_] = saveDj; |
| 1058 | sequenceOut_ = -1; |
| 1059 | } |
| 1060 | if (sequenceIn_ >= 0) { |
| 1061 | array[sequenceIn_] = -dj_[sequenceIn_]; |
| 1062 | index[number++] = sequenceIn_; |
| 1063 | } |
| 1064 | } |
| 1065 | numberNonBasic = number; |
| 1066 | } else { |
| 1067 | // compute norms |
| 1068 | normUnflagged = 0.0; |
| 1069 | for (int iSequence = 0; iSequence < numberColumns_ + numberRows_; iSequence++) { |
| 1070 | if (flagged(iSequence)) { |
| 1071 | // accumulate norm |
| 1072 | switch(getStatus(iSequence)) { |
| 1073 | |
| 1074 | case basic: |
| 1075 | case ClpSimplex::isFixed: |
| 1076 | break; |
| 1077 | case atUpperBound: |
| 1078 | if (dj_[iSequence] > dualTolerance_) |
| 1079 | normFlagged += dj_[iSequence] * dj_[iSequence]; |
| 1080 | break; |
| 1081 | case atLowerBound: |
| 1082 | if (dj_[iSequence] < -dualTolerance_) |
| 1083 | normFlagged += dj_[iSequence] * dj_[iSequence]; |
| 1084 | break; |
| 1085 | case isFree: |
| 1086 | case superBasic: |
| 1087 | if (fabs(dj_[iSequence]) > dualTolerance_) |
| 1088 | normFlagged += dj_[iSequence] * dj_[iSequence]; |
| 1089 | break; |
| 1090 | } |
| 1091 | } |
| 1092 | } |
| 1093 | // re-use list |
| 1094 | number = 0; |
| 1095 | int j; |
| 1096 | for (j = 0; j < numberNonBasic; j++) { |
| 1097 | int iSequence = index[j]; |
| 1098 | if (flagged(iSequence)) |
| 1099 | continue; |
| 1100 | switch(getStatus(iSequence)) { |
| 1101 | |
| 1102 | case basic: |
| 1103 | case ClpSimplex::isFixed: |
| 1104 | continue; //abort(); |
| 1105 | break; |
| 1106 | case atUpperBound: |
| 1107 | if (dj_[iSequence] > dualTolerance_) { |
| 1108 | number++; |
| 1109 | normUnflagged += dj_[iSequence] * dj_[iSequence]; |
| 1110 | } |
| 1111 | break; |
| 1112 | case atLowerBound: |
| 1113 | if (dj_[iSequence] < -dualTolerance_) { |
| 1114 | number++; |
| 1115 | normUnflagged += dj_[iSequence] * dj_[iSequence]; |
| 1116 | } |
| 1117 | break; |
| 1118 | case isFree: |
| 1119 | case superBasic: |
| 1120 | if (fabs(dj_[iSequence]) > dualTolerance_) { |
| 1121 | number++; |
| 1122 | normUnflagged += dj_[iSequence] * dj_[iSequence]; |
| 1123 | } |
| 1124 | break; |
| 1125 | } |
| 1126 | array[iSequence] = -dj_[iSequence]; |
| 1127 | } |
| 1128 | // switch to large |
| 1129 | normUnflagged = 1.0; |
| 1130 | if (!number) { |
| 1131 | for (j = 0; j < numberNonBasic; j++) { |
| 1132 | int iSequence = index[j]; |
| 1133 | array[iSequence] = 0.0; |
| 1134 | } |
| 1135 | numberNonBasic = 0; |
| 1136 | } |
| 1137 | number = numberNonBasic; |
| 1138 | } |
| 1139 | if (number) { |
| 1140 | int j; |
| 1141 | // Now do basic ones - how do I compensate for small basic infeasibilities? |
| 1142 | int iRow; |
| 1143 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 1144 | int iPivot = pivotVariable_[iRow]; |
| 1145 | double value = 0.0; |
| 1146 | if (solution_[iPivot] > upper_[iPivot]) { |
| 1147 | value = upper_[iPivot] - solution_[iPivot]; |
| 1148 | } else if (solution_[iPivot] < lower_[iPivot]) { |
| 1149 | value = lower_[iPivot] - solution_[iPivot]; |
| 1150 | } |
| 1151 | //if (value) |
| 1152 | //printf("inf %d %g %g %g\n",iPivot,lower_[iPivot],solution_[iPivot], |
| 1153 | // upper_[iPivot]); |
| 1154 | //value=0.0; |
| 1155 | value *= -1.0e0; |
| 1156 | if (value) { |
| 1157 | array[iPivot] = value; |
| 1158 | index[number++] = iPivot; |
| 1159 | } |
| 1160 | } |
| 1161 | double * array2 = spare1->denseVector(); |
| 1162 | int * index2 = spare1->getIndices(); |
| 1163 | int number2 = 0; |
| 1164 | times(-1.0, array, array2); |
| 1165 | array = array + numberColumns_; |
| 1166 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 1167 | double value = array2[iRow] + array[iRow]; |
| 1168 | if (value) { |
| 1169 | array2[iRow] = value; |
| 1170 | index2[number2++] = iRow; |
| 1171 | } else { |
| 1172 | array2[iRow] = 0.0; |
| 1173 | } |
| 1174 | } |
| 1175 | array -= numberColumns_; |
| 1176 | spare1->setNumElements(number2); |
| 1177 | // Ftran |
| 1178 | factorization_->updateColumn(spare2, spare1); |
| 1179 | number2 = spare1->getNumElements(); |
| 1180 | for (j = 0; j < number2; j++) { |
| 1181 | int iSequence = index2[j]; |
| 1182 | double value = array2[iSequence]; |
| 1183 | array2[iSequence] = 0.0; |
| 1184 | if (value) { |
| 1185 | int iPivot = pivotVariable_[iSequence]; |
| 1186 | double oldValue = array[iPivot]; |
| 1187 | if (!oldValue) { |
| 1188 | array[iPivot] = value; |
| 1189 | index[number++] = iPivot; |
| 1190 | } else { |
| 1191 | // something already there |
| 1192 | array[iPivot] = value + oldValue; |
| 1193 | } |
| 1194 | } |
| 1195 | } |
| 1196 | spare1->setNumElements(0); |
| 1197 | } |
| 1198 | vectorArray->setNumElements(number); |
| 1199 | } |
| 1200 | #define MINTYPE 1 |
| 1201 | #if MINTYPE==2 |
| 1202 | static double |
| 1203 | innerProductIndexed(const double * region1, int size, const double * region2, const int * which) |
| 1204 | { |
| 1205 | int i; |
| 1206 | double value = 0.0; |
| 1207 | for (i = 0; i < size; i++) { |
| 1208 | int j = which[i]; |
| 1209 | value += region1[j] * region2[j]; |
| 1210 | } |
| 1211 | return value; |
| 1212 | } |
| 1213 | #endif |
| 1214 | /* |
| 1215 | Row array and column array have direction |
| 1216 | Returns 0 - can do normal iteration (basis change) |
| 1217 | 1 - no basis change |
| 1218 | */ |
| 1219 | int |
| 1220 | ClpSimplexNonlinear::pivotColumn(CoinIndexedVector * longArray, |
| 1221 | CoinIndexedVector * rowArray, |
| 1222 | CoinIndexedVector * columnArray, |
| 1223 | CoinIndexedVector * spare, |
| 1224 | int & pivotMode, |
| 1225 | double & solutionError, |
| 1226 | double * dArray) |
| 1227 | { |
| 1228 | // say not optimal |
| 1229 | primalColumnPivot_->setLooksOptimal(false); |
| 1230 | double acceptablePivot = 1.0e-10; |
| 1231 | int lastSequenceIn = -1; |
| 1232 | if (pivotMode && pivotMode < 10) { |
| 1233 | acceptablePivot = 1.0e-6; |
| 1234 | if (factorization_->pivots()) |
| 1235 | acceptablePivot = 1.0e-5; // if we have iterated be more strict |
| 1236 | } |
| 1237 | double acceptableBasic = 1.0e-7; |
| 1238 | |
| 1239 | int number = longArray->getNumElements(); |
| 1240 | int numberTotal = numberRows_ + numberColumns_; |
| 1241 | int bestSequence = -1; |
| 1242 | int bestBasicSequence = -1; |
| 1243 | double eps = 1.0e-1; |
| 1244 | eps = 1.0e-6; |
| 1245 | double basicTheta = 1.0e30; |
| 1246 | double objTheta = 0.0; |
| 1247 | bool finished = false; |
| 1248 | sequenceIn_ = -1; |
| 1249 | int nPasses = 0; |
| 1250 | int nTotalPasses = 0; |
| 1251 | int nBigPasses = 0; |
| 1252 | double djNorm0 = 0.0; |
| 1253 | double djNorm = 0.0; |
| 1254 | double normFlagged = 0.0; |
| 1255 | double normUnflagged = 0.0; |
| 1256 | int localPivotMode = pivotMode; |
| 1257 | bool allFinished = false; |
| 1258 | bool justOne = false; |
| 1259 | int returnCode = 1; |
| 1260 | double currentObj; |
| 1261 | double predictedObj; |
| 1262 | double thetaObj; |
| 1263 | objective_->stepLength(this, solution_, solution_, 0.0, |
| 1264 | currentObj, predictedObj, thetaObj); |
| 1265 | double saveObj = currentObj; |
| 1266 | #if MINTYPE ==2 |
| 1267 | // try Shanno's method |
| 1268 | //would be memory leak |
| 1269 | //double * saveY=new double[numberTotal]; |
| 1270 | //double * saveS=new double[numberTotal]; |
| 1271 | //double * saveY2=new double[numberTotal]; |
| 1272 | //double * saveS2=new double[numberTotal]; |
| 1273 | double saveY[100]; |
| 1274 | double saveS[100]; |
| 1275 | double saveY2[100]; |
| 1276 | double saveS2[100]; |
| 1277 | double zz[10000]; |
| 1278 | #endif |
| 1279 | double * dArray2 = dArray + numberTotal; |
| 1280 | // big big loop |
| 1281 | while (!allFinished) { |
| 1282 | double * work = longArray->denseVector(); |
| 1283 | int * which = longArray->getIndices(); |
| 1284 | allFinished = true; |
| 1285 | // CONJUGATE 0 - never, 1 as pivotMode, 2 as localPivotMode, 3 always |
| 1286 | //#define SMALLTHETA1 1.0e-25 |
| 1287 | //#define SMALLTHETA2 1.0e-25 |
| 1288 | #define SMALLTHETA1 1.0e-10 |
| 1289 | #define SMALLTHETA2 1.0e-10 |
| 1290 | #define CONJUGATE 2 |
| 1291 | #if CONJUGATE == 0 |
| 1292 | int conjugate = 0; |
| 1293 | #elif CONJUGATE == 1 |
| 1294 | int conjugate = (pivotMode < 10) ? MINTYPE : 0; |
| 1295 | #elif CONJUGATE == 2 |
| 1296 | int conjugate = MINTYPE; |
| 1297 | #else |
| 1298 | int conjugate = MINTYPE; |
| 1299 | #endif |
| 1300 | |
| 1301 | //if (pivotMode==1) |
| 1302 | //localPivotMode=11; |
| 1303 | #if CLP_DEBUG > 1 |
| 1304 | longArray->checkClear(); |
| 1305 | #endif |
| 1306 | int numberNonBasic = 0; |
| 1307 | int startLocalMode = -1; |
| 1308 | while (!finished) { |
| 1309 | double simpleObjective = COIN_DBL_MAX; |
| 1310 | returnCode = 1; |
| 1311 | int iSequence; |
| 1312 | objective_->reducedGradient(this, dj_, false); |
| 1313 | // get direction vector in longArray |
| 1314 | longArray->clear(); |
| 1315 | // take out comment to try slightly different idea |
| 1316 | if (nPasses + nTotalPasses > 3000 || nBigPasses > 100) { |
| 1317 | if (factorization_->pivots()) |
| 1318 | returnCode = 3; |
| 1319 | break; |
| 1320 | } |
| 1321 | if (!nPasses) { |
| 1322 | numberNonBasic = 0; |
| 1323 | nBigPasses++; |
| 1324 | } |
| 1325 | // just do superbasic if in cleanup mode |
| 1326 | int local = localPivotMode; |
| 1327 | if (!local && pivotMode >= 10 && nBigPasses < 10) { |
| 1328 | local = 100; |
| 1329 | } else if (local == -1 || nBigPasses >= 10) { |
| 1330 | local = 0; |
| 1331 | localPivotMode = 0; |
| 1332 | } |
| 1333 | if (justOne) { |
| 1334 | local = 2; |
| 1335 | //local=100; |
| 1336 | justOne = false; |
| 1337 | } |
| 1338 | if (!nPasses) |
| 1339 | startLocalMode = local; |
| 1340 | directionVector(longArray, spare, rowArray, local, |
| 1341 | normFlagged, normUnflagged, numberNonBasic); |
| 1342 | { |
| 1343 | // check null vector |
| 1344 | double * rhs = spare->denseVector(); |
| 1345 | #if CLP_DEBUG > 1 |
| 1346 | spare->checkClear(); |
| 1347 | #endif |
| 1348 | int iRow; |
| 1349 | multiplyAdd(solution_ + numberColumns_, numberRows_, -1.0, rhs, 0.0); |
| 1350 | matrix_->times(1.0, solution_, rhs, rowScale_, columnScale_); |
| 1351 | double largest = 0.0; |
| 1352 | int iLargest = -1; |
| 1353 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 1354 | double value = fabs(rhs[iRow]); |
| 1355 | rhs[iRow] = 0.0; |
| 1356 | if (value > largest) { |
| 1357 | largest = value; |
| 1358 | iLargest = iRow; |
| 1359 | } |
| 1360 | } |
| 1361 | #if CLP_DEBUG > 0 |
| 1362 | if ((handler_->logLevel() & 32) && largest > 1.0e-8) |
| 1363 | printf("largest rhs error %g on row %d\n" , largest, iLargest); |
| 1364 | #endif |
| 1365 | if (solutionError < 0.0) { |
| 1366 | solutionError = largest; |
| 1367 | } else if (largest > CoinMax(1.0e-8, 1.0e2 * solutionError) && |
| 1368 | factorization_->pivots()) { |
| 1369 | longArray->clear(); |
| 1370 | pivotRow_ = -1; |
| 1371 | theta_ = 0.0; |
| 1372 | return 3; |
| 1373 | } |
| 1374 | } |
| 1375 | if (sequenceIn_ >= 0) |
| 1376 | lastSequenceIn = sequenceIn_; |
| 1377 | #if MINTYPE!=2 |
| 1378 | double djNormSave = djNorm; |
| 1379 | #endif |
| 1380 | djNorm = 0.0; |
| 1381 | int iIndex; |
| 1382 | for (iIndex = 0; iIndex < numberNonBasic; iIndex++) { |
| 1383 | int iSequence = which[iIndex]; |
| 1384 | double alpha = work[iSequence]; |
| 1385 | djNorm += alpha * alpha; |
| 1386 | } |
| 1387 | // go to conjugate gradient if necessary |
| 1388 | if (numberNonBasic && localPivotMode >= 10 && (nPasses > 4 || sequenceIn_ < 0)) { |
| 1389 | localPivotMode = 0; |
| 1390 | nTotalPasses += nPasses; |
| 1391 | nPasses = 0; |
| 1392 | } |
| 1393 | #if CONJUGATE == 2 |
| 1394 | conjugate = (localPivotMode < 10) ? MINTYPE : 0; |
| 1395 | #endif |
| 1396 | //printf("bigP %d pass %d nBasic %d norm %g normI %g normF %g\n", |
| 1397 | // nBigPasses,nPasses,numberNonBasic,normUnflagged,normFlagged); |
| 1398 | if (!nPasses) { |
| 1399 | //printf("numberNon %d\n",numberNonBasic); |
| 1400 | #if MINTYPE==2 |
| 1401 | assert (numberNonBasic < 100); |
| 1402 | memset(zz, 0, numberNonBasic * numberNonBasic * sizeof(double)); |
| 1403 | int put = 0; |
| 1404 | for (int iVariable = 0; iVariable < numberNonBasic; iVariable++) { |
| 1405 | zz[put] = 1.0; |
| 1406 | put += numberNonBasic + 1; |
| 1407 | } |
| 1408 | #endif |
| 1409 | djNorm0 = CoinMax(djNorm, 1.0e-20); |
| 1410 | CoinMemcpyN(work, numberTotal, dArray); |
| 1411 | CoinMemcpyN(work, numberTotal, dArray2); |
| 1412 | if (sequenceIn_ >= 0 && numberNonBasic == 1) { |
| 1413 | // see if simple move |
| 1414 | double objTheta2 = objective_->stepLength(this, solution_, work, 1.0e30, |
| 1415 | currentObj, predictedObj, thetaObj); |
| 1416 | rowArray->clear(); |
| 1417 | |
| 1418 | // update the incoming column |
| 1419 | unpackPacked(rowArray); |
| 1420 | factorization_->updateColumnFT(spare, rowArray); |
| 1421 | theta_ = 0.0; |
| 1422 | double * work2 = rowArray->denseVector(); |
| 1423 | int number = rowArray->getNumElements(); |
| 1424 | int * which2 = rowArray->getIndices(); |
| 1425 | int iIndex; |
| 1426 | bool easyMove = false; |
| 1427 | double way; |
| 1428 | if (dj_[sequenceIn_] > 0.0) |
| 1429 | way = -1.0; |
| 1430 | else |
| 1431 | way = 1.0; |
| 1432 | double largest = COIN_DBL_MAX; |
| 1433 | int kPivot = -1; |
| 1434 | for (iIndex = 0; iIndex < number; iIndex++) { |
| 1435 | int iRow = which2[iIndex]; |
| 1436 | double alpha = way * work2[iIndex]; |
| 1437 | int iPivot = pivotVariable_[iRow]; |
| 1438 | if (alpha < -1.0e-5) { |
| 1439 | double distance = upper_[iPivot] - solution_[iPivot]; |
| 1440 | if (distance < -largest * alpha) { |
| 1441 | kPivot = iPivot; |
| 1442 | largest = CoinMax(0.0, -distance / alpha); |
| 1443 | } |
| 1444 | if (distance < -1.0e-12 * alpha) { |
| 1445 | easyMove = true; |
| 1446 | break; |
| 1447 | } |
| 1448 | } else if (alpha > 1.0e-5) { |
| 1449 | double distance = solution_[iPivot] - lower_[iPivot]; |
| 1450 | if (distance < largest * alpha) { |
| 1451 | kPivot = iPivot; |
| 1452 | largest = CoinMax(0.0, distance / alpha); |
| 1453 | } |
| 1454 | if (distance < 1.0e-12 * alpha) { |
| 1455 | easyMove = true; |
| 1456 | break; |
| 1457 | } |
| 1458 | } |
| 1459 | } |
| 1460 | // But largest has to match up with change |
| 1461 | assert (work[sequenceIn_]); |
| 1462 | largest /= fabs(work[sequenceIn_]); |
| 1463 | if (largest < objTheta2) { |
| 1464 | easyMove = true; |
| 1465 | } else if (!easyMove) { |
| 1466 | double objDrop = currentObj - predictedObj; |
| 1467 | double th = objective_->stepLength(this, solution_, work, largest, |
| 1468 | currentObj, predictedObj, simpleObjective); |
| 1469 | simpleObjective = CoinMax(simpleObjective, predictedObj); |
| 1470 | double easyDrop = currentObj - simpleObjective; |
| 1471 | if (easyDrop > 1.0e-8 && easyDrop > 0.5 * objDrop) { |
| 1472 | easyMove = true; |
| 1473 | #ifdef CLP_DEBUG |
| 1474 | if (handler_->logLevel() & 32) |
| 1475 | printf("easy - obj drop %g, easy drop %g\n" , objDrop, easyDrop); |
| 1476 | #endif |
| 1477 | if (easyDrop > objDrop) { |
| 1478 | // debug |
| 1479 | printf("****** th %g simple %g\n" , th, simpleObjective); |
| 1480 | objective_->stepLength(this, solution_, work, 1.0e30, |
| 1481 | currentObj, predictedObj, simpleObjective); |
| 1482 | objective_->stepLength(this, solution_, work, largest, |
| 1483 | currentObj, predictedObj, simpleObjective); |
| 1484 | } |
| 1485 | } |
| 1486 | } |
| 1487 | rowArray->clear(); |
| 1488 | #ifdef CLP_DEBUG |
| 1489 | if (handler_->logLevel() & 32) |
| 1490 | printf("largest %g piv %d\n" , largest, kPivot); |
| 1491 | #endif |
| 1492 | if (easyMove) { |
| 1493 | valueIn_ = solution_[sequenceIn_]; |
| 1494 | dualIn_ = dj_[sequenceIn_]; |
| 1495 | lowerIn_ = lower_[sequenceIn_]; |
| 1496 | upperIn_ = upper_[sequenceIn_]; |
| 1497 | if (dualIn_ > 0.0) |
| 1498 | directionIn_ = -1; |
| 1499 | else |
| 1500 | directionIn_ = 1; |
| 1501 | longArray->clear(); |
| 1502 | pivotRow_ = -1; |
| 1503 | theta_ = 0.0; |
| 1504 | return 0; |
| 1505 | } |
| 1506 | } |
| 1507 | } else { |
| 1508 | #if MINTYPE==1 |
| 1509 | if (conjugate) { |
| 1510 | double djNorm2 = djNorm; |
| 1511 | #if 0 |
| 1512 | if (numberNonBasic) { |
| 1513 | int iIndex; |
| 1514 | djNorm2 = 0.0; |
| 1515 | for (iIndex = 0; iIndex < numberNonBasic; iIndex++) { |
| 1516 | int iSequence = which[iIndex]; |
| 1517 | double alpha = work[iSequence]; |
| 1518 | //djNorm2 += alpha*alpha; |
| 1519 | double alpha2 = work[iSequence] - dArray2[iSequence]; |
| 1520 | djNorm2 += alpha * alpha2; |
| 1521 | } |
| 1522 | //printf("a %.18g b %.18g\n",djNorm,djNorm2); |
| 1523 | } |
| 1524 | #endif |
| 1525 | djNorm = djNorm2; |
| 1526 | double beta = djNorm2 / djNormSave; |
| 1527 | // reset beta every so often |
| 1528 | //if (numberNonBasic&&nPasses>numberNonBasic&&(nPasses%(3*numberNonBasic))==1) |
| 1529 | //beta=0.0; |
| 1530 | //printf("current norm %g, old %g - beta %g\n", |
| 1531 | // djNorm,djNormSave,beta); |
| 1532 | for (iSequence = 0; iSequence < numberTotal; iSequence++) { |
| 1533 | dArray[iSequence] = work[iSequence] + beta * dArray[iSequence]; |
| 1534 | dArray2[iSequence] = work[iSequence]; |
| 1535 | } |
| 1536 | } else { |
| 1537 | for (iSequence = 0; iSequence < numberTotal; iSequence++) |
| 1538 | dArray[iSequence] = work[iSequence]; |
| 1539 | } |
| 1540 | #else |
| 1541 | int number2 = numberNonBasic; |
| 1542 | if (number2) { |
| 1543 | // pack down into dArray |
| 1544 | int jLast = -1; |
| 1545 | for (iSequence = 0; iSequence < numberNonBasic; iSequence++) { |
| 1546 | int j = which[iSequence]; |
| 1547 | assert(j > jLast); |
| 1548 | jLast = j; |
| 1549 | double value = work[j]; |
| 1550 | dArray[iSequence] = -value; |
| 1551 | } |
| 1552 | // see whether to restart |
| 1553 | // check signs - gradient |
| 1554 | double g1 = innerProduct(dArray, number2, dArray); |
| 1555 | double g2 = innerProduct(dArray, number2, saveY2); |
| 1556 | // Get differences |
| 1557 | for (iSequence = 0; iSequence < numberNonBasic; iSequence++) { |
| 1558 | saveY2[iSequence] = dArray[iSequence] - saveY2[iSequence]; |
| 1559 | saveS2[iSequence] = solution_[iSequence] - saveS2[iSequence]; |
| 1560 | } |
| 1561 | double g3 = innerProduct(saveS2, number2, saveY2); |
| 1562 | printf("inner %g\n" , g3); |
| 1563 | //assert(g3>0); |
| 1564 | double zzz[10000]; |
| 1565 | int iVariable; |
| 1566 | g2 = 1.0e50; // temp |
| 1567 | if (fabs(g2) >= 0.2 * fabs(g1)) { |
| 1568 | // restart |
| 1569 | double delta = innerProduct(saveY2, number2, saveS2) / |
| 1570 | innerProduct(saveY2, number2, saveY2); |
| 1571 | delta = 1.0; //temp |
| 1572 | memset(zz, 0, number2 * sizeof(double)); |
| 1573 | int put = 0; |
| 1574 | for (iVariable = 0; iVariable < number2; iVariable++) { |
| 1575 | zz[put] = delta; |
| 1576 | put += number2 + 1; |
| 1577 | } |
| 1578 | } else { |
| 1579 | } |
| 1580 | CoinMemcpyN(zz, number2 * number2, zzz); |
| 1581 | double ww[100]; |
| 1582 | // get sk -Hkyk |
| 1583 | for (iVariable = 0; iVariable < number2; iVariable++) { |
| 1584 | double value = 0.0; |
| 1585 | for (int jVariable = 0; jVariable < number2; jVariable++) { |
| 1586 | value += saveY2[jVariable] * zzz[iVariable+number2*jVariable]; |
| 1587 | } |
| 1588 | ww[iVariable] = saveS2[iVariable] - value; |
| 1589 | } |
| 1590 | double ys = innerProduct(saveY2, number2, saveS2); |
| 1591 | double multiplier1 = 1.0 / ys; |
| 1592 | double multiplier2 = innerProduct(saveY2, number2, ww) / (ys * ys); |
| 1593 | #if 1 |
| 1594 | // and second way |
| 1595 | // Hy |
| 1596 | double h[100]; |
| 1597 | for (iVariable = 0; iVariable < number2; iVariable++) { |
| 1598 | double value = 0.0; |
| 1599 | for (int jVariable = 0; jVariable < number2; jVariable++) { |
| 1600 | value += saveY2[jVariable] * zzz[iVariable+number2*jVariable]; |
| 1601 | } |
| 1602 | h[iVariable] = value; |
| 1603 | } |
| 1604 | double hh[10000]; |
| 1605 | double yhy1 = innerProduct(h, number2, saveY2) * multiplier1 + 1.0; |
| 1606 | yhy1 *= multiplier1; |
| 1607 | for (iVariable = 0; iVariable < number2; iVariable++) { |
| 1608 | for (int jVariable = 0; jVariable < number2; jVariable++) { |
| 1609 | int put = iVariable + number2 * jVariable; |
| 1610 | double value = zzz[put]; |
| 1611 | value += yhy1 * saveS2[iVariable] * saveS2[jVariable]; |
| 1612 | hh[put] = value; |
| 1613 | } |
| 1614 | } |
| 1615 | for (iVariable = 0; iVariable < number2; iVariable++) { |
| 1616 | for (int jVariable = 0; jVariable < number2; jVariable++) { |
| 1617 | int put = iVariable + number2 * jVariable; |
| 1618 | double value = hh[put]; |
| 1619 | value -= multiplier1 * (saveS2[iVariable] * h[jVariable]); |
| 1620 | value -= multiplier1 * (saveS2[jVariable] * h[iVariable]); |
| 1621 | hh[put] = value; |
| 1622 | } |
| 1623 | } |
| 1624 | #endif |
| 1625 | // now update H |
| 1626 | for (iVariable = 0; iVariable < number2; iVariable++) { |
| 1627 | for (int jVariable = 0; jVariable < number2; jVariable++) { |
| 1628 | int put = iVariable + number2 * jVariable; |
| 1629 | double value = zzz[put]; |
| 1630 | value += multiplier1 * (ww[iVariable] * saveS2[jVariable] |
| 1631 | + ww[jVariable] * saveS2[iVariable]); |
| 1632 | value -= multiplier2 * saveS2[iVariable] * saveS2[jVariable]; |
| 1633 | zzz[put] = value; |
| 1634 | } |
| 1635 | } |
| 1636 | //memcpy(zzz,hh,size*sizeof(double)); |
| 1637 | // do search direction |
| 1638 | memset(dArray, 0, numberTotal * sizeof(double)); |
| 1639 | for (iVariable = 0; iVariable < numberNonBasic; iVariable++) { |
| 1640 | double value = 0.0; |
| 1641 | for (int jVariable = 0; jVariable < number2; jVariable++) { |
| 1642 | int k = which[jVariable]; |
| 1643 | value += work[k] * zzz[iVariable+number2*jVariable]; |
| 1644 | } |
| 1645 | int i = which[iVariable]; |
| 1646 | dArray[i] = value; |
| 1647 | } |
| 1648 | // Now fill out dArray |
| 1649 | { |
| 1650 | int j; |
| 1651 | // Now do basic ones |
| 1652 | int iRow; |
| 1653 | CoinIndexedVector * spare1 = spare; |
| 1654 | CoinIndexedVector * spare2 = rowArray; |
| 1655 | #if CLP_DEBUG > 1 |
| 1656 | spare1->checkClear(); |
| 1657 | spare2->checkClear(); |
| 1658 | #endif |
| 1659 | double * array2 = spare1->denseVector(); |
| 1660 | int * index2 = spare1->getIndices(); |
| 1661 | int number2 = 0; |
| 1662 | times(-1.0, dArray, array2); |
| 1663 | dArray = dArray + numberColumns_; |
| 1664 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 1665 | double value = array2[iRow] + dArray[iRow]; |
| 1666 | if (value) { |
| 1667 | array2[iRow] = value; |
| 1668 | index2[number2++] = iRow; |
| 1669 | } else { |
| 1670 | array2[iRow] = 0.0; |
| 1671 | } |
| 1672 | } |
| 1673 | dArray -= numberColumns_; |
| 1674 | spare1->setNumElements(number2); |
| 1675 | // Ftran |
| 1676 | factorization_->updateColumn(spare2, spare1); |
| 1677 | number2 = spare1->getNumElements(); |
| 1678 | for (j = 0; j < number2; j++) { |
| 1679 | int iSequence = index2[j]; |
| 1680 | double value = array2[iSequence]; |
| 1681 | array2[iSequence] = 0.0; |
| 1682 | if (value) { |
| 1683 | int iPivot = pivotVariable_[iSequence]; |
| 1684 | double oldValue = dArray[iPivot]; |
| 1685 | dArray[iPivot] = value + oldValue; |
| 1686 | } |
| 1687 | } |
| 1688 | spare1->setNumElements(0); |
| 1689 | } |
| 1690 | //assert (innerProductIndexed(dArray,number2,work,which)>0); |
| 1691 | //printf ("innerP1 %g\n",innerProduct(dArray,numberTotal,work)); |
| 1692 | printf ("innerP1 %g innerP2 %g\n" , innerProduct(dArray, numberTotal, work), |
| 1693 | innerProductIndexed(dArray, numberNonBasic, work, which)); |
| 1694 | assert (innerProduct(dArray, numberTotal, work) > 0); |
| 1695 | #if 1 |
| 1696 | { |
| 1697 | // check null vector |
| 1698 | int iRow; |
| 1699 | double qq[10]; |
| 1700 | memset(qq, 0, numberRows_ * sizeof(double)); |
| 1701 | multiplyAdd(dArray + numberColumns_, numberRows_, -1.0, qq, 0.0); |
| 1702 | matrix_->times(1.0, dArray, qq, rowScale_, columnScale_); |
| 1703 | double largest = 0.0; |
| 1704 | int iLargest = -1; |
| 1705 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 1706 | double value = fabs(qq[iRow]); |
| 1707 | if (value > largest) { |
| 1708 | largest = value; |
| 1709 | iLargest = iRow; |
| 1710 | } |
| 1711 | } |
| 1712 | printf("largest null error %g on row %d\n" , largest, iLargest); |
| 1713 | for (iSequence = 0; iSequence < numberTotal; iSequence++) { |
| 1714 | if (getStatus(iSequence) == basic) |
| 1715 | assert (fabs(dj_[iSequence]) < 1.0e-3); |
| 1716 | } |
| 1717 | } |
| 1718 | #endif |
| 1719 | CoinMemcpyN(saveY2, numberNonBasic, saveY); |
| 1720 | CoinMemcpyN(saveS2, numberNonBasic, saveS); |
| 1721 | } |
| 1722 | #endif |
| 1723 | } |
| 1724 | #if MINTYPE==2 |
| 1725 | for (iSequence = 0; iSequence < numberNonBasic; iSequence++) { |
| 1726 | int j = which[iSequence]; |
| 1727 | saveY2[iSequence] = -work[j]; |
| 1728 | saveS2[iSequence] = solution_[j]; |
| 1729 | } |
| 1730 | #endif |
| 1731 | if (djNorm < eps * djNorm0 || (nPasses > 100 && djNorm < CoinMin(1.0e-1 * djNorm0, 1.0e-12))) { |
| 1732 | #ifdef CLP_DEBUG |
| 1733 | if (handler_->logLevel() & 32) |
| 1734 | printf("dj norm reduced from %g to %g\n" , djNorm0, djNorm); |
| 1735 | #endif |
| 1736 | if (pivotMode < 10 || !numberNonBasic) { |
| 1737 | finished = true; |
| 1738 | } else { |
| 1739 | localPivotMode = pivotMode; |
| 1740 | nTotalPasses += nPasses; |
| 1741 | nPasses = 0; |
| 1742 | continue; |
| 1743 | } |
| 1744 | } |
| 1745 | //if (nPasses==100||nPasses==50) |
| 1746 | //printf("pass %d dj norm reduced from %g to %g - flagged norm %g\n",nPasses,djNorm0,djNorm, |
| 1747 | // normFlagged); |
| 1748 | if (nPasses > 100 && djNorm < 1.0e-2 * normFlagged && !startLocalMode) { |
| 1749 | #ifdef CLP_DEBUG |
| 1750 | if (handler_->logLevel() & 32) |
| 1751 | printf("dj norm reduced from %g to %g - flagged norm %g - unflagging\n" , djNorm0, djNorm, |
| 1752 | normFlagged); |
| 1753 | #endif |
| 1754 | unflag(); |
| 1755 | localPivotMode = 0; |
| 1756 | nTotalPasses += nPasses; |
| 1757 | nPasses = 0; |
| 1758 | continue; |
| 1759 | } |
| 1760 | if (djNorm > 0.99 * djNorm0 && nPasses > 1500) { |
| 1761 | finished = true; |
| 1762 | #ifdef CLP_DEBUG |
| 1763 | if (handler_->logLevel() & 32) |
| 1764 | printf("dj norm NOT reduced from %g to %g\n" , djNorm0, djNorm); |
| 1765 | #endif |
| 1766 | djNorm = 1.2345e-20; |
| 1767 | } |
| 1768 | number = longArray->getNumElements(); |
| 1769 | if (!numberNonBasic) { |
| 1770 | // looks optimal |
| 1771 | // check if any dj look plausible |
| 1772 | int nSuper = 0; |
| 1773 | int nFlagged = 0; |
| 1774 | int nNormal = 0; |
| 1775 | for (int iSequence = 0; iSequence < numberColumns_ + numberRows_; iSequence++) { |
| 1776 | if (flagged(iSequence)) { |
| 1777 | switch(getStatus(iSequence)) { |
| 1778 | |
| 1779 | case basic: |
| 1780 | case ClpSimplex::isFixed: |
| 1781 | break; |
| 1782 | case atUpperBound: |
| 1783 | if (dj_[iSequence] > dualTolerance_) |
| 1784 | nFlagged++; |
| 1785 | break; |
| 1786 | case atLowerBound: |
| 1787 | if (dj_[iSequence] < -dualTolerance_) |
| 1788 | nFlagged++; |
| 1789 | break; |
| 1790 | case isFree: |
| 1791 | case superBasic: |
| 1792 | if (fabs(dj_[iSequence]) > dualTolerance_) |
| 1793 | nFlagged++; |
| 1794 | break; |
| 1795 | } |
| 1796 | continue; |
| 1797 | } |
| 1798 | switch(getStatus(iSequence)) { |
| 1799 | |
| 1800 | case basic: |
| 1801 | case ClpSimplex::isFixed: |
| 1802 | break; |
| 1803 | case atUpperBound: |
| 1804 | if (dj_[iSequence] > dualTolerance_) |
| 1805 | nNormal++; |
| 1806 | break; |
| 1807 | case atLowerBound: |
| 1808 | if (dj_[iSequence] < -dualTolerance_) |
| 1809 | nNormal++; |
| 1810 | break; |
| 1811 | case isFree: |
| 1812 | case superBasic: |
| 1813 | if (fabs(dj_[iSequence]) > dualTolerance_) |
| 1814 | nSuper++; |
| 1815 | break; |
| 1816 | } |
| 1817 | } |
| 1818 | #ifdef CLP_DEBUG |
| 1819 | if (handler_->logLevel() & 32) |
| 1820 | printf("%d super, %d normal, %d flagged\n" , |
| 1821 | nSuper, nNormal, nFlagged); |
| 1822 | #endif |
| 1823 | |
| 1824 | int nFlagged2 = 1; |
| 1825 | if (lastSequenceIn < 0 && !nNormal && !nSuper) { |
| 1826 | nFlagged2 = unflag(); |
| 1827 | if (pivotMode >= 10) { |
| 1828 | pivotMode--; |
| 1829 | #ifdef CLP_DEBUG |
| 1830 | if (handler_->logLevel() & 32) |
| 1831 | printf("pivot mode now %d\n" , pivotMode); |
| 1832 | #endif |
| 1833 | if (pivotMode == 9) |
| 1834 | pivotMode = 0; // switch off fast attempt |
| 1835 | } |
| 1836 | } else { |
| 1837 | lastSequenceIn = -1; |
| 1838 | } |
| 1839 | if (!nFlagged2 || (normFlagged + normUnflagged < 1.0e-8)) { |
| 1840 | primalColumnPivot_->setLooksOptimal(true); |
| 1841 | return 0; |
| 1842 | } else { |
| 1843 | localPivotMode = -1; |
| 1844 | nTotalPasses += nPasses; |
| 1845 | nPasses = 0; |
| 1846 | finished = false; |
| 1847 | continue; |
| 1848 | } |
| 1849 | } |
| 1850 | bestSequence = -1; |
| 1851 | bestBasicSequence = -1; |
| 1852 | |
| 1853 | // temp |
| 1854 | nPasses++; |
| 1855 | if (nPasses > 2000) |
| 1856 | finished = true; |
| 1857 | double theta = 1.0e30; |
| 1858 | basicTheta = 1.0e30; |
| 1859 | theta_ = 1.0e30; |
| 1860 | double basicTolerance = 1.0e-4 * primalTolerance_; |
| 1861 | for (iSequence = 0; iSequence < numberTotal; iSequence++) { |
| 1862 | //if (flagged(iSequence) |
| 1863 | // continue; |
| 1864 | double alpha = dArray[iSequence]; |
| 1865 | Status thisStatus = getStatus(iSequence); |
| 1866 | double oldValue = solution_[iSequence]; |
| 1867 | if (thisStatus != basic) { |
| 1868 | if (fabs(alpha) >= acceptablePivot) { |
| 1869 | if (alpha < 0.0) { |
| 1870 | // variable going towards lower bound |
| 1871 | double bound = lower_[iSequence]; |
| 1872 | oldValue -= bound; |
| 1873 | if (oldValue + theta * alpha < 0.0) { |
| 1874 | bestSequence = iSequence; |
| 1875 | theta = CoinMax(0.0, oldValue / (-alpha)); |
| 1876 | } |
| 1877 | } else { |
| 1878 | // variable going towards upper bound |
| 1879 | double bound = upper_[iSequence]; |
| 1880 | oldValue = bound - oldValue; |
| 1881 | if (oldValue - theta * alpha < 0.0) { |
| 1882 | bestSequence = iSequence; |
| 1883 | theta = CoinMax(0.0, oldValue / alpha); |
| 1884 | } |
| 1885 | } |
| 1886 | } |
| 1887 | } else { |
| 1888 | if (fabs(alpha) >= acceptableBasic) { |
| 1889 | if (alpha < 0.0) { |
| 1890 | // variable going towards lower bound |
| 1891 | double bound = lower_[iSequence]; |
| 1892 | oldValue -= bound; |
| 1893 | if (oldValue + basicTheta * alpha < -basicTolerance) { |
| 1894 | bestBasicSequence = iSequence; |
| 1895 | basicTheta = CoinMax(0.0, (oldValue + basicTolerance) / (-alpha)); |
| 1896 | } |
| 1897 | } else { |
| 1898 | // variable going towards upper bound |
| 1899 | double bound = upper_[iSequence]; |
| 1900 | oldValue = bound - oldValue; |
| 1901 | if (oldValue - basicTheta * alpha < -basicTolerance) { |
| 1902 | bestBasicSequence = iSequence; |
| 1903 | basicTheta = CoinMax(0.0, (oldValue + basicTolerance) / alpha); |
| 1904 | } |
| 1905 | } |
| 1906 | } |
| 1907 | } |
| 1908 | } |
| 1909 | theta_ = CoinMin(theta, basicTheta); |
| 1910 | // Now find minimum of function |
| 1911 | double objTheta2 = objective_->stepLength(this, solution_, dArray, CoinMin(theta, basicTheta), |
| 1912 | currentObj, predictedObj, thetaObj); |
| 1913 | #ifdef CLP_DEBUG |
| 1914 | if (handler_->logLevel() & 32) |
| 1915 | printf("current obj %g thetaObj %g, predictedObj %g\n" , currentObj, thetaObj, predictedObj); |
| 1916 | #endif |
| 1917 | #if MINTYPE==1 |
| 1918 | if (conjugate) { |
| 1919 | double offset; |
| 1920 | const double * gradient = objective_->gradient(this, |
| 1921 | dArray, offset, |
| 1922 | true, 0); |
| 1923 | double product = 0.0; |
| 1924 | for (iSequence = 0; iSequence < numberColumns_; iSequence++) { |
| 1925 | double alpha = dArray[iSequence]; |
| 1926 | double value = alpha * gradient[iSequence]; |
| 1927 | product += value; |
| 1928 | } |
| 1929 | //#define INCLUDESLACK |
| 1930 | #ifdef INCLUDESLACK |
| 1931 | for (; iSequence < numberColumns_ + numberRows_; iSequence++) { |
| 1932 | double alpha = dArray[iSequence]; |
| 1933 | double value = alpha * cost_[iSequence]; |
| 1934 | product += value; |
| 1935 | } |
| 1936 | #endif |
| 1937 | if (product > 0.0) |
| 1938 | objTheta = djNorm / product; |
| 1939 | else |
| 1940 | objTheta = COIN_DBL_MAX; |
| 1941 | #ifndef NDEBUG |
| 1942 | if (product < -1.0e-8 && handler_->logLevel() > 1) |
| 1943 | printf("bad product %g\n" , product); |
| 1944 | #endif |
| 1945 | product = CoinMax(product, 0.0); |
| 1946 | } else { |
| 1947 | objTheta = objTheta2; |
| 1948 | } |
| 1949 | #else |
| 1950 | objTheta = objTheta2; |
| 1951 | #endif |
| 1952 | // if very small difference then take pivot (depends on djNorm?) |
| 1953 | // distinguish between basic and non-basic |
| 1954 | bool chooseObjTheta = objTheta < theta_; |
| 1955 | if (chooseObjTheta) { |
| 1956 | if (thetaObj < currentObj - 1.0e-12 && objTheta + 1.0e-10 > theta_) |
| 1957 | chooseObjTheta = false; |
| 1958 | //if (thetaObj<currentObj+1.0e-12&&objTheta+1.0e-5>theta_) |
| 1959 | //chooseObjTheta=false; |
| 1960 | } |
| 1961 | //if (objTheta+SMALLTHETA1<theta_||(thetaObj>currentObj+difference&&objTheta<theta_)) { |
| 1962 | if (chooseObjTheta) { |
| 1963 | theta_ = objTheta; |
| 1964 | } else { |
| 1965 | objTheta = CoinMax(objTheta, 1.00000001 * theta_ + 1.0e-12); |
| 1966 | //if (theta+1.0e-13>basicTheta) { |
| 1967 | //theta = CoinMax(theta,1.00000001*basicTheta); |
| 1968 | //theta_ = basicTheta; |
| 1969 | //} |
| 1970 | } |
| 1971 | // always out if one variable in and zero move |
| 1972 | if (theta_ == basicTheta || (sequenceIn_ >= 0 && theta_ < 1.0e-10)) |
| 1973 | finished = true; // come out |
| 1974 | #ifdef CLP_DEBUG |
| 1975 | if (handler_->logLevel() & 32) { |
| 1976 | printf("%d pass," , nPasses); |
| 1977 | if (sequenceIn_ >= 0) |
| 1978 | printf (" Sin %d," , sequenceIn_); |
| 1979 | if (basicTheta == theta_) |
| 1980 | printf(" X(%d) basicTheta %g" , bestBasicSequence, basicTheta); |
| 1981 | else |
| 1982 | printf(" basicTheta %g" , basicTheta); |
| 1983 | if (theta == theta_) |
| 1984 | printf(" X(%d) non-basicTheta %g" , bestSequence, theta); |
| 1985 | else |
| 1986 | printf(" non-basicTheta %g" , theta); |
| 1987 | printf(" %s objTheta %g" , objTheta == theta_ ? "X" : "" , objTheta); |
| 1988 | printf(" djNorm %g\n" , djNorm); |
| 1989 | } |
| 1990 | #endif |
| 1991 | if (handler_->logLevel() > 3 && objTheta != theta_) { |
| 1992 | printf("%d pass obj %g," , nPasses, currentObj); |
| 1993 | if (sequenceIn_ >= 0) |
| 1994 | printf (" Sin %d," , sequenceIn_); |
| 1995 | if (basicTheta == theta_) |
| 1996 | printf(" X(%d) basicTheta %g" , bestBasicSequence, basicTheta); |
| 1997 | else |
| 1998 | printf(" basicTheta %g" , basicTheta); |
| 1999 | if (theta == theta_) |
| 2000 | printf(" X(%d) non-basicTheta %g" , bestSequence, theta); |
| 2001 | else |
| 2002 | printf(" non-basicTheta %g" , theta); |
| 2003 | printf(" %s objTheta %g" , objTheta == theta_ ? "X" : "" , objTheta); |
| 2004 | printf(" djNorm %g\n" , djNorm); |
| 2005 | } |
| 2006 | if (objTheta != theta_) { |
| 2007 | //printf("hit boundary after %d passes\n",nPasses); |
| 2008 | nTotalPasses += nPasses; |
| 2009 | nPasses = 0; // start again |
| 2010 | } |
| 2011 | if (localPivotMode < 10 || lastSequenceIn == bestSequence) { |
| 2012 | if (theta_ == theta && theta_ < basicTheta && theta_ < 1.0e-5) |
| 2013 | setFlagged(bestSequence); // out of active set |
| 2014 | } |
| 2015 | // Update solution |
| 2016 | for (iSequence = 0; iSequence < numberTotal; iSequence++) { |
| 2017 | //for (iIndex=0;iIndex<number;iIndex++) { |
| 2018 | |
| 2019 | //int iSequence = which[iIndex]; |
| 2020 | double alpha = dArray[iSequence]; |
| 2021 | if (alpha) { |
| 2022 | double value = solution_[iSequence] + theta_ * alpha; |
| 2023 | solution_[iSequence] = value; |
| 2024 | switch(getStatus(iSequence)) { |
| 2025 | |
| 2026 | case basic: |
| 2027 | case isFixed: |
| 2028 | case isFree: |
| 2029 | case atUpperBound: |
| 2030 | case atLowerBound: |
| 2031 | nonLinearCost_->setOne(iSequence, value); |
| 2032 | break; |
| 2033 | case superBasic: |
| 2034 | // To get correct action |
| 2035 | setStatus(iSequence, isFixed); |
| 2036 | nonLinearCost_->setOne(iSequence, value); |
| 2037 | //assert (getStatus(iSequence)!=isFixed); |
| 2038 | break; |
| 2039 | } |
| 2040 | } |
| 2041 | } |
| 2042 | if (objTheta < SMALLTHETA2 && objTheta == theta_) { |
| 2043 | if (sequenceIn_ >= 0 && basicTheta < 1.0e-9) { |
| 2044 | // try just one |
| 2045 | localPivotMode = 0; |
| 2046 | sequenceIn_ = -1; |
| 2047 | nTotalPasses += nPasses; |
| 2048 | nPasses = 0; |
| 2049 | //finished=true; |
| 2050 | //objTheta=0.0; |
| 2051 | //theta_=0.0; |
| 2052 | } else if (sequenceIn_ < 0 && nTotalPasses > 10) { |
| 2053 | if (objTheta < 1.0e-10) { |
| 2054 | finished = true; |
| 2055 | //printf("zero move\n"); |
| 2056 | break; |
| 2057 | } |
| 2058 | } |
| 2059 | } |
| 2060 | #ifdef CLP_DEBUG |
| 2061 | if (handler_->logLevel() & 32) { |
| 2062 | objective_->stepLength(this, solution_, work, 0.0, |
| 2063 | currentObj, predictedObj, thetaObj); |
| 2064 | printf("current obj %g after update - simple was %g\n" , currentObj, simpleObjective); |
| 2065 | } |
| 2066 | #endif |
| 2067 | if (sequenceIn_ >= 0 && !finished && objTheta > 1.0e-4) { |
| 2068 | // we made some progress - back to normal |
| 2069 | if (localPivotMode < 10) { |
| 2070 | localPivotMode = 0; |
| 2071 | sequenceIn_ = -1; |
| 2072 | nTotalPasses += nPasses; |
| 2073 | nPasses = 0; |
| 2074 | } |
| 2075 | #ifdef CLP_DEBUG |
| 2076 | if (handler_->logLevel() & 32) |
| 2077 | printf("some progress?\n" ); |
| 2078 | #endif |
| 2079 | } |
| 2080 | #if CLP_DEBUG > 1 |
| 2081 | longArray->checkClean(); |
| 2082 | #endif |
| 2083 | } |
| 2084 | #ifdef CLP_DEBUG |
| 2085 | if (handler_->logLevel() & 32) |
| 2086 | printf("out of loop after %d (%d) passes\n" , nPasses, nTotalPasses); |
| 2087 | #endif |
| 2088 | if (nTotalPasses >= 1000 || (nTotalPasses > 10 && sequenceIn_ < 0 && theta_ < 1.0e-10)) |
| 2089 | returnCode = 2; |
| 2090 | bool ordinaryDj = false; |
| 2091 | //if(sequenceIn_>=0&&numberNonBasic==1&&theta_<1.0e-7&&theta_==basicTheta) |
| 2092 | //printf("could try ordinary iteration %g\n",theta_); |
| 2093 | if(sequenceIn_ >= 0 && numberNonBasic == 1 && theta_ < 1.0e-15) { |
| 2094 | //printf("trying ordinary iteration\n"); |
| 2095 | ordinaryDj = true; |
| 2096 | } |
| 2097 | if (!basicTheta && !ordinaryDj) { |
| 2098 | //returnCode=2; |
| 2099 | //objTheta=-1.0; // so we fall through |
| 2100 | } |
| 2101 | assert (theta_ < 1.0e30); // for now |
| 2102 | // See if we need to pivot |
| 2103 | if (theta_ == basicTheta || ordinaryDj) { |
| 2104 | if (!ordinaryDj) { |
| 2105 | // find an incoming column which will force pivot |
| 2106 | int iRow; |
| 2107 | pivotRow_ = -1; |
| 2108 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 2109 | if (pivotVariable_[iRow] == bestBasicSequence) { |
| 2110 | pivotRow_ = iRow; |
| 2111 | break; |
| 2112 | } |
| 2113 | } |
| 2114 | assert (pivotRow_ >= 0); |
| 2115 | // Get good size for pivot |
| 2116 | double acceptablePivot = 1.0e-7; |
| 2117 | if (factorization_->pivots() > 10) |
| 2118 | acceptablePivot = 1.0e-5; // if we have iterated be more strict |
| 2119 | else if (factorization_->pivots() > 5) |
| 2120 | acceptablePivot = 1.0e-6; // if we have iterated be slightly more strict |
| 2121 | // should be dArray but seems better this way! |
| 2122 | double direction = work[bestBasicSequence] > 0.0 ? -1.0 : 1.0; |
| 2123 | // create as packed |
| 2124 | rowArray->createPacked(1, &pivotRow_, &direction); |
| 2125 | factorization_->updateColumnTranspose(spare, rowArray); |
| 2126 | // put row of tableau in rowArray and columnArray |
| 2127 | matrix_->transposeTimes(this, -1.0, |
| 2128 | rowArray, spare, columnArray); |
| 2129 | // choose one futhest away from bound which has reasonable pivot |
| 2130 | // If increasing we want negative alpha |
| 2131 | |
| 2132 | double * work2; |
| 2133 | int iSection; |
| 2134 | |
| 2135 | sequenceIn_ = -1; |
| 2136 | double bestValue = -1.0; |
| 2137 | double bestDirection = 0.0; |
| 2138 | // First pass we take correct direction and large pivots |
| 2139 | // then correct direction |
| 2140 | // then any |
| 2141 | double check[] = {1.0e-8, -1.0e-12, -1.0e30}; |
| 2142 | double mult[] = {100.0, 1.0, 1.0}; |
| 2143 | for (int iPass = 0; iPass < 3; iPass++) { |
| 2144 | //if (!bestValue&&iPass==2) |
| 2145 | //bestValue=-1.0; |
| 2146 | double acceptable = acceptablePivot * mult[iPass]; |
| 2147 | double checkValue = check[iPass]; |
| 2148 | for (iSection = 0; iSection < 2; iSection++) { |
| 2149 | |
| 2150 | int addSequence; |
| 2151 | |
| 2152 | if (!iSection) { |
| 2153 | work2 = rowArray->denseVector(); |
| 2154 | number = rowArray->getNumElements(); |
| 2155 | which = rowArray->getIndices(); |
| 2156 | addSequence = numberColumns_; |
| 2157 | } else { |
| 2158 | work2 = columnArray->denseVector(); |
| 2159 | number = columnArray->getNumElements(); |
| 2160 | which = columnArray->getIndices(); |
| 2161 | addSequence = 0; |
| 2162 | } |
| 2163 | int i; |
| 2164 | |
| 2165 | for (i = 0; i < number; i++) { |
| 2166 | int iSequence = which[i] + addSequence; |
| 2167 | if (flagged(iSequence)) |
| 2168 | continue; |
| 2169 | //double distance = CoinMin(solution_[iSequence]-lower_[iSequence], |
| 2170 | // upper_[iSequence]-solution_[iSequence]); |
| 2171 | double alpha = work2[i]; |
| 2172 | // should be dArray but seems better this way! |
| 2173 | double change = work[iSequence]; |
| 2174 | Status thisStatus = getStatus(iSequence); |
| 2175 | double direction = 0; |
| 2176 | switch(thisStatus) { |
| 2177 | |
| 2178 | case basic: |
| 2179 | case ClpSimplex::isFixed: |
| 2180 | break; |
| 2181 | case isFree: |
| 2182 | case superBasic: |
| 2183 | if (alpha < -acceptable && change > checkValue) |
| 2184 | direction = 1.0; |
| 2185 | else if (alpha > acceptable && change < -checkValue) |
| 2186 | direction = -1.0; |
| 2187 | break; |
| 2188 | case atUpperBound: |
| 2189 | if (alpha > acceptable && change < -checkValue) |
| 2190 | direction = -1.0; |
| 2191 | else if (iPass == 2 && alpha < -acceptable && change < -checkValue) |
| 2192 | direction = 1.0; |
| 2193 | break; |
| 2194 | case atLowerBound: |
| 2195 | if (alpha < -acceptable && change > checkValue) |
| 2196 | direction = 1.0; |
| 2197 | else if (iPass == 2 && alpha > acceptable && change > checkValue) |
| 2198 | direction = -1.0; |
| 2199 | break; |
| 2200 | } |
| 2201 | if (direction) { |
| 2202 | if (sequenceIn_ != lastSequenceIn || localPivotMode < 10) { |
| 2203 | if (CoinMin(solution_[iSequence] - lower_[iSequence], |
| 2204 | upper_[iSequence] - solution_[iSequence]) > bestValue) { |
| 2205 | bestValue = CoinMin(solution_[iSequence] - lower_[iSequence], |
| 2206 | upper_[iSequence] - solution_[iSequence]); |
| 2207 | sequenceIn_ = iSequence; |
| 2208 | bestDirection = direction; |
| 2209 | } |
| 2210 | } else { |
| 2211 | // choose |
| 2212 | bestValue = COIN_DBL_MAX; |
| 2213 | sequenceIn_ = iSequence; |
| 2214 | bestDirection = direction; |
| 2215 | } |
| 2216 | } |
| 2217 | } |
| 2218 | } |
| 2219 | if (sequenceIn_ >= 0 && bestValue > 0.0) |
| 2220 | break; |
| 2221 | } |
| 2222 | if (sequenceIn_ >= 0) { |
| 2223 | valueIn_ = solution_[sequenceIn_]; |
| 2224 | dualIn_ = dj_[sequenceIn_]; |
| 2225 | if (bestDirection < 0.0) { |
| 2226 | // we want positive dj |
| 2227 | if (dualIn_ <= 0.0) { |
| 2228 | //printf("bad dj - xx %g\n",dualIn_); |
| 2229 | dualIn_ = 1.0; |
| 2230 | } |
| 2231 | } else { |
| 2232 | // we want negative dj |
| 2233 | if (dualIn_ >= 0.0) { |
| 2234 | //printf("bad dj - xx %g\n",dualIn_); |
| 2235 | dualIn_ = -1.0; |
| 2236 | } |
| 2237 | } |
| 2238 | lowerIn_ = lower_[sequenceIn_]; |
| 2239 | upperIn_ = upper_[sequenceIn_]; |
| 2240 | if (dualIn_ > 0.0) |
| 2241 | directionIn_ = -1; |
| 2242 | else |
| 2243 | directionIn_ = 1; |
| 2244 | } else { |
| 2245 | //ordinaryDj=true; |
| 2246 | #ifdef CLP_DEBUG |
| 2247 | if (handler_->logLevel() & 32) { |
| 2248 | printf("no easy pivot - norm %g mode %d\n" , djNorm, localPivotMode); |
| 2249 | if (rowArray->getNumElements() + columnArray->getNumElements() < 12) { |
| 2250 | for (iSection = 0; iSection < 2; iSection++) { |
| 2251 | |
| 2252 | int addSequence; |
| 2253 | |
| 2254 | if (!iSection) { |
| 2255 | work2 = rowArray->denseVector(); |
| 2256 | number = rowArray->getNumElements(); |
| 2257 | which = rowArray->getIndices(); |
| 2258 | addSequence = numberColumns_; |
| 2259 | } else { |
| 2260 | work2 = columnArray->denseVector(); |
| 2261 | number = columnArray->getNumElements(); |
| 2262 | which = columnArray->getIndices(); |
| 2263 | addSequence = 0; |
| 2264 | } |
| 2265 | int i; |
| 2266 | char section[] = {'R', 'C'}; |
| 2267 | for (i = 0; i < number; i++) { |
| 2268 | int iSequence = which[i] + addSequence; |
| 2269 | if (flagged(iSequence)) { |
| 2270 | printf("%c%d flagged\n" , section[iSection], which[i]); |
| 2271 | continue; |
| 2272 | } else { |
| 2273 | printf("%c%d status %d sol %g %g %g alpha %g change %g\n" , |
| 2274 | section[iSection], which[i], status_[iSequence], |
| 2275 | lower_[iSequence], solution_[iSequence], upper_[iSequence], |
| 2276 | work2[i], work[iSequence]); |
| 2277 | } |
| 2278 | } |
| 2279 | } |
| 2280 | } |
| 2281 | } |
| 2282 | #endif |
| 2283 | assert (sequenceIn_ < 0); |
| 2284 | justOne = true; |
| 2285 | allFinished = false; // Round again |
| 2286 | finished = false; |
| 2287 | nTotalPasses += nPasses; |
| 2288 | nPasses = 0; |
| 2289 | if (djNorm < 0.9 * djNorm0 && djNorm < 1.0e-3 && !localPivotMode) { |
| 2290 | #ifdef CLP_DEBUG |
| 2291 | if (handler_->logLevel() & 32) |
| 2292 | printf("no pivot - mode %d norms %g %g - unflagging\n" , |
| 2293 | localPivotMode, djNorm0, djNorm); |
| 2294 | #endif |
| 2295 | unflag(); //unflagging |
| 2296 | returnCode = 1; |
| 2297 | } else { |
| 2298 | returnCode = 2; // do single incoming |
| 2299 | returnCode = 1; |
| 2300 | } |
| 2301 | } |
| 2302 | } |
| 2303 | rowArray->clear(); |
| 2304 | columnArray->clear(); |
| 2305 | longArray->clear(); |
| 2306 | if (ordinaryDj) { |
| 2307 | valueIn_ = solution_[sequenceIn_]; |
| 2308 | dualIn_ = dj_[sequenceIn_]; |
| 2309 | lowerIn_ = lower_[sequenceIn_]; |
| 2310 | upperIn_ = upper_[sequenceIn_]; |
| 2311 | if (dualIn_ > 0.0) |
| 2312 | directionIn_ = -1; |
| 2313 | else |
| 2314 | directionIn_ = 1; |
| 2315 | } |
| 2316 | if (returnCode == 1) |
| 2317 | returnCode = 0; |
| 2318 | } else { |
| 2319 | // round again |
| 2320 | longArray->clear(); |
| 2321 | if (djNorm < 1.0e-3 && !localPivotMode) { |
| 2322 | if (djNorm == 1.2345e-20 && djNorm0 > 1.0e-4) { |
| 2323 | #ifdef CLP_DEBUG |
| 2324 | if (handler_->logLevel() & 32) |
| 2325 | printf("slow convergence djNorm0 %g, %d passes, mode %d, result %d\n" , djNorm0, nPasses, |
| 2326 | localPivotMode, returnCode); |
| 2327 | #endif |
| 2328 | //if (!localPivotMode) |
| 2329 | //returnCode=2; // force singleton |
| 2330 | } else { |
| 2331 | #ifdef CLP_DEBUG |
| 2332 | if (handler_->logLevel() & 32) |
| 2333 | printf("unflagging as djNorm %g %g, %d passes\n" , djNorm, djNorm0, nPasses); |
| 2334 | #endif |
| 2335 | if (pivotMode >= 10) { |
| 2336 | pivotMode--; |
| 2337 | #ifdef CLP_DEBUG |
| 2338 | if (handler_->logLevel() & 32) |
| 2339 | printf("pivot mode now %d\n" , pivotMode); |
| 2340 | #endif |
| 2341 | if (pivotMode == 9) |
| 2342 | pivotMode = 0; // switch off fast attempt |
| 2343 | } |
| 2344 | bool unflagged = unflag() != 0; |
| 2345 | if (!unflagged && djNorm < 1.0e-10) { |
| 2346 | // ? declare victory |
| 2347 | sequenceIn_ = -1; |
| 2348 | returnCode = 0; |
| 2349 | } |
| 2350 | } |
| 2351 | } |
| 2352 | } |
| 2353 | } |
| 2354 | if (djNorm0 < 1.0e-12 * normFlagged) { |
| 2355 | #ifdef CLP_DEBUG |
| 2356 | if (handler_->logLevel() & 32) |
| 2357 | printf("unflagging as djNorm %g %g and flagged norm %g\n" , djNorm, djNorm0, normFlagged); |
| 2358 | #endif |
| 2359 | unflag(); |
| 2360 | } |
| 2361 | if (saveObj - currentObj < 1.0e-5 && nTotalPasses > 2000) { |
| 2362 | normUnflagged = 0.0; |
| 2363 | double dualTolerance3 = CoinMin(1.0e-2, 1.0e3 * dualTolerance_); |
| 2364 | for (int iSequence = 0; iSequence < numberColumns_ + numberRows_; iSequence++) { |
| 2365 | switch(getStatus(iSequence)) { |
| 2366 | |
| 2367 | case basic: |
| 2368 | case ClpSimplex::isFixed: |
| 2369 | break; |
| 2370 | case atUpperBound: |
| 2371 | if (dj_[iSequence] > dualTolerance3) |
| 2372 | normFlagged += dj_[iSequence] * dj_[iSequence]; |
| 2373 | break; |
| 2374 | case atLowerBound: |
| 2375 | if (dj_[iSequence] < -dualTolerance3) |
| 2376 | normFlagged += dj_[iSequence] * dj_[iSequence]; |
| 2377 | break; |
| 2378 | case isFree: |
| 2379 | case superBasic: |
| 2380 | if (fabs(dj_[iSequence]) > dualTolerance3) |
| 2381 | normFlagged += dj_[iSequence] * dj_[iSequence]; |
| 2382 | break; |
| 2383 | } |
| 2384 | } |
| 2385 | if (handler_->logLevel() > 2) |
| 2386 | printf("possible optimal %d %d %g %g\n" , |
| 2387 | nBigPasses, nTotalPasses, saveObj - currentObj, normFlagged); |
| 2388 | if (normFlagged < 1.0e-5) { |
| 2389 | unflag(); |
| 2390 | primalColumnPivot_->setLooksOptimal(true); |
| 2391 | returnCode = 0; |
| 2392 | } |
| 2393 | } |
| 2394 | return returnCode; |
| 2395 | } |
| 2396 | /* Do last half of an iteration. |
| 2397 | Return codes |
| 2398 | Reasons to come out normal mode |
| 2399 | -1 normal |
| 2400 | -2 factorize now - good iteration |
| 2401 | -3 slight inaccuracy - refactorize - iteration done |
| 2402 | -4 inaccuracy - refactorize - no iteration |
| 2403 | -5 something flagged - go round again |
| 2404 | +2 looks unbounded |
| 2405 | +3 max iterations (iteration done) |
| 2406 | |
| 2407 | */ |
| 2408 | int |
| 2409 | ClpSimplexNonlinear::pivotNonlinearResult() |
| 2410 | { |
| 2411 | |
| 2412 | int returnCode = -1; |
| 2413 | |
| 2414 | rowArray_[1]->clear(); |
| 2415 | |
| 2416 | // we found a pivot column |
| 2417 | // update the incoming column |
| 2418 | unpackPacked(rowArray_[1]); |
| 2419 | factorization_->updateColumnFT(rowArray_[2], rowArray_[1]); |
| 2420 | theta_ = 0.0; |
| 2421 | double * work = rowArray_[1]->denseVector(); |
| 2422 | int number = rowArray_[1]->getNumElements(); |
| 2423 | int * which = rowArray_[1]->getIndices(); |
| 2424 | bool keepValue = false; |
| 2425 | double saveValue = 0.0; |
| 2426 | if (pivotRow_ >= 0) { |
| 2427 | sequenceOut_ = pivotVariable_[pivotRow_]; |
| 2428 | valueOut_ = solution(sequenceOut_); |
| 2429 | keepValue = true; |
| 2430 | saveValue = valueOut_; |
| 2431 | lowerOut_ = lower_[sequenceOut_]; |
| 2432 | upperOut_ = upper_[sequenceOut_]; |
| 2433 | int iIndex; |
| 2434 | for (iIndex = 0; iIndex < number; iIndex++) { |
| 2435 | |
| 2436 | int iRow = which[iIndex]; |
| 2437 | if (iRow == pivotRow_) { |
| 2438 | alpha_ = work[iIndex]; |
| 2439 | break; |
| 2440 | } |
| 2441 | } |
| 2442 | } else { |
| 2443 | int iIndex; |
| 2444 | double smallest = COIN_DBL_MAX; |
| 2445 | for (iIndex = 0; iIndex < number; iIndex++) { |
| 2446 | int iRow = which[iIndex]; |
| 2447 | double alpha = work[iIndex]; |
| 2448 | if (fabs(alpha) > 1.0e-6) { |
| 2449 | int iPivot = pivotVariable_[iRow]; |
| 2450 | double distance = CoinMin(upper_[iPivot] - solution_[iPivot], |
| 2451 | solution_[iPivot] - lower_[iPivot]); |
| 2452 | if (distance < smallest) { |
| 2453 | pivotRow_ = iRow; |
| 2454 | alpha_ = alpha; |
| 2455 | smallest = distance; |
| 2456 | } |
| 2457 | } |
| 2458 | } |
| 2459 | if (smallest > primalTolerance_) { |
| 2460 | smallest = COIN_DBL_MAX; |
| 2461 | for (iIndex = 0; iIndex < number; iIndex++) { |
| 2462 | int iRow = which[iIndex]; |
| 2463 | double alpha = work[iIndex]; |
| 2464 | if (fabs(alpha) > 1.0e-6) { |
| 2465 | double distance = randomNumberGenerator_.randomDouble(); |
| 2466 | if (distance < smallest) { |
| 2467 | pivotRow_ = iRow; |
| 2468 | alpha_ = alpha; |
| 2469 | smallest = distance; |
| 2470 | } |
| 2471 | } |
| 2472 | } |
| 2473 | } |
| 2474 | assert (pivotRow_ >= 0); |
| 2475 | sequenceOut_ = pivotVariable_[pivotRow_]; |
| 2476 | valueOut_ = solution(sequenceOut_); |
| 2477 | lowerOut_ = lower_[sequenceOut_]; |
| 2478 | upperOut_ = upper_[sequenceOut_]; |
| 2479 | } |
| 2480 | double newValue = valueOut_ - theta_ * alpha_; |
| 2481 | bool isSuperBasic = false; |
| 2482 | if (valueOut_ >= upperOut_ - primalTolerance_) { |
| 2483 | directionOut_ = -1; // to upper bound |
| 2484 | upperOut_ = nonLinearCost_->nearest(sequenceOut_, newValue); |
| 2485 | upperOut_ = newValue; |
| 2486 | } else if (valueOut_ <= lowerOut_ + primalTolerance_) { |
| 2487 | directionOut_ = 1; // to lower bound |
| 2488 | lowerOut_ = nonLinearCost_->nearest(sequenceOut_, newValue); |
| 2489 | } else { |
| 2490 | lowerOut_ = valueOut_; |
| 2491 | upperOut_ = valueOut_; |
| 2492 | isSuperBasic = true; |
| 2493 | //printf("XX superbasic out\n"); |
| 2494 | } |
| 2495 | dualOut_ = dj_[sequenceOut_]; |
| 2496 | double checkValue = 1.0e-2; |
| 2497 | if (largestDualError_ > 1.0e-5) |
| 2498 | checkValue = 1.0e-1; |
| 2499 | // if stable replace in basis |
| 2500 | |
| 2501 | int updateStatus = factorization_->replaceColumn(this, |
| 2502 | rowArray_[2], |
| 2503 | rowArray_[1], |
| 2504 | pivotRow_, |
| 2505 | alpha_); |
| 2506 | |
| 2507 | // if no pivots, bad update but reasonable alpha - take and invert |
| 2508 | if (updateStatus == 2 && |
| 2509 | lastGoodIteration_ == numberIterations_ && fabs(alpha_) > 1.0e-5) |
| 2510 | updateStatus = 4; |
| 2511 | if (updateStatus == 1 || updateStatus == 4) { |
| 2512 | // slight error |
| 2513 | if (factorization_->pivots() > 5 || updateStatus == 4) { |
| 2514 | returnCode = -3; |
| 2515 | } |
| 2516 | } else if (updateStatus == 2) { |
| 2517 | // major error |
| 2518 | // better to have small tolerance even if slower |
| 2519 | factorization_->zeroTolerance(CoinMin(factorization_->zeroTolerance(), 1.0e-15)); |
| 2520 | int maxFactor = factorization_->maximumPivots(); |
| 2521 | if (maxFactor > 10) { |
| 2522 | if (forceFactorization_ < 0) |
| 2523 | forceFactorization_ = maxFactor; |
| 2524 | forceFactorization_ = CoinMax(1, (forceFactorization_ >> 1)); |
| 2525 | } |
| 2526 | // later we may need to unwind more e.g. fake bounds |
| 2527 | if(lastGoodIteration_ != numberIterations_) { |
| 2528 | clearAll(); |
| 2529 | pivotRow_ = -1; |
| 2530 | returnCode = -4; |
| 2531 | } else { |
| 2532 | // need to reject something |
| 2533 | char x = isColumn(sequenceIn_) ? 'C' : 'R'; |
| 2534 | handler_->message(CLP_SIMPLEX_FLAG, messages_) |
| 2535 | << x << sequenceWithin(sequenceIn_) |
| 2536 | << CoinMessageEol; |
| 2537 | setFlagged(sequenceIn_); |
| 2538 | progress_.clearBadTimes(); |
| 2539 | lastBadIteration_ = numberIterations_; // say be more cautious |
| 2540 | clearAll(); |
| 2541 | pivotRow_ = -1; |
| 2542 | sequenceOut_ = -1; |
| 2543 | returnCode = -5; |
| 2544 | |
| 2545 | } |
| 2546 | return returnCode; |
| 2547 | } else if (updateStatus == 3) { |
| 2548 | // out of memory |
| 2549 | // increase space if not many iterations |
| 2550 | if (factorization_->pivots() < |
| 2551 | 0.5 * factorization_->maximumPivots() && |
| 2552 | factorization_->pivots() < 200) |
| 2553 | factorization_->areaFactor( |
| 2554 | factorization_->areaFactor() * 1.1); |
| 2555 | returnCode = -2; // factorize now |
| 2556 | } else if (updateStatus == 5) { |
| 2557 | problemStatus_ = -2; // factorize now |
| 2558 | } |
| 2559 | |
| 2560 | // update primal solution |
| 2561 | |
| 2562 | double objectiveChange = 0.0; |
| 2563 | // after this rowArray_[1] is not empty - used to update djs |
| 2564 | // If pivot row >= numberRows then may be gub |
| 2565 | updatePrimalsInPrimal(rowArray_[1], theta_, objectiveChange, 1); |
| 2566 | |
| 2567 | double oldValue = valueIn_; |
| 2568 | if (directionIn_ == -1) { |
| 2569 | // as if from upper bound |
| 2570 | if (sequenceIn_ != sequenceOut_) { |
| 2571 | // variable becoming basic |
| 2572 | valueIn_ -= fabs(theta_); |
| 2573 | } else { |
| 2574 | valueIn_ = lowerIn_; |
| 2575 | } |
| 2576 | } else { |
| 2577 | // as if from lower bound |
| 2578 | if (sequenceIn_ != sequenceOut_) { |
| 2579 | // variable becoming basic |
| 2580 | valueIn_ += fabs(theta_); |
| 2581 | } else { |
| 2582 | valueIn_ = upperIn_; |
| 2583 | } |
| 2584 | } |
| 2585 | objectiveChange += dualIn_ * (valueIn_ - oldValue); |
| 2586 | // outgoing |
| 2587 | if (sequenceIn_ != sequenceOut_) { |
| 2588 | if (directionOut_ > 0) { |
| 2589 | valueOut_ = lowerOut_; |
| 2590 | } else { |
| 2591 | valueOut_ = upperOut_; |
| 2592 | } |
| 2593 | if(valueOut_ < lower_[sequenceOut_] - primalTolerance_) |
| 2594 | valueOut_ = lower_[sequenceOut_] - 0.9 * primalTolerance_; |
| 2595 | else if (valueOut_ > upper_[sequenceOut_] + primalTolerance_) |
| 2596 | valueOut_ = upper_[sequenceOut_] + 0.9 * primalTolerance_; |
| 2597 | // may not be exactly at bound and bounds may have changed |
| 2598 | // Make sure outgoing looks feasible |
| 2599 | if (!isSuperBasic) |
| 2600 | directionOut_ = nonLinearCost_->setOneOutgoing(sequenceOut_, valueOut_); |
| 2601 | solution_[sequenceOut_] = valueOut_; |
| 2602 | } |
| 2603 | // change cost and bounds on incoming if primal |
| 2604 | nonLinearCost_->setOne(sequenceIn_, valueIn_); |
| 2605 | int whatNext = housekeeping(objectiveChange); |
| 2606 | if (keepValue) |
| 2607 | solution_[sequenceOut_] = saveValue; |
| 2608 | if (isSuperBasic) |
| 2609 | setStatus(sequenceOut_, superBasic); |
| 2610 | //#define CLP_DEBUG |
| 2611 | #if CLP_DEBUG > 1 |
| 2612 | { |
| 2613 | int ninf = matrix_->checkFeasible(this); |
| 2614 | if (ninf) |
| 2615 | printf("infeas %d\n" , ninf); |
| 2616 | } |
| 2617 | #endif |
| 2618 | if (whatNext == 1) { |
| 2619 | returnCode = -2; // refactorize |
| 2620 | } else if (whatNext == 2) { |
| 2621 | // maximum iterations or equivalent |
| 2622 | returnCode = 3; |
| 2623 | } else if(numberIterations_ == lastGoodIteration_ |
| 2624 | + 2 * factorization_->maximumPivots()) { |
| 2625 | // done a lot of flips - be safe |
| 2626 | returnCode = -2; // refactorize |
| 2627 | } |
| 2628 | // Check event |
| 2629 | { |
| 2630 | int status = eventHandler_->event(ClpEventHandler::endOfIteration); |
| 2631 | if (status >= 0) { |
| 2632 | problemStatus_ = 5; |
| 2633 | secondaryStatus_ = ClpEventHandler::endOfIteration; |
| 2634 | returnCode = 4; |
| 2635 | } |
| 2636 | } |
| 2637 | return returnCode; |
| 2638 | } |
| 2639 | // A sequential LP method |
| 2640 | int |
| 2641 | ClpSimplexNonlinear::primalSLP(int numberPasses, double deltaTolerance) |
| 2642 | { |
| 2643 | // Are we minimizing or maximizing |
| 2644 | double whichWay = optimizationDirection(); |
| 2645 | if (whichWay < 0.0) |
| 2646 | whichWay = -1.0; |
| 2647 | else if (whichWay > 0.0) |
| 2648 | whichWay = 1.0; |
| 2649 | |
| 2650 | |
| 2651 | int numberColumns = this->numberColumns(); |
| 2652 | int numberRows = this->numberRows(); |
| 2653 | double * columnLower = this->columnLower(); |
| 2654 | double * columnUpper = this->columnUpper(); |
| 2655 | double * solution = this->primalColumnSolution(); |
| 2656 | |
| 2657 | if (objective_->type() < 2) { |
| 2658 | // no nonlinear part |
| 2659 | return ClpSimplex::primal(0); |
| 2660 | } |
| 2661 | // Get list of non linear columns |
| 2662 | char * markNonlinear = new char[numberColumns]; |
| 2663 | memset(markNonlinear, 0, numberColumns); |
| 2664 | int numberNonLinearColumns = objective_->markNonlinear(markNonlinear); |
| 2665 | |
| 2666 | if (!numberNonLinearColumns) { |
| 2667 | delete [] markNonlinear; |
| 2668 | // no nonlinear part |
| 2669 | return ClpSimplex::primal(0); |
| 2670 | } |
| 2671 | int iColumn; |
| 2672 | int * listNonLinearColumn = new int[numberNonLinearColumns]; |
| 2673 | numberNonLinearColumns = 0; |
| 2674 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 2675 | if(markNonlinear[iColumn]) |
| 2676 | listNonLinearColumn[numberNonLinearColumns++] = iColumn; |
| 2677 | } |
| 2678 | // Replace objective |
| 2679 | ClpObjective * trueObjective = objective_; |
| 2680 | objective_ = new ClpLinearObjective(NULL, numberColumns); |
| 2681 | double * objective = this->objective(); |
| 2682 | |
| 2683 | // get feasible |
| 2684 | if (this->status() < 0 || numberPrimalInfeasibilities()) |
| 2685 | ClpSimplex::primal(1); |
| 2686 | // still infeasible |
| 2687 | if (numberPrimalInfeasibilities()) { |
| 2688 | delete [] listNonLinearColumn; |
| 2689 | return 0; |
| 2690 | } |
| 2691 | algorithm_ = 1; |
| 2692 | int jNon; |
| 2693 | int * last[3]; |
| 2694 | |
| 2695 | double * trust = new double[numberNonLinearColumns]; |
| 2696 | double * trueLower = new double[numberNonLinearColumns]; |
| 2697 | double * trueUpper = new double[numberNonLinearColumns]; |
| 2698 | for (jNon = 0; jNon < numberNonLinearColumns; jNon++) { |
| 2699 | iColumn = listNonLinearColumn[jNon]; |
| 2700 | trust[jNon] = 0.5; |
| 2701 | trueLower[jNon] = columnLower[iColumn]; |
| 2702 | trueUpper[jNon] = columnUpper[iColumn]; |
| 2703 | if (solution[iColumn] < trueLower[jNon]) |
| 2704 | solution[iColumn] = trueLower[jNon]; |
| 2705 | else if (solution[iColumn] > trueUpper[jNon]) |
| 2706 | solution[iColumn] = trueUpper[jNon]; |
| 2707 | } |
| 2708 | int saveLogLevel = logLevel(); |
| 2709 | int iPass; |
| 2710 | double lastObjective = 1.0e31; |
| 2711 | double * saveSolution = new double [numberColumns]; |
| 2712 | double * saveRowSolution = new double [numberRows]; |
| 2713 | memset(saveRowSolution, 0, numberRows * sizeof(double)); |
| 2714 | double * savePi = new double [numberRows]; |
| 2715 | double * safeSolution = new double [numberColumns]; |
| 2716 | unsigned char * saveStatus = new unsigned char[numberRows+numberColumns]; |
| 2717 | #define MULTIPLE 0 |
| 2718 | #if MULTIPLE>2 |
| 2719 | // Duplication but doesn't really matter |
| 2720 | double * saveSolutionM[MULTIPLE |
| 2721 | }; |
| 2722 | for (jNon=0; jNon<MULTIPLE; jNon++) |
| 2723 | { |
| 2724 | saveSolutionM[jNon] = new double[numberColumns]; |
| 2725 | CoinMemcpyN(solution, numberColumns, saveSolutionM); |
| 2726 | } |
| 2727 | #endif |
| 2728 | double targetDrop = 1.0e31; |
| 2729 | double objectiveOffset; |
| 2730 | getDblParam(ClpObjOffset, objectiveOffset); |
| 2731 | // 1 bound up, 2 up, -1 bound down, -2 down, 0 no change |
| 2732 | for (iPass = 0; iPass < 3; iPass++) |
| 2733 | { |
| 2734 | last[iPass] = new int[numberNonLinearColumns]; |
| 2735 | for (jNon = 0; jNon < numberNonLinearColumns; jNon++) |
| 2736 | last[iPass][jNon] = 0; |
| 2737 | } |
| 2738 | // goodMove +1 yes, 0 no, -1 last was bad - just halve gaps, -2 do nothing |
| 2739 | int goodMove = -2; |
| 2740 | char * statusCheck = new char[numberColumns]; |
| 2741 | double * changeRegion = new double [numberColumns]; |
| 2742 | double offset = 0.0; |
| 2743 | double objValue = 0.0; |
| 2744 | int exitPass = 2 * numberPasses + 10; |
| 2745 | for (iPass = 0; iPass < numberPasses; iPass++) |
| 2746 | { |
| 2747 | exitPass--; |
| 2748 | // redo objective |
| 2749 | offset = 0.0; |
| 2750 | objValue = -objectiveOffset; |
| 2751 | // make sure x updated |
| 2752 | trueObjective->newXValues(); |
| 2753 | double theta = -1.0; |
| 2754 | double maxTheta = COIN_DBL_MAX; |
| 2755 | //maxTheta=1.0; |
| 2756 | if (iPass) { |
| 2757 | int jNon = 0; |
| 2758 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 2759 | changeRegion[iColumn] = solution[iColumn] - saveSolution[iColumn]; |
| 2760 | double alpha = changeRegion[iColumn]; |
| 2761 | double oldValue = saveSolution[iColumn]; |
| 2762 | if (markNonlinear[iColumn] == 0) { |
| 2763 | // linear |
| 2764 | if (alpha < -1.0e-15) { |
| 2765 | // variable going towards lower bound |
| 2766 | double bound = columnLower[iColumn]; |
| 2767 | oldValue -= bound; |
| 2768 | if (oldValue + maxTheta * alpha < 0.0) { |
| 2769 | maxTheta = CoinMax(0.0, oldValue / (-alpha)); |
| 2770 | } |
| 2771 | } else if (alpha > 1.0e-15) { |
| 2772 | // variable going towards upper bound |
| 2773 | double bound = columnUpper[iColumn]; |
| 2774 | oldValue = bound - oldValue; |
| 2775 | if (oldValue - maxTheta * alpha < 0.0) { |
| 2776 | maxTheta = CoinMax(0.0, oldValue / alpha); |
| 2777 | } |
| 2778 | } |
| 2779 | } else { |
| 2780 | // nonlinear |
| 2781 | if (alpha < -1.0e-15) { |
| 2782 | // variable going towards lower bound |
| 2783 | double bound = trueLower[jNon]; |
| 2784 | oldValue -= bound; |
| 2785 | if (oldValue + maxTheta * alpha < 0.0) { |
| 2786 | maxTheta = CoinMax(0.0, oldValue / (-alpha)); |
| 2787 | } |
| 2788 | } else if (alpha > 1.0e-15) { |
| 2789 | // variable going towards upper bound |
| 2790 | double bound = trueUpper[jNon]; |
| 2791 | oldValue = bound - oldValue; |
| 2792 | if (oldValue - maxTheta * alpha < 0.0) { |
| 2793 | maxTheta = CoinMax(0.0, oldValue / alpha); |
| 2794 | } |
| 2795 | } |
| 2796 | jNon++; |
| 2797 | } |
| 2798 | } |
| 2799 | // make sure both accurate |
| 2800 | memset(rowActivity_, 0, numberRows_ * sizeof(double)); |
| 2801 | times(1.0, solution, rowActivity_); |
| 2802 | memset(saveRowSolution, 0, numberRows_ * sizeof(double)); |
| 2803 | times(1.0, saveSolution, saveRowSolution); |
| 2804 | for (int iRow = 0; iRow < numberRows; iRow++) { |
| 2805 | double alpha = rowActivity_[iRow] - saveRowSolution[iRow]; |
| 2806 | double oldValue = saveRowSolution[iRow]; |
| 2807 | if (alpha < -1.0e-15) { |
| 2808 | // variable going towards lower bound |
| 2809 | double bound = rowLower_[iRow]; |
| 2810 | oldValue -= bound; |
| 2811 | if (oldValue + maxTheta * alpha < 0.0) { |
| 2812 | maxTheta = CoinMax(0.0, oldValue / (-alpha)); |
| 2813 | } |
| 2814 | } else if (alpha > 1.0e-15) { |
| 2815 | // variable going towards upper bound |
| 2816 | double bound = rowUpper_[iRow]; |
| 2817 | oldValue = bound - oldValue; |
| 2818 | if (oldValue - maxTheta * alpha < 0.0) { |
| 2819 | maxTheta = CoinMax(0.0, oldValue / alpha); |
| 2820 | } |
| 2821 | } |
| 2822 | } |
| 2823 | } else { |
| 2824 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 2825 | changeRegion[iColumn] = 0.0; |
| 2826 | saveSolution[iColumn] = solution[iColumn]; |
| 2827 | } |
| 2828 | CoinMemcpyN(rowActivity_, numberRows, saveRowSolution); |
| 2829 | } |
| 2830 | // get current value anyway |
| 2831 | double predictedObj, thetaObj; |
| 2832 | double maxTheta2 = 2.0; // to work out a b c |
| 2833 | double theta2 = trueObjective->stepLength(this, saveSolution, changeRegion, maxTheta2, |
| 2834 | objValue, predictedObj, thetaObj); |
| 2835 | int lastMoveStatus = goodMove; |
| 2836 | if (goodMove >= 0) { |
| 2837 | theta = CoinMin(theta2, maxTheta); |
| 2838 | #ifdef CLP_DEBUG |
| 2839 | if (handler_->logLevel() & 32) |
| 2840 | printf("theta %g, current %g, at maxtheta %g, predicted %g\n" , |
| 2841 | theta, objValue, thetaObj, predictedObj); |
| 2842 | #endif |
| 2843 | if (theta > 0.0 && theta <= 1.0) { |
| 2844 | // update solution |
| 2845 | double lambda = 1.0 - theta; |
| 2846 | for (iColumn = 0; iColumn < numberColumns; iColumn++) |
| 2847 | solution[iColumn] = lambda * saveSolution[iColumn] |
| 2848 | + theta * solution[iColumn]; |
| 2849 | memset(rowActivity_, 0, numberRows_ * sizeof(double)); |
| 2850 | times(1.0, solution, rowActivity_); |
| 2851 | if (lambda > 0.999) { |
| 2852 | CoinMemcpyN(savePi, numberRows, this->dualRowSolution()); |
| 2853 | CoinMemcpyN(saveStatus, numberRows + numberColumns, status_); |
| 2854 | } |
| 2855 | // Do local minimization |
| 2856 | #define LOCAL |
| 2857 | #ifdef LOCAL |
| 2858 | bool absolutelyOptimal = false; |
| 2859 | int saveScaling = scalingFlag(); |
| 2860 | scaling(0); |
| 2861 | int savePerturbation = perturbation_; |
| 2862 | perturbation_ = 100; |
| 2863 | if (saveLogLevel == 1) |
| 2864 | setLogLevel(0); |
| 2865 | int status = startup(1); |
| 2866 | if (!status) { |
| 2867 | int numberTotal = numberRows_ + numberColumns_; |
| 2868 | // resize arrays |
| 2869 | for (int i = 0; i < 4; i++) { |
| 2870 | rowArray_[i]->reserve(CoinMax(numberRows_ + numberColumns_, rowArray_[i]->capacity())); |
| 2871 | } |
| 2872 | CoinIndexedVector * longArray = rowArray_[3]; |
| 2873 | CoinIndexedVector * rowArray = rowArray_[0]; |
| 2874 | //CoinIndexedVector * columnArray = columnArray_[0]; |
| 2875 | CoinIndexedVector * spare = rowArray_[1]; |
| 2876 | double * work = longArray->denseVector(); |
| 2877 | int * which = longArray->getIndices(); |
| 2878 | int nPass = 100; |
| 2879 | //bool conjugate=false; |
| 2880 | // Put back true bounds |
| 2881 | for (jNon = 0; jNon < numberNonLinearColumns; jNon++) { |
| 2882 | int iColumn = listNonLinearColumn[jNon]; |
| 2883 | double value; |
| 2884 | value = trueLower[jNon]; |
| 2885 | trueLower[jNon] = lower_[iColumn]; |
| 2886 | lower_[iColumn] = value; |
| 2887 | value = trueUpper[jNon]; |
| 2888 | trueUpper[jNon] = upper_[iColumn]; |
| 2889 | upper_[iColumn] = value; |
| 2890 | switch(getStatus(iColumn)) { |
| 2891 | |
| 2892 | case basic: |
| 2893 | case isFree: |
| 2894 | case superBasic: |
| 2895 | break; |
| 2896 | case isFixed: |
| 2897 | case atUpperBound: |
| 2898 | case atLowerBound: |
| 2899 | if (solution_[iColumn] > lower_[iColumn] + primalTolerance_) { |
| 2900 | if(solution_[iColumn] < upper_[iColumn] - primalTolerance_) { |
| 2901 | setStatus(iColumn, superBasic); |
| 2902 | } else { |
| 2903 | setStatus(iColumn, atUpperBound); |
| 2904 | } |
| 2905 | } else { |
| 2906 | if(solution_[iColumn] < upper_[iColumn] - primalTolerance_) { |
| 2907 | setStatus(iColumn, atLowerBound); |
| 2908 | } else { |
| 2909 | setStatus(iColumn, isFixed); |
| 2910 | } |
| 2911 | } |
| 2912 | break; |
| 2913 | } |
| 2914 | } |
| 2915 | for (int jPass = 0; jPass < nPass; jPass++) { |
| 2916 | trueObjective->reducedGradient(this, dj_, true); |
| 2917 | // get direction vector in longArray |
| 2918 | longArray->clear(); |
| 2919 | double normFlagged = 0.0; |
| 2920 | double normUnflagged = 0.0; |
| 2921 | int numberNonBasic = 0; |
| 2922 | directionVector(longArray, spare, rowArray, 0, |
| 2923 | normFlagged, normUnflagged, numberNonBasic); |
| 2924 | if (normFlagged + normUnflagged < 1.0e-8) { |
| 2925 | absolutelyOptimal = true; |
| 2926 | break; //looks optimal |
| 2927 | } |
| 2928 | double djNorm = 0.0; |
| 2929 | int iIndex; |
| 2930 | for (iIndex = 0; iIndex < numberNonBasic; iIndex++) { |
| 2931 | int iSequence = which[iIndex]; |
| 2932 | double alpha = work[iSequence]; |
| 2933 | djNorm += alpha * alpha; |
| 2934 | } |
| 2935 | //if (!jPass) |
| 2936 | //printf("dj norm %g - %d \n",djNorm,numberNonBasic); |
| 2937 | //int number=longArray->getNumElements(); |
| 2938 | if (!numberNonBasic) { |
| 2939 | // looks optimal |
| 2940 | absolutelyOptimal = true; |
| 2941 | break; |
| 2942 | } |
| 2943 | int bestSequence = -1; |
| 2944 | double theta = 1.0e30; |
| 2945 | int iSequence; |
| 2946 | for (iSequence = 0; iSequence < numberTotal; iSequence++) { |
| 2947 | double alpha = work[iSequence]; |
| 2948 | double oldValue = solution_[iSequence]; |
| 2949 | if (alpha < -1.0e-15) { |
| 2950 | // variable going towards lower bound |
| 2951 | double bound = lower_[iSequence]; |
| 2952 | oldValue -= bound; |
| 2953 | if (oldValue + theta * alpha < 0.0) { |
| 2954 | bestSequence = iSequence; |
| 2955 | theta = CoinMax(0.0, oldValue / (-alpha)); |
| 2956 | } |
| 2957 | } else if (alpha > 1.0e-15) { |
| 2958 | // variable going towards upper bound |
| 2959 | double bound = upper_[iSequence]; |
| 2960 | oldValue = bound - oldValue; |
| 2961 | if (oldValue - theta * alpha < 0.0) { |
| 2962 | bestSequence = iSequence; |
| 2963 | theta = CoinMax(0.0, oldValue / alpha); |
| 2964 | } |
| 2965 | } |
| 2966 | } |
| 2967 | // Now find minimum of function |
| 2968 | double currentObj; |
| 2969 | double predictedObj; |
| 2970 | double thetaObj; |
| 2971 | // need to use true objective |
| 2972 | double * saveCost = cost_; |
| 2973 | cost_ = NULL; |
| 2974 | double objTheta = trueObjective->stepLength(this, solution_, work, theta, |
| 2975 | currentObj, predictedObj, thetaObj); |
| 2976 | cost_ = saveCost; |
| 2977 | #ifdef CLP_DEBUG |
| 2978 | if (handler_->logLevel() & 32) |
| 2979 | printf("current obj %g thetaObj %g, predictedObj %g\n" , currentObj, thetaObj, predictedObj); |
| 2980 | #endif |
| 2981 | //printf("current obj %g thetaObj %g, predictedObj %g\n",currentObj,thetaObj,predictedObj); |
| 2982 | //printf("objTheta %g theta %g\n",objTheta,theta); |
| 2983 | if (theta > objTheta) { |
| 2984 | theta = objTheta; |
| 2985 | thetaObj = predictedObj; |
| 2986 | } |
| 2987 | // update one used outside |
| 2988 | objValue = currentObj; |
| 2989 | if (theta > 1.0e-9 && |
| 2990 | (currentObj - thetaObj < -CoinMax(1.0e-8, 1.0e-15 * fabs(currentObj)) || jPass < 5)) { |
| 2991 | // Update solution |
| 2992 | for (iSequence = 0; iSequence < numberTotal; iSequence++) { |
| 2993 | double alpha = work[iSequence]; |
| 2994 | if (alpha) { |
| 2995 | double value = solution_[iSequence] + theta * alpha; |
| 2996 | solution_[iSequence] = value; |
| 2997 | switch(getStatus(iSequence)) { |
| 2998 | |
| 2999 | case basic: |
| 3000 | case isFixed: |
| 3001 | case isFree: |
| 3002 | break; |
| 3003 | case atUpperBound: |
| 3004 | case atLowerBound: |
| 3005 | case superBasic: |
| 3006 | if (value > lower_[iSequence] + primalTolerance_) { |
| 3007 | if(value < upper_[iSequence] - primalTolerance_) { |
| 3008 | setStatus(iSequence, superBasic); |
| 3009 | } else { |
| 3010 | setStatus(iSequence, atUpperBound); |
| 3011 | } |
| 3012 | } else { |
| 3013 | if(value < upper_[iSequence] - primalTolerance_) { |
| 3014 | setStatus(iSequence, atLowerBound); |
| 3015 | } else { |
| 3016 | setStatus(iSequence, isFixed); |
| 3017 | } |
| 3018 | } |
| 3019 | break; |
| 3020 | } |
| 3021 | } |
| 3022 | } |
| 3023 | } else { |
| 3024 | break; |
| 3025 | } |
| 3026 | } |
| 3027 | // Put back fake bounds |
| 3028 | for (jNon = 0; jNon < numberNonLinearColumns; jNon++) { |
| 3029 | int iColumn = listNonLinearColumn[jNon]; |
| 3030 | double value; |
| 3031 | value = trueLower[jNon]; |
| 3032 | trueLower[jNon] = lower_[iColumn]; |
| 3033 | lower_[iColumn] = value; |
| 3034 | value = trueUpper[jNon]; |
| 3035 | trueUpper[jNon] = upper_[iColumn]; |
| 3036 | upper_[iColumn] = value; |
| 3037 | } |
| 3038 | } |
| 3039 | problemStatus_ = 0; |
| 3040 | finish(); |
| 3041 | scaling(saveScaling); |
| 3042 | perturbation_ = savePerturbation; |
| 3043 | setLogLevel(saveLogLevel); |
| 3044 | #endif |
| 3045 | // redo rowActivity |
| 3046 | memset(rowActivity_, 0, numberRows_ * sizeof(double)); |
| 3047 | times(1.0, solution, rowActivity_); |
| 3048 | if (theta > 0.99999 && theta2 < 1.9 && !absolutelyOptimal) { |
| 3049 | // If big changes then tighten |
| 3050 | /* thetaObj is objvalue + a*2*2 +b*2 |
| 3051 | predictedObj is objvalue + a*theta2*theta2 +b*theta2 |
| 3052 | */ |
| 3053 | double rhs1 = thetaObj - objValue; |
| 3054 | double rhs2 = predictedObj - objValue; |
| 3055 | double subtractB = theta2 * 0.5; |
| 3056 | double a = (rhs2 - subtractB * rhs1) / (theta2 * theta2 - 4.0 * subtractB); |
| 3057 | double b = 0.5 * (rhs1 - 4.0 * a); |
| 3058 | if (fabs(a + b) > 1.0e-2) { |
| 3059 | // tighten all |
| 3060 | goodMove = -1; |
| 3061 | } |
| 3062 | } |
| 3063 | } |
| 3064 | } |
| 3065 | CoinMemcpyN(trueObjective->gradient(this, solution, offset, true, 2), numberColumns, |
| 3066 | objective); |
| 3067 | //printf("offset comp %g orig %g\n",offset,objectiveOffset); |
| 3068 | // could do faster |
| 3069 | trueObjective->stepLength(this, solution, changeRegion, 0.0, |
| 3070 | objValue, predictedObj, thetaObj); |
| 3071 | #ifdef CLP_INVESTIGATE |
| 3072 | printf("offset comp %g orig %g - obj from stepLength %g\n" , offset, objectiveOffset, objValue); |
| 3073 | #endif |
| 3074 | setDblParam(ClpObjOffset, objectiveOffset + offset); |
| 3075 | int * temp = last[2]; |
| 3076 | last[2] = last[1]; |
| 3077 | last[1] = last[0]; |
| 3078 | last[0] = temp; |
| 3079 | for (jNon = 0; jNon < numberNonLinearColumns; jNon++) { |
| 3080 | iColumn = listNonLinearColumn[jNon]; |
| 3081 | double change = solution[iColumn] - saveSolution[iColumn]; |
| 3082 | if (change < -1.0e-5) { |
| 3083 | if (fabs(change + trust[jNon]) < 1.0e-5) |
| 3084 | temp[jNon] = -1; |
| 3085 | else |
| 3086 | temp[jNon] = -2; |
| 3087 | } else if(change > 1.0e-5) { |
| 3088 | if (fabs(change - trust[jNon]) < 1.0e-5) |
| 3089 | temp[jNon] = 1; |
| 3090 | else |
| 3091 | temp[jNon] = 2; |
| 3092 | } else { |
| 3093 | temp[jNon] = 0; |
| 3094 | } |
| 3095 | } |
| 3096 | // goodMove +1 yes, 0 no, -1 last was bad - just halve gaps, -2 do nothing |
| 3097 | double maxDelta = 0.0; |
| 3098 | if (goodMove >= 0) { |
| 3099 | if (objValue - lastObjective <= 1.0e-15 * fabs(lastObjective)) |
| 3100 | goodMove = 1; |
| 3101 | else |
| 3102 | goodMove = 0; |
| 3103 | } else { |
| 3104 | maxDelta = 1.0e10; |
| 3105 | } |
| 3106 | double maxGap = 0.0; |
| 3107 | int numberSmaller = 0; |
| 3108 | int numberSmaller2 = 0; |
| 3109 | int numberLarger = 0; |
| 3110 | for (jNon = 0; jNon < numberNonLinearColumns; jNon++) { |
| 3111 | iColumn = listNonLinearColumn[jNon]; |
| 3112 | maxDelta = CoinMax(maxDelta, |
| 3113 | fabs(solution[iColumn] - saveSolution[iColumn])); |
| 3114 | if (goodMove > 0) { |
| 3115 | if (last[0][jNon]*last[1][jNon] < 0) { |
| 3116 | // halve |
| 3117 | trust[jNon] *= 0.5; |
| 3118 | numberSmaller2++; |
| 3119 | } else { |
| 3120 | if (last[0][jNon] == last[1][jNon] && |
| 3121 | last[0][jNon] == last[2][jNon]) |
| 3122 | trust[jNon] = CoinMin(1.5 * trust[jNon], 1.0e6); |
| 3123 | numberLarger++; |
| 3124 | } |
| 3125 | } else if (goodMove != -2 && trust[jNon] > 10.0 * deltaTolerance) { |
| 3126 | trust[jNon] *= 0.2; |
| 3127 | numberSmaller++; |
| 3128 | } |
| 3129 | maxGap = CoinMax(maxGap, trust[jNon]); |
| 3130 | } |
| 3131 | #ifdef CLP_DEBUG |
| 3132 | if (handler_->logLevel() & 32) |
| 3133 | std::cout << "largest gap is " << maxGap << " " |
| 3134 | << numberSmaller + numberSmaller2 << " reduced (" |
| 3135 | << numberSmaller << " badMove ), " |
| 3136 | << numberLarger << " increased" << std::endl; |
| 3137 | #endif |
| 3138 | if (iPass > 10000) { |
| 3139 | for (jNon = 0; jNon < numberNonLinearColumns; jNon++) |
| 3140 | trust[jNon] *= 0.0001; |
| 3141 | } |
| 3142 | if(lastMoveStatus == -1 && goodMove == -1) |
| 3143 | goodMove = 1; // to force solve |
| 3144 | if (goodMove > 0) { |
| 3145 | double drop = lastObjective - objValue; |
| 3146 | handler_->message(CLP_SLP_ITER, messages_) |
| 3147 | << iPass << objValue - objectiveOffset |
| 3148 | << drop << maxDelta |
| 3149 | << CoinMessageEol; |
| 3150 | if (iPass > 20 && drop < 1.0e-12 * fabs(objValue)) |
| 3151 | drop = 0.999e-4; // so will exit |
| 3152 | if (maxDelta < deltaTolerance && drop < 1.0e-4 && goodMove && theta < 0.99999) { |
| 3153 | if (handler_->logLevel() > 1) |
| 3154 | std::cout << "Exiting as maxDelta < tolerance and small drop" << std::endl; |
| 3155 | break; |
| 3156 | } |
| 3157 | } else if (!numberSmaller && iPass > 1) { |
| 3158 | if (handler_->logLevel() > 1) |
| 3159 | std::cout << "Exiting as all gaps small" << std::endl; |
| 3160 | break; |
| 3161 | } |
| 3162 | if (!iPass) |
| 3163 | goodMove = 1; |
| 3164 | targetDrop = 0.0; |
| 3165 | double * r = this->dualColumnSolution(); |
| 3166 | for (jNon = 0; jNon < numberNonLinearColumns; jNon++) { |
| 3167 | iColumn = listNonLinearColumn[jNon]; |
| 3168 | columnLower[iColumn] = CoinMax(solution[iColumn] |
| 3169 | - trust[jNon], |
| 3170 | trueLower[jNon]); |
| 3171 | columnUpper[iColumn] = CoinMin(solution[iColumn] |
| 3172 | + trust[jNon], |
| 3173 | trueUpper[jNon]); |
| 3174 | } |
| 3175 | if (iPass) { |
| 3176 | // get reduced costs |
| 3177 | this->matrix()->transposeTimes(savePi, |
| 3178 | this->dualColumnSolution()); |
| 3179 | for (jNon = 0; jNon < numberNonLinearColumns; jNon++) { |
| 3180 | iColumn = listNonLinearColumn[jNon]; |
| 3181 | double dj = objective[iColumn] - r[iColumn]; |
| 3182 | r[iColumn] = dj; |
| 3183 | if (dj < -dualTolerance_) |
| 3184 | targetDrop -= dj * (columnUpper[iColumn] - solution[iColumn]); |
| 3185 | else if (dj > dualTolerance_) |
| 3186 | targetDrop -= dj * (columnLower[iColumn] - solution[iColumn]); |
| 3187 | } |
| 3188 | } else { |
| 3189 | memset(r, 0, numberColumns * sizeof(double)); |
| 3190 | } |
| 3191 | #if 0 |
| 3192 | for (jNon = 0; jNon < numberNonLinearColumns; jNon++) { |
| 3193 | iColumn = listNonLinearColumn[jNon]; |
| 3194 | if (statusCheck[iColumn] == 'L' && r[iColumn] < -1.0e-4) { |
| 3195 | columnLower[iColumn] = CoinMax(solution[iColumn], |
| 3196 | trueLower[jNon]); |
| 3197 | columnUpper[iColumn] = CoinMin(solution[iColumn] |
| 3198 | + trust[jNon], |
| 3199 | trueUpper[jNon]); |
| 3200 | } else if (statusCheck[iColumn] == 'U' && r[iColumn] > 1.0e-4) { |
| 3201 | columnLower[iColumn] = CoinMax(solution[iColumn] |
| 3202 | - trust[jNon], |
| 3203 | trueLower[jNon]); |
| 3204 | columnUpper[iColumn] = CoinMin(solution[iColumn], |
| 3205 | trueUpper[jNon]); |
| 3206 | } else { |
| 3207 | columnLower[iColumn] = CoinMax(solution[iColumn] |
| 3208 | - trust[jNon], |
| 3209 | trueLower[jNon]); |
| 3210 | columnUpper[iColumn] = CoinMin(solution[iColumn] |
| 3211 | + trust[jNon], |
| 3212 | trueUpper[jNon]); |
| 3213 | } |
| 3214 | } |
| 3215 | #endif |
| 3216 | if (goodMove > 0) { |
| 3217 | CoinMemcpyN(solution, numberColumns, saveSolution); |
| 3218 | CoinMemcpyN(rowActivity_, numberRows, saveRowSolution); |
| 3219 | CoinMemcpyN(this->dualRowSolution(), numberRows, savePi); |
| 3220 | CoinMemcpyN(status_, numberRows + numberColumns, saveStatus); |
| 3221 | #if MULTIPLE>2 |
| 3222 | double * tempSol = saveSolutionM[0]; |
| 3223 | for (jNon = 0; jNon < MULTIPLE - 1; jNon++) { |
| 3224 | saveSolutionM[jNon] = saveSolutionM[jNon+1]; |
| 3225 | } |
| 3226 | saveSolutionM[MULTIPLE-1] = tempSol; |
| 3227 | CoinMemcpyN(solution, numberColumns, tempSol); |
| 3228 | |
| 3229 | #endif |
| 3230 | |
| 3231 | #ifdef CLP_DEBUG |
| 3232 | if (handler_->logLevel() & 32) |
| 3233 | std::cout << "Pass - " << iPass |
| 3234 | << ", target drop is " << targetDrop |
| 3235 | << std::endl; |
| 3236 | #endif |
| 3237 | lastObjective = objValue; |
| 3238 | if (targetDrop < CoinMax(1.0e-8, CoinMin(1.0e-6, 1.0e-6 * fabs(objValue))) && goodMove && iPass > 3) { |
| 3239 | if (handler_->logLevel() > 1) |
| 3240 | printf("Exiting on target drop %g\n" , targetDrop); |
| 3241 | break; |
| 3242 | } |
| 3243 | #ifdef CLP_DEBUG |
| 3244 | { |
| 3245 | double * r = this->dualColumnSolution(); |
| 3246 | for (jNon = 0; jNon < numberNonLinearColumns; jNon++) { |
| 3247 | iColumn = listNonLinearColumn[jNon]; |
| 3248 | if (handler_->logLevel() & 32) |
| 3249 | printf("Trust %d %g - solution %d %g obj %g dj %g state %c - bounds %g %g\n" , |
| 3250 | jNon, trust[jNon], iColumn, solution[iColumn], objective[iColumn], |
| 3251 | r[iColumn], statusCheck[iColumn], columnLower[iColumn], |
| 3252 | columnUpper[iColumn]); |
| 3253 | } |
| 3254 | } |
| 3255 | #endif |
| 3256 | //setLogLevel(63); |
| 3257 | this->scaling(false); |
| 3258 | if (saveLogLevel == 1) |
| 3259 | setLogLevel(0); |
| 3260 | ClpSimplex::primal(1); |
| 3261 | algorithm_ = 1; |
| 3262 | setLogLevel(saveLogLevel); |
| 3263 | #ifdef CLP_DEBUG |
| 3264 | if (this->status()) { |
| 3265 | writeMps("xx.mps" ); |
| 3266 | } |
| 3267 | #endif |
| 3268 | if (this->status() == 1) { |
| 3269 | // not feasible ! - backtrack and exit |
| 3270 | // use safe solution |
| 3271 | CoinMemcpyN(safeSolution, numberColumns, solution); |
| 3272 | CoinMemcpyN(solution, numberColumns, saveSolution); |
| 3273 | memset(rowActivity_, 0, numberRows_ * sizeof(double)); |
| 3274 | times(1.0, solution, rowActivity_); |
| 3275 | CoinMemcpyN(rowActivity_, numberRows, saveRowSolution); |
| 3276 | CoinMemcpyN(savePi, numberRows, this->dualRowSolution()); |
| 3277 | CoinMemcpyN(saveStatus, numberRows + numberColumns, status_); |
| 3278 | for (jNon = 0; jNon < numberNonLinearColumns; jNon++) { |
| 3279 | iColumn = listNonLinearColumn[jNon]; |
| 3280 | columnLower[iColumn] = CoinMax(solution[iColumn] |
| 3281 | - trust[jNon], |
| 3282 | trueLower[jNon]); |
| 3283 | columnUpper[iColumn] = CoinMin(solution[iColumn] |
| 3284 | + trust[jNon], |
| 3285 | trueUpper[jNon]); |
| 3286 | } |
| 3287 | break; |
| 3288 | } else { |
| 3289 | // save in case problems |
| 3290 | CoinMemcpyN(solution, numberColumns, safeSolution); |
| 3291 | } |
| 3292 | if (problemStatus_ == 3) |
| 3293 | break; // probably user interrupt |
| 3294 | goodMove = 1; |
| 3295 | } else { |
| 3296 | // bad pass - restore solution |
| 3297 | #ifdef CLP_DEBUG |
| 3298 | if (handler_->logLevel() & 32) |
| 3299 | printf("Backtracking\n" ); |
| 3300 | #endif |
| 3301 | CoinMemcpyN(saveSolution, numberColumns, solution); |
| 3302 | CoinMemcpyN(saveRowSolution, numberRows, rowActivity_); |
| 3303 | CoinMemcpyN(savePi, numberRows, this->dualRowSolution()); |
| 3304 | CoinMemcpyN(saveStatus, numberRows + numberColumns, status_); |
| 3305 | iPass--; |
| 3306 | assert (exitPass > 0); |
| 3307 | goodMove = -1; |
| 3308 | } |
| 3309 | } |
| 3310 | #if MULTIPLE>2 |
| 3311 | for (jNon = 0; jNon < MULTIPLE; jNon++) |
| 3312 | { |
| 3313 | delete [] saveSolutionM[jNon]; |
| 3314 | } |
| 3315 | #endif |
| 3316 | // restore solution |
| 3317 | CoinMemcpyN(saveSolution, numberColumns, solution); |
| 3318 | CoinMemcpyN(saveRowSolution, numberRows, rowActivity_); |
| 3319 | for (jNon = 0; jNon < numberNonLinearColumns; jNon++) |
| 3320 | { |
| 3321 | iColumn = listNonLinearColumn[jNon]; |
| 3322 | columnLower[iColumn] = CoinMax(solution[iColumn], |
| 3323 | trueLower[jNon]); |
| 3324 | columnUpper[iColumn] = CoinMin(solution[iColumn], |
| 3325 | trueUpper[jNon]); |
| 3326 | } |
| 3327 | delete [] markNonlinear; |
| 3328 | delete [] statusCheck; |
| 3329 | delete [] savePi; |
| 3330 | delete [] saveStatus; |
| 3331 | // redo objective |
| 3332 | CoinMemcpyN(trueObjective->gradient(this, solution, offset, true, 2), numberColumns, |
| 3333 | objective); |
| 3334 | ClpSimplex::primal(1); |
| 3335 | delete objective_; |
| 3336 | objective_ = trueObjective; |
| 3337 | // redo values |
| 3338 | setDblParam(ClpObjOffset, objectiveOffset); |
| 3339 | objectiveValue_ += whichWay * offset; |
| 3340 | for (jNon = 0; jNon < numberNonLinearColumns; jNon++) |
| 3341 | { |
| 3342 | iColumn = listNonLinearColumn[jNon]; |
| 3343 | columnLower[iColumn] = trueLower[jNon]; |
| 3344 | columnUpper[iColumn] = trueUpper[jNon]; |
| 3345 | } |
| 3346 | delete [] saveSolution; |
| 3347 | delete [] safeSolution; |
| 3348 | delete [] saveRowSolution; |
| 3349 | for (iPass = 0; iPass < 3; iPass++) |
| 3350 | delete [] last[iPass]; |
| 3351 | delete [] trust; |
| 3352 | delete [] trueUpper; |
| 3353 | delete [] trueLower; |
| 3354 | delete [] listNonLinearColumn; |
| 3355 | delete [] changeRegion; |
| 3356 | // temp |
| 3357 | //setLogLevel(63); |
| 3358 | return 0; |
| 3359 | } |
| 3360 | /* Primal algorithm for nonlinear constraints |
| 3361 | Using a semi-trust region approach as for pooling problem |
| 3362 | This is in because I have it lying around |
| 3363 | |
| 3364 | */ |
| 3365 | int |
| 3366 | ClpSimplexNonlinear::primalSLP(int numberConstraints, ClpConstraint ** constraints, |
| 3367 | int numberPasses, double deltaTolerance) |
| 3368 | { |
| 3369 | if (!numberConstraints) { |
| 3370 | // no nonlinear constraints - may be nonlinear objective |
| 3371 | return primalSLP(numberPasses, deltaTolerance); |
| 3372 | } |
| 3373 | // Are we minimizing or maximizing |
| 3374 | double whichWay = optimizationDirection(); |
| 3375 | if (whichWay < 0.0) |
| 3376 | whichWay = -1.0; |
| 3377 | else if (whichWay > 0.0) |
| 3378 | whichWay = 1.0; |
| 3379 | // check all matrix for odd rows is empty |
| 3380 | int iConstraint; |
| 3381 | int numberBad = 0; |
| 3382 | CoinPackedMatrix * columnCopy = matrix(); |
| 3383 | // Get a row copy in standard format |
| 3384 | CoinPackedMatrix copy; |
| 3385 | copy.reverseOrderedCopyOf(*columnCopy); |
| 3386 | // get matrix data pointers |
| 3387 | //const int * column = copy.getIndices(); |
| 3388 | //const CoinBigIndex * rowStart = copy.getVectorStarts(); |
| 3389 | const int * rowLength = copy.getVectorLengths(); |
| 3390 | //const double * elementByRow = copy.getElements(); |
| 3391 | int numberArtificials = 0; |
| 3392 | // We could use nonlinearcost to do segments - maybe later |
| 3393 | #define SEGMENTS 3 |
| 3394 | // Penalties may be adjusted by duals |
| 3395 | // Both these should be modified depending on problem |
| 3396 | // Possibly start with big bounds |
| 3397 | //double penalties[]={1.0e-3,1.0e7,1.0e9}; |
| 3398 | double penalties[] = {1.0e7, 1.0e8, 1.0e9}; |
| 3399 | double bounds[] = {1.0e-2, 1.0e2, COIN_DBL_MAX}; |
| 3400 | // see how many extra we need |
| 3401 | CoinBigIndex = 0; |
| 3402 | for (iConstraint = 0; iConstraint < numberConstraints; iConstraint++) { |
| 3403 | ClpConstraint * constraint = constraints[iConstraint]; |
| 3404 | int iRow = constraint->rowNumber(); |
| 3405 | assert (iRow >= 0); |
| 3406 | int n = constraint->numberCoefficients() - rowLength[iRow]; |
| 3407 | numberExtra += n; |
| 3408 | if (iRow >= numberRows_) |
| 3409 | numberBad++; |
| 3410 | else if (rowLength[iRow] && n) |
| 3411 | numberBad++; |
| 3412 | if (rowLower_[iRow] > -1.0e20) |
| 3413 | numberArtificials++; |
| 3414 | if (rowUpper_[iRow] < 1.0e20) |
| 3415 | numberArtificials++; |
| 3416 | } |
| 3417 | if (numberBad) |
| 3418 | return numberBad; |
| 3419 | ClpObjective * trueObjective = NULL; |
| 3420 | if (objective_->type() >= 2) { |
| 3421 | // Replace objective |
| 3422 | trueObjective = objective_; |
| 3423 | objective_ = new ClpLinearObjective(NULL, numberColumns_); |
| 3424 | } |
| 3425 | ClpSimplex newModel(*this); |
| 3426 | // we can put back true objective |
| 3427 | if (trueObjective) { |
| 3428 | // Replace objective |
| 3429 | delete objective_; |
| 3430 | objective_ = trueObjective; |
| 3431 | } |
| 3432 | int numberColumns2 = numberColumns_; |
| 3433 | int numberSmallGap = numberArtificials; |
| 3434 | if (numberArtificials) { |
| 3435 | numberArtificials *= SEGMENTS; |
| 3436 | numberColumns2 += numberArtificials; |
| 3437 | int * addStarts = new int [numberArtificials+1]; |
| 3438 | int * addRow = new int[numberArtificials]; |
| 3439 | double * addElement = new double[numberArtificials]; |
| 3440 | double * addUpper = new double[numberArtificials]; |
| 3441 | addStarts[0] = 0; |
| 3442 | double * addCost = new double [numberArtificials]; |
| 3443 | numberArtificials = 0; |
| 3444 | for (iConstraint = 0; iConstraint < numberConstraints; iConstraint++) { |
| 3445 | ClpConstraint * constraint = constraints[iConstraint]; |
| 3446 | int iRow = constraint->rowNumber(); |
| 3447 | if (rowLower_[iRow] > -1.0e20) { |
| 3448 | for (int k = 0; k < SEGMENTS; k++) { |
| 3449 | addRow[numberArtificials] = iRow; |
| 3450 | addElement[numberArtificials] = 1.0; |
| 3451 | addCost[numberArtificials] = penalties[k]; |
| 3452 | addUpper[numberArtificials] = bounds[k]; |
| 3453 | numberArtificials++; |
| 3454 | addStarts[numberArtificials] = numberArtificials; |
| 3455 | } |
| 3456 | } |
| 3457 | if (rowUpper_[iRow] < 1.0e20) { |
| 3458 | for (int k = 0; k < SEGMENTS; k++) { |
| 3459 | addRow[numberArtificials] = iRow; |
| 3460 | addElement[numberArtificials] = -1.0; |
| 3461 | addCost[numberArtificials] = penalties[k]; |
| 3462 | addUpper[numberArtificials] = bounds[k]; |
| 3463 | numberArtificials++; |
| 3464 | addStarts[numberArtificials] = numberArtificials; |
| 3465 | } |
| 3466 | } |
| 3467 | } |
| 3468 | newModel.addColumns(numberArtificials, NULL, addUpper, addCost, |
| 3469 | addStarts, addRow, addElement); |
| 3470 | delete [] addStarts; |
| 3471 | delete [] addRow; |
| 3472 | delete [] addElement; |
| 3473 | delete [] addUpper; |
| 3474 | delete [] addCost; |
| 3475 | // newModel.primal(1); |
| 3476 | } |
| 3477 | // find nonlinear columns |
| 3478 | int * listNonLinearColumn = new int [numberColumns_+numberSmallGap]; |
| 3479 | char * mark = new char[numberColumns_]; |
| 3480 | memset(mark, 0, numberColumns_); |
| 3481 | for (iConstraint = 0; iConstraint < numberConstraints; iConstraint++) { |
| 3482 | ClpConstraint * constraint = constraints[iConstraint]; |
| 3483 | constraint->markNonlinear(mark); |
| 3484 | } |
| 3485 | if (trueObjective) |
| 3486 | trueObjective->markNonlinear(mark); |
| 3487 | int iColumn; |
| 3488 | int numberNonLinearColumns = 0; |
| 3489 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 3490 | if (mark[iColumn]) |
| 3491 | listNonLinearColumn[numberNonLinearColumns++] = iColumn; |
| 3492 | } |
| 3493 | // and small gap artificials |
| 3494 | for (iColumn = numberColumns_; iColumn < numberColumns2; iColumn += SEGMENTS) { |
| 3495 | listNonLinearColumn[numberNonLinearColumns++] = iColumn; |
| 3496 | } |
| 3497 | // build row copy of matrix with space for nonzeros |
| 3498 | // Get column copy |
| 3499 | columnCopy = newModel.matrix(); |
| 3500 | copy.reverseOrderedCopyOf(*columnCopy); |
| 3501 | // get matrix data pointers |
| 3502 | const int * column = copy.getIndices(); |
| 3503 | const CoinBigIndex * rowStart = copy.getVectorStarts(); |
| 3504 | rowLength = copy.getVectorLengths(); |
| 3505 | const double * elementByRow = copy.getElements(); |
| 3506 | numberExtra += copy.getNumElements(); |
| 3507 | CoinBigIndex * newStarts = new CoinBigIndex [numberRows_+1]; |
| 3508 | int * newColumn = new int[numberExtra]; |
| 3509 | double * newElement = new double[numberExtra]; |
| 3510 | newStarts[0] = 0; |
| 3511 | int * backRow = new int [numberRows_]; |
| 3512 | int iRow; |
| 3513 | for (iRow = 0; iRow < numberRows_; iRow++) |
| 3514 | backRow[iRow] = -1; |
| 3515 | for (iConstraint = 0; iConstraint < numberConstraints; iConstraint++) { |
| 3516 | ClpConstraint * constraint = constraints[iConstraint]; |
| 3517 | iRow = constraint->rowNumber(); |
| 3518 | backRow[iRow] = iConstraint; |
| 3519 | } |
| 3520 | numberExtra = 0; |
| 3521 | for (iRow = 0; iRow < numberRows_; iRow++) { |
| 3522 | if (backRow[iRow] < 0) { |
| 3523 | // copy normal |
| 3524 | for (CoinBigIndex j = rowStart[iRow]; j < rowStart[iRow] + rowLength[iRow]; |
| 3525 | j++) { |
| 3526 | newColumn[numberExtra] = column[j]; |
| 3527 | newElement[numberExtra++] = elementByRow[j]; |
| 3528 | } |
| 3529 | } else { |
| 3530 | ClpConstraint * constraint = constraints[backRow[iRow]]; |
| 3531 | assert(iRow == constraint->rowNumber()); |
| 3532 | int numberArtificials = 0; |
| 3533 | if (rowLower_[iRow] > -1.0e20) |
| 3534 | numberArtificials += SEGMENTS; |
| 3535 | if (rowUpper_[iRow] < 1.0e20) |
| 3536 | numberArtificials += SEGMENTS; |
| 3537 | if (numberArtificials == rowLength[iRow]) { |
| 3538 | // all possible |
| 3539 | memset(mark, 0, numberColumns_); |
| 3540 | constraint->markNonzero(mark); |
| 3541 | for (int k = 0; k < numberColumns_; k++) { |
| 3542 | if (mark[k]) { |
| 3543 | newColumn[numberExtra] = k; |
| 3544 | newElement[numberExtra++] = 1.0; |
| 3545 | } |
| 3546 | } |
| 3547 | // copy artificials |
| 3548 | for (CoinBigIndex j = rowStart[iRow]; j < rowStart[iRow] + rowLength[iRow]; |
| 3549 | j++) { |
| 3550 | newColumn[numberExtra] = column[j]; |
| 3551 | newElement[numberExtra++] = elementByRow[j]; |
| 3552 | } |
| 3553 | } else { |
| 3554 | // there already |
| 3555 | // copy |
| 3556 | for (CoinBigIndex j = rowStart[iRow]; j < rowStart[iRow] + rowLength[iRow]; |
| 3557 | j++) { |
| 3558 | newColumn[numberExtra] = column[j]; |
| 3559 | assert (elementByRow[j]); |
| 3560 | newElement[numberExtra++] = elementByRow[j]; |
| 3561 | } |
| 3562 | } |
| 3563 | } |
| 3564 | newStarts[iRow+1] = numberExtra; |
| 3565 | } |
| 3566 | delete [] backRow; |
| 3567 | CoinPackedMatrix saveMatrix(false, numberColumns2, numberRows_, |
| 3568 | numberExtra, newElement, newColumn, newStarts, NULL, 0.0, 0.0); |
| 3569 | delete [] newStarts; |
| 3570 | delete [] newColumn; |
| 3571 | delete [] newElement; |
| 3572 | delete [] mark; |
| 3573 | // get feasible |
| 3574 | if (whichWay < 0.0) { |
| 3575 | newModel.setOptimizationDirection(1.0); |
| 3576 | double * objective = newModel.objective(); |
| 3577 | for (int iColumn = 0; iColumn < numberColumns_; iColumn++) |
| 3578 | objective[iColumn] = - objective[iColumn]; |
| 3579 | } |
| 3580 | newModel.primal(1); |
| 3581 | // still infeasible |
| 3582 | if (newModel.problemStatus() == 1) { |
| 3583 | delete [] listNonLinearColumn; |
| 3584 | return 0; |
| 3585 | } else if (newModel.problemStatus() == 2) { |
| 3586 | // unbounded - add bounds |
| 3587 | double * columnLower = newModel.columnLower(); |
| 3588 | double * columnUpper = newModel.columnUpper(); |
| 3589 | for (int i = 0; i < numberColumns_; i++) { |
| 3590 | columnLower[i] = CoinMax(-1.0e8, columnLower[i]); |
| 3591 | columnUpper[i] = CoinMin(1.0e8, columnUpper[i]); |
| 3592 | } |
| 3593 | newModel.primal(1); |
| 3594 | } |
| 3595 | int numberRows = newModel.numberRows(); |
| 3596 | double * columnLower = newModel.columnLower(); |
| 3597 | double * columnUpper = newModel.columnUpper(); |
| 3598 | double * objective = newModel.objective(); |
| 3599 | double * rowLower = newModel.rowLower(); |
| 3600 | double * rowUpper = newModel.rowUpper(); |
| 3601 | double * solution = newModel.primalColumnSolution(); |
| 3602 | int jNon; |
| 3603 | int * last[3]; |
| 3604 | |
| 3605 | double * trust = new double[numberNonLinearColumns]; |
| 3606 | double * trueLower = new double[numberNonLinearColumns]; |
| 3607 | double * trueUpper = new double[numberNonLinearColumns]; |
| 3608 | double objectiveOffset; |
| 3609 | double objectiveOffset2; |
| 3610 | getDblParam(ClpObjOffset, objectiveOffset); |
| 3611 | objectiveOffset *= whichWay; |
| 3612 | for (jNon = 0; jNon < numberNonLinearColumns; jNon++) { |
| 3613 | iColumn = listNonLinearColumn[jNon]; |
| 3614 | double upper = columnUpper[iColumn]; |
| 3615 | double lower = columnLower[iColumn]; |
| 3616 | if (solution[iColumn] < lower) |
| 3617 | solution[iColumn] = lower; |
| 3618 | else if (solution[iColumn] > upper) |
| 3619 | solution[iColumn] = upper; |
| 3620 | #if 0 |
| 3621 | double large = CoinMax(1000.0, 10.0 * fabs(solution[iColumn])); |
| 3622 | if (upper > 1.0e10) |
| 3623 | upper = solution[iColumn] + large; |
| 3624 | if (lower < -1.0e10) |
| 3625 | lower = solution[iColumn] - large; |
| 3626 | #else |
| 3627 | upper = solution[iColumn] + 0.5; |
| 3628 | lower = solution[iColumn] - 0.5; |
| 3629 | #endif |
| 3630 | //columnUpper[iColumn]=upper; |
| 3631 | trust[jNon] = 0.05 * (1.0 + upper - lower); |
| 3632 | trueLower[jNon] = columnLower[iColumn]; |
| 3633 | //trueUpper[jNon]=upper; |
| 3634 | trueUpper[jNon] = columnUpper[iColumn]; |
| 3635 | } |
| 3636 | bool tryFix = false; |
| 3637 | int iPass; |
| 3638 | double lastObjective = 1.0e31; |
| 3639 | double lastGoodObjective = 1.0e31; |
| 3640 | double * bestSolution = NULL; |
| 3641 | double * saveSolution = new double [numberColumns2+numberRows]; |
| 3642 | char * saveStatus = new char [numberColumns2+numberRows]; |
| 3643 | double targetDrop = 1.0e31; |
| 3644 | // 1 bound up, 2 up, -1 bound down, -2 down, 0 no change |
| 3645 | for (iPass = 0; iPass < 3; iPass++) { |
| 3646 | last[iPass] = new int[numberNonLinearColumns]; |
| 3647 | for (jNon = 0; jNon < numberNonLinearColumns; jNon++) |
| 3648 | last[iPass][jNon] = 0; |
| 3649 | } |
| 3650 | int numberZeroPasses = 0; |
| 3651 | bool zeroTargetDrop = false; |
| 3652 | double * gradient = new double [numberColumns_]; |
| 3653 | bool goneFeasible = false; |
| 3654 | // keep sum of artificials |
| 3655 | #define KEEP_SUM 5 |
| 3656 | double sumArt[KEEP_SUM]; |
| 3657 | for (jNon = 0; jNon < KEEP_SUM; jNon++) |
| 3658 | sumArt[jNon] = COIN_DBL_MAX; |
| 3659 | #define SMALL_FIX 0.0 |
| 3660 | for (iPass = 0; iPass < numberPasses; iPass++) { |
| 3661 | objectiveOffset2 = objectiveOffset; |
| 3662 | for (jNon = 0; jNon < numberNonLinearColumns; jNon++) { |
| 3663 | iColumn = listNonLinearColumn[jNon]; |
| 3664 | if (solution[iColumn] < trueLower[jNon]) |
| 3665 | solution[iColumn] = trueLower[jNon]; |
| 3666 | else if (solution[iColumn] > trueUpper[jNon]) |
| 3667 | solution[iColumn] = trueUpper[jNon]; |
| 3668 | columnLower[iColumn] = CoinMax(solution[iColumn] |
| 3669 | - trust[jNon], |
| 3670 | trueLower[jNon]); |
| 3671 | if (!trueLower[jNon] && columnLower[iColumn] < SMALL_FIX) |
| 3672 | columnLower[iColumn] = SMALL_FIX; |
| 3673 | columnUpper[iColumn] = CoinMin(solution[iColumn] |
| 3674 | + trust[jNon], |
| 3675 | trueUpper[jNon]); |
| 3676 | if (!trueLower[jNon]) |
| 3677 | columnUpper[iColumn] = CoinMax(columnUpper[iColumn], |
| 3678 | columnLower[iColumn] + SMALL_FIX); |
| 3679 | if (!trueLower[jNon] && tryFix && |
| 3680 | columnLower[iColumn] == SMALL_FIX && |
| 3681 | columnUpper[iColumn] < 3.0 * SMALL_FIX) { |
| 3682 | columnLower[iColumn] = 0.0; |
| 3683 | solution[iColumn] = 0.0; |
| 3684 | columnUpper[iColumn] = 0.0; |
| 3685 | printf("fixing %d\n" , iColumn); |
| 3686 | } |
| 3687 | } |
| 3688 | // redo matrix |
| 3689 | double offset; |
| 3690 | CoinPackedMatrix newMatrix(saveMatrix); |
| 3691 | // get matrix data pointers |
| 3692 | column = newMatrix.getIndices(); |
| 3693 | rowStart = newMatrix.getVectorStarts(); |
| 3694 | rowLength = newMatrix.getVectorLengths(); |
| 3695 | // make sure x updated |
| 3696 | if (numberConstraints) |
| 3697 | constraints[0]->newXValues(); |
| 3698 | else |
| 3699 | trueObjective->newXValues(); |
| 3700 | double * changeableElement = newMatrix.getMutableElements(); |
| 3701 | if (trueObjective) { |
| 3702 | CoinMemcpyN(trueObjective->gradient(this, solution, offset, true, 2), numberColumns_, |
| 3703 | objective); |
| 3704 | } else { |
| 3705 | CoinMemcpyN(objective_->gradient(this, solution, offset, true, 2), numberColumns_, |
| 3706 | objective); |
| 3707 | } |
| 3708 | if (whichWay < 0.0) { |
| 3709 | for (int iColumn = 0; iColumn < numberColumns_; iColumn++) |
| 3710 | objective[iColumn] = - objective[iColumn]; |
| 3711 | } |
| 3712 | for (iConstraint = 0; iConstraint < numberConstraints; iConstraint++) { |
| 3713 | ClpConstraint * constraint = constraints[iConstraint]; |
| 3714 | int iRow = constraint->rowNumber(); |
| 3715 | double functionValue; |
| 3716 | #ifndef NDEBUG |
| 3717 | int numberErrors = |
| 3718 | #endif |
| 3719 | constraint->gradient(&newModel, solution, gradient, functionValue, offset); |
| 3720 | assert (!numberErrors); |
| 3721 | // double dualValue = newModel.dualRowSolution()[iRow]; |
| 3722 | int numberCoefficients = constraint->numberCoefficients(); |
| 3723 | for (CoinBigIndex j = rowStart[iRow]; j < rowStart[iRow] + numberCoefficients; j++) { |
| 3724 | int iColumn = column[j]; |
| 3725 | changeableElement[j] = gradient[iColumn]; |
| 3726 | //objective[iColumn] -= dualValue*gradient[iColumn]; |
| 3727 | gradient[iColumn] = 0.0; |
| 3728 | } |
| 3729 | for (int k = 0; k < numberColumns_; k++) |
| 3730 | assert (!gradient[k]); |
| 3731 | if (rowLower_[iRow] > -1.0e20) |
| 3732 | rowLower[iRow] = rowLower_[iRow] - offset; |
| 3733 | if (rowUpper_[iRow] < 1.0e20) |
| 3734 | rowUpper[iRow] = rowUpper_[iRow] - offset; |
| 3735 | } |
| 3736 | // Replace matrix |
| 3737 | // Get a column copy in standard format |
| 3738 | CoinPackedMatrix * columnCopy = new CoinPackedMatrix(); |
| 3739 | columnCopy->reverseOrderedCopyOf(newMatrix); |
| 3740 | newModel.replaceMatrix(columnCopy, true); |
| 3741 | // solve |
| 3742 | newModel.primal(1); |
| 3743 | if (newModel.status() == 1) { |
| 3744 | // Infeasible! |
| 3745 | newModel.allSlackBasis(); |
| 3746 | newModel.primal(); |
| 3747 | newModel.writeMps("infeas.mps" ); |
| 3748 | assert(!newModel.status()); |
| 3749 | } |
| 3750 | double sumInfeas = 0.0; |
| 3751 | int numberInfeas = 0; |
| 3752 | for (iColumn = numberColumns_; iColumn < numberColumns2; iColumn++) { |
| 3753 | if (solution[iColumn] > 1.0e-8) { |
| 3754 | numberInfeas++; |
| 3755 | sumInfeas += solution[iColumn]; |
| 3756 | } |
| 3757 | } |
| 3758 | printf("%d artificial infeasibilities - summing to %g\n" , |
| 3759 | numberInfeas, sumInfeas); |
| 3760 | for (jNon = 0; jNon < KEEP_SUM - 1; jNon++) |
| 3761 | sumArt[jNon] = sumArt[jNon+1]; |
| 3762 | sumArt[KEEP_SUM-1] = sumInfeas; |
| 3763 | if (sumInfeas > 0.01 && sumInfeas * 1.1 > sumArt[0] && penalties[1] < 1.0e7) { |
| 3764 | // not doing very well - increase - be more sophisticated later |
| 3765 | lastObjective = COIN_DBL_MAX; |
| 3766 | for (jNon = 0; jNon < KEEP_SUM; jNon++) |
| 3767 | sumArt[jNon] = COIN_DBL_MAX; |
| 3768 | //for (iColumn=numberColumns_;iColumn<numberColumns2;iColumn+=SEGMENTS) { |
| 3769 | //objective[iColumn+1] *= 1.5; |
| 3770 | //} |
| 3771 | penalties[1] *= 1.5; |
| 3772 | for (jNon = 0; jNon < numberNonLinearColumns; jNon++) |
| 3773 | if (trust[jNon] > 0.1) |
| 3774 | trust[jNon] *= 2.0; |
| 3775 | else |
| 3776 | trust[jNon] = 0.1; |
| 3777 | } |
| 3778 | if (sumInfeas < 0.001 && !goneFeasible) { |
| 3779 | goneFeasible = true; |
| 3780 | penalties[0] = 1.0e-3; |
| 3781 | penalties[1] = 1.0e6; |
| 3782 | printf("Got feasible\n" ); |
| 3783 | } |
| 3784 | double infValue = 0.0; |
| 3785 | double objValue = 0.0; |
| 3786 | // make sure x updated |
| 3787 | if (numberConstraints) |
| 3788 | constraints[0]->newXValues(); |
| 3789 | else |
| 3790 | trueObjective->newXValues(); |
| 3791 | if (trueObjective) { |
| 3792 | objValue = trueObjective->objectiveValue(this, solution); |
| 3793 | printf("objective offset %g\n" , offset); |
| 3794 | objectiveOffset2 = objectiveOffset + offset; // ? sign |
| 3795 | newModel.setObjectiveOffset(objectiveOffset2); |
| 3796 | } else { |
| 3797 | objValue = objective_->objectiveValue(this, solution); |
| 3798 | } |
| 3799 | objValue *= whichWay; |
| 3800 | double infPenalty = 0.0; |
| 3801 | // This penalty is for target drop |
| 3802 | double infPenalty2 = 0.0; |
| 3803 | //const int * row = columnCopy->getIndices(); |
| 3804 | //const CoinBigIndex * columnStart = columnCopy->getVectorStarts(); |
| 3805 | //const int * columnLength = columnCopy->getVectorLengths(); |
| 3806 | //const double * element = columnCopy->getElements(); |
| 3807 | double * cost = newModel.objective(); |
| 3808 | column = newMatrix.getIndices(); |
| 3809 | rowStart = newMatrix.getVectorStarts(); |
| 3810 | rowLength = newMatrix.getVectorLengths(); |
| 3811 | elementByRow = newMatrix.getElements(); |
| 3812 | int jColumn = numberColumns_; |
| 3813 | double objectiveAdjustment = 0.0; |
| 3814 | for (iConstraint = 0; iConstraint < numberConstraints; iConstraint++) { |
| 3815 | ClpConstraint * constraint = constraints[iConstraint]; |
| 3816 | int iRow = constraint->rowNumber(); |
| 3817 | double functionValue = constraint->functionValue(this, solution); |
| 3818 | double dualValue = newModel.dualRowSolution()[iRow]; |
| 3819 | if (numberConstraints < -50) |
| 3820 | printf("For row %d current value is %g (row activity %g) , dual is %g\n" , iRow, functionValue, |
| 3821 | newModel.primalRowSolution()[iRow], |
| 3822 | dualValue); |
| 3823 | double movement = newModel.primalRowSolution()[iRow] + constraint->offset(); |
| 3824 | movement = fabs((movement - functionValue) * dualValue); |
| 3825 | infPenalty2 += movement; |
| 3826 | double sumOfActivities = 0.0; |
| 3827 | for (CoinBigIndex j = rowStart[iRow]; j < rowStart[iRow] + rowLength[iRow]; j++) { |
| 3828 | int iColumn = column[j]; |
| 3829 | sumOfActivities += fabs(solution[iColumn] * elementByRow[j]); |
| 3830 | } |
| 3831 | if (rowLower_[iRow] > -1.0e20) { |
| 3832 | if (functionValue < rowLower_[iRow] - 1.0e-5) { |
| 3833 | double infeasibility = rowLower_[iRow] - functionValue; |
| 3834 | double thisPenalty = 0.0; |
| 3835 | infValue += infeasibility; |
| 3836 | double boundMultiplier = 1.0; |
| 3837 | if (sumOfActivities < 0.001) |
| 3838 | boundMultiplier = 0.1; |
| 3839 | else if (sumOfActivities > 100.0) |
| 3840 | boundMultiplier = 10.0; |
| 3841 | int k; |
| 3842 | assert (dualValue >= -1.0e-5); |
| 3843 | dualValue = CoinMax(dualValue, 0.0); |
| 3844 | for ( k = 0; k < SEGMENTS; k++) { |
| 3845 | if (infeasibility <= 0) |
| 3846 | break; |
| 3847 | double thisPart = CoinMin(infeasibility, bounds[k]); |
| 3848 | thisPenalty += thisPart * cost[jColumn+k]; |
| 3849 | infeasibility -= thisPart; |
| 3850 | } |
| 3851 | infeasibility = functionValue - rowUpper_[iRow]; |
| 3852 | double newPenalty = 0.0; |
| 3853 | for ( k = 0; k < SEGMENTS; k++) { |
| 3854 | double thisPart = CoinMin(infeasibility, bounds[k]); |
| 3855 | cost[jColumn+k] = CoinMax(penalties[k], dualValue + 1.0e-3); |
| 3856 | newPenalty += thisPart * cost[jColumn+k]; |
| 3857 | infeasibility -= thisPart; |
| 3858 | } |
| 3859 | infPenalty += thisPenalty; |
| 3860 | objectiveAdjustment += CoinMax(0.0, newPenalty - thisPenalty); |
| 3861 | } |
| 3862 | jColumn += SEGMENTS; |
| 3863 | } |
| 3864 | if (rowUpper_[iRow] < 1.0e20) { |
| 3865 | if (functionValue > rowUpper_[iRow] + 1.0e-5) { |
| 3866 | double infeasibility = functionValue - rowUpper_[iRow]; |
| 3867 | double thisPenalty = 0.0; |
| 3868 | infValue += infeasibility; |
| 3869 | double boundMultiplier = 1.0; |
| 3870 | if (sumOfActivities < 0.001) |
| 3871 | boundMultiplier = 0.1; |
| 3872 | else if (sumOfActivities > 100.0) |
| 3873 | boundMultiplier = 10.0; |
| 3874 | int k; |
| 3875 | dualValue = -dualValue; |
| 3876 | assert (dualValue >= -1.0e-5); |
| 3877 | dualValue = CoinMax(dualValue, 0.0); |
| 3878 | for ( k = 0; k < SEGMENTS; k++) { |
| 3879 | if (infeasibility <= 0) |
| 3880 | break; |
| 3881 | double thisPart = CoinMin(infeasibility, bounds[k]); |
| 3882 | thisPenalty += thisPart * cost[jColumn+k]; |
| 3883 | infeasibility -= thisPart; |
| 3884 | } |
| 3885 | infeasibility = functionValue - rowUpper_[iRow]; |
| 3886 | double newPenalty = 0.0; |
| 3887 | for ( k = 0; k < SEGMENTS; k++) { |
| 3888 | double thisPart = CoinMin(infeasibility, bounds[k]); |
| 3889 | cost[jColumn+k] = CoinMax(penalties[k], dualValue + 1.0e-3); |
| 3890 | newPenalty += thisPart * cost[jColumn+k]; |
| 3891 | infeasibility -= thisPart; |
| 3892 | } |
| 3893 | infPenalty += thisPenalty; |
| 3894 | objectiveAdjustment += CoinMax(0.0, newPenalty - thisPenalty); |
| 3895 | } |
| 3896 | jColumn += SEGMENTS; |
| 3897 | } |
| 3898 | } |
| 3899 | // adjust last objective value |
| 3900 | lastObjective += objectiveAdjustment; |
| 3901 | if (infValue) |
| 3902 | printf("Sum infeasibilities %g - penalty %g " , infValue, infPenalty); |
| 3903 | if (objectiveOffset2) |
| 3904 | printf("offset2 %g " , objectiveOffset2); |
| 3905 | objValue -= objectiveOffset2; |
| 3906 | printf("True objective %g or maybe %g (with penalty %g) -pen2 %g %g\n" , objValue, |
| 3907 | objValue + objectiveOffset2, objValue + objectiveOffset2 + infPenalty, infPenalty2, penalties[1]); |
| 3908 | double useObjValue = objValue + objectiveOffset2 + infPenalty; |
| 3909 | objValue += infPenalty + infPenalty2; |
| 3910 | objValue = useObjValue; |
| 3911 | if (iPass) { |
| 3912 | double drop = lastObjective - objValue; |
| 3913 | std::cout << "True drop was " << drop << std::endl; |
| 3914 | if (drop < -0.05 * fabs(objValue) - 1.0e-4) { |
| 3915 | // pretty bad - go back and halve |
| 3916 | CoinMemcpyN(saveSolution, numberColumns2, solution); |
| 3917 | CoinMemcpyN(saveSolution + numberColumns2, |
| 3918 | numberRows, newModel.primalRowSolution()); |
| 3919 | CoinMemcpyN(reinterpret_cast<unsigned char *> (saveStatus), |
| 3920 | numberColumns2 + numberRows, newModel.statusArray()); |
| 3921 | for (jNon = 0; jNon < numberNonLinearColumns; jNon++) |
| 3922 | if (trust[jNon] > 0.1) |
| 3923 | trust[jNon] *= 0.5; |
| 3924 | else |
| 3925 | trust[jNon] *= 0.9; |
| 3926 | |
| 3927 | printf("** Halving trust\n" ); |
| 3928 | objValue = lastObjective; |
| 3929 | continue; |
| 3930 | } else if ((iPass % 25) == -1) { |
| 3931 | for (jNon = 0; jNon < numberNonLinearColumns; jNon++) |
| 3932 | trust[jNon] *= 2.0; |
| 3933 | printf("** Doubling trust\n" ); |
| 3934 | } |
| 3935 | int * temp = last[2]; |
| 3936 | last[2] = last[1]; |
| 3937 | last[1] = last[0]; |
| 3938 | last[0] = temp; |
| 3939 | for (jNon = 0; jNon < numberNonLinearColumns; jNon++) { |
| 3940 | iColumn = listNonLinearColumn[jNon]; |
| 3941 | double change = solution[iColumn] - saveSolution[iColumn]; |
| 3942 | if (change < -1.0e-5) { |
| 3943 | if (fabs(change + trust[jNon]) < 1.0e-5) |
| 3944 | temp[jNon] = -1; |
| 3945 | else |
| 3946 | temp[jNon] = -2; |
| 3947 | } else if(change > 1.0e-5) { |
| 3948 | if (fabs(change - trust[jNon]) < 1.0e-5) |
| 3949 | temp[jNon] = 1; |
| 3950 | else |
| 3951 | temp[jNon] = 2; |
| 3952 | } else { |
| 3953 | temp[jNon] = 0; |
| 3954 | } |
| 3955 | } |
| 3956 | double maxDelta = 0.0; |
| 3957 | double smallestTrust = 1.0e31; |
| 3958 | double smallestNonLinearGap = 1.0e31; |
| 3959 | double smallestGap = 1.0e31; |
| 3960 | bool increasing = false; |
| 3961 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 3962 | double gap = columnUpper[iColumn] - columnLower[iColumn]; |
| 3963 | assert (gap >= 0.0); |
| 3964 | if (gap) |
| 3965 | smallestGap = CoinMin(smallestGap, gap); |
| 3966 | } |
| 3967 | for (jNon = 0; jNon < numberNonLinearColumns; jNon++) { |
| 3968 | iColumn = listNonLinearColumn[jNon]; |
| 3969 | double gap = columnUpper[iColumn] - columnLower[iColumn]; |
| 3970 | assert (gap >= 0.0); |
| 3971 | if (gap) { |
| 3972 | smallestNonLinearGap = CoinMin(smallestNonLinearGap, gap); |
| 3973 | if (gap < 1.0e-7 && iPass == 1) { |
| 3974 | printf("Small gap %d %d %g %g %g\n" , |
| 3975 | jNon, iColumn, columnLower[iColumn], columnUpper[iColumn], |
| 3976 | gap); |
| 3977 | //trueUpper[jNon]=trueLower[jNon]; |
| 3978 | //columnUpper[iColumn]=columnLower[iColumn]; |
| 3979 | } |
| 3980 | } |
| 3981 | maxDelta = CoinMax(maxDelta, |
| 3982 | fabs(solution[iColumn] - saveSolution[iColumn])); |
| 3983 | if (last[0][jNon]*last[1][jNon] < 0) { |
| 3984 | // halve |
| 3985 | if (trust[jNon] > 1.0) |
| 3986 | trust[jNon] *= 0.5; |
| 3987 | else |
| 3988 | trust[jNon] *= 0.7; |
| 3989 | } else { |
| 3990 | // ? only increase if +=1 ? |
| 3991 | if (last[0][jNon] == last[1][jNon] && |
| 3992 | last[0][jNon] == last[2][jNon] && |
| 3993 | last[0][jNon]) { |
| 3994 | trust[jNon] *= 1.8; |
| 3995 | increasing = true; |
| 3996 | } |
| 3997 | } |
| 3998 | smallestTrust = CoinMin(smallestTrust, trust[jNon]); |
| 3999 | } |
| 4000 | std::cout << "largest delta is " << maxDelta |
| 4001 | << ", smallest trust is " << smallestTrust |
| 4002 | << ", smallest gap is " << smallestGap |
| 4003 | << ", smallest nonlinear gap is " << smallestNonLinearGap |
| 4004 | << std::endl; |
| 4005 | if (iPass > 200) { |
| 4006 | //double useObjValue = objValue+objectiveOffset2+infPenalty; |
| 4007 | if (useObjValue + 1.0e-4 > lastGoodObjective && iPass > 250) { |
| 4008 | std::cout << "Exiting as objective not changing much" << std::endl; |
| 4009 | break; |
| 4010 | } else if (useObjValue < lastGoodObjective) { |
| 4011 | lastGoodObjective = useObjValue; |
| 4012 | if (!bestSolution) |
| 4013 | bestSolution = new double [numberColumns2]; |
| 4014 | CoinMemcpyN(solution, numberColumns2, bestSolution); |
| 4015 | } |
| 4016 | } |
| 4017 | if (maxDelta < deltaTolerance && !increasing && iPass > 100) { |
| 4018 | numberZeroPasses++; |
| 4019 | if (numberZeroPasses == 3) { |
| 4020 | if (tryFix) { |
| 4021 | std::cout << "Exiting" << std::endl; |
| 4022 | break; |
| 4023 | } else { |
| 4024 | tryFix = true; |
| 4025 | for (jNon = 0; jNon < numberNonLinearColumns; jNon++) |
| 4026 | trust[jNon] = CoinMax(trust[jNon], 1.0e-1); |
| 4027 | numberZeroPasses = 0; |
| 4028 | } |
| 4029 | } |
| 4030 | } else { |
| 4031 | numberZeroPasses = 0; |
| 4032 | } |
| 4033 | } |
| 4034 | CoinMemcpyN(solution, numberColumns2, saveSolution); |
| 4035 | CoinMemcpyN(newModel.primalRowSolution(), |
| 4036 | numberRows, saveSolution + numberColumns2); |
| 4037 | CoinMemcpyN(newModel.statusArray(), |
| 4038 | numberColumns2 + numberRows, |
| 4039 | reinterpret_cast<unsigned char *> (saveStatus)); |
| 4040 | |
| 4041 | targetDrop = infPenalty + infPenalty2; |
| 4042 | if (iPass) { |
| 4043 | // get reduced costs |
| 4044 | const double * pi = newModel.dualRowSolution(); |
| 4045 | newModel.matrix()->transposeTimes(pi, |
| 4046 | newModel.dualColumnSolution()); |
| 4047 | double * r = newModel.dualColumnSolution(); |
| 4048 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) |
| 4049 | r[iColumn] = objective[iColumn] - r[iColumn]; |
| 4050 | for (jNon = 0; jNon < numberNonLinearColumns; jNon++) { |
| 4051 | iColumn = listNonLinearColumn[jNon]; |
| 4052 | double dj = r[iColumn]; |
| 4053 | if (dj < -1.0e-6) { |
| 4054 | double drop = -dj * (columnUpper[iColumn] - solution[iColumn]); |
| 4055 | //double upper = CoinMin(trueUpper[jNon],solution[iColumn]+0.1); |
| 4056 | //double drop2 = -dj*(upper-solution[iColumn]); |
| 4057 | #if 0 |
| 4058 | if (drop > 1.0e8 || drop2 > 100.0 * drop || (drop > 1.0e-2 && iPass > 100)) |
| 4059 | printf("Big drop %d %g %g %g %g T %g\n" , |
| 4060 | iColumn, columnLower[iColumn], solution[iColumn], |
| 4061 | columnUpper[iColumn], dj, trueUpper[jNon]); |
| 4062 | #endif |
| 4063 | targetDrop += drop; |
| 4064 | if (dj < -1.0e-1 && trust[jNon] < 1.0e-3 |
| 4065 | && trueUpper[jNon] - solution[iColumn] > 1.0e-2) { |
| 4066 | trust[jNon] *= 1.5; |
| 4067 | //printf("Increasing trust on %d to %g\n", |
| 4068 | // iColumn,trust[jNon]); |
| 4069 | } |
| 4070 | } else if (dj > 1.0e-6) { |
| 4071 | double drop = -dj * (columnLower[iColumn] - solution[iColumn]); |
| 4072 | //double lower = CoinMax(trueLower[jNon],solution[iColumn]-0.1); |
| 4073 | //double drop2 = -dj*(lower-solution[iColumn]); |
| 4074 | #if 0 |
| 4075 | if (drop > 1.0e8 || drop2 > 100.0 * drop || (drop > 1.0e-2)) |
| 4076 | printf("Big drop %d %g %g %g %g T %g\n" , |
| 4077 | iColumn, columnLower[iColumn], solution[iColumn], |
| 4078 | columnUpper[iColumn], dj, trueLower[jNon]); |
| 4079 | #endif |
| 4080 | targetDrop += drop; |
| 4081 | if (dj > 1.0e-1 && trust[jNon] < 1.0e-3 |
| 4082 | && solution[iColumn] - trueLower[jNon] > 1.0e-2) { |
| 4083 | trust[jNon] *= 1.5; |
| 4084 | printf("Increasing trust on %d to %g\n" , |
| 4085 | iColumn, trust[jNon]); |
| 4086 | } |
| 4087 | } |
| 4088 | } |
| 4089 | } |
| 4090 | std::cout << "Pass - " << iPass |
| 4091 | << ", target drop is " << targetDrop |
| 4092 | << std::endl; |
| 4093 | if (iPass > 1 && targetDrop < 1.0e-5 && zeroTargetDrop) |
| 4094 | break; |
| 4095 | if (iPass > 1 && targetDrop < 1.0e-5) |
| 4096 | zeroTargetDrop = true; |
| 4097 | else |
| 4098 | zeroTargetDrop = false; |
| 4099 | //if (iPass==5) |
| 4100 | //newModel.setLogLevel(63); |
| 4101 | lastObjective = objValue; |
| 4102 | // take out when ClpPackedMatrix changed |
| 4103 | //newModel.scaling(false); |
| 4104 | #if 0 |
| 4105 | CoinMpsIO writer; |
| 4106 | writer.setMpsData(*newModel.matrix(), COIN_DBL_MAX, |
| 4107 | newModel.getColLower(), newModel.getColUpper(), |
| 4108 | newModel.getObjCoefficients(), |
| 4109 | (const char*) 0 /*integrality*/, |
| 4110 | newModel.getRowLower(), newModel.getRowUpper(), |
| 4111 | NULL, NULL); |
| 4112 | writer.writeMps("xx.mps" ); |
| 4113 | #endif |
| 4114 | } |
| 4115 | delete [] saveSolution; |
| 4116 | delete [] saveStatus; |
| 4117 | for (iPass = 0; iPass < 3; iPass++) |
| 4118 | delete [] last[iPass]; |
| 4119 | for (jNon = 0; jNon < numberNonLinearColumns; jNon++) { |
| 4120 | iColumn = listNonLinearColumn[jNon]; |
| 4121 | columnLower[iColumn] = trueLower[jNon]; |
| 4122 | columnUpper[iColumn] = trueUpper[jNon]; |
| 4123 | } |
| 4124 | delete [] trust; |
| 4125 | delete [] trueUpper; |
| 4126 | delete [] trueLower; |
| 4127 | objectiveValue_ = newModel.objectiveValue(); |
| 4128 | if (bestSolution) { |
| 4129 | CoinMemcpyN(bestSolution, numberColumns2, solution); |
| 4130 | delete [] bestSolution; |
| 4131 | printf("restoring objective of %g\n" , lastGoodObjective); |
| 4132 | objectiveValue_ = lastGoodObjective; |
| 4133 | } |
| 4134 | // Simplest way to get true row activity ? |
| 4135 | double * rowActivity = newModel.primalRowSolution(); |
| 4136 | for (iRow = 0; iRow < numberRows; iRow++) { |
| 4137 | double difference; |
| 4138 | if (fabs(rowLower_[iRow]) < fabs(rowUpper_[iRow])) |
| 4139 | difference = rowLower_[iRow] - rowLower[iRow]; |
| 4140 | else |
| 4141 | difference = rowUpper_[iRow] - rowUpper[iRow]; |
| 4142 | rowLower[iRow] = rowLower_[iRow]; |
| 4143 | rowUpper[iRow] = rowUpper_[iRow]; |
| 4144 | if (difference) { |
| 4145 | if (numberRows < 50) |
| 4146 | printf("For row %d activity changes from %g to %g\n" , |
| 4147 | iRow, rowActivity[iRow], rowActivity[iRow] + difference); |
| 4148 | rowActivity[iRow] += difference; |
| 4149 | } |
| 4150 | } |
| 4151 | delete [] listNonLinearColumn; |
| 4152 | delete [] gradient; |
| 4153 | printf("solution still in newModel - do objective etc!\n" ); |
| 4154 | numberIterations_ = newModel.numberIterations(); |
| 4155 | problemStatus_ = newModel.problemStatus(); |
| 4156 | secondaryStatus_ = newModel.secondaryStatus(); |
| 4157 | CoinMemcpyN(newModel.primalColumnSolution(), numberColumns_, columnActivity_); |
| 4158 | // should do status region |
| 4159 | CoinZeroN(rowActivity_, numberRows_); |
| 4160 | matrix_->times(1.0, columnActivity_, rowActivity_); |
| 4161 | return 0; |
| 4162 | } |
| 4163 | |