1/*
2 * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef OS_LINUX_OS_LINUX_HPP
26#define OS_LINUX_OS_LINUX_HPP
27
28// Linux_OS defines the interface to Linux operating systems
29
30// Information about the protection of the page at address '0' on this os.
31static bool zero_page_read_protected() { return true; }
32
33class Linux {
34 friend class os;
35 friend class OSContainer;
36 friend class TestReserveMemorySpecial;
37
38 static bool libjsig_is_loaded; // libjsig that interposes sigaction(),
39 // __sigaction(), signal() is loaded
40 static struct sigaction *(*get_signal_action)(int);
41
42 static void check_signal_handler(int sig);
43
44 static int (*_pthread_getcpuclockid)(pthread_t, clockid_t *);
45 static int (*_pthread_setname_np)(pthread_t, const char*);
46
47 static address _initial_thread_stack_bottom;
48 static uintptr_t _initial_thread_stack_size;
49
50 static const char *_glibc_version;
51 static const char *_libpthread_version;
52
53 static bool _supports_fast_thread_cpu_time;
54
55 static GrowableArray<int>* _cpu_to_node;
56 static GrowableArray<int>* _nindex_to_node;
57
58 // 0x00000000 = uninitialized,
59 // 0x01000000 = kernel version unknown,
60 // otherwise a 32-bit number:
61 // Ox00AABBCC
62 // AA, Major Version
63 // BB, Minor Version
64 // CC, Fix Version
65 static uint32_t _os_version;
66
67 protected:
68
69 static julong _physical_memory;
70 static pthread_t _main_thread;
71 static Mutex* _createThread_lock;
72 static int _page_size;
73
74 static julong available_memory();
75 static julong physical_memory() { return _physical_memory; }
76 static void set_physical_memory(julong phys_mem) { _physical_memory = phys_mem; }
77 static int active_processor_count();
78
79 static void initialize_system_info();
80
81 static int commit_memory_impl(char* addr, size_t bytes, bool exec);
82 static int commit_memory_impl(char* addr, size_t bytes,
83 size_t alignment_hint, bool exec);
84
85 static void set_glibc_version(const char *s) { _glibc_version = s; }
86 static void set_libpthread_version(const char *s) { _libpthread_version = s; }
87
88 static void rebuild_cpu_to_node_map();
89 static void rebuild_nindex_to_node_map();
90 static GrowableArray<int>* cpu_to_node() { return _cpu_to_node; }
91 static GrowableArray<int>* nindex_to_node() { return _nindex_to_node; }
92
93 static size_t find_large_page_size();
94 static size_t setup_large_page_size();
95
96 static bool setup_large_page_type(size_t page_size);
97 static bool transparent_huge_pages_sanity_check(bool warn, size_t pages_size);
98 static bool hugetlbfs_sanity_check(bool warn, size_t page_size);
99
100 static char* reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec);
101 static char* reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec);
102 static char* reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec);
103 static char* reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec);
104
105 static bool release_memory_special_impl(char* base, size_t bytes);
106 static bool release_memory_special_shm(char* base, size_t bytes);
107 static bool release_memory_special_huge_tlbfs(char* base, size_t bytes);
108
109 static void print_full_memory_info(outputStream* st);
110 static void print_container_info(outputStream* st);
111 static void print_steal_info(outputStream* st);
112 static void print_distro_info(outputStream* st);
113 static void print_libversion_info(outputStream* st);
114 static void print_proc_sys_info(outputStream* st);
115 static void print_ld_preload_file(outputStream* st);
116
117 public:
118 struct CPUPerfTicks {
119 uint64_t used;
120 uint64_t usedKernel;
121 uint64_t total;
122 uint64_t steal;
123 bool has_steal_ticks;
124 };
125
126 // which_logical_cpu=-1 returns accumulated ticks for all cpus.
127 static bool get_tick_information(CPUPerfTicks* pticks, int which_logical_cpu);
128 static bool _stack_is_executable;
129 static void *dlopen_helper(const char *name, char *ebuf, int ebuflen);
130 static void *dll_load_in_vmthread(const char *name, char *ebuf, int ebuflen);
131
132 static void init_thread_fpu_state();
133 static int get_fpu_control_word();
134 static void set_fpu_control_word(int fpu_control);
135 static pthread_t main_thread(void) { return _main_thread; }
136 // returns kernel thread id (similar to LWP id on Solaris), which can be
137 // used to access /proc
138 static pid_t gettid();
139 static void set_createThread_lock(Mutex* lk) { _createThread_lock = lk; }
140 static Mutex* createThread_lock(void) { return _createThread_lock; }
141 static void hotspot_sigmask(Thread* thread);
142
143 static address initial_thread_stack_bottom(void) { return _initial_thread_stack_bottom; }
144 static uintptr_t initial_thread_stack_size(void) { return _initial_thread_stack_size; }
145
146 static int page_size(void) { return _page_size; }
147 static void set_page_size(int val) { _page_size = val; }
148
149 static address ucontext_get_pc(const ucontext_t* uc);
150 static void ucontext_set_pc(ucontext_t* uc, address pc);
151 static intptr_t* ucontext_get_sp(const ucontext_t* uc);
152 static intptr_t* ucontext_get_fp(const ucontext_t* uc);
153
154 // For Analyzer Forte AsyncGetCallTrace profiling support:
155 //
156 // This interface should be declared in os_linux_i486.hpp, but
157 // that file provides extensions to the os class and not the
158 // Linux class.
159 static ExtendedPC fetch_frame_from_ucontext(Thread* thread, const ucontext_t* uc,
160 intptr_t** ret_sp, intptr_t** ret_fp);
161
162 static bool get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr);
163
164 // This boolean allows users to forward their own non-matching signals
165 // to JVM_handle_linux_signal, harmlessly.
166 static bool signal_handlers_are_installed;
167
168 static int get_our_sigflags(int);
169 static void set_our_sigflags(int, int);
170 static void signal_sets_init();
171 static void install_signal_handlers();
172 static void set_signal_handler(int, bool);
173
174 static sigset_t* unblocked_signals();
175 static sigset_t* vm_signals();
176
177 // For signal-chaining
178 static struct sigaction *get_chained_signal_action(int sig);
179 static bool chained_handler(int sig, siginfo_t* siginfo, void* context);
180
181 // GNU libc and libpthread version strings
182 static const char *glibc_version() { return _glibc_version; }
183 static const char *libpthread_version() { return _libpthread_version; }
184
185 static void libpthread_init();
186 static void sched_getcpu_init();
187 static bool libnuma_init();
188 static void* libnuma_dlsym(void* handle, const char* name);
189 // libnuma v2 (libnuma_1.2) symbols
190 static void* libnuma_v2_dlsym(void* handle, const char* name);
191
192 // Return default guard size for the specified thread type
193 static size_t default_guard_size(os::ThreadType thr_type);
194
195 static void capture_initial_stack(size_t max_size);
196
197 // Stack overflow handling
198 static bool manually_expand_stack(JavaThread * t, address addr);
199 static int max_register_window_saves_before_flushing();
200
201 // fast POSIX clocks support
202 static void fast_thread_clock_init(void);
203
204 static int pthread_getcpuclockid(pthread_t tid, clockid_t *clock_id) {
205 return _pthread_getcpuclockid ? _pthread_getcpuclockid(tid, clock_id) : -1;
206 }
207
208 static bool supports_fast_thread_cpu_time() {
209 return _supports_fast_thread_cpu_time;
210 }
211
212 static jlong fast_thread_cpu_time(clockid_t clockid);
213
214 static void initialize_os_info();
215 static bool os_version_is_known();
216 static uint32_t os_version();
217
218 // Stack repair handling
219
220 // none present
221
222 private:
223 static void numa_init();
224 static void expand_stack_to(address bottom);
225
226 typedef int (*sched_getcpu_func_t)(void);
227 typedef int (*numa_node_to_cpus_func_t)(int node, unsigned long *buffer, int bufferlen);
228 typedef int (*numa_max_node_func_t)(void);
229 typedef int (*numa_num_configured_nodes_func_t)(void);
230 typedef int (*numa_available_func_t)(void);
231 typedef int (*numa_tonode_memory_func_t)(void *start, size_t size, int node);
232 typedef void (*numa_interleave_memory_func_t)(void *start, size_t size, unsigned long *nodemask);
233 typedef void (*numa_interleave_memory_v2_func_t)(void *start, size_t size, struct bitmask* mask);
234 typedef struct bitmask* (*numa_get_membind_func_t)(void);
235 typedef struct bitmask* (*numa_get_interleave_mask_func_t)(void);
236
237 typedef void (*numa_set_bind_policy_func_t)(int policy);
238 typedef int (*numa_bitmask_isbitset_func_t)(struct bitmask *bmp, unsigned int n);
239 typedef int (*numa_distance_func_t)(int node1, int node2);
240
241 static sched_getcpu_func_t _sched_getcpu;
242 static numa_node_to_cpus_func_t _numa_node_to_cpus;
243 static numa_max_node_func_t _numa_max_node;
244 static numa_num_configured_nodes_func_t _numa_num_configured_nodes;
245 static numa_available_func_t _numa_available;
246 static numa_tonode_memory_func_t _numa_tonode_memory;
247 static numa_interleave_memory_func_t _numa_interleave_memory;
248 static numa_interleave_memory_v2_func_t _numa_interleave_memory_v2;
249 static numa_set_bind_policy_func_t _numa_set_bind_policy;
250 static numa_bitmask_isbitset_func_t _numa_bitmask_isbitset;
251 static numa_distance_func_t _numa_distance;
252 static numa_get_membind_func_t _numa_get_membind;
253 static numa_get_interleave_mask_func_t _numa_get_interleave_mask;
254 static unsigned long* _numa_all_nodes;
255 static struct bitmask* _numa_all_nodes_ptr;
256 static struct bitmask* _numa_nodes_ptr;
257 static struct bitmask* _numa_interleave_bitmask;
258 static struct bitmask* _numa_membind_bitmask;
259
260 static void set_sched_getcpu(sched_getcpu_func_t func) { _sched_getcpu = func; }
261 static void set_numa_node_to_cpus(numa_node_to_cpus_func_t func) { _numa_node_to_cpus = func; }
262 static void set_numa_max_node(numa_max_node_func_t func) { _numa_max_node = func; }
263 static void set_numa_num_configured_nodes(numa_num_configured_nodes_func_t func) { _numa_num_configured_nodes = func; }
264 static void set_numa_available(numa_available_func_t func) { _numa_available = func; }
265 static void set_numa_tonode_memory(numa_tonode_memory_func_t func) { _numa_tonode_memory = func; }
266 static void set_numa_interleave_memory(numa_interleave_memory_func_t func) { _numa_interleave_memory = func; }
267 static void set_numa_interleave_memory_v2(numa_interleave_memory_v2_func_t func) { _numa_interleave_memory_v2 = func; }
268 static void set_numa_set_bind_policy(numa_set_bind_policy_func_t func) { _numa_set_bind_policy = func; }
269 static void set_numa_bitmask_isbitset(numa_bitmask_isbitset_func_t func) { _numa_bitmask_isbitset = func; }
270 static void set_numa_distance(numa_distance_func_t func) { _numa_distance = func; }
271 static void set_numa_get_membind(numa_get_membind_func_t func) { _numa_get_membind = func; }
272 static void set_numa_get_interleave_mask(numa_get_interleave_mask_func_t func) { _numa_get_interleave_mask = func; }
273 static void set_numa_all_nodes(unsigned long* ptr) { _numa_all_nodes = ptr; }
274 static void set_numa_all_nodes_ptr(struct bitmask **ptr) { _numa_all_nodes_ptr = (ptr == NULL ? NULL : *ptr); }
275 static void set_numa_nodes_ptr(struct bitmask **ptr) { _numa_nodes_ptr = (ptr == NULL ? NULL : *ptr); }
276 static void set_numa_interleave_bitmask(struct bitmask* ptr) { _numa_interleave_bitmask = ptr ; }
277 static void set_numa_membind_bitmask(struct bitmask* ptr) { _numa_membind_bitmask = ptr ; }
278 static int sched_getcpu_syscall(void);
279
280 enum NumaAllocationPolicy{
281 NotInitialized,
282 Membind,
283 Interleave
284 };
285 static NumaAllocationPolicy _current_numa_policy;
286
287 public:
288 static int sched_getcpu() { return _sched_getcpu != NULL ? _sched_getcpu() : -1; }
289 static int numa_node_to_cpus(int node, unsigned long *buffer, int bufferlen) {
290 return _numa_node_to_cpus != NULL ? _numa_node_to_cpus(node, buffer, bufferlen) : -1;
291 }
292 static int numa_max_node() { return _numa_max_node != NULL ? _numa_max_node() : -1; }
293 static int numa_num_configured_nodes() {
294 return _numa_num_configured_nodes != NULL ? _numa_num_configured_nodes() : -1;
295 }
296 static int numa_available() { return _numa_available != NULL ? _numa_available() : -1; }
297 static int numa_tonode_memory(void *start, size_t size, int node) {
298 return _numa_tonode_memory != NULL ? _numa_tonode_memory(start, size, node) : -1;
299 }
300
301 static bool is_running_in_interleave_mode() {
302 return _current_numa_policy == Interleave;
303 }
304
305 static void set_configured_numa_policy(NumaAllocationPolicy numa_policy) {
306 _current_numa_policy = numa_policy;
307 }
308
309 static NumaAllocationPolicy identify_numa_policy() {
310 for (int node = 0; node <= Linux::numa_max_node(); node++) {
311 if (Linux::_numa_bitmask_isbitset(Linux::_numa_interleave_bitmask, node)) {
312 return Interleave;
313 }
314 }
315 return Membind;
316 }
317
318 static void numa_interleave_memory(void *start, size_t size) {
319 // Prefer v2 API
320 if (_numa_interleave_memory_v2 != NULL) {
321 if (is_running_in_interleave_mode()) {
322 _numa_interleave_memory_v2(start, size, _numa_interleave_bitmask);
323 } else if (_numa_membind_bitmask != NULL) {
324 _numa_interleave_memory_v2(start, size, _numa_membind_bitmask);
325 }
326 } else if (_numa_interleave_memory != NULL) {
327 _numa_interleave_memory(start, size, _numa_all_nodes);
328 }
329 }
330 static void numa_set_bind_policy(int policy) {
331 if (_numa_set_bind_policy != NULL) {
332 _numa_set_bind_policy(policy);
333 }
334 }
335 static int numa_distance(int node1, int node2) {
336 return _numa_distance != NULL ? _numa_distance(node1, node2) : -1;
337 }
338 static int get_node_by_cpu(int cpu_id);
339 static int get_existing_num_nodes();
340 // Check if numa node is configured (non-zero memory node).
341 static bool is_node_in_configured_nodes(unsigned int n) {
342 if (_numa_bitmask_isbitset != NULL && _numa_all_nodes_ptr != NULL) {
343 return _numa_bitmask_isbitset(_numa_all_nodes_ptr, n);
344 } else
345 return false;
346 }
347 // Check if numa node exists in the system (including zero memory nodes).
348 static bool is_node_in_existing_nodes(unsigned int n) {
349 if (_numa_bitmask_isbitset != NULL && _numa_nodes_ptr != NULL) {
350 return _numa_bitmask_isbitset(_numa_nodes_ptr, n);
351 } else if (_numa_bitmask_isbitset != NULL && _numa_all_nodes_ptr != NULL) {
352 // Not all libnuma API v2 implement numa_nodes_ptr, so it's not possible
353 // to trust the API version for checking its absence. On the other hand,
354 // numa_nodes_ptr found in libnuma 2.0.9 and above is the only way to get
355 // a complete view of all numa nodes in the system, hence numa_nodes_ptr
356 // is used to handle CPU and nodes on architectures (like PowerPC) where
357 // there can exist nodes with CPUs but no memory or vice-versa and the
358 // nodes may be non-contiguous. For most of the architectures, like
359 // x86_64, numa_node_ptr presents the same node set as found in
360 // numa_all_nodes_ptr so it's possible to use numa_all_nodes_ptr as a
361 // substitute.
362 return _numa_bitmask_isbitset(_numa_all_nodes_ptr, n);
363 } else
364 return false;
365 }
366 // Check if node is in bound node set.
367 static bool is_node_in_bound_nodes(int node) {
368 if (_numa_bitmask_isbitset != NULL) {
369 if (is_running_in_interleave_mode()) {
370 return _numa_bitmask_isbitset(_numa_interleave_bitmask, node);
371 } else {
372 return _numa_membind_bitmask != NULL ? _numa_bitmask_isbitset(_numa_membind_bitmask, node) : false;
373 }
374 }
375 return false;
376 }
377 // Check if bound to only one numa node.
378 // Returns true if bound to a single numa node, otherwise returns false.
379 static bool is_bound_to_single_node() {
380 int nodes = 0;
381 struct bitmask* bmp = NULL;
382 unsigned int node = 0;
383 unsigned int highest_node_number = 0;
384
385 if (_numa_get_membind != NULL && _numa_max_node != NULL && _numa_bitmask_isbitset != NULL) {
386 bmp = _numa_get_membind();
387 highest_node_number = _numa_max_node();
388 } else {
389 return false;
390 }
391
392 for (node = 0; node <= highest_node_number; node++) {
393 if (_numa_bitmask_isbitset(bmp, node)) {
394 nodes++;
395 }
396 }
397
398 if (nodes == 1) {
399 return true;
400 } else {
401 return false;
402 }
403 }
404};
405
406#endif // OS_LINUX_OS_LINUX_HPP
407