1/*
2 * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.hpp"
27#include "asm/macroAssembler.inline.hpp"
28#include "c1/c1_Compilation.hpp"
29#include "c1/c1_LIRAssembler.hpp"
30#include "c1/c1_MacroAssembler.hpp"
31#include "c1/c1_Runtime1.hpp"
32#include "c1/c1_ValueStack.hpp"
33#include "ci/ciArrayKlass.hpp"
34#include "ci/ciInstance.hpp"
35#include "gc/shared/barrierSet.hpp"
36#include "gc/shared/cardTableBarrierSet.hpp"
37#include "gc/shared/collectedHeap.hpp"
38#include "nativeInst_x86.hpp"
39#include "oops/objArrayKlass.hpp"
40#include "runtime/frame.inline.hpp"
41#include "runtime/safepointMechanism.hpp"
42#include "runtime/sharedRuntime.hpp"
43#include "vmreg_x86.inline.hpp"
44
45
46// These masks are used to provide 128-bit aligned bitmasks to the XMM
47// instructions, to allow sign-masking or sign-bit flipping. They allow
48// fast versions of NegF/NegD and AbsF/AbsD.
49
50// Note: 'double' and 'long long' have 32-bits alignment on x86.
51static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
52 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
53 // of 128-bits operands for SSE instructions.
54 jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
55 // Store the value to a 128-bits operand.
56 operand[0] = lo;
57 operand[1] = hi;
58 return operand;
59}
60
61// Buffer for 128-bits masks used by SSE instructions.
62static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
63
64// Static initialization during VM startup.
65static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
66static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
67static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
68static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
69
70
71NEEDS_CLEANUP // remove this definitions ?
72const Register IC_Klass = rax; // where the IC klass is cached
73const Register SYNC_header = rax; // synchronization header
74const Register SHIFT_count = rcx; // where count for shift operations must be
75
76#define __ _masm->
77
78
79static void select_different_registers(Register preserve,
80 Register extra,
81 Register &tmp1,
82 Register &tmp2) {
83 if (tmp1 == preserve) {
84 assert_different_registers(tmp1, tmp2, extra);
85 tmp1 = extra;
86 } else if (tmp2 == preserve) {
87 assert_different_registers(tmp1, tmp2, extra);
88 tmp2 = extra;
89 }
90 assert_different_registers(preserve, tmp1, tmp2);
91}
92
93
94
95static void select_different_registers(Register preserve,
96 Register extra,
97 Register &tmp1,
98 Register &tmp2,
99 Register &tmp3) {
100 if (tmp1 == preserve) {
101 assert_different_registers(tmp1, tmp2, tmp3, extra);
102 tmp1 = extra;
103 } else if (tmp2 == preserve) {
104 assert_different_registers(tmp1, tmp2, tmp3, extra);
105 tmp2 = extra;
106 } else if (tmp3 == preserve) {
107 assert_different_registers(tmp1, tmp2, tmp3, extra);
108 tmp3 = extra;
109 }
110 assert_different_registers(preserve, tmp1, tmp2, tmp3);
111}
112
113
114
115bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
116 if (opr->is_constant()) {
117 LIR_Const* constant = opr->as_constant_ptr();
118 switch (constant->type()) {
119 case T_INT: {
120 return true;
121 }
122
123 default:
124 return false;
125 }
126 }
127 return false;
128}
129
130
131LIR_Opr LIR_Assembler::receiverOpr() {
132 return FrameMap::receiver_opr;
133}
134
135LIR_Opr LIR_Assembler::osrBufferPointer() {
136 return FrameMap::as_pointer_opr(receiverOpr()->as_register());
137}
138
139//--------------fpu register translations-----------------------
140
141
142address LIR_Assembler::float_constant(float f) {
143 address const_addr = __ float_constant(f);
144 if (const_addr == NULL) {
145 bailout("const section overflow");
146 return __ code()->consts()->start();
147 } else {
148 return const_addr;
149 }
150}
151
152
153address LIR_Assembler::double_constant(double d) {
154 address const_addr = __ double_constant(d);
155 if (const_addr == NULL) {
156 bailout("const section overflow");
157 return __ code()->consts()->start();
158 } else {
159 return const_addr;
160 }
161}
162
163
164void LIR_Assembler::set_24bit_FPU() {
165 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
166}
167
168void LIR_Assembler::reset_FPU() {
169 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
170}
171
172void LIR_Assembler::fpop() {
173 __ fpop();
174}
175
176void LIR_Assembler::fxch(int i) {
177 __ fxch(i);
178}
179
180void LIR_Assembler::fld(int i) {
181 __ fld_s(i);
182}
183
184void LIR_Assembler::ffree(int i) {
185 __ ffree(i);
186}
187
188void LIR_Assembler::breakpoint() {
189 __ int3();
190}
191
192void LIR_Assembler::push(LIR_Opr opr) {
193 if (opr->is_single_cpu()) {
194 __ push_reg(opr->as_register());
195 } else if (opr->is_double_cpu()) {
196 NOT_LP64(__ push_reg(opr->as_register_hi()));
197 __ push_reg(opr->as_register_lo());
198 } else if (opr->is_stack()) {
199 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
200 } else if (opr->is_constant()) {
201 LIR_Const* const_opr = opr->as_constant_ptr();
202 if (const_opr->type() == T_OBJECT) {
203 __ push_oop(const_opr->as_jobject());
204 } else if (const_opr->type() == T_INT) {
205 __ push_jint(const_opr->as_jint());
206 } else {
207 ShouldNotReachHere();
208 }
209
210 } else {
211 ShouldNotReachHere();
212 }
213}
214
215void LIR_Assembler::pop(LIR_Opr opr) {
216 if (opr->is_single_cpu()) {
217 __ pop_reg(opr->as_register());
218 } else {
219 ShouldNotReachHere();
220 }
221}
222
223bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
224 return addr->base()->is_illegal() && addr->index()->is_illegal();
225}
226
227//-------------------------------------------
228
229Address LIR_Assembler::as_Address(LIR_Address* addr) {
230 return as_Address(addr, rscratch1);
231}
232
233Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
234 if (addr->base()->is_illegal()) {
235 assert(addr->index()->is_illegal(), "must be illegal too");
236 AddressLiteral laddr((address)addr->disp(), relocInfo::none);
237 if (! __ reachable(laddr)) {
238 __ movptr(tmp, laddr.addr());
239 Address res(tmp, 0);
240 return res;
241 } else {
242 return __ as_Address(laddr);
243 }
244 }
245
246 Register base = addr->base()->as_pointer_register();
247
248 if (addr->index()->is_illegal()) {
249 return Address( base, addr->disp());
250 } else if (addr->index()->is_cpu_register()) {
251 Register index = addr->index()->as_pointer_register();
252 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
253 } else if (addr->index()->is_constant()) {
254 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
255 assert(Assembler::is_simm32(addr_offset), "must be");
256
257 return Address(base, addr_offset);
258 } else {
259 Unimplemented();
260 return Address();
261 }
262}
263
264
265Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
266 Address base = as_Address(addr);
267 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
268}
269
270
271Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
272 return as_Address(addr);
273}
274
275
276void LIR_Assembler::osr_entry() {
277 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
278 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
279 ValueStack* entry_state = osr_entry->state();
280 int number_of_locks = entry_state->locks_size();
281
282 // we jump here if osr happens with the interpreter
283 // state set up to continue at the beginning of the
284 // loop that triggered osr - in particular, we have
285 // the following registers setup:
286 //
287 // rcx: osr buffer
288 //
289
290 // build frame
291 ciMethod* m = compilation()->method();
292 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
293
294 // OSR buffer is
295 //
296 // locals[nlocals-1..0]
297 // monitors[0..number_of_locks]
298 //
299 // locals is a direct copy of the interpreter frame so in the osr buffer
300 // so first slot in the local array is the last local from the interpreter
301 // and last slot is local[0] (receiver) from the interpreter
302 //
303 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
304 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
305 // in the interpreter frame (the method lock if a sync method)
306
307 // Initialize monitors in the compiled activation.
308 // rcx: pointer to osr buffer
309 //
310 // All other registers are dead at this point and the locals will be
311 // copied into place by code emitted in the IR.
312
313 Register OSR_buf = osrBufferPointer()->as_pointer_register();
314 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
315 int monitor_offset = BytesPerWord * method()->max_locals() +
316 (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
317 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
318 // the OSR buffer using 2 word entries: first the lock and then
319 // the oop.
320 for (int i = 0; i < number_of_locks; i++) {
321 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
322#ifdef ASSERT
323 // verify the interpreter's monitor has a non-null object
324 {
325 Label L;
326 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
327 __ jcc(Assembler::notZero, L);
328 __ stop("locked object is NULL");
329 __ bind(L);
330 }
331#endif
332 __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
333 __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
334 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
335 __ movptr(frame_map()->address_for_monitor_object(i), rbx);
336 }
337 }
338}
339
340
341// inline cache check; done before the frame is built.
342int LIR_Assembler::check_icache() {
343 Register receiver = FrameMap::receiver_opr->as_register();
344 Register ic_klass = IC_Klass;
345 const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
346 const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
347 if (!do_post_padding) {
348 // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
349 __ align(CodeEntryAlignment, __ offset() + ic_cmp_size);
350 }
351 int offset = __ offset();
352 __ inline_cache_check(receiver, IC_Klass);
353 assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
354 if (do_post_padding) {
355 // force alignment after the cache check.
356 // It's been verified to be aligned if !VerifyOops
357 __ align(CodeEntryAlignment);
358 }
359 return offset;
360}
361
362void LIR_Assembler::clinit_barrier(ciMethod* method) {
363 assert(VM_Version::supports_fast_class_init_checks(), "sanity");
364 assert(!method->holder()->is_not_initialized(), "initialization should have been started");
365
366 Label L_skip_barrier;
367 Register klass = rscratch1;
368 Register thread = LP64_ONLY( r15_thread ) NOT_LP64( noreg );
369 assert(thread != noreg, "x86_32 not implemented");
370
371 __ mov_metadata(klass, method->holder()->constant_encoding());
372 __ clinit_barrier(klass, thread, &L_skip_barrier /*L_fast_path*/);
373
374 __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
375
376 __ bind(L_skip_barrier);
377}
378
379void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
380 jobject o = NULL;
381 PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
382 __ movoop(reg, o);
383 patching_epilog(patch, lir_patch_normal, reg, info);
384}
385
386void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
387 Metadata* o = NULL;
388 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
389 __ mov_metadata(reg, o);
390 patching_epilog(patch, lir_patch_normal, reg, info);
391}
392
393// This specifies the rsp decrement needed to build the frame
394int LIR_Assembler::initial_frame_size_in_bytes() const {
395 // if rounding, must let FrameMap know!
396
397 // The frame_map records size in slots (32bit word)
398
399 // subtract two words to account for return address and link
400 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size;
401}
402
403
404int LIR_Assembler::emit_exception_handler() {
405 // if the last instruction is a call (typically to do a throw which
406 // is coming at the end after block reordering) the return address
407 // must still point into the code area in order to avoid assertion
408 // failures when searching for the corresponding bci => add a nop
409 // (was bug 5/14/1999 - gri)
410 __ nop();
411
412 // generate code for exception handler
413 address handler_base = __ start_a_stub(exception_handler_size());
414 if (handler_base == NULL) {
415 // not enough space left for the handler
416 bailout("exception handler overflow");
417 return -1;
418 }
419
420 int offset = code_offset();
421
422 // the exception oop and pc are in rax, and rdx
423 // no other registers need to be preserved, so invalidate them
424 __ invalidate_registers(false, true, true, false, true, true);
425
426 // check that there is really an exception
427 __ verify_not_null_oop(rax);
428
429 // search an exception handler (rax: exception oop, rdx: throwing pc)
430 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
431 __ should_not_reach_here();
432 guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
433 __ end_a_stub();
434
435 return offset;
436}
437
438
439// Emit the code to remove the frame from the stack in the exception
440// unwind path.
441int LIR_Assembler::emit_unwind_handler() {
442#ifndef PRODUCT
443 if (CommentedAssembly) {
444 _masm->block_comment("Unwind handler");
445 }
446#endif
447
448 int offset = code_offset();
449
450 // Fetch the exception from TLS and clear out exception related thread state
451 Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
452 NOT_LP64(__ get_thread(rsi));
453 __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
454 __ movptr(Address(thread, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
455 __ movptr(Address(thread, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
456
457 __ bind(_unwind_handler_entry);
458 __ verify_not_null_oop(rax);
459 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
460 __ mov(rbx, rax); // Preserve the exception (rbx is always callee-saved)
461 }
462
463 // Preform needed unlocking
464 MonitorExitStub* stub = NULL;
465 if (method()->is_synchronized()) {
466 monitor_address(0, FrameMap::rax_opr);
467 stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
468 __ unlock_object(rdi, rsi, rax, *stub->entry());
469 __ bind(*stub->continuation());
470 }
471
472 if (compilation()->env()->dtrace_method_probes()) {
473#ifdef _LP64
474 __ mov(rdi, r15_thread);
475 __ mov_metadata(rsi, method()->constant_encoding());
476#else
477 __ get_thread(rax);
478 __ movptr(Address(rsp, 0), rax);
479 __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
480#endif
481 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
482 }
483
484 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
485 __ mov(rax, rbx); // Restore the exception
486 }
487
488 // remove the activation and dispatch to the unwind handler
489 __ remove_frame(initial_frame_size_in_bytes());
490 __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
491
492 // Emit the slow path assembly
493 if (stub != NULL) {
494 stub->emit_code(this);
495 }
496
497 return offset;
498}
499
500
501int LIR_Assembler::emit_deopt_handler() {
502 // if the last instruction is a call (typically to do a throw which
503 // is coming at the end after block reordering) the return address
504 // must still point into the code area in order to avoid assertion
505 // failures when searching for the corresponding bci => add a nop
506 // (was bug 5/14/1999 - gri)
507 __ nop();
508
509 // generate code for exception handler
510 address handler_base = __ start_a_stub(deopt_handler_size());
511 if (handler_base == NULL) {
512 // not enough space left for the handler
513 bailout("deopt handler overflow");
514 return -1;
515 }
516
517 int offset = code_offset();
518 InternalAddress here(__ pc());
519
520 __ pushptr(here.addr());
521 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
522 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
523 __ end_a_stub();
524
525 return offset;
526}
527
528
529void LIR_Assembler::return_op(LIR_Opr result) {
530 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
531 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
532 assert(result->fpu() == 0, "result must already be on TOS");
533 }
534
535 // Pop the stack before the safepoint code
536 __ remove_frame(initial_frame_size_in_bytes());
537
538 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
539 __ reserved_stack_check();
540 }
541
542 bool result_is_oop = result->is_valid() ? result->is_oop() : false;
543
544 // Note: we do not need to round double result; float result has the right precision
545 // the poll sets the condition code, but no data registers
546
547 if (SafepointMechanism::uses_thread_local_poll()) {
548#ifdef _LP64
549 const Register poll_addr = rscratch1;
550 __ movptr(poll_addr, Address(r15_thread, Thread::polling_page_offset()));
551#else
552 const Register poll_addr = rbx;
553 assert(FrameMap::is_caller_save_register(poll_addr), "will overwrite");
554 __ get_thread(poll_addr);
555 __ movptr(poll_addr, Address(poll_addr, Thread::polling_page_offset()));
556#endif
557 __ relocate(relocInfo::poll_return_type);
558 __ testl(rax, Address(poll_addr, 0));
559 } else {
560 AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_return_type);
561
562 if (Assembler::is_polling_page_far()) {
563 __ lea(rscratch1, polling_page);
564 __ relocate(relocInfo::poll_return_type);
565 __ testl(rax, Address(rscratch1, 0));
566 } else {
567 __ testl(rax, polling_page);
568 }
569 }
570 __ ret(0);
571}
572
573
574int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
575 guarantee(info != NULL, "Shouldn't be NULL");
576 int offset = __ offset();
577 if (SafepointMechanism::uses_thread_local_poll()) {
578#ifdef _LP64
579 const Register poll_addr = rscratch1;
580 __ movptr(poll_addr, Address(r15_thread, Thread::polling_page_offset()));
581#else
582 assert(tmp->is_cpu_register(), "needed");
583 const Register poll_addr = tmp->as_register();
584 __ get_thread(poll_addr);
585 __ movptr(poll_addr, Address(poll_addr, in_bytes(Thread::polling_page_offset())));
586#endif
587 add_debug_info_for_branch(info);
588 __ relocate(relocInfo::poll_type);
589 address pre_pc = __ pc();
590 __ testl(rax, Address(poll_addr, 0));
591 address post_pc = __ pc();
592 guarantee(pointer_delta(post_pc, pre_pc, 1) == 2 LP64_ONLY(+1), "must be exact length");
593 } else {
594 AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_type);
595 if (Assembler::is_polling_page_far()) {
596 __ lea(rscratch1, polling_page);
597 offset = __ offset();
598 add_debug_info_for_branch(info);
599 __ relocate(relocInfo::poll_type);
600 __ testl(rax, Address(rscratch1, 0));
601 } else {
602 add_debug_info_for_branch(info);
603 __ testl(rax, polling_page);
604 }
605 }
606 return offset;
607}
608
609
610void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
611 if (from_reg != to_reg) __ mov(to_reg, from_reg);
612}
613
614void LIR_Assembler::swap_reg(Register a, Register b) {
615 __ xchgptr(a, b);
616}
617
618
619void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
620 assert(src->is_constant(), "should not call otherwise");
621 assert(dest->is_register(), "should not call otherwise");
622 LIR_Const* c = src->as_constant_ptr();
623
624 switch (c->type()) {
625 case T_INT: {
626 assert(patch_code == lir_patch_none, "no patching handled here");
627 __ movl(dest->as_register(), c->as_jint());
628 break;
629 }
630
631 case T_ADDRESS: {
632 assert(patch_code == lir_patch_none, "no patching handled here");
633 __ movptr(dest->as_register(), c->as_jint());
634 break;
635 }
636
637 case T_LONG: {
638 assert(patch_code == lir_patch_none, "no patching handled here");
639#ifdef _LP64
640 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
641#else
642 __ movptr(dest->as_register_lo(), c->as_jint_lo());
643 __ movptr(dest->as_register_hi(), c->as_jint_hi());
644#endif // _LP64
645 break;
646 }
647
648 case T_OBJECT: {
649 if (patch_code != lir_patch_none) {
650 jobject2reg_with_patching(dest->as_register(), info);
651 } else {
652 __ movoop(dest->as_register(), c->as_jobject());
653 }
654 break;
655 }
656
657 case T_METADATA: {
658 if (patch_code != lir_patch_none) {
659 klass2reg_with_patching(dest->as_register(), info);
660 } else {
661 __ mov_metadata(dest->as_register(), c->as_metadata());
662 }
663 break;
664 }
665
666 case T_FLOAT: {
667 if (dest->is_single_xmm()) {
668 if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_float()) {
669 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
670 } else {
671 __ movflt(dest->as_xmm_float_reg(),
672 InternalAddress(float_constant(c->as_jfloat())));
673 }
674 } else {
675 assert(dest->is_single_fpu(), "must be");
676 assert(dest->fpu_regnr() == 0, "dest must be TOS");
677 if (c->is_zero_float()) {
678 __ fldz();
679 } else if (c->is_one_float()) {
680 __ fld1();
681 } else {
682 __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
683 }
684 }
685 break;
686 }
687
688 case T_DOUBLE: {
689 if (dest->is_double_xmm()) {
690 if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_double()) {
691 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
692 } else {
693 __ movdbl(dest->as_xmm_double_reg(),
694 InternalAddress(double_constant(c->as_jdouble())));
695 }
696 } else {
697 assert(dest->is_double_fpu(), "must be");
698 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
699 if (c->is_zero_double()) {
700 __ fldz();
701 } else if (c->is_one_double()) {
702 __ fld1();
703 } else {
704 __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
705 }
706 }
707 break;
708 }
709
710 default:
711 ShouldNotReachHere();
712 }
713}
714
715void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
716 assert(src->is_constant(), "should not call otherwise");
717 assert(dest->is_stack(), "should not call otherwise");
718 LIR_Const* c = src->as_constant_ptr();
719
720 switch (c->type()) {
721 case T_INT: // fall through
722 case T_FLOAT:
723 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
724 break;
725
726 case T_ADDRESS:
727 __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
728 break;
729
730 case T_OBJECT:
731 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
732 break;
733
734 case T_LONG: // fall through
735 case T_DOUBLE:
736#ifdef _LP64
737 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
738 lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
739#else
740 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
741 lo_word_offset_in_bytes), c->as_jint_lo_bits());
742 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
743 hi_word_offset_in_bytes), c->as_jint_hi_bits());
744#endif // _LP64
745 break;
746
747 default:
748 ShouldNotReachHere();
749 }
750}
751
752void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
753 assert(src->is_constant(), "should not call otherwise");
754 assert(dest->is_address(), "should not call otherwise");
755 LIR_Const* c = src->as_constant_ptr();
756 LIR_Address* addr = dest->as_address_ptr();
757
758 int null_check_here = code_offset();
759 switch (type) {
760 case T_INT: // fall through
761 case T_FLOAT:
762 __ movl(as_Address(addr), c->as_jint_bits());
763 break;
764
765 case T_ADDRESS:
766 __ movptr(as_Address(addr), c->as_jint_bits());
767 break;
768
769 case T_OBJECT: // fall through
770 case T_ARRAY:
771 if (c->as_jobject() == NULL) {
772 if (UseCompressedOops && !wide) {
773 __ movl(as_Address(addr), (int32_t)NULL_WORD);
774 } else {
775#ifdef _LP64
776 __ xorptr(rscratch1, rscratch1);
777 null_check_here = code_offset();
778 __ movptr(as_Address(addr), rscratch1);
779#else
780 __ movptr(as_Address(addr), NULL_WORD);
781#endif
782 }
783 } else {
784 if (is_literal_address(addr)) {
785 ShouldNotReachHere();
786 __ movoop(as_Address(addr, noreg), c->as_jobject());
787 } else {
788#ifdef _LP64
789 __ movoop(rscratch1, c->as_jobject());
790 if (UseCompressedOops && !wide) {
791 __ encode_heap_oop(rscratch1);
792 null_check_here = code_offset();
793 __ movl(as_Address_lo(addr), rscratch1);
794 } else {
795 null_check_here = code_offset();
796 __ movptr(as_Address_lo(addr), rscratch1);
797 }
798#else
799 __ movoop(as_Address(addr), c->as_jobject());
800#endif
801 }
802 }
803 break;
804
805 case T_LONG: // fall through
806 case T_DOUBLE:
807#ifdef _LP64
808 if (is_literal_address(addr)) {
809 ShouldNotReachHere();
810 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
811 } else {
812 __ movptr(r10, (intptr_t)c->as_jlong_bits());
813 null_check_here = code_offset();
814 __ movptr(as_Address_lo(addr), r10);
815 }
816#else
817 // Always reachable in 32bit so this doesn't produce useless move literal
818 __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
819 __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
820#endif // _LP64
821 break;
822
823 case T_BOOLEAN: // fall through
824 case T_BYTE:
825 __ movb(as_Address(addr), c->as_jint() & 0xFF);
826 break;
827
828 case T_CHAR: // fall through
829 case T_SHORT:
830 __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
831 break;
832
833 default:
834 ShouldNotReachHere();
835 };
836
837 if (info != NULL) {
838 add_debug_info_for_null_check(null_check_here, info);
839 }
840}
841
842
843void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
844 assert(src->is_register(), "should not call otherwise");
845 assert(dest->is_register(), "should not call otherwise");
846
847 // move between cpu-registers
848 if (dest->is_single_cpu()) {
849#ifdef _LP64
850 if (src->type() == T_LONG) {
851 // Can do LONG -> OBJECT
852 move_regs(src->as_register_lo(), dest->as_register());
853 return;
854 }
855#endif
856 assert(src->is_single_cpu(), "must match");
857 if (src->type() == T_OBJECT) {
858 __ verify_oop(src->as_register());
859 }
860 move_regs(src->as_register(), dest->as_register());
861
862 } else if (dest->is_double_cpu()) {
863#ifdef _LP64
864 if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
865 // Surprising to me but we can see move of a long to t_object
866 __ verify_oop(src->as_register());
867 move_regs(src->as_register(), dest->as_register_lo());
868 return;
869 }
870#endif
871 assert(src->is_double_cpu(), "must match");
872 Register f_lo = src->as_register_lo();
873 Register f_hi = src->as_register_hi();
874 Register t_lo = dest->as_register_lo();
875 Register t_hi = dest->as_register_hi();
876#ifdef _LP64
877 assert(f_hi == f_lo, "must be same");
878 assert(t_hi == t_lo, "must be same");
879 move_regs(f_lo, t_lo);
880#else
881 assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
882
883
884 if (f_lo == t_hi && f_hi == t_lo) {
885 swap_reg(f_lo, f_hi);
886 } else if (f_hi == t_lo) {
887 assert(f_lo != t_hi, "overwriting register");
888 move_regs(f_hi, t_hi);
889 move_regs(f_lo, t_lo);
890 } else {
891 assert(f_hi != t_lo, "overwriting register");
892 move_regs(f_lo, t_lo);
893 move_regs(f_hi, t_hi);
894 }
895#endif // LP64
896
897 // special moves from fpu-register to xmm-register
898 // necessary for method results
899 } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
900 __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
901 __ fld_s(Address(rsp, 0));
902 } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
903 __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
904 __ fld_d(Address(rsp, 0));
905 } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
906 __ fstp_s(Address(rsp, 0));
907 __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
908 } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
909 __ fstp_d(Address(rsp, 0));
910 __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
911
912 // move between xmm-registers
913 } else if (dest->is_single_xmm()) {
914 assert(src->is_single_xmm(), "must match");
915 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
916 } else if (dest->is_double_xmm()) {
917 assert(src->is_double_xmm(), "must match");
918 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
919
920 // move between fpu-registers (no instruction necessary because of fpu-stack)
921 } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
922 assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
923 assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
924 } else {
925 ShouldNotReachHere();
926 }
927}
928
929void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
930 assert(src->is_register(), "should not call otherwise");
931 assert(dest->is_stack(), "should not call otherwise");
932
933 if (src->is_single_cpu()) {
934 Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
935 if (type == T_OBJECT || type == T_ARRAY) {
936 __ verify_oop(src->as_register());
937 __ movptr (dst, src->as_register());
938 } else if (type == T_METADATA) {
939 __ movptr (dst, src->as_register());
940 } else {
941 __ movl (dst, src->as_register());
942 }
943
944 } else if (src->is_double_cpu()) {
945 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
946 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
947 __ movptr (dstLO, src->as_register_lo());
948 NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
949
950 } else if (src->is_single_xmm()) {
951 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
952 __ movflt(dst_addr, src->as_xmm_float_reg());
953
954 } else if (src->is_double_xmm()) {
955 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
956 __ movdbl(dst_addr, src->as_xmm_double_reg());
957
958 } else if (src->is_single_fpu()) {
959 assert(src->fpu_regnr() == 0, "argument must be on TOS");
960 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
961 if (pop_fpu_stack) __ fstp_s (dst_addr);
962 else __ fst_s (dst_addr);
963
964 } else if (src->is_double_fpu()) {
965 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
966 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
967 if (pop_fpu_stack) __ fstp_d (dst_addr);
968 else __ fst_d (dst_addr);
969
970 } else {
971 ShouldNotReachHere();
972 }
973}
974
975
976void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
977 LIR_Address* to_addr = dest->as_address_ptr();
978 PatchingStub* patch = NULL;
979 Register compressed_src = rscratch1;
980
981 if (type == T_ARRAY || type == T_OBJECT) {
982 __ verify_oop(src->as_register());
983#ifdef _LP64
984 if (UseCompressedOops && !wide) {
985 __ movptr(compressed_src, src->as_register());
986 __ encode_heap_oop(compressed_src);
987 if (patch_code != lir_patch_none) {
988 info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
989 }
990 }
991#endif
992 }
993
994 if (patch_code != lir_patch_none) {
995 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
996 Address toa = as_Address(to_addr);
997 assert(toa.disp() != 0, "must have");
998 }
999
1000 int null_check_here = code_offset();
1001 switch (type) {
1002 case T_FLOAT: {
1003 if (src->is_single_xmm()) {
1004 __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
1005 } else {
1006 assert(src->is_single_fpu(), "must be");
1007 assert(src->fpu_regnr() == 0, "argument must be on TOS");
1008 if (pop_fpu_stack) __ fstp_s(as_Address(to_addr));
1009 else __ fst_s (as_Address(to_addr));
1010 }
1011 break;
1012 }
1013
1014 case T_DOUBLE: {
1015 if (src->is_double_xmm()) {
1016 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1017 } else {
1018 assert(src->is_double_fpu(), "must be");
1019 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1020 if (pop_fpu_stack) __ fstp_d(as_Address(to_addr));
1021 else __ fst_d (as_Address(to_addr));
1022 }
1023 break;
1024 }
1025
1026 case T_ARRAY: // fall through
1027 case T_OBJECT: // fall through
1028 if (UseCompressedOops && !wide) {
1029 __ movl(as_Address(to_addr), compressed_src);
1030 } else {
1031 __ movptr(as_Address(to_addr), src->as_register());
1032 }
1033 break;
1034 case T_METADATA:
1035 // We get here to store a method pointer to the stack to pass to
1036 // a dtrace runtime call. This can't work on 64 bit with
1037 // compressed klass ptrs: T_METADATA can be a compressed klass
1038 // ptr or a 64 bit method pointer.
1039 LP64_ONLY(ShouldNotReachHere());
1040 __ movptr(as_Address(to_addr), src->as_register());
1041 break;
1042 case T_ADDRESS:
1043 __ movptr(as_Address(to_addr), src->as_register());
1044 break;
1045 case T_INT:
1046 __ movl(as_Address(to_addr), src->as_register());
1047 break;
1048
1049 case T_LONG: {
1050 Register from_lo = src->as_register_lo();
1051 Register from_hi = src->as_register_hi();
1052#ifdef _LP64
1053 __ movptr(as_Address_lo(to_addr), from_lo);
1054#else
1055 Register base = to_addr->base()->as_register();
1056 Register index = noreg;
1057 if (to_addr->index()->is_register()) {
1058 index = to_addr->index()->as_register();
1059 }
1060 if (base == from_lo || index == from_lo) {
1061 assert(base != from_hi, "can't be");
1062 assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1063 __ movl(as_Address_hi(to_addr), from_hi);
1064 if (patch != NULL) {
1065 patching_epilog(patch, lir_patch_high, base, info);
1066 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1067 patch_code = lir_patch_low;
1068 }
1069 __ movl(as_Address_lo(to_addr), from_lo);
1070 } else {
1071 assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1072 __ movl(as_Address_lo(to_addr), from_lo);
1073 if (patch != NULL) {
1074 patching_epilog(patch, lir_patch_low, base, info);
1075 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1076 patch_code = lir_patch_high;
1077 }
1078 __ movl(as_Address_hi(to_addr), from_hi);
1079 }
1080#endif // _LP64
1081 break;
1082 }
1083
1084 case T_BYTE: // fall through
1085 case T_BOOLEAN: {
1086 Register src_reg = src->as_register();
1087 Address dst_addr = as_Address(to_addr);
1088 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1089 __ movb(dst_addr, src_reg);
1090 break;
1091 }
1092
1093 case T_CHAR: // fall through
1094 case T_SHORT:
1095 __ movw(as_Address(to_addr), src->as_register());
1096 break;
1097
1098 default:
1099 ShouldNotReachHere();
1100 }
1101 if (info != NULL) {
1102 add_debug_info_for_null_check(null_check_here, info);
1103 }
1104
1105 if (patch_code != lir_patch_none) {
1106 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1107 }
1108}
1109
1110
1111void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1112 assert(src->is_stack(), "should not call otherwise");
1113 assert(dest->is_register(), "should not call otherwise");
1114
1115 if (dest->is_single_cpu()) {
1116 if (type == T_ARRAY || type == T_OBJECT) {
1117 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1118 __ verify_oop(dest->as_register());
1119 } else if (type == T_METADATA) {
1120 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1121 } else {
1122 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1123 }
1124
1125 } else if (dest->is_double_cpu()) {
1126 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1127 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1128 __ movptr(dest->as_register_lo(), src_addr_LO);
1129 NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1130
1131 } else if (dest->is_single_xmm()) {
1132 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1133 __ movflt(dest->as_xmm_float_reg(), src_addr);
1134
1135 } else if (dest->is_double_xmm()) {
1136 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1137 __ movdbl(dest->as_xmm_double_reg(), src_addr);
1138
1139 } else if (dest->is_single_fpu()) {
1140 assert(dest->fpu_regnr() == 0, "dest must be TOS");
1141 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1142 __ fld_s(src_addr);
1143
1144 } else if (dest->is_double_fpu()) {
1145 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1146 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1147 __ fld_d(src_addr);
1148
1149 } else {
1150 ShouldNotReachHere();
1151 }
1152}
1153
1154
1155void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1156 if (src->is_single_stack()) {
1157 if (type == T_OBJECT || type == T_ARRAY) {
1158 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1159 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1160 } else {
1161#ifndef _LP64
1162 __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1163 __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1164#else
1165 //no pushl on 64bits
1166 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1167 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1168#endif
1169 }
1170
1171 } else if (src->is_double_stack()) {
1172#ifdef _LP64
1173 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1174 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1175#else
1176 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1177 // push and pop the part at src + wordSize, adding wordSize for the previous push
1178 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1179 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1180 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1181#endif // _LP64
1182
1183 } else {
1184 ShouldNotReachHere();
1185 }
1186}
1187
1188
1189void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
1190 assert(src->is_address(), "should not call otherwise");
1191 assert(dest->is_register(), "should not call otherwise");
1192
1193 LIR_Address* addr = src->as_address_ptr();
1194 Address from_addr = as_Address(addr);
1195
1196 if (addr->base()->type() == T_OBJECT) {
1197 __ verify_oop(addr->base()->as_pointer_register());
1198 }
1199
1200 switch (type) {
1201 case T_BOOLEAN: // fall through
1202 case T_BYTE: // fall through
1203 case T_CHAR: // fall through
1204 case T_SHORT:
1205 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1206 // on pre P6 processors we may get partial register stalls
1207 // so blow away the value of to_rinfo before loading a
1208 // partial word into it. Do it here so that it precedes
1209 // the potential patch point below.
1210 __ xorptr(dest->as_register(), dest->as_register());
1211 }
1212 break;
1213 default:
1214 break;
1215 }
1216
1217 PatchingStub* patch = NULL;
1218 if (patch_code != lir_patch_none) {
1219 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1220 assert(from_addr.disp() != 0, "must have");
1221 }
1222 if (info != NULL) {
1223 add_debug_info_for_null_check_here(info);
1224 }
1225
1226 switch (type) {
1227 case T_FLOAT: {
1228 if (dest->is_single_xmm()) {
1229 __ movflt(dest->as_xmm_float_reg(), from_addr);
1230 } else {
1231 assert(dest->is_single_fpu(), "must be");
1232 assert(dest->fpu_regnr() == 0, "dest must be TOS");
1233 __ fld_s(from_addr);
1234 }
1235 break;
1236 }
1237
1238 case T_DOUBLE: {
1239 if (dest->is_double_xmm()) {
1240 __ movdbl(dest->as_xmm_double_reg(), from_addr);
1241 } else {
1242 assert(dest->is_double_fpu(), "must be");
1243 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1244 __ fld_d(from_addr);
1245 }
1246 break;
1247 }
1248
1249 case T_OBJECT: // fall through
1250 case T_ARRAY: // fall through
1251 if (UseCompressedOops && !wide) {
1252 __ movl(dest->as_register(), from_addr);
1253 } else {
1254 __ movptr(dest->as_register(), from_addr);
1255 }
1256 break;
1257
1258 case T_ADDRESS:
1259 if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1260 __ movl(dest->as_register(), from_addr);
1261 } else {
1262 __ movptr(dest->as_register(), from_addr);
1263 }
1264 break;
1265 case T_INT:
1266 __ movl(dest->as_register(), from_addr);
1267 break;
1268
1269 case T_LONG: {
1270 Register to_lo = dest->as_register_lo();
1271 Register to_hi = dest->as_register_hi();
1272#ifdef _LP64
1273 __ movptr(to_lo, as_Address_lo(addr));
1274#else
1275 Register base = addr->base()->as_register();
1276 Register index = noreg;
1277 if (addr->index()->is_register()) {
1278 index = addr->index()->as_register();
1279 }
1280 if ((base == to_lo && index == to_hi) ||
1281 (base == to_hi && index == to_lo)) {
1282 // addresses with 2 registers are only formed as a result of
1283 // array access so this code will never have to deal with
1284 // patches or null checks.
1285 assert(info == NULL && patch == NULL, "must be");
1286 __ lea(to_hi, as_Address(addr));
1287 __ movl(to_lo, Address(to_hi, 0));
1288 __ movl(to_hi, Address(to_hi, BytesPerWord));
1289 } else if (base == to_lo || index == to_lo) {
1290 assert(base != to_hi, "can't be");
1291 assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1292 __ movl(to_hi, as_Address_hi(addr));
1293 if (patch != NULL) {
1294 patching_epilog(patch, lir_patch_high, base, info);
1295 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1296 patch_code = lir_patch_low;
1297 }
1298 __ movl(to_lo, as_Address_lo(addr));
1299 } else {
1300 assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1301 __ movl(to_lo, as_Address_lo(addr));
1302 if (patch != NULL) {
1303 patching_epilog(patch, lir_patch_low, base, info);
1304 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1305 patch_code = lir_patch_high;
1306 }
1307 __ movl(to_hi, as_Address_hi(addr));
1308 }
1309#endif // _LP64
1310 break;
1311 }
1312
1313 case T_BOOLEAN: // fall through
1314 case T_BYTE: {
1315 Register dest_reg = dest->as_register();
1316 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1317 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1318 __ movsbl(dest_reg, from_addr);
1319 } else {
1320 __ movb(dest_reg, from_addr);
1321 __ shll(dest_reg, 24);
1322 __ sarl(dest_reg, 24);
1323 }
1324 break;
1325 }
1326
1327 case T_CHAR: {
1328 Register dest_reg = dest->as_register();
1329 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1330 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1331 __ movzwl(dest_reg, from_addr);
1332 } else {
1333 __ movw(dest_reg, from_addr);
1334 }
1335 break;
1336 }
1337
1338 case T_SHORT: {
1339 Register dest_reg = dest->as_register();
1340 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1341 __ movswl(dest_reg, from_addr);
1342 } else {
1343 __ movw(dest_reg, from_addr);
1344 __ shll(dest_reg, 16);
1345 __ sarl(dest_reg, 16);
1346 }
1347 break;
1348 }
1349
1350 default:
1351 ShouldNotReachHere();
1352 }
1353
1354 if (patch != NULL) {
1355 patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1356 }
1357
1358 if (type == T_ARRAY || type == T_OBJECT) {
1359#ifdef _LP64
1360 if (UseCompressedOops && !wide) {
1361 __ decode_heap_oop(dest->as_register());
1362 }
1363#endif
1364
1365 // Load barrier has not yet been applied, so ZGC can't verify the oop here
1366 if (!UseZGC) {
1367 __ verify_oop(dest->as_register());
1368 }
1369 } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1370#ifdef _LP64
1371 if (UseCompressedClassPointers) {
1372 __ decode_klass_not_null(dest->as_register());
1373 }
1374#endif
1375 }
1376}
1377
1378
1379NEEDS_CLEANUP; // This could be static?
1380Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1381 int elem_size = type2aelembytes(type);
1382 switch (elem_size) {
1383 case 1: return Address::times_1;
1384 case 2: return Address::times_2;
1385 case 4: return Address::times_4;
1386 case 8: return Address::times_8;
1387 }
1388 ShouldNotReachHere();
1389 return Address::no_scale;
1390}
1391
1392
1393void LIR_Assembler::emit_op3(LIR_Op3* op) {
1394 switch (op->code()) {
1395 case lir_idiv:
1396 case lir_irem:
1397 arithmetic_idiv(op->code(),
1398 op->in_opr1(),
1399 op->in_opr2(),
1400 op->in_opr3(),
1401 op->result_opr(),
1402 op->info());
1403 break;
1404 case lir_fmad:
1405 __ fmad(op->result_opr()->as_xmm_double_reg(),
1406 op->in_opr1()->as_xmm_double_reg(),
1407 op->in_opr2()->as_xmm_double_reg(),
1408 op->in_opr3()->as_xmm_double_reg());
1409 break;
1410 case lir_fmaf:
1411 __ fmaf(op->result_opr()->as_xmm_float_reg(),
1412 op->in_opr1()->as_xmm_float_reg(),
1413 op->in_opr2()->as_xmm_float_reg(),
1414 op->in_opr3()->as_xmm_float_reg());
1415 break;
1416 default: ShouldNotReachHere(); break;
1417 }
1418}
1419
1420void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1421#ifdef ASSERT
1422 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1423 if (op->block() != NULL) _branch_target_blocks.append(op->block());
1424 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1425#endif
1426
1427 if (op->cond() == lir_cond_always) {
1428 if (op->info() != NULL) add_debug_info_for_branch(op->info());
1429 __ jmp (*(op->label()));
1430 } else {
1431 Assembler::Condition acond = Assembler::zero;
1432 if (op->code() == lir_cond_float_branch) {
1433 assert(op->ublock() != NULL, "must have unordered successor");
1434 __ jcc(Assembler::parity, *(op->ublock()->label()));
1435 switch(op->cond()) {
1436 case lir_cond_equal: acond = Assembler::equal; break;
1437 case lir_cond_notEqual: acond = Assembler::notEqual; break;
1438 case lir_cond_less: acond = Assembler::below; break;
1439 case lir_cond_lessEqual: acond = Assembler::belowEqual; break;
1440 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1441 case lir_cond_greater: acond = Assembler::above; break;
1442 default: ShouldNotReachHere();
1443 }
1444 } else {
1445 switch (op->cond()) {
1446 case lir_cond_equal: acond = Assembler::equal; break;
1447 case lir_cond_notEqual: acond = Assembler::notEqual; break;
1448 case lir_cond_less: acond = Assembler::less; break;
1449 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
1450 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1451 case lir_cond_greater: acond = Assembler::greater; break;
1452 case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
1453 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
1454 default: ShouldNotReachHere();
1455 }
1456 }
1457 __ jcc(acond,*(op->label()));
1458 }
1459}
1460
1461void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1462 LIR_Opr src = op->in_opr();
1463 LIR_Opr dest = op->result_opr();
1464
1465 switch (op->bytecode()) {
1466 case Bytecodes::_i2l:
1467#ifdef _LP64
1468 __ movl2ptr(dest->as_register_lo(), src->as_register());
1469#else
1470 move_regs(src->as_register(), dest->as_register_lo());
1471 move_regs(src->as_register(), dest->as_register_hi());
1472 __ sarl(dest->as_register_hi(), 31);
1473#endif // LP64
1474 break;
1475
1476 case Bytecodes::_l2i:
1477#ifdef _LP64
1478 __ movl(dest->as_register(), src->as_register_lo());
1479#else
1480 move_regs(src->as_register_lo(), dest->as_register());
1481#endif
1482 break;
1483
1484 case Bytecodes::_i2b:
1485 move_regs(src->as_register(), dest->as_register());
1486 __ sign_extend_byte(dest->as_register());
1487 break;
1488
1489 case Bytecodes::_i2c:
1490 move_regs(src->as_register(), dest->as_register());
1491 __ andl(dest->as_register(), 0xFFFF);
1492 break;
1493
1494 case Bytecodes::_i2s:
1495 move_regs(src->as_register(), dest->as_register());
1496 __ sign_extend_short(dest->as_register());
1497 break;
1498
1499
1500 case Bytecodes::_f2d:
1501 case Bytecodes::_d2f:
1502 if (dest->is_single_xmm()) {
1503 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1504 } else if (dest->is_double_xmm()) {
1505 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1506 } else {
1507 assert(src->fpu() == dest->fpu(), "register must be equal");
1508 // do nothing (float result is rounded later through spilling)
1509 }
1510 break;
1511
1512 case Bytecodes::_i2f:
1513 case Bytecodes::_i2d:
1514 if (dest->is_single_xmm()) {
1515 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1516 } else if (dest->is_double_xmm()) {
1517 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1518 } else {
1519 assert(dest->fpu() == 0, "result must be on TOS");
1520 __ movl(Address(rsp, 0), src->as_register());
1521 __ fild_s(Address(rsp, 0));
1522 }
1523 break;
1524
1525 case Bytecodes::_f2i:
1526 case Bytecodes::_d2i:
1527 if (src->is_single_xmm()) {
1528 __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1529 } else if (src->is_double_xmm()) {
1530 __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1531 } else {
1532 assert(src->fpu() == 0, "input must be on TOS");
1533 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1534 __ fist_s(Address(rsp, 0));
1535 __ movl(dest->as_register(), Address(rsp, 0));
1536 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1537 }
1538
1539 // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1540 assert(op->stub() != NULL, "stub required");
1541 __ cmpl(dest->as_register(), 0x80000000);
1542 __ jcc(Assembler::equal, *op->stub()->entry());
1543 __ bind(*op->stub()->continuation());
1544 break;
1545
1546 case Bytecodes::_l2f:
1547 case Bytecodes::_l2d:
1548 assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1549 assert(dest->fpu() == 0, "result must be on TOS");
1550
1551 __ movptr(Address(rsp, 0), src->as_register_lo());
1552 NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1553 __ fild_d(Address(rsp, 0));
1554 // float result is rounded later through spilling
1555 break;
1556
1557 case Bytecodes::_f2l:
1558 case Bytecodes::_d2l:
1559 assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1560 assert(src->fpu() == 0, "input must be on TOS");
1561 assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1562
1563 // instruction sequence too long to inline it here
1564 {
1565 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1566 }
1567 break;
1568
1569 default: ShouldNotReachHere();
1570 }
1571}
1572
1573void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1574 if (op->init_check()) {
1575 add_debug_info_for_null_check_here(op->stub()->info());
1576 __ cmpb(Address(op->klass()->as_register(),
1577 InstanceKlass::init_state_offset()),
1578 InstanceKlass::fully_initialized);
1579 __ jcc(Assembler::notEqual, *op->stub()->entry());
1580 }
1581 __ allocate_object(op->obj()->as_register(),
1582 op->tmp1()->as_register(),
1583 op->tmp2()->as_register(),
1584 op->header_size(),
1585 op->object_size(),
1586 op->klass()->as_register(),
1587 *op->stub()->entry());
1588 __ bind(*op->stub()->continuation());
1589}
1590
1591void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1592 Register len = op->len()->as_register();
1593 LP64_ONLY( __ movslq(len, len); )
1594
1595 if (UseSlowPath ||
1596 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1597 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1598 __ jmp(*op->stub()->entry());
1599 } else {
1600 Register tmp1 = op->tmp1()->as_register();
1601 Register tmp2 = op->tmp2()->as_register();
1602 Register tmp3 = op->tmp3()->as_register();
1603 if (len == tmp1) {
1604 tmp1 = tmp3;
1605 } else if (len == tmp2) {
1606 tmp2 = tmp3;
1607 } else if (len == tmp3) {
1608 // everything is ok
1609 } else {
1610 __ mov(tmp3, len);
1611 }
1612 __ allocate_array(op->obj()->as_register(),
1613 len,
1614 tmp1,
1615 tmp2,
1616 arrayOopDesc::header_size(op->type()),
1617 array_element_size(op->type()),
1618 op->klass()->as_register(),
1619 *op->stub()->entry());
1620 }
1621 __ bind(*op->stub()->continuation());
1622}
1623
1624void LIR_Assembler::type_profile_helper(Register mdo,
1625 ciMethodData *md, ciProfileData *data,
1626 Register recv, Label* update_done) {
1627 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1628 Label next_test;
1629 // See if the receiver is receiver[n].
1630 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1631 __ jccb(Assembler::notEqual, next_test);
1632 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1633 __ addptr(data_addr, DataLayout::counter_increment);
1634 __ jmp(*update_done);
1635 __ bind(next_test);
1636 }
1637
1638 // Didn't find receiver; find next empty slot and fill it in
1639 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1640 Label next_test;
1641 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1642 __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1643 __ jccb(Assembler::notEqual, next_test);
1644 __ movptr(recv_addr, recv);
1645 __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1646 __ jmp(*update_done);
1647 __ bind(next_test);
1648 }
1649}
1650
1651void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1652 // we always need a stub for the failure case.
1653 CodeStub* stub = op->stub();
1654 Register obj = op->object()->as_register();
1655 Register k_RInfo = op->tmp1()->as_register();
1656 Register klass_RInfo = op->tmp2()->as_register();
1657 Register dst = op->result_opr()->as_register();
1658 ciKlass* k = op->klass();
1659 Register Rtmp1 = noreg;
1660
1661 // check if it needs to be profiled
1662 ciMethodData* md = NULL;
1663 ciProfileData* data = NULL;
1664
1665 if (op->should_profile()) {
1666 ciMethod* method = op->profiled_method();
1667 assert(method != NULL, "Should have method");
1668 int bci = op->profiled_bci();
1669 md = method->method_data_or_null();
1670 assert(md != NULL, "Sanity");
1671 data = md->bci_to_data(bci);
1672 assert(data != NULL, "need data for type check");
1673 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1674 }
1675 Label profile_cast_success, profile_cast_failure;
1676 Label *success_target = op->should_profile() ? &profile_cast_success : success;
1677 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1678
1679 if (obj == k_RInfo) {
1680 k_RInfo = dst;
1681 } else if (obj == klass_RInfo) {
1682 klass_RInfo = dst;
1683 }
1684 if (k->is_loaded() && !UseCompressedClassPointers) {
1685 select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1686 } else {
1687 Rtmp1 = op->tmp3()->as_register();
1688 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1689 }
1690
1691 assert_different_registers(obj, k_RInfo, klass_RInfo);
1692
1693 __ cmpptr(obj, (int32_t)NULL_WORD);
1694 if (op->should_profile()) {
1695 Label not_null;
1696 __ jccb(Assembler::notEqual, not_null);
1697 // Object is null; update MDO and exit
1698 Register mdo = klass_RInfo;
1699 __ mov_metadata(mdo, md->constant_encoding());
1700 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1701 int header_bits = BitData::null_seen_byte_constant();
1702 __ orb(data_addr, header_bits);
1703 __ jmp(*obj_is_null);
1704 __ bind(not_null);
1705 } else {
1706 __ jcc(Assembler::equal, *obj_is_null);
1707 }
1708
1709 if (!k->is_loaded()) {
1710 klass2reg_with_patching(k_RInfo, op->info_for_patch());
1711 } else {
1712#ifdef _LP64
1713 __ mov_metadata(k_RInfo, k->constant_encoding());
1714#endif // _LP64
1715 }
1716 __ verify_oop(obj);
1717
1718 if (op->fast_check()) {
1719 // get object class
1720 // not a safepoint as obj null check happens earlier
1721#ifdef _LP64
1722 if (UseCompressedClassPointers) {
1723 __ load_klass(Rtmp1, obj);
1724 __ cmpptr(k_RInfo, Rtmp1);
1725 } else {
1726 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1727 }
1728#else
1729 if (k->is_loaded()) {
1730 __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1731 } else {
1732 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1733 }
1734#endif
1735 __ jcc(Assembler::notEqual, *failure_target);
1736 // successful cast, fall through to profile or jump
1737 } else {
1738 // get object class
1739 // not a safepoint as obj null check happens earlier
1740 __ load_klass(klass_RInfo, obj);
1741 if (k->is_loaded()) {
1742 // See if we get an immediate positive hit
1743#ifdef _LP64
1744 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1745#else
1746 __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1747#endif // _LP64
1748 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1749 __ jcc(Assembler::notEqual, *failure_target);
1750 // successful cast, fall through to profile or jump
1751 } else {
1752 // See if we get an immediate positive hit
1753 __ jcc(Assembler::equal, *success_target);
1754 // check for self
1755#ifdef _LP64
1756 __ cmpptr(klass_RInfo, k_RInfo);
1757#else
1758 __ cmpklass(klass_RInfo, k->constant_encoding());
1759#endif // _LP64
1760 __ jcc(Assembler::equal, *success_target);
1761
1762 __ push(klass_RInfo);
1763#ifdef _LP64
1764 __ push(k_RInfo);
1765#else
1766 __ pushklass(k->constant_encoding());
1767#endif // _LP64
1768 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1769 __ pop(klass_RInfo);
1770 __ pop(klass_RInfo);
1771 // result is a boolean
1772 __ cmpl(klass_RInfo, 0);
1773 __ jcc(Assembler::equal, *failure_target);
1774 // successful cast, fall through to profile or jump
1775 }
1776 } else {
1777 // perform the fast part of the checking logic
1778 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1779 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1780 __ push(klass_RInfo);
1781 __ push(k_RInfo);
1782 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1783 __ pop(klass_RInfo);
1784 __ pop(k_RInfo);
1785 // result is a boolean
1786 __ cmpl(k_RInfo, 0);
1787 __ jcc(Assembler::equal, *failure_target);
1788 // successful cast, fall through to profile or jump
1789 }
1790 }
1791 if (op->should_profile()) {
1792 Register mdo = klass_RInfo, recv = k_RInfo;
1793 __ bind(profile_cast_success);
1794 __ mov_metadata(mdo, md->constant_encoding());
1795 __ load_klass(recv, obj);
1796 type_profile_helper(mdo, md, data, recv, success);
1797 __ jmp(*success);
1798
1799 __ bind(profile_cast_failure);
1800 __ mov_metadata(mdo, md->constant_encoding());
1801 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1802 __ subptr(counter_addr, DataLayout::counter_increment);
1803 __ jmp(*failure);
1804 }
1805 __ jmp(*success);
1806}
1807
1808
1809void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1810 LIR_Code code = op->code();
1811 if (code == lir_store_check) {
1812 Register value = op->object()->as_register();
1813 Register array = op->array()->as_register();
1814 Register k_RInfo = op->tmp1()->as_register();
1815 Register klass_RInfo = op->tmp2()->as_register();
1816 Register Rtmp1 = op->tmp3()->as_register();
1817
1818 CodeStub* stub = op->stub();
1819
1820 // check if it needs to be profiled
1821 ciMethodData* md = NULL;
1822 ciProfileData* data = NULL;
1823
1824 if (op->should_profile()) {
1825 ciMethod* method = op->profiled_method();
1826 assert(method != NULL, "Should have method");
1827 int bci = op->profiled_bci();
1828 md = method->method_data_or_null();
1829 assert(md != NULL, "Sanity");
1830 data = md->bci_to_data(bci);
1831 assert(data != NULL, "need data for type check");
1832 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1833 }
1834 Label profile_cast_success, profile_cast_failure, done;
1835 Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1836 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1837
1838 __ cmpptr(value, (int32_t)NULL_WORD);
1839 if (op->should_profile()) {
1840 Label not_null;
1841 __ jccb(Assembler::notEqual, not_null);
1842 // Object is null; update MDO and exit
1843 Register mdo = klass_RInfo;
1844 __ mov_metadata(mdo, md->constant_encoding());
1845 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1846 int header_bits = BitData::null_seen_byte_constant();
1847 __ orb(data_addr, header_bits);
1848 __ jmp(done);
1849 __ bind(not_null);
1850 } else {
1851 __ jcc(Assembler::equal, done);
1852 }
1853
1854 add_debug_info_for_null_check_here(op->info_for_exception());
1855 __ load_klass(k_RInfo, array);
1856 __ load_klass(klass_RInfo, value);
1857
1858 // get instance klass (it's already uncompressed)
1859 __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1860 // perform the fast part of the checking logic
1861 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1862 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1863 __ push(klass_RInfo);
1864 __ push(k_RInfo);
1865 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1866 __ pop(klass_RInfo);
1867 __ pop(k_RInfo);
1868 // result is a boolean
1869 __ cmpl(k_RInfo, 0);
1870 __ jcc(Assembler::equal, *failure_target);
1871 // fall through to the success case
1872
1873 if (op->should_profile()) {
1874 Register mdo = klass_RInfo, recv = k_RInfo;
1875 __ bind(profile_cast_success);
1876 __ mov_metadata(mdo, md->constant_encoding());
1877 __ load_klass(recv, value);
1878 type_profile_helper(mdo, md, data, recv, &done);
1879 __ jmpb(done);
1880
1881 __ bind(profile_cast_failure);
1882 __ mov_metadata(mdo, md->constant_encoding());
1883 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1884 __ subptr(counter_addr, DataLayout::counter_increment);
1885 __ jmp(*stub->entry());
1886 }
1887
1888 __ bind(done);
1889 } else
1890 if (code == lir_checkcast) {
1891 Register obj = op->object()->as_register();
1892 Register dst = op->result_opr()->as_register();
1893 Label success;
1894 emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1895 __ bind(success);
1896 if (dst != obj) {
1897 __ mov(dst, obj);
1898 }
1899 } else
1900 if (code == lir_instanceof) {
1901 Register obj = op->object()->as_register();
1902 Register dst = op->result_opr()->as_register();
1903 Label success, failure, done;
1904 emit_typecheck_helper(op, &success, &failure, &failure);
1905 __ bind(failure);
1906 __ xorptr(dst, dst);
1907 __ jmpb(done);
1908 __ bind(success);
1909 __ movptr(dst, 1);
1910 __ bind(done);
1911 } else {
1912 ShouldNotReachHere();
1913 }
1914
1915}
1916
1917
1918void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1919 if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1920 assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1921 assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1922 assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1923 assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1924 Register addr = op->addr()->as_register();
1925 __ lock();
1926 NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1927
1928 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1929 NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1930 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1931 Register newval = op->new_value()->as_register();
1932 Register cmpval = op->cmp_value()->as_register();
1933 assert(cmpval == rax, "wrong register");
1934 assert(newval != NULL, "new val must be register");
1935 assert(cmpval != newval, "cmp and new values must be in different registers");
1936 assert(cmpval != addr, "cmp and addr must be in different registers");
1937 assert(newval != addr, "new value and addr must be in different registers");
1938
1939 if ( op->code() == lir_cas_obj) {
1940#ifdef _LP64
1941 if (UseCompressedOops) {
1942 __ encode_heap_oop(cmpval);
1943 __ mov(rscratch1, newval);
1944 __ encode_heap_oop(rscratch1);
1945 __ lock();
1946 // cmpval (rax) is implicitly used by this instruction
1947 __ cmpxchgl(rscratch1, Address(addr, 0));
1948 } else
1949#endif
1950 {
1951 __ lock();
1952 __ cmpxchgptr(newval, Address(addr, 0));
1953 }
1954 } else {
1955 assert(op->code() == lir_cas_int, "lir_cas_int expected");
1956 __ lock();
1957 __ cmpxchgl(newval, Address(addr, 0));
1958 }
1959#ifdef _LP64
1960 } else if (op->code() == lir_cas_long) {
1961 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1962 Register newval = op->new_value()->as_register_lo();
1963 Register cmpval = op->cmp_value()->as_register_lo();
1964 assert(cmpval == rax, "wrong register");
1965 assert(newval != NULL, "new val must be register");
1966 assert(cmpval != newval, "cmp and new values must be in different registers");
1967 assert(cmpval != addr, "cmp and addr must be in different registers");
1968 assert(newval != addr, "new value and addr must be in different registers");
1969 __ lock();
1970 __ cmpxchgq(newval, Address(addr, 0));
1971#endif // _LP64
1972 } else {
1973 Unimplemented();
1974 }
1975}
1976
1977void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1978 Assembler::Condition acond, ncond;
1979 switch (condition) {
1980 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break;
1981 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break;
1982 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break;
1983 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break;
1984 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break;
1985 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break;
1986 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break;
1987 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break;
1988 default: acond = Assembler::equal; ncond = Assembler::notEqual;
1989 ShouldNotReachHere();
1990 }
1991
1992 if (opr1->is_cpu_register()) {
1993 reg2reg(opr1, result);
1994 } else if (opr1->is_stack()) {
1995 stack2reg(opr1, result, result->type());
1996 } else if (opr1->is_constant()) {
1997 const2reg(opr1, result, lir_patch_none, NULL);
1998 } else {
1999 ShouldNotReachHere();
2000 }
2001
2002 if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2003 // optimized version that does not require a branch
2004 if (opr2->is_single_cpu()) {
2005 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2006 __ cmov(ncond, result->as_register(), opr2->as_register());
2007 } else if (opr2->is_double_cpu()) {
2008 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2009 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2010 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2011 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2012 } else if (opr2->is_single_stack()) {
2013 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2014 } else if (opr2->is_double_stack()) {
2015 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2016 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2017 } else {
2018 ShouldNotReachHere();
2019 }
2020
2021 } else {
2022 Label skip;
2023 __ jcc (acond, skip);
2024 if (opr2->is_cpu_register()) {
2025 reg2reg(opr2, result);
2026 } else if (opr2->is_stack()) {
2027 stack2reg(opr2, result, result->type());
2028 } else if (opr2->is_constant()) {
2029 const2reg(opr2, result, lir_patch_none, NULL);
2030 } else {
2031 ShouldNotReachHere();
2032 }
2033 __ bind(skip);
2034 }
2035}
2036
2037
2038void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2039 assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2040
2041 if (left->is_single_cpu()) {
2042 assert(left == dest, "left and dest must be equal");
2043 Register lreg = left->as_register();
2044
2045 if (right->is_single_cpu()) {
2046 // cpu register - cpu register
2047 Register rreg = right->as_register();
2048 switch (code) {
2049 case lir_add: __ addl (lreg, rreg); break;
2050 case lir_sub: __ subl (lreg, rreg); break;
2051 case lir_mul: __ imull(lreg, rreg); break;
2052 default: ShouldNotReachHere();
2053 }
2054
2055 } else if (right->is_stack()) {
2056 // cpu register - stack
2057 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2058 switch (code) {
2059 case lir_add: __ addl(lreg, raddr); break;
2060 case lir_sub: __ subl(lreg, raddr); break;
2061 default: ShouldNotReachHere();
2062 }
2063
2064 } else if (right->is_constant()) {
2065 // cpu register - constant
2066 jint c = right->as_constant_ptr()->as_jint();
2067 switch (code) {
2068 case lir_add: {
2069 __ incrementl(lreg, c);
2070 break;
2071 }
2072 case lir_sub: {
2073 __ decrementl(lreg, c);
2074 break;
2075 }
2076 default: ShouldNotReachHere();
2077 }
2078
2079 } else {
2080 ShouldNotReachHere();
2081 }
2082
2083 } else if (left->is_double_cpu()) {
2084 assert(left == dest, "left and dest must be equal");
2085 Register lreg_lo = left->as_register_lo();
2086 Register lreg_hi = left->as_register_hi();
2087
2088 if (right->is_double_cpu()) {
2089 // cpu register - cpu register
2090 Register rreg_lo = right->as_register_lo();
2091 Register rreg_hi = right->as_register_hi();
2092 NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2093 LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2094 switch (code) {
2095 case lir_add:
2096 __ addptr(lreg_lo, rreg_lo);
2097 NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2098 break;
2099 case lir_sub:
2100 __ subptr(lreg_lo, rreg_lo);
2101 NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2102 break;
2103 case lir_mul:
2104#ifdef _LP64
2105 __ imulq(lreg_lo, rreg_lo);
2106#else
2107 assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2108 __ imull(lreg_hi, rreg_lo);
2109 __ imull(rreg_hi, lreg_lo);
2110 __ addl (rreg_hi, lreg_hi);
2111 __ mull (rreg_lo);
2112 __ addl (lreg_hi, rreg_hi);
2113#endif // _LP64
2114 break;
2115 default:
2116 ShouldNotReachHere();
2117 }
2118
2119 } else if (right->is_constant()) {
2120 // cpu register - constant
2121#ifdef _LP64
2122 jlong c = right->as_constant_ptr()->as_jlong_bits();
2123 __ movptr(r10, (intptr_t) c);
2124 switch (code) {
2125 case lir_add:
2126 __ addptr(lreg_lo, r10);
2127 break;
2128 case lir_sub:
2129 __ subptr(lreg_lo, r10);
2130 break;
2131 default:
2132 ShouldNotReachHere();
2133 }
2134#else
2135 jint c_lo = right->as_constant_ptr()->as_jint_lo();
2136 jint c_hi = right->as_constant_ptr()->as_jint_hi();
2137 switch (code) {
2138 case lir_add:
2139 __ addptr(lreg_lo, c_lo);
2140 __ adcl(lreg_hi, c_hi);
2141 break;
2142 case lir_sub:
2143 __ subptr(lreg_lo, c_lo);
2144 __ sbbl(lreg_hi, c_hi);
2145 break;
2146 default:
2147 ShouldNotReachHere();
2148 }
2149#endif // _LP64
2150
2151 } else {
2152 ShouldNotReachHere();
2153 }
2154
2155 } else if (left->is_single_xmm()) {
2156 assert(left == dest, "left and dest must be equal");
2157 XMMRegister lreg = left->as_xmm_float_reg();
2158
2159 if (right->is_single_xmm()) {
2160 XMMRegister rreg = right->as_xmm_float_reg();
2161 switch (code) {
2162 case lir_add: __ addss(lreg, rreg); break;
2163 case lir_sub: __ subss(lreg, rreg); break;
2164 case lir_mul_strictfp: // fall through
2165 case lir_mul: __ mulss(lreg, rreg); break;
2166 case lir_div_strictfp: // fall through
2167 case lir_div: __ divss(lreg, rreg); break;
2168 default: ShouldNotReachHere();
2169 }
2170 } else {
2171 Address raddr;
2172 if (right->is_single_stack()) {
2173 raddr = frame_map()->address_for_slot(right->single_stack_ix());
2174 } else if (right->is_constant()) {
2175 // hack for now
2176 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2177 } else {
2178 ShouldNotReachHere();
2179 }
2180 switch (code) {
2181 case lir_add: __ addss(lreg, raddr); break;
2182 case lir_sub: __ subss(lreg, raddr); break;
2183 case lir_mul_strictfp: // fall through
2184 case lir_mul: __ mulss(lreg, raddr); break;
2185 case lir_div_strictfp: // fall through
2186 case lir_div: __ divss(lreg, raddr); break;
2187 default: ShouldNotReachHere();
2188 }
2189 }
2190
2191 } else if (left->is_double_xmm()) {
2192 assert(left == dest, "left and dest must be equal");
2193
2194 XMMRegister lreg = left->as_xmm_double_reg();
2195 if (right->is_double_xmm()) {
2196 XMMRegister rreg = right->as_xmm_double_reg();
2197 switch (code) {
2198 case lir_add: __ addsd(lreg, rreg); break;
2199 case lir_sub: __ subsd(lreg, rreg); break;
2200 case lir_mul_strictfp: // fall through
2201 case lir_mul: __ mulsd(lreg, rreg); break;
2202 case lir_div_strictfp: // fall through
2203 case lir_div: __ divsd(lreg, rreg); break;
2204 default: ShouldNotReachHere();
2205 }
2206 } else {
2207 Address raddr;
2208 if (right->is_double_stack()) {
2209 raddr = frame_map()->address_for_slot(right->double_stack_ix());
2210 } else if (right->is_constant()) {
2211 // hack for now
2212 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2213 } else {
2214 ShouldNotReachHere();
2215 }
2216 switch (code) {
2217 case lir_add: __ addsd(lreg, raddr); break;
2218 case lir_sub: __ subsd(lreg, raddr); break;
2219 case lir_mul_strictfp: // fall through
2220 case lir_mul: __ mulsd(lreg, raddr); break;
2221 case lir_div_strictfp: // fall through
2222 case lir_div: __ divsd(lreg, raddr); break;
2223 default: ShouldNotReachHere();
2224 }
2225 }
2226
2227 } else if (left->is_single_fpu()) {
2228 assert(dest->is_single_fpu(), "fpu stack allocation required");
2229
2230 if (right->is_single_fpu()) {
2231 arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2232
2233 } else {
2234 assert(left->fpu_regnr() == 0, "left must be on TOS");
2235 assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2236
2237 Address raddr;
2238 if (right->is_single_stack()) {
2239 raddr = frame_map()->address_for_slot(right->single_stack_ix());
2240 } else if (right->is_constant()) {
2241 address const_addr = float_constant(right->as_jfloat());
2242 assert(const_addr != NULL, "incorrect float/double constant maintainance");
2243 // hack for now
2244 raddr = __ as_Address(InternalAddress(const_addr));
2245 } else {
2246 ShouldNotReachHere();
2247 }
2248
2249 switch (code) {
2250 case lir_add: __ fadd_s(raddr); break;
2251 case lir_sub: __ fsub_s(raddr); break;
2252 case lir_mul_strictfp: // fall through
2253 case lir_mul: __ fmul_s(raddr); break;
2254 case lir_div_strictfp: // fall through
2255 case lir_div: __ fdiv_s(raddr); break;
2256 default: ShouldNotReachHere();
2257 }
2258 }
2259
2260 } else if (left->is_double_fpu()) {
2261 assert(dest->is_double_fpu(), "fpu stack allocation required");
2262
2263 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2264 // Double values require special handling for strictfp mul/div on x86
2265 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2266 __ fmulp(left->fpu_regnrLo() + 1);
2267 }
2268
2269 if (right->is_double_fpu()) {
2270 arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2271
2272 } else {
2273 assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2274 assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2275
2276 Address raddr;
2277 if (right->is_double_stack()) {
2278 raddr = frame_map()->address_for_slot(right->double_stack_ix());
2279 } else if (right->is_constant()) {
2280 // hack for now
2281 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2282 } else {
2283 ShouldNotReachHere();
2284 }
2285
2286 switch (code) {
2287 case lir_add: __ fadd_d(raddr); break;
2288 case lir_sub: __ fsub_d(raddr); break;
2289 case lir_mul_strictfp: // fall through
2290 case lir_mul: __ fmul_d(raddr); break;
2291 case lir_div_strictfp: // fall through
2292 case lir_div: __ fdiv_d(raddr); break;
2293 default: ShouldNotReachHere();
2294 }
2295 }
2296
2297 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2298 // Double values require special handling for strictfp mul/div on x86
2299 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2300 __ fmulp(dest->fpu_regnrLo() + 1);
2301 }
2302
2303 } else if (left->is_single_stack() || left->is_address()) {
2304 assert(left == dest, "left and dest must be equal");
2305
2306 Address laddr;
2307 if (left->is_single_stack()) {
2308 laddr = frame_map()->address_for_slot(left->single_stack_ix());
2309 } else if (left->is_address()) {
2310 laddr = as_Address(left->as_address_ptr());
2311 } else {
2312 ShouldNotReachHere();
2313 }
2314
2315 if (right->is_single_cpu()) {
2316 Register rreg = right->as_register();
2317 switch (code) {
2318 case lir_add: __ addl(laddr, rreg); break;
2319 case lir_sub: __ subl(laddr, rreg); break;
2320 default: ShouldNotReachHere();
2321 }
2322 } else if (right->is_constant()) {
2323 jint c = right->as_constant_ptr()->as_jint();
2324 switch (code) {
2325 case lir_add: {
2326 __ incrementl(laddr, c);
2327 break;
2328 }
2329 case lir_sub: {
2330 __ decrementl(laddr, c);
2331 break;
2332 }
2333 default: ShouldNotReachHere();
2334 }
2335 } else {
2336 ShouldNotReachHere();
2337 }
2338
2339 } else {
2340 ShouldNotReachHere();
2341 }
2342}
2343
2344void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2345 assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR");
2346 assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2347 assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2348
2349 bool left_is_tos = (left_index == 0);
2350 bool dest_is_tos = (dest_index == 0);
2351 int non_tos_index = (left_is_tos ? right_index : left_index);
2352
2353 switch (code) {
2354 case lir_add:
2355 if (pop_fpu_stack) __ faddp(non_tos_index);
2356 else if (dest_is_tos) __ fadd (non_tos_index);
2357 else __ fadda(non_tos_index);
2358 break;
2359
2360 case lir_sub:
2361 if (left_is_tos) {
2362 if (pop_fpu_stack) __ fsubrp(non_tos_index);
2363 else if (dest_is_tos) __ fsub (non_tos_index);
2364 else __ fsubra(non_tos_index);
2365 } else {
2366 if (pop_fpu_stack) __ fsubp (non_tos_index);
2367 else if (dest_is_tos) __ fsubr (non_tos_index);
2368 else __ fsuba (non_tos_index);
2369 }
2370 break;
2371
2372 case lir_mul_strictfp: // fall through
2373 case lir_mul:
2374 if (pop_fpu_stack) __ fmulp(non_tos_index);
2375 else if (dest_is_tos) __ fmul (non_tos_index);
2376 else __ fmula(non_tos_index);
2377 break;
2378
2379 case lir_div_strictfp: // fall through
2380 case lir_div:
2381 if (left_is_tos) {
2382 if (pop_fpu_stack) __ fdivrp(non_tos_index);
2383 else if (dest_is_tos) __ fdiv (non_tos_index);
2384 else __ fdivra(non_tos_index);
2385 } else {
2386 if (pop_fpu_stack) __ fdivp (non_tos_index);
2387 else if (dest_is_tos) __ fdivr (non_tos_index);
2388 else __ fdiva (non_tos_index);
2389 }
2390 break;
2391
2392 case lir_rem:
2393 assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2394 __ fremr(noreg);
2395 break;
2396
2397 default:
2398 ShouldNotReachHere();
2399 }
2400}
2401
2402
2403void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) {
2404 if (value->is_double_xmm()) {
2405 switch(code) {
2406 case lir_abs :
2407 {
2408#ifdef _LP64
2409 if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
2410 assert(tmp->is_valid(), "need temporary");
2411 __ vpandn(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), value->as_xmm_double_reg(), 2);
2412 } else
2413#endif
2414 {
2415 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2416 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2417 }
2418 assert(!tmp->is_valid(), "do not need temporary");
2419 __ andpd(dest->as_xmm_double_reg(),
2420 ExternalAddress((address)double_signmask_pool));
2421 }
2422 }
2423 break;
2424
2425 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2426 // all other intrinsics are not available in the SSE instruction set, so FPU is used
2427 default : ShouldNotReachHere();
2428 }
2429
2430 } else if (value->is_double_fpu()) {
2431 assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2432 switch(code) {
2433 case lir_abs : __ fabs() ; break;
2434 case lir_sqrt : __ fsqrt(); break;
2435 default : ShouldNotReachHere();
2436 }
2437 } else {
2438 Unimplemented();
2439 }
2440}
2441
2442void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2443 // assert(left->destroys_register(), "check");
2444 if (left->is_single_cpu()) {
2445 Register reg = left->as_register();
2446 if (right->is_constant()) {
2447 int val = right->as_constant_ptr()->as_jint();
2448 switch (code) {
2449 case lir_logic_and: __ andl (reg, val); break;
2450 case lir_logic_or: __ orl (reg, val); break;
2451 case lir_logic_xor: __ xorl (reg, val); break;
2452 default: ShouldNotReachHere();
2453 }
2454 } else if (right->is_stack()) {
2455 // added support for stack operands
2456 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2457 switch (code) {
2458 case lir_logic_and: __ andl (reg, raddr); break;
2459 case lir_logic_or: __ orl (reg, raddr); break;
2460 case lir_logic_xor: __ xorl (reg, raddr); break;
2461 default: ShouldNotReachHere();
2462 }
2463 } else {
2464 Register rright = right->as_register();
2465 switch (code) {
2466 case lir_logic_and: __ andptr (reg, rright); break;
2467 case lir_logic_or : __ orptr (reg, rright); break;
2468 case lir_logic_xor: __ xorptr (reg, rright); break;
2469 default: ShouldNotReachHere();
2470 }
2471 }
2472 move_regs(reg, dst->as_register());
2473 } else {
2474 Register l_lo = left->as_register_lo();
2475 Register l_hi = left->as_register_hi();
2476 if (right->is_constant()) {
2477#ifdef _LP64
2478 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2479 switch (code) {
2480 case lir_logic_and:
2481 __ andq(l_lo, rscratch1);
2482 break;
2483 case lir_logic_or:
2484 __ orq(l_lo, rscratch1);
2485 break;
2486 case lir_logic_xor:
2487 __ xorq(l_lo, rscratch1);
2488 break;
2489 default: ShouldNotReachHere();
2490 }
2491#else
2492 int r_lo = right->as_constant_ptr()->as_jint_lo();
2493 int r_hi = right->as_constant_ptr()->as_jint_hi();
2494 switch (code) {
2495 case lir_logic_and:
2496 __ andl(l_lo, r_lo);
2497 __ andl(l_hi, r_hi);
2498 break;
2499 case lir_logic_or:
2500 __ orl(l_lo, r_lo);
2501 __ orl(l_hi, r_hi);
2502 break;
2503 case lir_logic_xor:
2504 __ xorl(l_lo, r_lo);
2505 __ xorl(l_hi, r_hi);
2506 break;
2507 default: ShouldNotReachHere();
2508 }
2509#endif // _LP64
2510 } else {
2511#ifdef _LP64
2512 Register r_lo;
2513 if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2514 r_lo = right->as_register();
2515 } else {
2516 r_lo = right->as_register_lo();
2517 }
2518#else
2519 Register r_lo = right->as_register_lo();
2520 Register r_hi = right->as_register_hi();
2521 assert(l_lo != r_hi, "overwriting registers");
2522#endif
2523 switch (code) {
2524 case lir_logic_and:
2525 __ andptr(l_lo, r_lo);
2526 NOT_LP64(__ andptr(l_hi, r_hi);)
2527 break;
2528 case lir_logic_or:
2529 __ orptr(l_lo, r_lo);
2530 NOT_LP64(__ orptr(l_hi, r_hi);)
2531 break;
2532 case lir_logic_xor:
2533 __ xorptr(l_lo, r_lo);
2534 NOT_LP64(__ xorptr(l_hi, r_hi);)
2535 break;
2536 default: ShouldNotReachHere();
2537 }
2538 }
2539
2540 Register dst_lo = dst->as_register_lo();
2541 Register dst_hi = dst->as_register_hi();
2542
2543#ifdef _LP64
2544 move_regs(l_lo, dst_lo);
2545#else
2546 if (dst_lo == l_hi) {
2547 assert(dst_hi != l_lo, "overwriting registers");
2548 move_regs(l_hi, dst_hi);
2549 move_regs(l_lo, dst_lo);
2550 } else {
2551 assert(dst_lo != l_hi, "overwriting registers");
2552 move_regs(l_lo, dst_lo);
2553 move_regs(l_hi, dst_hi);
2554 }
2555#endif // _LP64
2556 }
2557}
2558
2559
2560// we assume that rax, and rdx can be overwritten
2561void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2562
2563 assert(left->is_single_cpu(), "left must be register");
2564 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant");
2565 assert(result->is_single_cpu(), "result must be register");
2566
2567 // assert(left->destroys_register(), "check");
2568 // assert(right->destroys_register(), "check");
2569
2570 Register lreg = left->as_register();
2571 Register dreg = result->as_register();
2572
2573 if (right->is_constant()) {
2574 jint divisor = right->as_constant_ptr()->as_jint();
2575 assert(divisor > 0 && is_power_of_2(divisor), "must be");
2576 if (code == lir_idiv) {
2577 assert(lreg == rax, "must be rax,");
2578 assert(temp->as_register() == rdx, "tmp register must be rdx");
2579 __ cdql(); // sign extend into rdx:rax
2580 if (divisor == 2) {
2581 __ subl(lreg, rdx);
2582 } else {
2583 __ andl(rdx, divisor - 1);
2584 __ addl(lreg, rdx);
2585 }
2586 __ sarl(lreg, log2_jint(divisor));
2587 move_regs(lreg, dreg);
2588 } else if (code == lir_irem) {
2589 Label done;
2590 __ mov(dreg, lreg);
2591 __ andl(dreg, 0x80000000 | (divisor - 1));
2592 __ jcc(Assembler::positive, done);
2593 __ decrement(dreg);
2594 __ orl(dreg, ~(divisor - 1));
2595 __ increment(dreg);
2596 __ bind(done);
2597 } else {
2598 ShouldNotReachHere();
2599 }
2600 } else {
2601 Register rreg = right->as_register();
2602 assert(lreg == rax, "left register must be rax,");
2603 assert(rreg != rdx, "right register must not be rdx");
2604 assert(temp->as_register() == rdx, "tmp register must be rdx");
2605
2606 move_regs(lreg, rax);
2607
2608 int idivl_offset = __ corrected_idivl(rreg);
2609 if (ImplicitDiv0Checks) {
2610 add_debug_info_for_div0(idivl_offset, info);
2611 }
2612 if (code == lir_irem) {
2613 move_regs(rdx, dreg); // result is in rdx
2614 } else {
2615 move_regs(rax, dreg);
2616 }
2617 }
2618}
2619
2620
2621void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2622 if (opr1->is_single_cpu()) {
2623 Register reg1 = opr1->as_register();
2624 if (opr2->is_single_cpu()) {
2625 // cpu register - cpu register
2626 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2627 __ cmpoop(reg1, opr2->as_register());
2628 } else {
2629 assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2630 __ cmpl(reg1, opr2->as_register());
2631 }
2632 } else if (opr2->is_stack()) {
2633 // cpu register - stack
2634 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2635 __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2636 } else {
2637 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2638 }
2639 } else if (opr2->is_constant()) {
2640 // cpu register - constant
2641 LIR_Const* c = opr2->as_constant_ptr();
2642 if (c->type() == T_INT) {
2643 __ cmpl(reg1, c->as_jint());
2644 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2645 // In 64bit oops are single register
2646 jobject o = c->as_jobject();
2647 if (o == NULL) {
2648 __ cmpptr(reg1, (int32_t)NULL_WORD);
2649 } else {
2650 __ cmpoop(reg1, o);
2651 }
2652 } else {
2653 fatal("unexpected type: %s", basictype_to_str(c->type()));
2654 }
2655 // cpu register - address
2656 } else if (opr2->is_address()) {
2657 if (op->info() != NULL) {
2658 add_debug_info_for_null_check_here(op->info());
2659 }
2660 __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2661 } else {
2662 ShouldNotReachHere();
2663 }
2664
2665 } else if(opr1->is_double_cpu()) {
2666 Register xlo = opr1->as_register_lo();
2667 Register xhi = opr1->as_register_hi();
2668 if (opr2->is_double_cpu()) {
2669#ifdef _LP64
2670 __ cmpptr(xlo, opr2->as_register_lo());
2671#else
2672 // cpu register - cpu register
2673 Register ylo = opr2->as_register_lo();
2674 Register yhi = opr2->as_register_hi();
2675 __ subl(xlo, ylo);
2676 __ sbbl(xhi, yhi);
2677 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2678 __ orl(xhi, xlo);
2679 }
2680#endif // _LP64
2681 } else if (opr2->is_constant()) {
2682 // cpu register - constant 0
2683 assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2684#ifdef _LP64
2685 __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2686#else
2687 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2688 __ orl(xhi, xlo);
2689#endif // _LP64
2690 } else {
2691 ShouldNotReachHere();
2692 }
2693
2694 } else if (opr1->is_single_xmm()) {
2695 XMMRegister reg1 = opr1->as_xmm_float_reg();
2696 if (opr2->is_single_xmm()) {
2697 // xmm register - xmm register
2698 __ ucomiss(reg1, opr2->as_xmm_float_reg());
2699 } else if (opr2->is_stack()) {
2700 // xmm register - stack
2701 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2702 } else if (opr2->is_constant()) {
2703 // xmm register - constant
2704 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2705 } else if (opr2->is_address()) {
2706 // xmm register - address
2707 if (op->info() != NULL) {
2708 add_debug_info_for_null_check_here(op->info());
2709 }
2710 __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2711 } else {
2712 ShouldNotReachHere();
2713 }
2714
2715 } else if (opr1->is_double_xmm()) {
2716 XMMRegister reg1 = opr1->as_xmm_double_reg();
2717 if (opr2->is_double_xmm()) {
2718 // xmm register - xmm register
2719 __ ucomisd(reg1, opr2->as_xmm_double_reg());
2720 } else if (opr2->is_stack()) {
2721 // xmm register - stack
2722 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2723 } else if (opr2->is_constant()) {
2724 // xmm register - constant
2725 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2726 } else if (opr2->is_address()) {
2727 // xmm register - address
2728 if (op->info() != NULL) {
2729 add_debug_info_for_null_check_here(op->info());
2730 }
2731 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2732 } else {
2733 ShouldNotReachHere();
2734 }
2735
2736 } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2737 assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2738 assert(opr2->is_fpu_register(), "both must be registers");
2739 __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2740
2741 } else if (opr1->is_address() && opr2->is_constant()) {
2742 LIR_Const* c = opr2->as_constant_ptr();
2743#ifdef _LP64
2744 if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2745 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2746 __ movoop(rscratch1, c->as_jobject());
2747 }
2748#endif // LP64
2749 if (op->info() != NULL) {
2750 add_debug_info_for_null_check_here(op->info());
2751 }
2752 // special case: address - constant
2753 LIR_Address* addr = opr1->as_address_ptr();
2754 if (c->type() == T_INT) {
2755 __ cmpl(as_Address(addr), c->as_jint());
2756 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2757#ifdef _LP64
2758 // %%% Make this explode if addr isn't reachable until we figure out a
2759 // better strategy by giving noreg as the temp for as_Address
2760 __ cmpoop(rscratch1, as_Address(addr, noreg));
2761#else
2762 __ cmpoop(as_Address(addr), c->as_jobject());
2763#endif // _LP64
2764 } else {
2765 ShouldNotReachHere();
2766 }
2767
2768 } else {
2769 ShouldNotReachHere();
2770 }
2771}
2772
2773void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2774 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2775 if (left->is_single_xmm()) {
2776 assert(right->is_single_xmm(), "must match");
2777 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2778 } else if (left->is_double_xmm()) {
2779 assert(right->is_double_xmm(), "must match");
2780 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2781
2782 } else {
2783 assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2784 assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2785
2786 assert(left->fpu() == 0, "left must be on TOS");
2787 __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2788 op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2789 }
2790 } else {
2791 assert(code == lir_cmp_l2i, "check");
2792#ifdef _LP64
2793 Label done;
2794 Register dest = dst->as_register();
2795 __ cmpptr(left->as_register_lo(), right->as_register_lo());
2796 __ movl(dest, -1);
2797 __ jccb(Assembler::less, done);
2798 __ set_byte_if_not_zero(dest);
2799 __ movzbl(dest, dest);
2800 __ bind(done);
2801#else
2802 __ lcmp2int(left->as_register_hi(),
2803 left->as_register_lo(),
2804 right->as_register_hi(),
2805 right->as_register_lo());
2806 move_regs(left->as_register_hi(), dst->as_register());
2807#endif // _LP64
2808 }
2809}
2810
2811
2812void LIR_Assembler::align_call(LIR_Code code) {
2813 // make sure that the displacement word of the call ends up word aligned
2814 int offset = __ offset();
2815 switch (code) {
2816 case lir_static_call:
2817 case lir_optvirtual_call:
2818 case lir_dynamic_call:
2819 offset += NativeCall::displacement_offset;
2820 break;
2821 case lir_icvirtual_call:
2822 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2823 break;
2824 case lir_virtual_call: // currently, sparc-specific for niagara
2825 default: ShouldNotReachHere();
2826 }
2827 __ align(BytesPerWord, offset);
2828}
2829
2830
2831void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2832 assert((__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2833 "must be aligned");
2834 __ call(AddressLiteral(op->addr(), rtype));
2835 add_call_info(code_offset(), op->info());
2836}
2837
2838
2839void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2840 __ ic_call(op->addr());
2841 add_call_info(code_offset(), op->info());
2842 assert((__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2843 "must be aligned");
2844}
2845
2846
2847/* Currently, vtable-dispatch is only enabled for sparc platforms */
2848void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2849 ShouldNotReachHere();
2850}
2851
2852
2853void LIR_Assembler::emit_static_call_stub() {
2854 address call_pc = __ pc();
2855 address stub = __ start_a_stub(call_stub_size());
2856 if (stub == NULL) {
2857 bailout("static call stub overflow");
2858 return;
2859 }
2860
2861 int start = __ offset();
2862
2863 // make sure that the displacement word of the call ends up word aligned
2864 __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset);
2865 __ relocate(static_stub_Relocation::spec(call_pc, false /* is_aot */));
2866 __ mov_metadata(rbx, (Metadata*)NULL);
2867 // must be set to -1 at code generation time
2868 assert(((__ offset() + 1) % BytesPerWord) == 0, "must be aligned");
2869 // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2870 __ jump(RuntimeAddress(__ pc()));
2871
2872 if (UseAOT) {
2873 // Trampoline to aot code
2874 __ relocate(static_stub_Relocation::spec(call_pc, true /* is_aot */));
2875#ifdef _LP64
2876 __ mov64(rax, CONST64(0)); // address is zapped till fixup time.
2877#else
2878 __ movl(rax, 0xdeadffff); // address is zapped till fixup time.
2879#endif
2880 __ jmp(rax);
2881 }
2882 assert(__ offset() - start <= call_stub_size(), "stub too big");
2883 __ end_a_stub();
2884}
2885
2886
2887void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2888 assert(exceptionOop->as_register() == rax, "must match");
2889 assert(exceptionPC->as_register() == rdx, "must match");
2890
2891 // exception object is not added to oop map by LinearScan
2892 // (LinearScan assumes that no oops are in fixed registers)
2893 info->add_register_oop(exceptionOop);
2894 Runtime1::StubID unwind_id;
2895
2896 // get current pc information
2897 // pc is only needed if the method has an exception handler, the unwind code does not need it.
2898 int pc_for_athrow_offset = __ offset();
2899 InternalAddress pc_for_athrow(__ pc());
2900 __ lea(exceptionPC->as_register(), pc_for_athrow);
2901 add_call_info(pc_for_athrow_offset, info); // for exception handler
2902
2903 __ verify_not_null_oop(rax);
2904 // search an exception handler (rax: exception oop, rdx: throwing pc)
2905 if (compilation()->has_fpu_code()) {
2906 unwind_id = Runtime1::handle_exception_id;
2907 } else {
2908 unwind_id = Runtime1::handle_exception_nofpu_id;
2909 }
2910 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2911
2912 // enough room for two byte trap
2913 __ nop();
2914}
2915
2916
2917void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2918 assert(exceptionOop->as_register() == rax, "must match");
2919
2920 __ jmp(_unwind_handler_entry);
2921}
2922
2923
2924void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2925
2926 // optimized version for linear scan:
2927 // * count must be already in ECX (guaranteed by LinearScan)
2928 // * left and dest must be equal
2929 // * tmp must be unused
2930 assert(count->as_register() == SHIFT_count, "count must be in ECX");
2931 assert(left == dest, "left and dest must be equal");
2932 assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2933
2934 if (left->is_single_cpu()) {
2935 Register value = left->as_register();
2936 assert(value != SHIFT_count, "left cannot be ECX");
2937
2938 switch (code) {
2939 case lir_shl: __ shll(value); break;
2940 case lir_shr: __ sarl(value); break;
2941 case lir_ushr: __ shrl(value); break;
2942 default: ShouldNotReachHere();
2943 }
2944 } else if (left->is_double_cpu()) {
2945 Register lo = left->as_register_lo();
2946 Register hi = left->as_register_hi();
2947 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2948#ifdef _LP64
2949 switch (code) {
2950 case lir_shl: __ shlptr(lo); break;
2951 case lir_shr: __ sarptr(lo); break;
2952 case lir_ushr: __ shrptr(lo); break;
2953 default: ShouldNotReachHere();
2954 }
2955#else
2956
2957 switch (code) {
2958 case lir_shl: __ lshl(hi, lo); break;
2959 case lir_shr: __ lshr(hi, lo, true); break;
2960 case lir_ushr: __ lshr(hi, lo, false); break;
2961 default: ShouldNotReachHere();
2962 }
2963#endif // LP64
2964 } else {
2965 ShouldNotReachHere();
2966 }
2967}
2968
2969
2970void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2971 if (dest->is_single_cpu()) {
2972 // first move left into dest so that left is not destroyed by the shift
2973 Register value = dest->as_register();
2974 count = count & 0x1F; // Java spec
2975
2976 move_regs(left->as_register(), value);
2977 switch (code) {
2978 case lir_shl: __ shll(value, count); break;
2979 case lir_shr: __ sarl(value, count); break;
2980 case lir_ushr: __ shrl(value, count); break;
2981 default: ShouldNotReachHere();
2982 }
2983 } else if (dest->is_double_cpu()) {
2984#ifndef _LP64
2985 Unimplemented();
2986#else
2987 // first move left into dest so that left is not destroyed by the shift
2988 Register value = dest->as_register_lo();
2989 count = count & 0x1F; // Java spec
2990
2991 move_regs(left->as_register_lo(), value);
2992 switch (code) {
2993 case lir_shl: __ shlptr(value, count); break;
2994 case lir_shr: __ sarptr(value, count); break;
2995 case lir_ushr: __ shrptr(value, count); break;
2996 default: ShouldNotReachHere();
2997 }
2998#endif // _LP64
2999 } else {
3000 ShouldNotReachHere();
3001 }
3002}
3003
3004
3005void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3006 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3007 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3008 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3009 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3010}
3011
3012
3013void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) {
3014 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3015 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3016 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3017 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3018}
3019
3020
3021void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
3022 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3023 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3024 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3025 __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
3026}
3027
3028
3029void LIR_Assembler::store_parameter(Metadata* m, int offset_from_rsp_in_words) {
3030 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3031 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3032 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3033 __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m);
3034}
3035
3036
3037// This code replaces a call to arraycopy; no exception may
3038// be thrown in this code, they must be thrown in the System.arraycopy
3039// activation frame; we could save some checks if this would not be the case
3040void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3041 ciArrayKlass* default_type = op->expected_type();
3042 Register src = op->src()->as_register();
3043 Register dst = op->dst()->as_register();
3044 Register src_pos = op->src_pos()->as_register();
3045 Register dst_pos = op->dst_pos()->as_register();
3046 Register length = op->length()->as_register();
3047 Register tmp = op->tmp()->as_register();
3048
3049 __ resolve(ACCESS_READ, src);
3050 __ resolve(ACCESS_WRITE, dst);
3051
3052 CodeStub* stub = op->stub();
3053 int flags = op->flags();
3054 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3055 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3056
3057 // if we don't know anything, just go through the generic arraycopy
3058 if (default_type == NULL) {
3059 // save outgoing arguments on stack in case call to System.arraycopy is needed
3060 // HACK ALERT. This code used to push the parameters in a hardwired fashion
3061 // for interpreter calling conventions. Now we have to do it in new style conventions.
3062 // For the moment until C1 gets the new register allocator I just force all the
3063 // args to the right place (except the register args) and then on the back side
3064 // reload the register args properly if we go slow path. Yuck
3065
3066 // These are proper for the calling convention
3067 store_parameter(length, 2);
3068 store_parameter(dst_pos, 1);
3069 store_parameter(dst, 0);
3070
3071 // these are just temporary placements until we need to reload
3072 store_parameter(src_pos, 3);
3073 store_parameter(src, 4);
3074 NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3075
3076 address copyfunc_addr = StubRoutines::generic_arraycopy();
3077 assert(copyfunc_addr != NULL, "generic arraycopy stub required");
3078
3079 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3080#ifdef _LP64
3081 // The arguments are in java calling convention so we can trivially shift them to C
3082 // convention
3083 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3084 __ mov(c_rarg0, j_rarg0);
3085 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3086 __ mov(c_rarg1, j_rarg1);
3087 assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3088 __ mov(c_rarg2, j_rarg2);
3089 assert_different_registers(c_rarg3, j_rarg4);
3090 __ mov(c_rarg3, j_rarg3);
3091#ifdef _WIN64
3092 // Allocate abi space for args but be sure to keep stack aligned
3093 __ subptr(rsp, 6*wordSize);
3094 store_parameter(j_rarg4, 4);
3095#ifndef PRODUCT
3096 if (PrintC1Statistics) {
3097 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3098 }
3099#endif
3100 __ call(RuntimeAddress(copyfunc_addr));
3101 __ addptr(rsp, 6*wordSize);
3102#else
3103 __ mov(c_rarg4, j_rarg4);
3104#ifndef PRODUCT
3105 if (PrintC1Statistics) {
3106 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3107 }
3108#endif
3109 __ call(RuntimeAddress(copyfunc_addr));
3110#endif // _WIN64
3111#else
3112 __ push(length);
3113 __ push(dst_pos);
3114 __ push(dst);
3115 __ push(src_pos);
3116 __ push(src);
3117
3118#ifndef PRODUCT
3119 if (PrintC1Statistics) {
3120 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3121 }
3122#endif
3123 __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3124
3125#endif // _LP64
3126
3127 __ cmpl(rax, 0);
3128 __ jcc(Assembler::equal, *stub->continuation());
3129
3130 __ mov(tmp, rax);
3131 __ xorl(tmp, -1);
3132
3133 // Reload values from the stack so they are where the stub
3134 // expects them.
3135 __ movptr (dst, Address(rsp, 0*BytesPerWord));
3136 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
3137 __ movptr (length, Address(rsp, 2*BytesPerWord));
3138 __ movptr (src_pos, Address(rsp, 3*BytesPerWord));
3139 __ movptr (src, Address(rsp, 4*BytesPerWord));
3140
3141 __ subl(length, tmp);
3142 __ addl(src_pos, tmp);
3143 __ addl(dst_pos, tmp);
3144 __ jmp(*stub->entry());
3145
3146 __ bind(*stub->continuation());
3147 return;
3148 }
3149
3150 assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3151
3152 int elem_size = type2aelembytes(basic_type);
3153 Address::ScaleFactor scale;
3154
3155 switch (elem_size) {
3156 case 1 :
3157 scale = Address::times_1;
3158 break;
3159 case 2 :
3160 scale = Address::times_2;
3161 break;
3162 case 4 :
3163 scale = Address::times_4;
3164 break;
3165 case 8 :
3166 scale = Address::times_8;
3167 break;
3168 default:
3169 scale = Address::no_scale;
3170 ShouldNotReachHere();
3171 }
3172
3173 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3174 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3175 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3176 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3177
3178 // length and pos's are all sign extended at this point on 64bit
3179
3180 // test for NULL
3181 if (flags & LIR_OpArrayCopy::src_null_check) {
3182 __ testptr(src, src);
3183 __ jcc(Assembler::zero, *stub->entry());
3184 }
3185 if (flags & LIR_OpArrayCopy::dst_null_check) {
3186 __ testptr(dst, dst);
3187 __ jcc(Assembler::zero, *stub->entry());
3188 }
3189
3190 // If the compiler was not able to prove that exact type of the source or the destination
3191 // of the arraycopy is an array type, check at runtime if the source or the destination is
3192 // an instance type.
3193 if (flags & LIR_OpArrayCopy::type_check) {
3194 if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3195 __ load_klass(tmp, dst);
3196 __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3197 __ jcc(Assembler::greaterEqual, *stub->entry());
3198 }
3199
3200 if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3201 __ load_klass(tmp, src);
3202 __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3203 __ jcc(Assembler::greaterEqual, *stub->entry());
3204 }
3205 }
3206
3207 // check if negative
3208 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3209 __ testl(src_pos, src_pos);
3210 __ jcc(Assembler::less, *stub->entry());
3211 }
3212 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3213 __ testl(dst_pos, dst_pos);
3214 __ jcc(Assembler::less, *stub->entry());
3215 }
3216
3217 if (flags & LIR_OpArrayCopy::src_range_check) {
3218 __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3219 __ cmpl(tmp, src_length_addr);
3220 __ jcc(Assembler::above, *stub->entry());
3221 }
3222 if (flags & LIR_OpArrayCopy::dst_range_check) {
3223 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3224 __ cmpl(tmp, dst_length_addr);
3225 __ jcc(Assembler::above, *stub->entry());
3226 }
3227
3228 if (flags & LIR_OpArrayCopy::length_positive_check) {
3229 __ testl(length, length);
3230 __ jcc(Assembler::less, *stub->entry());
3231 }
3232
3233#ifdef _LP64
3234 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3235 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3236#endif
3237
3238 if (flags & LIR_OpArrayCopy::type_check) {
3239 // We don't know the array types are compatible
3240 if (basic_type != T_OBJECT) {
3241 // Simple test for basic type arrays
3242 if (UseCompressedClassPointers) {
3243 __ movl(tmp, src_klass_addr);
3244 __ cmpl(tmp, dst_klass_addr);
3245 } else {
3246 __ movptr(tmp, src_klass_addr);
3247 __ cmpptr(tmp, dst_klass_addr);
3248 }
3249 __ jcc(Assembler::notEqual, *stub->entry());
3250 } else {
3251 // For object arrays, if src is a sub class of dst then we can
3252 // safely do the copy.
3253 Label cont, slow;
3254
3255 __ push(src);
3256 __ push(dst);
3257
3258 __ load_klass(src, src);
3259 __ load_klass(dst, dst);
3260
3261 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
3262
3263 __ push(src);
3264 __ push(dst);
3265 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3266 __ pop(dst);
3267 __ pop(src);
3268
3269 __ cmpl(src, 0);
3270 __ jcc(Assembler::notEqual, cont);
3271
3272 __ bind(slow);
3273 __ pop(dst);
3274 __ pop(src);
3275
3276 address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3277 if (copyfunc_addr != NULL) { // use stub if available
3278 // src is not a sub class of dst so we have to do a
3279 // per-element check.
3280
3281 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3282 if ((flags & mask) != mask) {
3283 // Check that at least both of them object arrays.
3284 assert(flags & mask, "one of the two should be known to be an object array");
3285
3286 if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3287 __ load_klass(tmp, src);
3288 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3289 __ load_klass(tmp, dst);
3290 }
3291 int lh_offset = in_bytes(Klass::layout_helper_offset());
3292 Address klass_lh_addr(tmp, lh_offset);
3293 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3294 __ cmpl(klass_lh_addr, objArray_lh);
3295 __ jcc(Assembler::notEqual, *stub->entry());
3296 }
3297
3298 // Spill because stubs can use any register they like and it's
3299 // easier to restore just those that we care about.
3300 store_parameter(dst, 0);
3301 store_parameter(dst_pos, 1);
3302 store_parameter(length, 2);
3303 store_parameter(src_pos, 3);
3304 store_parameter(src, 4);
3305
3306#ifndef _LP64
3307 __ movptr(tmp, dst_klass_addr);
3308 __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3309 __ push(tmp);
3310 __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3311 __ push(tmp);
3312 __ push(length);
3313 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3314 __ push(tmp);
3315 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3316 __ push(tmp);
3317
3318 __ call_VM_leaf(copyfunc_addr, 5);
3319#else
3320 __ movl2ptr(length, length); //higher 32bits must be null
3321
3322 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3323 assert_different_registers(c_rarg0, dst, dst_pos, length);
3324 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3325 assert_different_registers(c_rarg1, dst, length);
3326
3327 __ mov(c_rarg2, length);
3328 assert_different_registers(c_rarg2, dst);
3329
3330#ifdef _WIN64
3331 // Allocate abi space for args but be sure to keep stack aligned
3332 __ subptr(rsp, 6*wordSize);
3333 __ load_klass(c_rarg3, dst);
3334 __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3335 store_parameter(c_rarg3, 4);
3336 __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3337 __ call(RuntimeAddress(copyfunc_addr));
3338 __ addptr(rsp, 6*wordSize);
3339#else
3340 __ load_klass(c_rarg4, dst);
3341 __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3342 __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3343 __ call(RuntimeAddress(copyfunc_addr));
3344#endif
3345
3346#endif
3347
3348#ifndef PRODUCT
3349 if (PrintC1Statistics) {
3350 Label failed;
3351 __ testl(rax, rax);
3352 __ jcc(Assembler::notZero, failed);
3353 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
3354 __ bind(failed);
3355 }
3356#endif
3357
3358 __ testl(rax, rax);
3359 __ jcc(Assembler::zero, *stub->continuation());
3360
3361#ifndef PRODUCT
3362 if (PrintC1Statistics) {
3363 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
3364 }
3365#endif
3366
3367 __ mov(tmp, rax);
3368
3369 __ xorl(tmp, -1);
3370
3371 // Restore previously spilled arguments
3372 __ movptr (dst, Address(rsp, 0*BytesPerWord));
3373 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
3374 __ movptr (length, Address(rsp, 2*BytesPerWord));
3375 __ movptr (src_pos, Address(rsp, 3*BytesPerWord));
3376 __ movptr (src, Address(rsp, 4*BytesPerWord));
3377
3378
3379 __ subl(length, tmp);
3380 __ addl(src_pos, tmp);
3381 __ addl(dst_pos, tmp);
3382 }
3383
3384 __ jmp(*stub->entry());
3385
3386 __ bind(cont);
3387 __ pop(dst);
3388 __ pop(src);
3389 }
3390 }
3391
3392#ifdef ASSERT
3393 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3394 // Sanity check the known type with the incoming class. For the
3395 // primitive case the types must match exactly with src.klass and
3396 // dst.klass each exactly matching the default type. For the
3397 // object array case, if no type check is needed then either the
3398 // dst type is exactly the expected type and the src type is a
3399 // subtype which we can't check or src is the same array as dst
3400 // but not necessarily exactly of type default_type.
3401 Label known_ok, halt;
3402 __ mov_metadata(tmp, default_type->constant_encoding());
3403#ifdef _LP64
3404 if (UseCompressedClassPointers) {
3405 __ encode_klass_not_null(tmp);
3406 }
3407#endif
3408
3409 if (basic_type != T_OBJECT) {
3410
3411 if (UseCompressedClassPointers) __ cmpl(tmp, dst_klass_addr);
3412 else __ cmpptr(tmp, dst_klass_addr);
3413 __ jcc(Assembler::notEqual, halt);
3414 if (UseCompressedClassPointers) __ cmpl(tmp, src_klass_addr);
3415 else __ cmpptr(tmp, src_klass_addr);
3416 __ jcc(Assembler::equal, known_ok);
3417 } else {
3418 if (UseCompressedClassPointers) __ cmpl(tmp, dst_klass_addr);
3419 else __ cmpptr(tmp, dst_klass_addr);
3420 __ jcc(Assembler::equal, known_ok);
3421 __ cmpptr(src, dst);
3422 __ jcc(Assembler::equal, known_ok);
3423 }
3424 __ bind(halt);
3425 __ stop("incorrect type information in arraycopy");
3426 __ bind(known_ok);
3427 }
3428#endif
3429
3430#ifndef PRODUCT
3431 if (PrintC1Statistics) {
3432 __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
3433 }
3434#endif
3435
3436#ifdef _LP64
3437 assert_different_registers(c_rarg0, dst, dst_pos, length);
3438 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3439 assert_different_registers(c_rarg1, length);
3440 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3441 __ mov(c_rarg2, length);
3442
3443#else
3444 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3445 store_parameter(tmp, 0);
3446 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3447 store_parameter(tmp, 1);
3448 store_parameter(length, 2);
3449#endif // _LP64
3450
3451 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3452 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3453 const char *name;
3454 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3455 __ call_VM_leaf(entry, 0);
3456
3457 __ bind(*stub->continuation());
3458}
3459
3460void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3461 assert(op->crc()->is_single_cpu(), "crc must be register");
3462 assert(op->val()->is_single_cpu(), "byte value must be register");
3463 assert(op->result_opr()->is_single_cpu(), "result must be register");
3464 Register crc = op->crc()->as_register();
3465 Register val = op->val()->as_register();
3466 Register res = op->result_opr()->as_register();
3467
3468 assert_different_registers(val, crc, res);
3469
3470 __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3471 __ notl(crc); // ~crc
3472 __ update_byte_crc32(crc, val, res);
3473 __ notl(crc); // ~crc
3474 __ mov(res, crc);
3475}
3476
3477void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3478 Register obj = op->obj_opr()->as_register(); // may not be an oop
3479 Register hdr = op->hdr_opr()->as_register();
3480 Register lock = op->lock_opr()->as_register();
3481 if (!UseFastLocking) {
3482 __ jmp(*op->stub()->entry());
3483 } else if (op->code() == lir_lock) {
3484 Register scratch = noreg;
3485 if (UseBiasedLocking) {
3486 scratch = op->scratch_opr()->as_register();
3487 }
3488 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3489 __ resolve(ACCESS_READ | ACCESS_WRITE, obj);
3490 // add debug info for NullPointerException only if one is possible
3491 int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3492 if (op->info() != NULL) {
3493 add_debug_info_for_null_check(null_check_offset, op->info());
3494 }
3495 // done
3496 } else if (op->code() == lir_unlock) {
3497 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3498 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3499 } else {
3500 Unimplemented();
3501 }
3502 __ bind(*op->stub()->continuation());
3503}
3504
3505
3506void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3507 ciMethod* method = op->profiled_method();
3508 int bci = op->profiled_bci();
3509 ciMethod* callee = op->profiled_callee();
3510
3511 // Update counter for all call types
3512 ciMethodData* md = method->method_data_or_null();
3513 assert(md != NULL, "Sanity");
3514 ciProfileData* data = md->bci_to_data(bci);
3515 assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
3516 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
3517 Register mdo = op->mdo()->as_register();
3518 __ mov_metadata(mdo, md->constant_encoding());
3519 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3520 // Perform additional virtual call profiling for invokevirtual and
3521 // invokeinterface bytecodes
3522 if (op->should_profile_receiver_type()) {
3523 assert(op->recv()->is_single_cpu(), "recv must be allocated");
3524 Register recv = op->recv()->as_register();
3525 assert_different_registers(mdo, recv);
3526 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3527 ciKlass* known_klass = op->known_holder();
3528 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3529 // We know the type that will be seen at this call site; we can
3530 // statically update the MethodData* rather than needing to do
3531 // dynamic tests on the receiver type
3532
3533 // NOTE: we should probably put a lock around this search to
3534 // avoid collisions by concurrent compilations
3535 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3536 uint i;
3537 for (i = 0; i < VirtualCallData::row_limit(); i++) {
3538 ciKlass* receiver = vc_data->receiver(i);
3539 if (known_klass->equals(receiver)) {
3540 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3541 __ addptr(data_addr, DataLayout::counter_increment);
3542 return;
3543 }
3544 }
3545
3546 // Receiver type not found in profile data; select an empty slot
3547
3548 // Note that this is less efficient than it should be because it
3549 // always does a write to the receiver part of the
3550 // VirtualCallData rather than just the first time
3551 for (i = 0; i < VirtualCallData::row_limit(); i++) {
3552 ciKlass* receiver = vc_data->receiver(i);
3553 if (receiver == NULL) {
3554 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3555 __ mov_metadata(recv_addr, known_klass->constant_encoding());
3556 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3557 __ addptr(data_addr, DataLayout::counter_increment);
3558 return;
3559 }
3560 }
3561 } else {
3562 __ load_klass(recv, recv);
3563 Label update_done;
3564 type_profile_helper(mdo, md, data, recv, &update_done);
3565 // Receiver did not match any saved receiver and there is no empty row for it.
3566 // Increment total counter to indicate polymorphic case.
3567 __ addptr(counter_addr, DataLayout::counter_increment);
3568
3569 __ bind(update_done);
3570 }
3571 } else {
3572 // Static call
3573 __ addptr(counter_addr, DataLayout::counter_increment);
3574 }
3575}
3576
3577void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3578 Register obj = op->obj()->as_register();
3579 Register tmp = op->tmp()->as_pointer_register();
3580 Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3581 ciKlass* exact_klass = op->exact_klass();
3582 intptr_t current_klass = op->current_klass();
3583 bool not_null = op->not_null();
3584 bool no_conflict = op->no_conflict();
3585
3586 Label update, next, none;
3587
3588 bool do_null = !not_null;
3589 bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3590 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3591
3592 assert(do_null || do_update, "why are we here?");
3593 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3594
3595 __ verify_oop(obj);
3596
3597 if (tmp != obj) {
3598 __ mov(tmp, obj);
3599 }
3600 if (do_null) {
3601 __ testptr(tmp, tmp);
3602 __ jccb(Assembler::notZero, update);
3603 if (!TypeEntries::was_null_seen(current_klass)) {
3604 __ orptr(mdo_addr, TypeEntries::null_seen);
3605 }
3606 if (do_update) {
3607#ifndef ASSERT
3608 __ jmpb(next);
3609 }
3610#else
3611 __ jmp(next);
3612 }
3613 } else {
3614 __ testptr(tmp, tmp);
3615 __ jcc(Assembler::notZero, update);
3616 __ stop("unexpect null obj");
3617#endif
3618 }
3619
3620 __ bind(update);
3621
3622 if (do_update) {
3623#ifdef ASSERT
3624 if (exact_klass != NULL) {
3625 Label ok;
3626 __ load_klass(tmp, tmp);
3627 __ push(tmp);
3628 __ mov_metadata(tmp, exact_klass->constant_encoding());
3629 __ cmpptr(tmp, Address(rsp, 0));
3630 __ jcc(Assembler::equal, ok);
3631 __ stop("exact klass and actual klass differ");
3632 __ bind(ok);
3633 __ pop(tmp);
3634 }
3635#endif
3636 if (!no_conflict) {
3637 if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
3638 if (exact_klass != NULL) {
3639 __ mov_metadata(tmp, exact_klass->constant_encoding());
3640 } else {
3641 __ load_klass(tmp, tmp);
3642 }
3643
3644 __ xorptr(tmp, mdo_addr);
3645 __ testptr(tmp, TypeEntries::type_klass_mask);
3646 // klass seen before, nothing to do. The unknown bit may have been
3647 // set already but no need to check.
3648 __ jccb(Assembler::zero, next);
3649
3650 __ testptr(tmp, TypeEntries::type_unknown);
3651 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3652
3653 if (TypeEntries::is_type_none(current_klass)) {
3654 __ cmpptr(mdo_addr, 0);
3655 __ jccb(Assembler::equal, none);
3656 __ cmpptr(mdo_addr, TypeEntries::null_seen);
3657 __ jccb(Assembler::equal, none);
3658 // There is a chance that the checks above (re-reading profiling
3659 // data from memory) fail if another thread has just set the
3660 // profiling to this obj's klass
3661 __ xorptr(tmp, mdo_addr);
3662 __ testptr(tmp, TypeEntries::type_klass_mask);
3663 __ jccb(Assembler::zero, next);
3664 }
3665 } else {
3666 assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3667 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3668
3669 __ movptr(tmp, mdo_addr);
3670 __ testptr(tmp, TypeEntries::type_unknown);
3671 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3672 }
3673
3674 // different than before. Cannot keep accurate profile.
3675 __ orptr(mdo_addr, TypeEntries::type_unknown);
3676
3677 if (TypeEntries::is_type_none(current_klass)) {
3678 __ jmpb(next);
3679
3680 __ bind(none);
3681 // first time here. Set profile type.
3682 __ movptr(mdo_addr, tmp);
3683 }
3684 } else {
3685 // There's a single possible klass at this profile point
3686 assert(exact_klass != NULL, "should be");
3687 if (TypeEntries::is_type_none(current_klass)) {
3688 __ mov_metadata(tmp, exact_klass->constant_encoding());
3689 __ xorptr(tmp, mdo_addr);
3690 __ testptr(tmp, TypeEntries::type_klass_mask);
3691#ifdef ASSERT
3692 __ jcc(Assembler::zero, next);
3693
3694 {
3695 Label ok;
3696 __ push(tmp);
3697 __ cmpptr(mdo_addr, 0);
3698 __ jcc(Assembler::equal, ok);
3699 __ cmpptr(mdo_addr, TypeEntries::null_seen);
3700 __ jcc(Assembler::equal, ok);
3701 // may have been set by another thread
3702 __ mov_metadata(tmp, exact_klass->constant_encoding());
3703 __ xorptr(tmp, mdo_addr);
3704 __ testptr(tmp, TypeEntries::type_mask);
3705 __ jcc(Assembler::zero, ok);
3706
3707 __ stop("unexpected profiling mismatch");
3708 __ bind(ok);
3709 __ pop(tmp);
3710 }
3711#else
3712 __ jccb(Assembler::zero, next);
3713#endif
3714 // first time here. Set profile type.
3715 __ movptr(mdo_addr, tmp);
3716 } else {
3717 assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3718 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3719
3720 __ movptr(tmp, mdo_addr);
3721 __ testptr(tmp, TypeEntries::type_unknown);
3722 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3723
3724 __ orptr(mdo_addr, TypeEntries::type_unknown);
3725 }
3726 }
3727
3728 __ bind(next);
3729 }
3730}
3731
3732void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3733 Unimplemented();
3734}
3735
3736
3737void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3738 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3739}
3740
3741
3742void LIR_Assembler::align_backward_branch_target() {
3743 __ align(BytesPerWord);
3744}
3745
3746
3747void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
3748 if (left->is_single_cpu()) {
3749 __ negl(left->as_register());
3750 move_regs(left->as_register(), dest->as_register());
3751
3752 } else if (left->is_double_cpu()) {
3753 Register lo = left->as_register_lo();
3754#ifdef _LP64
3755 Register dst = dest->as_register_lo();
3756 __ movptr(dst, lo);
3757 __ negptr(dst);
3758#else
3759 Register hi = left->as_register_hi();
3760 __ lneg(hi, lo);
3761 if (dest->as_register_lo() == hi) {
3762 assert(dest->as_register_hi() != lo, "destroying register");
3763 move_regs(hi, dest->as_register_hi());
3764 move_regs(lo, dest->as_register_lo());
3765 } else {
3766 move_regs(lo, dest->as_register_lo());
3767 move_regs(hi, dest->as_register_hi());
3768 }
3769#endif // _LP64
3770
3771 } else if (dest->is_single_xmm()) {
3772#ifdef _LP64
3773 if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3774 assert(tmp->is_valid(), "need temporary");
3775 assert_different_registers(left->as_xmm_float_reg(), tmp->as_xmm_float_reg());
3776 __ vpxor(dest->as_xmm_float_reg(), tmp->as_xmm_float_reg(), left->as_xmm_float_reg(), 2);
3777 }
3778 else
3779#endif
3780 {
3781 assert(!tmp->is_valid(), "do not need temporary");
3782 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3783 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3784 }
3785 __ xorps(dest->as_xmm_float_reg(),
3786 ExternalAddress((address)float_signflip_pool));
3787 }
3788 } else if (dest->is_double_xmm()) {
3789#ifdef _LP64
3790 if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3791 assert(tmp->is_valid(), "need temporary");
3792 assert_different_registers(left->as_xmm_double_reg(), tmp->as_xmm_double_reg());
3793 __ vpxor(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), left->as_xmm_double_reg(), 2);
3794 }
3795 else
3796#endif
3797 {
3798 assert(!tmp->is_valid(), "do not need temporary");
3799 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3800 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3801 }
3802 __ xorpd(dest->as_xmm_double_reg(),
3803 ExternalAddress((address)double_signflip_pool));
3804 }
3805 } else if (left->is_single_fpu() || left->is_double_fpu()) {
3806 assert(left->fpu() == 0, "arg must be on TOS");
3807 assert(dest->fpu() == 0, "dest must be TOS");
3808 __ fchs();
3809
3810 } else {
3811 ShouldNotReachHere();
3812 }
3813}
3814
3815
3816void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
3817 assert(src->is_address(), "must be an address");
3818 assert(dest->is_register(), "must be a register");
3819
3820 PatchingStub* patch = NULL;
3821 if (patch_code != lir_patch_none) {
3822 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
3823 }
3824
3825 Register reg = dest->as_pointer_register();
3826 LIR_Address* addr = src->as_address_ptr();
3827 __ lea(reg, as_Address(addr));
3828
3829 if (patch != NULL) {
3830 patching_epilog(patch, patch_code, addr->base()->as_register(), info);
3831 }
3832}
3833
3834
3835
3836void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3837 assert(!tmp->is_valid(), "don't need temporary");
3838 __ call(RuntimeAddress(dest));
3839 if (info != NULL) {
3840 add_call_info_here(info);
3841 }
3842}
3843
3844
3845void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3846 assert(type == T_LONG, "only for volatile long fields");
3847
3848 if (info != NULL) {
3849 add_debug_info_for_null_check_here(info);
3850 }
3851
3852 if (src->is_double_xmm()) {
3853 if (dest->is_double_cpu()) {
3854#ifdef _LP64
3855 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3856#else
3857 __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3858 __ psrlq(src->as_xmm_double_reg(), 32);
3859 __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3860#endif // _LP64
3861 } else if (dest->is_double_stack()) {
3862 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3863 } else if (dest->is_address()) {
3864 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3865 } else {
3866 ShouldNotReachHere();
3867 }
3868
3869 } else if (dest->is_double_xmm()) {
3870 if (src->is_double_stack()) {
3871 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3872 } else if (src->is_address()) {
3873 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3874 } else {
3875 ShouldNotReachHere();
3876 }
3877
3878 } else if (src->is_double_fpu()) {
3879 assert(src->fpu_regnrLo() == 0, "must be TOS");
3880 if (dest->is_double_stack()) {
3881 __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3882 } else if (dest->is_address()) {
3883 __ fistp_d(as_Address(dest->as_address_ptr()));
3884 } else {
3885 ShouldNotReachHere();
3886 }
3887
3888 } else if (dest->is_double_fpu()) {
3889 assert(dest->fpu_regnrLo() == 0, "must be TOS");
3890 if (src->is_double_stack()) {
3891 __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3892 } else if (src->is_address()) {
3893 __ fild_d(as_Address(src->as_address_ptr()));
3894 } else {
3895 ShouldNotReachHere();
3896 }
3897 } else {
3898 ShouldNotReachHere();
3899 }
3900}
3901
3902#ifdef ASSERT
3903// emit run-time assertion
3904void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3905 assert(op->code() == lir_assert, "must be");
3906
3907 if (op->in_opr1()->is_valid()) {
3908 assert(op->in_opr2()->is_valid(), "both operands must be valid");
3909 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3910 } else {
3911 assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3912 assert(op->condition() == lir_cond_always, "no other conditions allowed");
3913 }
3914
3915 Label ok;
3916 if (op->condition() != lir_cond_always) {
3917 Assembler::Condition acond = Assembler::zero;
3918 switch (op->condition()) {
3919 case lir_cond_equal: acond = Assembler::equal; break;
3920 case lir_cond_notEqual: acond = Assembler::notEqual; break;
3921 case lir_cond_less: acond = Assembler::less; break;
3922 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
3923 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
3924 case lir_cond_greater: acond = Assembler::greater; break;
3925 case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
3926 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
3927 default: ShouldNotReachHere();
3928 }
3929 __ jcc(acond, ok);
3930 }
3931 if (op->halt()) {
3932 const char* str = __ code_string(op->msg());
3933 __ stop(str);
3934 } else {
3935 breakpoint();
3936 }
3937 __ bind(ok);
3938}
3939#endif
3940
3941void LIR_Assembler::membar() {
3942 // QQQ sparc TSO uses this,
3943 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3944}
3945
3946void LIR_Assembler::membar_acquire() {
3947 // No x86 machines currently require load fences
3948}
3949
3950void LIR_Assembler::membar_release() {
3951 // No x86 machines currently require store fences
3952}
3953
3954void LIR_Assembler::membar_loadload() {
3955 // no-op
3956 //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3957}
3958
3959void LIR_Assembler::membar_storestore() {
3960 // no-op
3961 //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3962}
3963
3964void LIR_Assembler::membar_loadstore() {
3965 // no-op
3966 //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3967}
3968
3969void LIR_Assembler::membar_storeload() {
3970 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3971}
3972
3973void LIR_Assembler::on_spin_wait() {
3974 __ pause ();
3975}
3976
3977void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3978 assert(result_reg->is_register(), "check");
3979#ifdef _LP64
3980 // __ get_thread(result_reg->as_register_lo());
3981 __ mov(result_reg->as_register(), r15_thread);
3982#else
3983 __ get_thread(result_reg->as_register());
3984#endif // _LP64
3985}
3986
3987
3988void LIR_Assembler::peephole(LIR_List*) {
3989 // do nothing for now
3990}
3991
3992void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
3993 assert(data == dest, "xchg/xadd uses only 2 operands");
3994
3995 if (data->type() == T_INT) {
3996 if (code == lir_xadd) {
3997 __ lock();
3998 __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
3999 } else {
4000 __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
4001 }
4002 } else if (data->is_oop()) {
4003 assert (code == lir_xchg, "xadd for oops");
4004 Register obj = data->as_register();
4005#ifdef _LP64
4006 if (UseCompressedOops) {
4007 __ encode_heap_oop(obj);
4008 __ xchgl(obj, as_Address(src->as_address_ptr()));
4009 __ decode_heap_oop(obj);
4010 } else {
4011 __ xchgptr(obj, as_Address(src->as_address_ptr()));
4012 }
4013#else
4014 __ xchgl(obj, as_Address(src->as_address_ptr()));
4015#endif
4016 } else if (data->type() == T_LONG) {
4017#ifdef _LP64
4018 assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
4019 if (code == lir_xadd) {
4020 __ lock();
4021 __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
4022 } else {
4023 __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
4024 }
4025#else
4026 ShouldNotReachHere();
4027#endif
4028 } else {
4029 ShouldNotReachHere();
4030 }
4031}
4032
4033#undef __
4034