| 1 | /* |
| 2 | * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #ifndef SHARE_UTILITIES_GROWABLEARRAY_HPP |
| 26 | #define SHARE_UTILITIES_GROWABLEARRAY_HPP |
| 27 | |
| 28 | #include "memory/allocation.hpp" |
| 29 | #include "oops/oop.hpp" |
| 30 | #include "utilities/debug.hpp" |
| 31 | #include "utilities/globalDefinitions.hpp" |
| 32 | #include "utilities/ostream.hpp" |
| 33 | |
| 34 | // A growable array. |
| 35 | |
| 36 | /*************************************************************************/ |
| 37 | /* */ |
| 38 | /* WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING */ |
| 39 | /* */ |
| 40 | /* Should you use GrowableArrays to contain handles you must be certain */ |
| 41 | /* the the GrowableArray does not outlive the HandleMark that contains */ |
| 42 | /* the handles. Since GrowableArrays are typically resource allocated */ |
| 43 | /* the following is an example of INCORRECT CODE, */ |
| 44 | /* */ |
| 45 | /* ResourceMark rm; */ |
| 46 | /* GrowableArray<Handle>* arr = new GrowableArray<Handle>(size); */ |
| 47 | /* if (blah) { */ |
| 48 | /* while (...) { */ |
| 49 | /* HandleMark hm; */ |
| 50 | /* ... */ |
| 51 | /* Handle h(THREAD, some_oop); */ |
| 52 | /* arr->append(h); */ |
| 53 | /* } */ |
| 54 | /* } */ |
| 55 | /* if (arr->length() != 0 ) { */ |
| 56 | /* oop bad_oop = arr->at(0)(); // Handle is BAD HERE. */ |
| 57 | /* ... */ |
| 58 | /* } */ |
| 59 | /* */ |
| 60 | /* If the GrowableArrays you are creating is C_Heap allocated then it */ |
| 61 | /* hould not old handles since the handles could trivially try and */ |
| 62 | /* outlive their HandleMark. In some situations you might need to do */ |
| 63 | /* this and it would be legal but be very careful and see if you can do */ |
| 64 | /* the code in some other manner. */ |
| 65 | /* */ |
| 66 | /*************************************************************************/ |
| 67 | |
| 68 | // To call default constructor the placement operator new() is used. |
| 69 | // It should be empty (it only returns the passed void* pointer). |
| 70 | // The definition of placement operator new(size_t, void*) in the <new>. |
| 71 | |
| 72 | #include <new> |
| 73 | |
| 74 | // Need the correct linkage to call qsort without warnings |
| 75 | extern "C" { |
| 76 | typedef int (*_sort_Fn)(const void *, const void *); |
| 77 | } |
| 78 | |
| 79 | class GenericGrowableArray : public ResourceObj { |
| 80 | friend class VMStructs; |
| 81 | |
| 82 | protected: |
| 83 | int _len; // current length |
| 84 | int _max; // maximum length |
| 85 | Arena* _arena; // Indicates where allocation occurs: |
| 86 | // 0 means default ResourceArea |
| 87 | // 1 means on C heap |
| 88 | // otherwise, allocate in _arena |
| 89 | |
| 90 | MEMFLAGS _memflags; // memory type if allocation in C heap |
| 91 | |
| 92 | #ifdef ASSERT |
| 93 | int _nesting; // resource area nesting at creation |
| 94 | void set_nesting(); |
| 95 | void check_nesting(); |
| 96 | #else |
| 97 | #define set_nesting(); |
| 98 | #define check_nesting(); |
| 99 | #endif |
| 100 | |
| 101 | // Where are we going to allocate memory? |
| 102 | bool on_C_heap() { return _arena == (Arena*)1; } |
| 103 | bool on_stack () { return _arena == NULL; } |
| 104 | bool on_arena () { return _arena > (Arena*)1; } |
| 105 | |
| 106 | // This GA will use the resource stack for storage if c_heap==false, |
| 107 | // Else it will use the C heap. Use clear_and_deallocate to avoid leaks. |
| 108 | GenericGrowableArray(int initial_size, int initial_len, bool c_heap, MEMFLAGS flags = mtNone) { |
| 109 | _len = initial_len; |
| 110 | _max = initial_size; |
| 111 | _memflags = flags; |
| 112 | |
| 113 | // memory type has to be specified for C heap allocation |
| 114 | assert(!(c_heap && flags == mtNone), "memory type not specified for C heap object" ); |
| 115 | |
| 116 | assert(_len >= 0 && _len <= _max, "initial_len too big" ); |
| 117 | _arena = (c_heap ? (Arena*)1 : NULL); |
| 118 | set_nesting(); |
| 119 | assert(!on_C_heap() || allocated_on_C_heap(), "growable array must be on C heap if elements are" ); |
| 120 | assert(!on_stack() || |
| 121 | (allocated_on_res_area() || allocated_on_stack()), |
| 122 | "growable array must be on stack if elements are not on arena and not on C heap" ); |
| 123 | } |
| 124 | |
| 125 | // This GA will use the given arena for storage. |
| 126 | // Consider using new(arena) GrowableArray<T> to allocate the header. |
| 127 | GenericGrowableArray(Arena* arena, int initial_size, int initial_len) { |
| 128 | _len = initial_len; |
| 129 | _max = initial_size; |
| 130 | assert(_len >= 0 && _len <= _max, "initial_len too big" ); |
| 131 | _arena = arena; |
| 132 | _memflags = mtNone; |
| 133 | |
| 134 | assert(on_arena(), "arena has taken on reserved value 0 or 1" ); |
| 135 | // Relax next assert to allow object allocation on resource area, |
| 136 | // on stack or embedded into an other object. |
| 137 | assert(allocated_on_arena() || allocated_on_stack(), |
| 138 | "growable array must be on arena or on stack if elements are on arena" ); |
| 139 | } |
| 140 | |
| 141 | void* raw_allocate(int elementSize); |
| 142 | |
| 143 | // some uses pass the Thread explicitly for speed (4990299 tuning) |
| 144 | void* raw_allocate(Thread* thread, int elementSize) { |
| 145 | assert(on_stack(), "fast ResourceObj path only" ); |
| 146 | return (void*)resource_allocate_bytes(thread, elementSize * _max); |
| 147 | } |
| 148 | |
| 149 | void free_C_heap(void* elements); |
| 150 | }; |
| 151 | |
| 152 | template<class E> class GrowableArrayIterator; |
| 153 | template<class E, class UnaryPredicate> class GrowableArrayFilterIterator; |
| 154 | |
| 155 | template<class E> |
| 156 | class CompareClosure : public Closure { |
| 157 | public: |
| 158 | virtual int do_compare(const E&, const E&) = 0; |
| 159 | }; |
| 160 | |
| 161 | template<class E> class GrowableArray : public GenericGrowableArray { |
| 162 | friend class VMStructs; |
| 163 | |
| 164 | private: |
| 165 | E* _data; // data array |
| 166 | |
| 167 | void grow(int j); |
| 168 | void raw_at_put_grow(int i, const E& p, const E& fill); |
| 169 | void clear_and_deallocate(); |
| 170 | public: |
| 171 | GrowableArray(Thread* thread, int initial_size) : GenericGrowableArray(initial_size, 0, false) { |
| 172 | _data = (E*)raw_allocate(thread, sizeof(E)); |
| 173 | for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E(); |
| 174 | } |
| 175 | |
| 176 | GrowableArray(int initial_size, bool C_heap = false, MEMFLAGS F = mtInternal) |
| 177 | : GenericGrowableArray(initial_size, 0, C_heap, F) { |
| 178 | _data = (E*)raw_allocate(sizeof(E)); |
| 179 | // Needed for Visual Studio 2012 and older |
| 180 | #ifdef _MSC_VER |
| 181 | #pragma warning(suppress: 4345) |
| 182 | #endif |
| 183 | for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E(); |
| 184 | } |
| 185 | |
| 186 | GrowableArray(int initial_size, int initial_len, const E& filler, bool C_heap = false, MEMFLAGS memflags = mtInternal) |
| 187 | : GenericGrowableArray(initial_size, initial_len, C_heap, memflags) { |
| 188 | _data = (E*)raw_allocate(sizeof(E)); |
| 189 | int i = 0; |
| 190 | for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler); |
| 191 | for (; i < _max; i++) ::new ((void*)&_data[i]) E(); |
| 192 | } |
| 193 | |
| 194 | GrowableArray(Arena* arena, int initial_size, int initial_len, const E& filler) : GenericGrowableArray(arena, initial_size, initial_len) { |
| 195 | _data = (E*)raw_allocate(sizeof(E)); |
| 196 | int i = 0; |
| 197 | for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler); |
| 198 | for (; i < _max; i++) ::new ((void*)&_data[i]) E(); |
| 199 | } |
| 200 | |
| 201 | GrowableArray() : GenericGrowableArray(2, 0, false) { |
| 202 | _data = (E*)raw_allocate(sizeof(E)); |
| 203 | ::new ((void*)&_data[0]) E(); |
| 204 | ::new ((void*)&_data[1]) E(); |
| 205 | } |
| 206 | |
| 207 | // Does nothing for resource and arena objects |
| 208 | ~GrowableArray() { if (on_C_heap()) clear_and_deallocate(); } |
| 209 | |
| 210 | void clear() { _len = 0; } |
| 211 | int length() const { return _len; } |
| 212 | int max_length() const { return _max; } |
| 213 | void trunc_to(int l) { assert(l <= _len,"cannot increase length" ); _len = l; } |
| 214 | bool is_empty() const { return _len == 0; } |
| 215 | bool is_nonempty() const { return _len != 0; } |
| 216 | bool is_full() const { return _len == _max; } |
| 217 | DEBUG_ONLY(E* data_addr() const { return _data; }) |
| 218 | |
| 219 | void print(); |
| 220 | |
| 221 | inline static bool safe_equals(oop obj1, oop obj2) { |
| 222 | return oopDesc::equals(obj1, obj2); |
| 223 | } |
| 224 | |
| 225 | template <class X> |
| 226 | inline static bool safe_equals(X i1, X i2) { |
| 227 | return i1 == i2; |
| 228 | } |
| 229 | |
| 230 | int append(const E& elem) { |
| 231 | check_nesting(); |
| 232 | if (_len == _max) grow(_len); |
| 233 | int idx = _len++; |
| 234 | _data[idx] = elem; |
| 235 | return idx; |
| 236 | } |
| 237 | |
| 238 | bool append_if_missing(const E& elem) { |
| 239 | // Returns TRUE if elem is added. |
| 240 | bool missed = !contains(elem); |
| 241 | if (missed) append(elem); |
| 242 | return missed; |
| 243 | } |
| 244 | |
| 245 | E& at(int i) { |
| 246 | assert(0 <= i && i < _len, "illegal index" ); |
| 247 | return _data[i]; |
| 248 | } |
| 249 | |
| 250 | E const& at(int i) const { |
| 251 | assert(0 <= i && i < _len, "illegal index" ); |
| 252 | return _data[i]; |
| 253 | } |
| 254 | |
| 255 | E* adr_at(int i) const { |
| 256 | assert(0 <= i && i < _len, "illegal index" ); |
| 257 | return &_data[i]; |
| 258 | } |
| 259 | |
| 260 | E first() const { |
| 261 | assert(_len > 0, "empty list" ); |
| 262 | return _data[0]; |
| 263 | } |
| 264 | |
| 265 | E top() const { |
| 266 | assert(_len > 0, "empty list" ); |
| 267 | return _data[_len-1]; |
| 268 | } |
| 269 | |
| 270 | E last() const { |
| 271 | return top(); |
| 272 | } |
| 273 | |
| 274 | GrowableArrayIterator<E> begin() const { |
| 275 | return GrowableArrayIterator<E>(this, 0); |
| 276 | } |
| 277 | |
| 278 | GrowableArrayIterator<E> end() const { |
| 279 | return GrowableArrayIterator<E>(this, length()); |
| 280 | } |
| 281 | |
| 282 | void push(const E& elem) { append(elem); } |
| 283 | |
| 284 | E pop() { |
| 285 | assert(_len > 0, "empty list" ); |
| 286 | return _data[--_len]; |
| 287 | } |
| 288 | |
| 289 | void at_put(int i, const E& elem) { |
| 290 | assert(0 <= i && i < _len, "illegal index" ); |
| 291 | _data[i] = elem; |
| 292 | } |
| 293 | |
| 294 | E at_grow(int i, const E& fill = E()) { |
| 295 | assert(0 <= i, "negative index" ); |
| 296 | check_nesting(); |
| 297 | if (i >= _len) { |
| 298 | if (i >= _max) grow(i); |
| 299 | for (int j = _len; j <= i; j++) |
| 300 | _data[j] = fill; |
| 301 | _len = i+1; |
| 302 | } |
| 303 | return _data[i]; |
| 304 | } |
| 305 | |
| 306 | void at_put_grow(int i, const E& elem, const E& fill = E()) { |
| 307 | assert(0 <= i, "negative index" ); |
| 308 | check_nesting(); |
| 309 | raw_at_put_grow(i, elem, fill); |
| 310 | } |
| 311 | |
| 312 | bool contains(const E& elem) const { |
| 313 | for (int i = 0; i < _len; i++) { |
| 314 | if (safe_equals(_data[i], elem)) return true; |
| 315 | } |
| 316 | return false; |
| 317 | } |
| 318 | |
| 319 | int find(const E& elem) const { |
| 320 | for (int i = 0; i < _len; i++) { |
| 321 | if (_data[i] == elem) return i; |
| 322 | } |
| 323 | return -1; |
| 324 | } |
| 325 | |
| 326 | int find_from_end(const E& elem) const { |
| 327 | for (int i = _len-1; i >= 0; i--) { |
| 328 | if (_data[i] == elem) return i; |
| 329 | } |
| 330 | return -1; |
| 331 | } |
| 332 | |
| 333 | int find(void* token, bool f(void*, E)) const { |
| 334 | for (int i = 0; i < _len; i++) { |
| 335 | if (f(token, _data[i])) return i; |
| 336 | } |
| 337 | return -1; |
| 338 | } |
| 339 | |
| 340 | int find_from_end(void* token, bool f(void*, E)) const { |
| 341 | // start at the end of the array |
| 342 | for (int i = _len-1; i >= 0; i--) { |
| 343 | if (f(token, _data[i])) return i; |
| 344 | } |
| 345 | return -1; |
| 346 | } |
| 347 | |
| 348 | void remove(const E& elem) { |
| 349 | for (int i = 0; i < _len; i++) { |
| 350 | if (_data[i] == elem) { |
| 351 | for (int j = i + 1; j < _len; j++) _data[j-1] = _data[j]; |
| 352 | _len--; |
| 353 | return; |
| 354 | } |
| 355 | } |
| 356 | ShouldNotReachHere(); |
| 357 | } |
| 358 | |
| 359 | // The order is preserved. |
| 360 | void remove_at(int index) { |
| 361 | assert(0 <= index && index < _len, "illegal index" ); |
| 362 | for (int j = index + 1; j < _len; j++) _data[j-1] = _data[j]; |
| 363 | _len--; |
| 364 | } |
| 365 | |
| 366 | // The order is changed. |
| 367 | void delete_at(int index) { |
| 368 | assert(0 <= index && index < _len, "illegal index" ); |
| 369 | if (index < --_len) { |
| 370 | // Replace removed element with last one. |
| 371 | _data[index] = _data[_len]; |
| 372 | } |
| 373 | } |
| 374 | |
| 375 | // inserts the given element before the element at index i |
| 376 | void insert_before(const int idx, const E& elem) { |
| 377 | assert(0 <= idx && idx <= _len, "illegal index" ); |
| 378 | check_nesting(); |
| 379 | if (_len == _max) grow(_len); |
| 380 | for (int j = _len - 1; j >= idx; j--) { |
| 381 | _data[j + 1] = _data[j]; |
| 382 | } |
| 383 | _len++; |
| 384 | _data[idx] = elem; |
| 385 | } |
| 386 | |
| 387 | void insert_before(const int idx, const GrowableArray<E>* array) { |
| 388 | assert(0 <= idx && idx <= _len, "illegal index" ); |
| 389 | check_nesting(); |
| 390 | int array_len = array->length(); |
| 391 | int new_len = _len + array_len; |
| 392 | if (new_len >= _max) grow(new_len); |
| 393 | |
| 394 | for (int j = _len - 1; j >= idx; j--) { |
| 395 | _data[j + array_len] = _data[j]; |
| 396 | } |
| 397 | |
| 398 | for (int j = 0; j < array_len; j++) { |
| 399 | _data[idx + j] = array->_data[j]; |
| 400 | } |
| 401 | |
| 402 | _len += array_len; |
| 403 | } |
| 404 | |
| 405 | void appendAll(const GrowableArray<E>* l) { |
| 406 | for (int i = 0; i < l->_len; i++) { |
| 407 | raw_at_put_grow(_len, l->_data[i], E()); |
| 408 | } |
| 409 | } |
| 410 | |
| 411 | void sort(int f(E*,E*)) { |
| 412 | qsort(_data, length(), sizeof(E), (_sort_Fn)f); |
| 413 | } |
| 414 | // sort by fixed-stride sub arrays: |
| 415 | void sort(int f(E*,E*), int stride) { |
| 416 | qsort(_data, length() / stride, sizeof(E) * stride, (_sort_Fn)f); |
| 417 | } |
| 418 | |
| 419 | // Binary search and insertion utility. Search array for element |
| 420 | // matching key according to the static compare function. Insert |
| 421 | // that element is not already in the list. Assumes the list is |
| 422 | // already sorted according to compare function. |
| 423 | template <int compare(const E&, const E&)> E insert_sorted(const E& key) { |
| 424 | bool found; |
| 425 | int location = find_sorted<E, compare>(key, found); |
| 426 | if (!found) { |
| 427 | insert_before(location, key); |
| 428 | } |
| 429 | return at(location); |
| 430 | } |
| 431 | |
| 432 | template <typename K, int compare(const K&, const E&)> int find_sorted(const K& key, bool& found) { |
| 433 | found = false; |
| 434 | int min = 0; |
| 435 | int max = length() - 1; |
| 436 | |
| 437 | while (max >= min) { |
| 438 | int mid = (int)(((uint)max + min) / 2); |
| 439 | E value = at(mid); |
| 440 | int diff = compare(key, value); |
| 441 | if (diff > 0) { |
| 442 | min = mid + 1; |
| 443 | } else if (diff < 0) { |
| 444 | max = mid - 1; |
| 445 | } else { |
| 446 | found = true; |
| 447 | return mid; |
| 448 | } |
| 449 | } |
| 450 | return min; |
| 451 | } |
| 452 | |
| 453 | E insert_sorted(CompareClosure<E>* cc, const E& key) { |
| 454 | bool found; |
| 455 | int location = find_sorted(cc, key, found); |
| 456 | if (!found) { |
| 457 | insert_before(location, key); |
| 458 | } |
| 459 | return at(location); |
| 460 | } |
| 461 | |
| 462 | template<typename K> |
| 463 | int find_sorted(CompareClosure<E>* cc, const K& key, bool& found) { |
| 464 | found = false; |
| 465 | int min = 0; |
| 466 | int max = length() - 1; |
| 467 | |
| 468 | while (max >= min) { |
| 469 | int mid = (int)(((uint)max + min) / 2); |
| 470 | E value = at(mid); |
| 471 | int diff = cc->do_compare(key, value); |
| 472 | if (diff > 0) { |
| 473 | min = mid + 1; |
| 474 | } else if (diff < 0) { |
| 475 | max = mid - 1; |
| 476 | } else { |
| 477 | found = true; |
| 478 | return mid; |
| 479 | } |
| 480 | } |
| 481 | return min; |
| 482 | } |
| 483 | }; |
| 484 | |
| 485 | // Global GrowableArray methods (one instance in the library per each 'E' type). |
| 486 | |
| 487 | template<class E> void GrowableArray<E>::grow(int j) { |
| 488 | // grow the array by doubling its size (amortized growth) |
| 489 | int old_max = _max; |
| 490 | if (_max == 0) _max = 1; // prevent endless loop |
| 491 | while (j >= _max) _max = _max*2; |
| 492 | // j < _max |
| 493 | E* newData = (E*)raw_allocate(sizeof(E)); |
| 494 | int i = 0; |
| 495 | for ( ; i < _len; i++) ::new ((void*)&newData[i]) E(_data[i]); |
| 496 | // Needed for Visual Studio 2012 and older |
| 497 | #ifdef _MSC_VER |
| 498 | #pragma warning(suppress: 4345) |
| 499 | #endif |
| 500 | for ( ; i < _max; i++) ::new ((void*)&newData[i]) E(); |
| 501 | for (i = 0; i < old_max; i++) _data[i].~E(); |
| 502 | if (on_C_heap() && _data != NULL) { |
| 503 | free_C_heap(_data); |
| 504 | } |
| 505 | _data = newData; |
| 506 | } |
| 507 | |
| 508 | template<class E> void GrowableArray<E>::raw_at_put_grow(int i, const E& p, const E& fill) { |
| 509 | if (i >= _len) { |
| 510 | if (i >= _max) grow(i); |
| 511 | for (int j = _len; j < i; j++) |
| 512 | _data[j] = fill; |
| 513 | _len = i+1; |
| 514 | } |
| 515 | _data[i] = p; |
| 516 | } |
| 517 | |
| 518 | // This function clears and deallocate the data in the growable array that |
| 519 | // has been allocated on the C heap. It's not public - called by the |
| 520 | // destructor. |
| 521 | template<class E> void GrowableArray<E>::clear_and_deallocate() { |
| 522 | assert(on_C_heap(), |
| 523 | "clear_and_deallocate should only be called when on C heap" ); |
| 524 | clear(); |
| 525 | if (_data != NULL) { |
| 526 | for (int i = 0; i < _max; i++) _data[i].~E(); |
| 527 | free_C_heap(_data); |
| 528 | _data = NULL; |
| 529 | } |
| 530 | } |
| 531 | |
| 532 | template<class E> void GrowableArray<E>::print() { |
| 533 | tty->print("Growable Array " INTPTR_FORMAT, this); |
| 534 | tty->print(": length %ld (_max %ld) { " , _len, _max); |
| 535 | for (int i = 0; i < _len; i++) tty->print(INTPTR_FORMAT " " , *(intptr_t*)&(_data[i])); |
| 536 | tty->print("}\n" ); |
| 537 | } |
| 538 | |
| 539 | // Custom STL-style iterator to iterate over GrowableArrays |
| 540 | // It is constructed by invoking GrowableArray::begin() and GrowableArray::end() |
| 541 | template<class E> class GrowableArrayIterator : public StackObj { |
| 542 | friend class GrowableArray<E>; |
| 543 | template<class F, class UnaryPredicate> friend class GrowableArrayFilterIterator; |
| 544 | |
| 545 | private: |
| 546 | const GrowableArray<E>* _array; // GrowableArray we iterate over |
| 547 | int _position; // The current position in the GrowableArray |
| 548 | |
| 549 | // Private constructor used in GrowableArray::begin() and GrowableArray::end() |
| 550 | GrowableArrayIterator(const GrowableArray<E>* array, int position) : _array(array), _position(position) { |
| 551 | assert(0 <= position && position <= _array->length(), "illegal position" ); |
| 552 | } |
| 553 | |
| 554 | public: |
| 555 | GrowableArrayIterator() : _array(NULL), _position(0) { } |
| 556 | GrowableArrayIterator<E>& operator++() { ++_position; return *this; } |
| 557 | E operator*() { return _array->at(_position); } |
| 558 | |
| 559 | bool operator==(const GrowableArrayIterator<E>& rhs) { |
| 560 | assert(_array == rhs._array, "iterator belongs to different array" ); |
| 561 | return _position == rhs._position; |
| 562 | } |
| 563 | |
| 564 | bool operator!=(const GrowableArrayIterator<E>& rhs) { |
| 565 | assert(_array == rhs._array, "iterator belongs to different array" ); |
| 566 | return _position != rhs._position; |
| 567 | } |
| 568 | }; |
| 569 | |
| 570 | // Custom STL-style iterator to iterate over elements of a GrowableArray that satisfy a given predicate |
| 571 | template<class E, class UnaryPredicate> class GrowableArrayFilterIterator : public StackObj { |
| 572 | friend class GrowableArray<E>; |
| 573 | |
| 574 | private: |
| 575 | const GrowableArray<E>* _array; // GrowableArray we iterate over |
| 576 | int _position; // Current position in the GrowableArray |
| 577 | UnaryPredicate _predicate; // Unary predicate the elements of the GrowableArray should satisfy |
| 578 | |
| 579 | public: |
| 580 | GrowableArrayFilterIterator(const GrowableArrayIterator<E>& begin, UnaryPredicate filter_predicate) |
| 581 | : _array(begin._array), _position(begin._position), _predicate(filter_predicate) { |
| 582 | // Advance to first element satisfying the predicate |
| 583 | while(_position != _array->length() && !_predicate(_array->at(_position))) { |
| 584 | ++_position; |
| 585 | } |
| 586 | } |
| 587 | |
| 588 | GrowableArrayFilterIterator<E, UnaryPredicate>& operator++() { |
| 589 | do { |
| 590 | // Advance to next element satisfying the predicate |
| 591 | ++_position; |
| 592 | } while(_position != _array->length() && !_predicate(_array->at(_position))); |
| 593 | return *this; |
| 594 | } |
| 595 | |
| 596 | E operator*() { return _array->at(_position); } |
| 597 | |
| 598 | bool operator==(const GrowableArrayIterator<E>& rhs) { |
| 599 | assert(_array == rhs._array, "iterator belongs to different array" ); |
| 600 | return _position == rhs._position; |
| 601 | } |
| 602 | |
| 603 | bool operator!=(const GrowableArrayIterator<E>& rhs) { |
| 604 | assert(_array == rhs._array, "iterator belongs to different array" ); |
| 605 | return _position != rhs._position; |
| 606 | } |
| 607 | |
| 608 | bool operator==(const GrowableArrayFilterIterator<E, UnaryPredicate>& rhs) { |
| 609 | assert(_array == rhs._array, "iterator belongs to different array" ); |
| 610 | return _position == rhs._position; |
| 611 | } |
| 612 | |
| 613 | bool operator!=(const GrowableArrayFilterIterator<E, UnaryPredicate>& rhs) { |
| 614 | assert(_array == rhs._array, "iterator belongs to different array" ); |
| 615 | return _position != rhs._position; |
| 616 | } |
| 617 | }; |
| 618 | |
| 619 | // Arrays for basic types |
| 620 | typedef GrowableArray<int> intArray; |
| 621 | typedef GrowableArray<int> intStack; |
| 622 | typedef GrowableArray<bool> boolArray; |
| 623 | |
| 624 | #endif // SHARE_UTILITIES_GROWABLEARRAY_HPP |
| 625 | |