1/*
2 * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_C1_C1_VALUESTACK_HPP
26#define SHARE_C1_C1_VALUESTACK_HPP
27
28#include "c1/c1_Instruction.hpp"
29
30class ValueStack: public CompilationResourceObj {
31 public:
32 enum Kind {
33 Parsing, // During abstract interpretation in GraphBuilder
34 CallerState, // Caller state when inlining
35 StateBefore, // Before before execution of instruction
36 StateAfter, // After execution of instruction
37 ExceptionState, // Exception handling of instruction
38 EmptyExceptionState, // Exception handling of instructions not covered by an xhandler
39 BlockBeginState // State of BlockBegin instruction with phi functions of this block
40 };
41
42 private:
43 IRScope* _scope; // the enclosing scope
44 ValueStack* _caller_state;
45 int _bci;
46 Kind _kind;
47
48 Values _locals; // the locals
49 Values _stack; // the expression stack
50 Values* _locks; // the monitor stack (holding the locked values)
51
52 Value check(ValueTag tag, Value t) {
53 assert(tag == t->type()->tag() || tag == objectTag && t->type()->tag() == addressTag, "types must correspond");
54 return t;
55 }
56
57 Value check(ValueTag tag, Value t, Value h) {
58 assert(h == NULL, "hi-word of doubleword value must be NULL");
59 return check(tag, t);
60 }
61
62 // helper routine
63 static void apply(const Values& list, ValueVisitor* f);
64
65 // for simplified copying
66 ValueStack(ValueStack* copy_from, Kind kind, int bci);
67
68 public:
69 // creation
70 ValueStack(IRScope* scope, ValueStack* caller_state);
71
72 ValueStack* copy() { return new ValueStack(this, _kind, _bci); }
73 ValueStack* copy(Kind new_kind, int new_bci) { return new ValueStack(this, new_kind, new_bci); }
74 ValueStack* copy_for_parsing() { return new ValueStack(this, Parsing, -99); }
75
76 void set_caller_state(ValueStack* s) {
77 assert(kind() == EmptyExceptionState ||
78 (Compilation::current()->env()->should_retain_local_variables() && kind() == ExceptionState),
79 "only EmptyExceptionStates can be modified");
80 _caller_state = s;
81 }
82
83 bool is_same(ValueStack* s); // returns true if this & s's types match (w/o checking locals)
84
85 // accessors
86 IRScope* scope() const { return _scope; }
87 ValueStack* caller_state() const { return _caller_state; }
88 int bci() const { return _bci; }
89 Kind kind() const { return _kind; }
90
91 int locals_size() const { return _locals.length(); }
92 int stack_size() const { return _stack.length(); }
93 int locks_size() const { return _locks == NULL ? 0 : _locks->length(); }
94 bool stack_is_empty() const { return _stack.is_empty(); }
95 bool no_active_locks() const { return _locks == NULL || _locks->is_empty(); }
96 int total_locks_size() const;
97
98 // locals access
99 void clear_locals(); // sets all locals to NULL;
100
101 void invalidate_local(int i) {
102 assert(!_locals.at(i)->type()->is_double_word() ||
103 _locals.at(i + 1) == NULL, "hi-word of doubleword value must be NULL");
104 _locals.at_put(i, NULL);
105 }
106
107 Value local_at(int i) const {
108 Value x = _locals.at(i);
109 assert(x == NULL || !x->type()->is_double_word() ||
110 _locals.at(i + 1) == NULL, "hi-word of doubleword value must be NULL");
111 return x;
112 }
113
114 void store_local(int i, Value x) {
115 // When overwriting local i, check if i - 1 was the start of a
116 // double word local and kill it.
117 if (i > 0) {
118 Value prev = _locals.at(i - 1);
119 if (prev != NULL && prev->type()->is_double_word()) {
120 _locals.at_put(i - 1, NULL);
121 }
122 }
123
124 _locals.at_put(i, x);
125 if (x->type()->is_double_word()) {
126 // hi-word of doubleword value is always NULL
127 _locals.at_put(i + 1, NULL);
128 }
129 }
130
131 // stack access
132 Value stack_at(int i) const {
133 Value x = _stack.at(i);
134 assert(!x->type()->is_double_word() ||
135 _stack.at(i + 1) == NULL, "hi-word of doubleword value must be NULL");
136 return x;
137 }
138
139 Value stack_at_inc(int& i) const {
140 Value x = stack_at(i);
141 i += x->type()->size();
142 return x;
143 }
144
145 void stack_at_put(int i, Value x) {
146 _stack.at_put(i, x);
147 }
148
149 // pinning support
150 void pin_stack_for_linear_scan();
151
152 // iteration
153 void values_do(ValueVisitor* f);
154
155 // untyped manipulation (for dup_x1, etc.)
156 void truncate_stack(int size) { _stack.trunc_to(size); }
157 void raw_push(Value t) { _stack.push(t); }
158 Value raw_pop() { return _stack.pop(); }
159
160 // typed manipulation
161 void ipush(Value t) { _stack.push(check(intTag , t)); }
162 void fpush(Value t) { _stack.push(check(floatTag , t)); }
163 void apush(Value t) { _stack.push(check(objectTag , t)); }
164 void rpush(Value t) { _stack.push(check(addressTag, t)); }
165 void lpush(Value t) { _stack.push(check(longTag , t)); _stack.push(NULL); }
166 void dpush(Value t) { _stack.push(check(doubleTag , t)); _stack.push(NULL); }
167
168 void push(ValueType* type, Value t) {
169 switch (type->tag()) {
170 case intTag : ipush(t); return;
171 case longTag : lpush(t); return;
172 case floatTag : fpush(t); return;
173 case doubleTag : dpush(t); return;
174 case objectTag : apush(t); return;
175 case addressTag: rpush(t); return;
176 default : ShouldNotReachHere(); return;
177 }
178 }
179
180 Value ipop() { return check(intTag , _stack.pop()); }
181 Value fpop() { return check(floatTag , _stack.pop()); }
182 Value apop() { return check(objectTag , _stack.pop()); }
183 Value rpop() { return check(addressTag, _stack.pop()); }
184 Value lpop() { Value h = _stack.pop(); return check(longTag , _stack.pop(), h); }
185 Value dpop() { Value h = _stack.pop(); return check(doubleTag, _stack.pop(), h); }
186
187 Value pop(ValueType* type) {
188 switch (type->tag()) {
189 case intTag : return ipop();
190 case longTag : return lpop();
191 case floatTag : return fpop();
192 case doubleTag : return dpop();
193 case objectTag : return apop();
194 case addressTag: return rpop();
195 default : ShouldNotReachHere(); return NULL;
196 }
197 }
198
199 Values* pop_arguments(int argument_size);
200
201 // locks access
202 int lock (Value obj);
203 int unlock();
204 Value lock_at(int i) const { return _locks->at(i); }
205
206 // SSA form IR support
207 void setup_phi_for_stack(BlockBegin* b, int index);
208 void setup_phi_for_local(BlockBegin* b, int index);
209
210 // debugging
211 void print() PRODUCT_RETURN;
212 void verify() PRODUCT_RETURN;
213};
214
215
216
217// Macro definitions for simple iteration of stack and local values of a ValueStack
218// The macros can be used like a for-loop. All variables (state, index and value)
219// must be defined before the loop.
220// When states are nested because of inlining, the stack of the innermost state
221// cumulates also the stack of the nested states. In contrast, the locals of all
222// states must be iterated each.
223// Use the following code pattern to iterate all stack values and all nested local values:
224//
225// ValueStack* state = ... // state that is iterated
226// int index; // current loop index (overwritten in loop)
227// Value value; // value at current loop index (overwritten in loop)
228//
229// for_each_stack_value(state, index, value {
230// do something with value and index
231// }
232//
233// for_each_state(state) {
234// for_each_local_value(state, index, value) {
235// do something with value and index
236// }
237// }
238// as an invariant, state is NULL now
239
240
241// construct a unique variable name with the line number where the macro is used
242#define temp_var3(x) temp__ ## x
243#define temp_var2(x) temp_var3(x)
244#define temp_var temp_var2(__LINE__)
245
246#define for_each_state(state) \
247 for (; state != NULL; state = state->caller_state())
248
249#define for_each_local_value(state, index, value) \
250 int temp_var = state->locals_size(); \
251 for (index = 0; \
252 index < temp_var && (value = state->local_at(index), true); \
253 index += (value == NULL || value->type()->is_illegal() ? 1 : value->type()->size())) \
254 if (value != NULL)
255
256
257#define for_each_stack_value(state, index, value) \
258 int temp_var = state->stack_size(); \
259 for (index = 0; \
260 index < temp_var && (value = state->stack_at(index), true); \
261 index += value->type()->size())
262
263
264#define for_each_lock_value(state, index, value) \
265 int temp_var = state->locks_size(); \
266 for (index = 0; \
267 index < temp_var && (value = state->lock_at(index), true); \
268 index++) \
269 if (value != NULL)
270
271
272// Macro definition for simple iteration of all state values of a ValueStack
273// Because the code cannot be executed in a single loop, the code must be passed
274// as a macro parameter.
275// Use the following code pattern to iterate all stack values and all nested local values:
276//
277// ValueStack* state = ... // state that is iterated
278// for_each_state_value(state, value,
279// do something with value (note that this is a macro parameter)
280// );
281
282#define for_each_state_value(v_state, v_value, v_code) \
283{ \
284 int cur_index; \
285 ValueStack* cur_state = v_state; \
286 Value v_value; \
287 for_each_state(cur_state) { \
288 { \
289 for_each_local_value(cur_state, cur_index, v_value) { \
290 v_code; \
291 } \
292 } \
293 { \
294 for_each_stack_value(cur_state, cur_index, v_value) { \
295 v_code; \
296 } \
297 } \
298 } \
299}
300
301
302// Macro definition for simple iteration of all phi functions of a block, i.e all
303// phi functions of the ValueStack where the block matches.
304// Use the following code pattern to iterate all phi functions of a block:
305//
306// BlockBegin* block = ... // block that is iterated
307// for_each_phi_function(block, phi,
308// do something with the phi function phi (note that this is a macro parameter)
309// );
310
311#define for_each_phi_fun(v_block, v_phi, v_code) \
312{ \
313 int cur_index; \
314 ValueStack* cur_state = v_block->state(); \
315 Value value; \
316 { \
317 for_each_stack_value(cur_state, cur_index, value) { \
318 Phi* v_phi = value->as_Phi(); \
319 if (v_phi != NULL && v_phi->block() == v_block) { \
320 v_code; \
321 } \
322 } \
323 } \
324 { \
325 for_each_local_value(cur_state, cur_index, value) { \
326 Phi* v_phi = value->as_Phi(); \
327 if (v_phi != NULL && v_phi->block() == v_block) { \
328 v_code; \
329 } \
330 } \
331 } \
332}
333
334#endif // SHARE_C1_C1_VALUESTACK_HPP
335