1/*
2 * Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2018, 2019 SAP SE. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26#include "precompiled.hpp"
27#include "code/codeHeapState.hpp"
28#include "compiler/compileBroker.hpp"
29#include "runtime/sweeper.hpp"
30
31// -------------------------
32// | General Description |
33// -------------------------
34// The CodeHeap state analytics are divided in two parts.
35// The first part examines the entire CodeHeap and aggregates all
36// information that is believed useful/important.
37//
38// Aggregation condenses the information of a piece of the CodeHeap
39// (4096 bytes by default) into an analysis granule. These granules
40// contain enough detail to gain initial insight while keeping the
41// internal structure sizes in check.
42//
43// The second part, which consists of several, independent steps,
44// prints the previously collected information with emphasis on
45// various aspects.
46//
47// The CodeHeap is a living thing. Therefore, protection against concurrent
48// modification (by acquiring the CodeCache_lock) is necessary. It has
49// to be provided by the caller of the analysis functions.
50// If the CodeCache_lock is not held, the analysis functions may print
51// less detailed information or may just do nothing. It is by intention
52// that an unprotected invocation is not abnormally terminated.
53//
54// Data collection and printing is done on an "on request" basis.
55// While no request is being processed, there is no impact on performance.
56// The CodeHeap state analytics do have some memory footprint.
57// The "aggregate" step allocates some data structures to hold the aggregated
58// information for later output. These data structures live until they are
59// explicitly discarded (function "discard") or until the VM terminates.
60// There is one exception: the function "all" does not leave any data
61// structures allocated.
62//
63// Requests for real-time, on-the-fly analysis can be issued via
64// jcmd <pid> Compiler.CodeHeap_Analytics [<function>] [<granularity>]
65//
66// If you are (only) interested in how the CodeHeap looks like after running
67// a sample workload, you can use the command line option
68// -XX:+PrintCodeHeapAnalytics
69// It will cause a full analysis to be written to tty. In addition, a full
70// analysis will be written the first time a "CodeCache full" condition is
71// detected.
72//
73// The command line option produces output identical to the jcmd function
74// jcmd <pid> Compiler.CodeHeap_Analytics all 4096
75// ---------------------------------------------------------------------------------
76
77// With this declaration macro, it is possible to switch between
78// - direct output into an argument-passed outputStream and
79// - buffered output into a bufferedStream with subsequent flush
80// of the filled buffer to the outputStream.
81#define USE_BUFFEREDSTREAM
82
83// There are instances when composing an output line or a small set of
84// output lines out of many tty->print() calls creates significant overhead.
85// Writing to a bufferedStream buffer first has a significant advantage:
86// It uses noticeably less cpu cycles and reduces (when writing to a
87// network file) the required bandwidth by at least a factor of ten. Observed on MacOS.
88// That clearly makes up for the increased code complexity.
89//
90// Conversion of existing code is easy and straightforward, if the code already
91// uses a parameterized output destination, e.g. "outputStream st".
92// - rename the formal parameter to any other name, e.g. out_st.
93// - at a suitable place in your code, insert
94// BUFFEREDSTEAM_DECL(buf_st, out_st)
95// This will provide all the declarations necessary. After that, all
96// buf_st->print() (and the like) calls will be directed to a bufferedStream object.
97// Once a block of output (a line or a small set of lines) is composed, insert
98// BUFFEREDSTREAM_FLUSH(termstring)
99// to flush the bufferedStream to the final destination out_st. termstring is just
100// an arbitrary string (e.g. "\n") which is appended to the bufferedStream before
101// being written to out_st. Be aware that the last character written MUST be a '\n'.
102// Otherwise, buf_st->position() does not correspond to out_st->position() any longer.
103// BUFFEREDSTREAM_FLUSH_LOCKED(termstring)
104// does the same thing, protected by the ttyLocker lock.
105// BUFFEREDSTREAM_FLUSH_IF(termstring, remSize)
106// does a flush only if the remaining buffer space is less than remSize.
107//
108// To activate, #define USE_BUFFERED_STREAM before including this header.
109// If not activated, output will directly go to the originally used outputStream
110// with no additional overhead.
111//
112#if defined(USE_BUFFEREDSTREAM)
113// All necessary declarations to print via a bufferedStream
114// This macro must be placed before any other BUFFEREDSTREAM*
115// macro in the function.
116#define BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, _capa) \
117 ResourceMark _rm; \
118 /* _anyst name of the stream as used in the code */ \
119 /* _outst stream where final output will go to */ \
120 /* _capa allocated capacity of stream buffer */ \
121 size_t _nflush = 0; \
122 size_t _nforcedflush = 0; \
123 size_t _nsavedflush = 0; \
124 size_t _nlockedflush = 0; \
125 size_t _nflush_bytes = 0; \
126 size_t _capacity = _capa; \
127 bufferedStream _sstobj(_capa); \
128 bufferedStream* _sstbuf = &_sstobj; \
129 outputStream* _outbuf = _outst; \
130 bufferedStream* _anyst = &_sstobj; /* any stream. Use this to just print - no buffer flush. */
131
132// Same as above, but with fixed buffer size.
133#define BUFFEREDSTREAM_DECL(_anyst, _outst) \
134 BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, 4*K);
135
136// Flush the buffer contents unconditionally.
137// No action if the buffer is empty.
138#define BUFFEREDSTREAM_FLUSH(_termString) \
139 if (((_termString) != NULL) && (strlen(_termString) > 0)){\
140 _sstbuf->print("%s", _termString); \
141 } \
142 if (_sstbuf != _outbuf) { \
143 if (_sstbuf->size() != 0) { \
144 _nforcedflush++; _nflush_bytes += _sstbuf->size(); \
145 _outbuf->print("%s", _sstbuf->as_string()); \
146 _sstbuf->reset(); \
147 } \
148 }
149
150// Flush the buffer contents if the remaining capacity is
151// less than the given threshold.
152#define BUFFEREDSTREAM_FLUSH_IF(_termString, _remSize) \
153 if (((_termString) != NULL) && (strlen(_termString) > 0)){\
154 _sstbuf->print("%s", _termString); \
155 } \
156 if (_sstbuf != _outbuf) { \
157 if ((_capacity - _sstbuf->size()) < (size_t)(_remSize)){\
158 _nflush++; _nforcedflush--; \
159 BUFFEREDSTREAM_FLUSH("") \
160 } else { \
161 _nsavedflush++; \
162 } \
163 }
164
165// Flush the buffer contents if the remaining capacity is less
166// than the calculated threshold (256 bytes + capacity/16)
167// That should suffice for all reasonably sized output lines.
168#define BUFFEREDSTREAM_FLUSH_AUTO(_termString) \
169 BUFFEREDSTREAM_FLUSH_IF(_termString, 256+(_capacity>>4))
170
171#define BUFFEREDSTREAM_FLUSH_LOCKED(_termString) \
172 { ttyLocker ttyl;/* keep this output block together */ \
173 _nlockedflush++; \
174 BUFFEREDSTREAM_FLUSH(_termString) \
175 }
176
177// #define BUFFEREDSTREAM_FLUSH_STAT() \
178// if (_sstbuf != _outbuf) { \
179// _outbuf->print_cr("%ld flushes (buffer full), %ld forced, %ld locked, %ld bytes total, %ld flushes saved", _nflush, _nforcedflush, _nlockedflush, _nflush_bytes, _nsavedflush); \
180// }
181
182#define BUFFEREDSTREAM_FLUSH_STAT()
183#else
184#define BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, _capa) \
185 size_t _capacity = _capa; \
186 outputStream* _outbuf = _outst; \
187 outputStream* _anyst = _outst; /* any stream. Use this to just print - no buffer flush. */
188
189#define BUFFEREDSTREAM_DECL(_anyst, _outst) \
190 BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, 4*K)
191
192#define BUFFEREDSTREAM_FLUSH(_termString) \
193 if (((_termString) != NULL) && (strlen(_termString) > 0)){\
194 _outbuf->print("%s", _termString); \
195 }
196
197#define BUFFEREDSTREAM_FLUSH_IF(_termString, _remSize) \
198 BUFFEREDSTREAM_FLUSH(_termString)
199
200#define BUFFEREDSTREAM_FLUSH_AUTO(_termString) \
201 BUFFEREDSTREAM_FLUSH(_termString)
202
203#define BUFFEREDSTREAM_FLUSH_LOCKED(_termString) \
204 BUFFEREDSTREAM_FLUSH(_termString)
205
206#define BUFFEREDSTREAM_FLUSH_STAT()
207#endif
208#define HEX32_FORMAT "0x%x" // just a helper format string used below multiple times
209
210const char blobTypeChar[] = {' ', 'C', 'N', 'I', 'X', 'Z', 'U', 'R', '?', 'D', 'T', 'E', 'S', 'A', 'M', 'B', 'L' };
211const char* blobTypeName[] = {"noType"
212 , "nMethod (under construction)"
213 , "nMethod (active)"
214 , "nMethod (inactive)"
215 , "nMethod (deopt)"
216 , "nMethod (zombie)"
217 , "nMethod (unloaded)"
218 , "runtime stub"
219 , "ricochet stub"
220 , "deopt stub"
221 , "uncommon trap stub"
222 , "exception stub"
223 , "safepoint stub"
224 , "adapter blob"
225 , "MH adapter blob"
226 , "buffer blob"
227 , "lastType"
228 };
229const char* compTypeName[] = { "none", "c1", "c2", "jvmci" };
230
231// Be prepared for ten different CodeHeap segments. Should be enough for a few years.
232const unsigned int nSizeDistElements = 31; // logarithmic range growth, max size: 2**32
233const unsigned int maxTopSizeBlocks = 50;
234const unsigned int tsbStopper = 2 * maxTopSizeBlocks;
235const unsigned int maxHeaps = 10;
236static unsigned int nHeaps = 0;
237static struct CodeHeapStat CodeHeapStatArray[maxHeaps];
238
239// static struct StatElement *StatArray = NULL;
240static StatElement* StatArray = NULL;
241static int log2_seg_size = 0;
242static size_t seg_size = 0;
243static size_t alloc_granules = 0;
244static size_t granule_size = 0;
245static bool segment_granules = false;
246static unsigned int nBlocks_t1 = 0; // counting "in_use" nmethods only.
247static unsigned int nBlocks_t2 = 0; // counting "in_use" nmethods only.
248static unsigned int nBlocks_alive = 0; // counting "not_used" and "not_entrant" nmethods only.
249static unsigned int nBlocks_dead = 0; // counting "zombie" and "unloaded" methods only.
250static unsigned int nBlocks_inconstr = 0; // counting "inconstruction" nmethods only. This is a transient state.
251static unsigned int nBlocks_unloaded = 0; // counting "unloaded" nmethods only. This is a transient state.
252static unsigned int nBlocks_stub = 0;
253
254static struct FreeBlk* FreeArray = NULL;
255static unsigned int alloc_freeBlocks = 0;
256
257static struct TopSizeBlk* TopSizeArray = NULL;
258static unsigned int alloc_topSizeBlocks = 0;
259static unsigned int used_topSizeBlocks = 0;
260
261static struct SizeDistributionElement* SizeDistributionArray = NULL;
262
263// nMethod temperature (hotness) indicators.
264static int avgTemp = 0;
265static int maxTemp = 0;
266static int minTemp = 0;
267
268static unsigned int latest_compilation_id = 0;
269static volatile bool initialization_complete = false;
270
271const char* CodeHeapState::get_heapName(CodeHeap* heap) {
272 if (SegmentedCodeCache) {
273 return heap->name();
274 } else {
275 return "CodeHeap";
276 }
277}
278
279// returns the index for the heap being processed.
280unsigned int CodeHeapState::findHeapIndex(outputStream* out, const char* heapName) {
281 if (heapName == NULL) {
282 return maxHeaps;
283 }
284 if (SegmentedCodeCache) {
285 // Search for a pre-existing entry. If found, return that index.
286 for (unsigned int i = 0; i < nHeaps; i++) {
287 if (CodeHeapStatArray[i].heapName != NULL && strcmp(heapName, CodeHeapStatArray[i].heapName) == 0) {
288 return i;
289 }
290 }
291
292 // check if there are more code heap segments than we can handle.
293 if (nHeaps == maxHeaps) {
294 out->print_cr("Too many heap segments for current limit(%d).", maxHeaps);
295 return maxHeaps;
296 }
297
298 // allocate new slot in StatArray.
299 CodeHeapStatArray[nHeaps].heapName = heapName;
300 return nHeaps++;
301 } else {
302 nHeaps = 1;
303 CodeHeapStatArray[0].heapName = heapName;
304 return 0; // This is the default index if CodeCache is not segmented.
305 }
306}
307
308void CodeHeapState::get_HeapStatGlobals(outputStream* out, const char* heapName) {
309 unsigned int ix = findHeapIndex(out, heapName);
310 if (ix < maxHeaps) {
311 StatArray = CodeHeapStatArray[ix].StatArray;
312 seg_size = CodeHeapStatArray[ix].segment_size;
313 log2_seg_size = seg_size == 0 ? 0 : exact_log2(seg_size);
314 alloc_granules = CodeHeapStatArray[ix].alloc_granules;
315 granule_size = CodeHeapStatArray[ix].granule_size;
316 segment_granules = CodeHeapStatArray[ix].segment_granules;
317 nBlocks_t1 = CodeHeapStatArray[ix].nBlocks_t1;
318 nBlocks_t2 = CodeHeapStatArray[ix].nBlocks_t2;
319 nBlocks_alive = CodeHeapStatArray[ix].nBlocks_alive;
320 nBlocks_dead = CodeHeapStatArray[ix].nBlocks_dead;
321 nBlocks_inconstr = CodeHeapStatArray[ix].nBlocks_inconstr;
322 nBlocks_unloaded = CodeHeapStatArray[ix].nBlocks_unloaded;
323 nBlocks_stub = CodeHeapStatArray[ix].nBlocks_stub;
324 FreeArray = CodeHeapStatArray[ix].FreeArray;
325 alloc_freeBlocks = CodeHeapStatArray[ix].alloc_freeBlocks;
326 TopSizeArray = CodeHeapStatArray[ix].TopSizeArray;
327 alloc_topSizeBlocks = CodeHeapStatArray[ix].alloc_topSizeBlocks;
328 used_topSizeBlocks = CodeHeapStatArray[ix].used_topSizeBlocks;
329 SizeDistributionArray = CodeHeapStatArray[ix].SizeDistributionArray;
330 avgTemp = CodeHeapStatArray[ix].avgTemp;
331 maxTemp = CodeHeapStatArray[ix].maxTemp;
332 minTemp = CodeHeapStatArray[ix].minTemp;
333 } else {
334 StatArray = NULL;
335 seg_size = 0;
336 log2_seg_size = 0;
337 alloc_granules = 0;
338 granule_size = 0;
339 segment_granules = false;
340 nBlocks_t1 = 0;
341 nBlocks_t2 = 0;
342 nBlocks_alive = 0;
343 nBlocks_dead = 0;
344 nBlocks_inconstr = 0;
345 nBlocks_unloaded = 0;
346 nBlocks_stub = 0;
347 FreeArray = NULL;
348 alloc_freeBlocks = 0;
349 TopSizeArray = NULL;
350 alloc_topSizeBlocks = 0;
351 used_topSizeBlocks = 0;
352 SizeDistributionArray = NULL;
353 avgTemp = 0;
354 maxTemp = 0;
355 minTemp = 0;
356 }
357}
358
359void CodeHeapState::set_HeapStatGlobals(outputStream* out, const char* heapName) {
360 unsigned int ix = findHeapIndex(out, heapName);
361 if (ix < maxHeaps) {
362 CodeHeapStatArray[ix].StatArray = StatArray;
363 CodeHeapStatArray[ix].segment_size = seg_size;
364 CodeHeapStatArray[ix].alloc_granules = alloc_granules;
365 CodeHeapStatArray[ix].granule_size = granule_size;
366 CodeHeapStatArray[ix].segment_granules = segment_granules;
367 CodeHeapStatArray[ix].nBlocks_t1 = nBlocks_t1;
368 CodeHeapStatArray[ix].nBlocks_t2 = nBlocks_t2;
369 CodeHeapStatArray[ix].nBlocks_alive = nBlocks_alive;
370 CodeHeapStatArray[ix].nBlocks_dead = nBlocks_dead;
371 CodeHeapStatArray[ix].nBlocks_inconstr = nBlocks_inconstr;
372 CodeHeapStatArray[ix].nBlocks_unloaded = nBlocks_unloaded;
373 CodeHeapStatArray[ix].nBlocks_stub = nBlocks_stub;
374 CodeHeapStatArray[ix].FreeArray = FreeArray;
375 CodeHeapStatArray[ix].alloc_freeBlocks = alloc_freeBlocks;
376 CodeHeapStatArray[ix].TopSizeArray = TopSizeArray;
377 CodeHeapStatArray[ix].alloc_topSizeBlocks = alloc_topSizeBlocks;
378 CodeHeapStatArray[ix].used_topSizeBlocks = used_topSizeBlocks;
379 CodeHeapStatArray[ix].SizeDistributionArray = SizeDistributionArray;
380 CodeHeapStatArray[ix].avgTemp = avgTemp;
381 CodeHeapStatArray[ix].maxTemp = maxTemp;
382 CodeHeapStatArray[ix].minTemp = minTemp;
383 }
384}
385
386//---< get a new statistics array >---
387void CodeHeapState::prepare_StatArray(outputStream* out, size_t nElem, size_t granularity, const char* heapName) {
388 if (StatArray == NULL) {
389 StatArray = new StatElement[nElem];
390 //---< reset some counts >---
391 alloc_granules = nElem;
392 granule_size = granularity;
393 }
394
395 if (StatArray == NULL) {
396 //---< just do nothing if allocation failed >---
397 out->print_cr("Statistics could not be collected for %s, probably out of memory.", heapName);
398 out->print_cr("Current granularity is " SIZE_FORMAT " bytes. Try a coarser granularity.", granularity);
399 alloc_granules = 0;
400 granule_size = 0;
401 } else {
402 //---< initialize statistics array >---
403 memset((void*)StatArray, 0, nElem*sizeof(StatElement));
404 }
405}
406
407//---< get a new free block array >---
408void CodeHeapState::prepare_FreeArray(outputStream* out, unsigned int nElem, const char* heapName) {
409 if (FreeArray == NULL) {
410 FreeArray = new FreeBlk[nElem];
411 //---< reset some counts >---
412 alloc_freeBlocks = nElem;
413 }
414
415 if (FreeArray == NULL) {
416 //---< just do nothing if allocation failed >---
417 out->print_cr("Free space analysis cannot be done for %s, probably out of memory.", heapName);
418 alloc_freeBlocks = 0;
419 } else {
420 //---< initialize free block array >---
421 memset((void*)FreeArray, 0, alloc_freeBlocks*sizeof(FreeBlk));
422 }
423}
424
425//---< get a new TopSizeArray >---
426void CodeHeapState::prepare_TopSizeArray(outputStream* out, unsigned int nElem, const char* heapName) {
427 if (TopSizeArray == NULL) {
428 TopSizeArray = new TopSizeBlk[nElem];
429 //---< reset some counts >---
430 alloc_topSizeBlocks = nElem;
431 used_topSizeBlocks = 0;
432 }
433
434 if (TopSizeArray == NULL) {
435 //---< just do nothing if allocation failed >---
436 out->print_cr("Top-%d list of largest CodeHeap blocks can not be collected for %s, probably out of memory.", nElem, heapName);
437 alloc_topSizeBlocks = 0;
438 } else {
439 //---< initialize TopSizeArray >---
440 memset((void*)TopSizeArray, 0, nElem*sizeof(TopSizeBlk));
441 used_topSizeBlocks = 0;
442 }
443}
444
445//---< get a new SizeDistributionArray >---
446void CodeHeapState::prepare_SizeDistArray(outputStream* out, unsigned int nElem, const char* heapName) {
447 if (SizeDistributionArray == NULL) {
448 SizeDistributionArray = new SizeDistributionElement[nElem];
449 }
450
451 if (SizeDistributionArray == NULL) {
452 //---< just do nothing if allocation failed >---
453 out->print_cr("Size distribution can not be collected for %s, probably out of memory.", heapName);
454 } else {
455 //---< initialize SizeDistArray >---
456 memset((void*)SizeDistributionArray, 0, nElem*sizeof(SizeDistributionElement));
457 // Logarithmic range growth. First range starts at _segment_size.
458 SizeDistributionArray[log2_seg_size-1].rangeEnd = 1U;
459 for (unsigned int i = log2_seg_size; i < nElem; i++) {
460 SizeDistributionArray[i].rangeStart = 1U << (i - log2_seg_size);
461 SizeDistributionArray[i].rangeEnd = 1U << ((i+1) - log2_seg_size);
462 }
463 }
464}
465
466//---< get a new SizeDistributionArray >---
467void CodeHeapState::update_SizeDistArray(outputStream* out, unsigned int len) {
468 if (SizeDistributionArray != NULL) {
469 for (unsigned int i = log2_seg_size-1; i < nSizeDistElements; i++) {
470 if ((SizeDistributionArray[i].rangeStart <= len) && (len < SizeDistributionArray[i].rangeEnd)) {
471 SizeDistributionArray[i].lenSum += len;
472 SizeDistributionArray[i].count++;
473 break;
474 }
475 }
476 }
477}
478
479void CodeHeapState::discard_StatArray(outputStream* out) {
480 if (StatArray != NULL) {
481 delete StatArray;
482 StatArray = NULL;
483 alloc_granules = 0;
484 granule_size = 0;
485 }
486}
487
488void CodeHeapState::discard_FreeArray(outputStream* out) {
489 if (FreeArray != NULL) {
490 delete[] FreeArray;
491 FreeArray = NULL;
492 alloc_freeBlocks = 0;
493 }
494}
495
496void CodeHeapState::discard_TopSizeArray(outputStream* out) {
497 if (TopSizeArray != NULL) {
498 delete[] TopSizeArray;
499 TopSizeArray = NULL;
500 alloc_topSizeBlocks = 0;
501 used_topSizeBlocks = 0;
502 }
503}
504
505void CodeHeapState::discard_SizeDistArray(outputStream* out) {
506 if (SizeDistributionArray != NULL) {
507 delete[] SizeDistributionArray;
508 SizeDistributionArray = NULL;
509 }
510}
511
512// Discard all allocated internal data structures.
513// This should be done after an analysis session is completed.
514void CodeHeapState::discard(outputStream* out, CodeHeap* heap) {
515 if (!initialization_complete) {
516 return;
517 }
518
519 if (nHeaps > 0) {
520 for (unsigned int ix = 0; ix < nHeaps; ix++) {
521 get_HeapStatGlobals(out, CodeHeapStatArray[ix].heapName);
522 discard_StatArray(out);
523 discard_FreeArray(out);
524 discard_TopSizeArray(out);
525 discard_SizeDistArray(out);
526 set_HeapStatGlobals(out, CodeHeapStatArray[ix].heapName);
527 CodeHeapStatArray[ix].heapName = NULL;
528 }
529 nHeaps = 0;
530 }
531}
532
533void CodeHeapState::aggregate(outputStream* out, CodeHeap* heap, size_t granularity) {
534 unsigned int nBlocks_free = 0;
535 unsigned int nBlocks_used = 0;
536 unsigned int nBlocks_zomb = 0;
537 unsigned int nBlocks_disconn = 0;
538 unsigned int nBlocks_notentr = 0;
539
540 //---< max & min of TopSizeArray >---
541 // it is sufficient to have these sizes as 32bit unsigned ints.
542 // The CodeHeap is limited in size to 4GB. Furthermore, the sizes
543 // are stored in _segment_size units, scaling them down by a factor of 64 (at least).
544 unsigned int currMax = 0;
545 unsigned int currMin = 0;
546 unsigned int currMin_ix = 0;
547 unsigned long total_iterations = 0;
548
549 bool done = false;
550 const int min_granules = 256;
551 const int max_granules = 512*K; // limits analyzable CodeHeap (with segment_granules) to 32M..128M
552 // results in StatArray size of 24M (= max_granules * 48 Bytes per element)
553 // For a 1GB CodeHeap, the granule size must be at least 2kB to not violate the max_granles limit.
554 const char* heapName = get_heapName(heap);
555 BUFFEREDSTREAM_DECL(ast, out)
556
557 if (!initialization_complete) {
558 memset(CodeHeapStatArray, 0, sizeof(CodeHeapStatArray));
559 initialization_complete = true;
560
561 printBox(ast, '=', "C O D E H E A P A N A L Y S I S (general remarks)", NULL);
562 ast->print_cr(" The code heap analysis function provides deep insights into\n"
563 " the inner workings and the internal state of the Java VM's\n"
564 " code cache - the place where all the JVM generated machine\n"
565 " code is stored.\n"
566 " \n"
567 " This function is designed and provided for support engineers\n"
568 " to help them understand and solve issues in customer systems.\n"
569 " It is not intended for use and interpretation by other persons.\n"
570 " \n");
571 BUFFEREDSTREAM_FLUSH("")
572 }
573 get_HeapStatGlobals(out, heapName);
574
575
576 // Since we are (and must be) analyzing the CodeHeap contents under the CodeCache_lock,
577 // all heap information is "constant" and can be safely extracted/calculated before we
578 // enter the while() loop. Actually, the loop will only be iterated once.
579 char* low_bound = heap->low_boundary();
580 size_t size = heap->capacity();
581 size_t res_size = heap->max_capacity();
582 seg_size = heap->segment_size();
583 log2_seg_size = seg_size == 0 ? 0 : exact_log2(seg_size); // This is a global static value.
584
585 if (seg_size == 0) {
586 printBox(ast, '-', "Heap not fully initialized yet, segment size is zero for segment ", heapName);
587 BUFFEREDSTREAM_FLUSH("")
588 return;
589 }
590
591 if (!CodeCache_lock->owned_by_self()) {
592 printBox(ast, '-', "aggregate function called without holding the CodeCache_lock for ", heapName);
593 BUFFEREDSTREAM_FLUSH("")
594 return;
595 }
596
597 // Calculate granularity of analysis (and output).
598 // The CodeHeap is managed (allocated) in segments (units) of CodeCacheSegmentSize.
599 // The CodeHeap can become fairly large, in particular in productive real-life systems.
600 //
601 // It is often neither feasible nor desirable to aggregate the data with the highest possible
602 // level of detail, i.e. inspecting and printing each segment on its own.
603 //
604 // The granularity parameter allows to specify the level of detail available in the analysis.
605 // It must be a positive multiple of the segment size and should be selected such that enough
606 // detail is provided while, at the same time, the printed output does not explode.
607 //
608 // By manipulating the granularity value, we enforce that at least min_granules units
609 // of analysis are available. We also enforce an upper limit of max_granules units to
610 // keep the amount of allocated storage in check.
611 //
612 // Finally, we adjust the granularity such that each granule covers at most 64k-1 segments.
613 // This is necessary to prevent an unsigned short overflow while accumulating space information.
614 //
615 assert(granularity > 0, "granularity should be positive.");
616
617 if (granularity > size) {
618 granularity = size;
619 }
620 if (size/granularity < min_granules) {
621 granularity = size/min_granules; // at least min_granules granules
622 }
623 granularity = granularity & (~(seg_size - 1)); // must be multiple of seg_size
624 if (granularity < seg_size) {
625 granularity = seg_size; // must be at least seg_size
626 }
627 if (size/granularity > max_granules) {
628 granularity = size/max_granules; // at most max_granules granules
629 }
630 granularity = granularity & (~(seg_size - 1)); // must be multiple of seg_size
631 if (granularity>>log2_seg_size >= (1L<<sizeof(unsigned short)*8)) {
632 granularity = ((1L<<(sizeof(unsigned short)*8))-1)<<log2_seg_size; // Limit: (64k-1) * seg_size
633 }
634 segment_granules = granularity == seg_size;
635 size_t granules = (size + (granularity-1))/granularity;
636
637 printBox(ast, '=', "C O D E H E A P A N A L Y S I S (used blocks) for segment ", heapName);
638 ast->print_cr(" The aggregate step takes an aggregated snapshot of the CodeHeap.\n"
639 " Subsequent print functions create their output based on this snapshot.\n"
640 " The CodeHeap is a living thing, and every effort has been made for the\n"
641 " collected data to be consistent. Only the method names and signatures\n"
642 " are retrieved at print time. That may lead to rare cases where the\n"
643 " name of a method is no longer available, e.g. because it was unloaded.\n");
644 ast->print_cr(" CodeHeap committed size " SIZE_FORMAT "K (" SIZE_FORMAT "M), reserved size " SIZE_FORMAT "K (" SIZE_FORMAT "M), %d%% occupied.",
645 size/(size_t)K, size/(size_t)M, res_size/(size_t)K, res_size/(size_t)M, (unsigned int)(100.0*size/res_size));
646 ast->print_cr(" CodeHeap allocation segment size is " SIZE_FORMAT " bytes. This is the smallest possible granularity.", seg_size);
647 ast->print_cr(" CodeHeap (committed part) is mapped to " SIZE_FORMAT " granules of size " SIZE_FORMAT " bytes.", granules, granularity);
648 ast->print_cr(" Each granule takes " SIZE_FORMAT " bytes of C heap, that is " SIZE_FORMAT "K in total for statistics data.", sizeof(StatElement), (sizeof(StatElement)*granules)/(size_t)K);
649 ast->print_cr(" The number of granules is limited to %dk, requiring a granules size of at least %d bytes for a 1GB heap.", (unsigned int)(max_granules/K), (unsigned int)(G/max_granules));
650 BUFFEREDSTREAM_FLUSH("\n")
651
652
653 while (!done) {
654 //---< reset counters with every aggregation >---
655 nBlocks_t1 = 0;
656 nBlocks_t2 = 0;
657 nBlocks_alive = 0;
658 nBlocks_dead = 0;
659 nBlocks_inconstr = 0;
660 nBlocks_unloaded = 0;
661 nBlocks_stub = 0;
662
663 nBlocks_free = 0;
664 nBlocks_used = 0;
665 nBlocks_zomb = 0;
666 nBlocks_disconn = 0;
667 nBlocks_notentr = 0;
668
669 //---< discard old arrays if size does not match >---
670 if (granules != alloc_granules) {
671 discard_StatArray(out);
672 discard_TopSizeArray(out);
673 }
674
675 //---< allocate arrays if they don't yet exist, initialize >---
676 prepare_StatArray(out, granules, granularity, heapName);
677 if (StatArray == NULL) {
678 set_HeapStatGlobals(out, heapName);
679 return;
680 }
681 prepare_TopSizeArray(out, maxTopSizeBlocks, heapName);
682 prepare_SizeDistArray(out, nSizeDistElements, heapName);
683
684 latest_compilation_id = CompileBroker::get_compilation_id();
685 unsigned int highest_compilation_id = 0;
686 size_t usedSpace = 0;
687 size_t t1Space = 0;
688 size_t t2Space = 0;
689 size_t aliveSpace = 0;
690 size_t disconnSpace = 0;
691 size_t notentrSpace = 0;
692 size_t deadSpace = 0;
693 size_t inconstrSpace = 0;
694 size_t unloadedSpace = 0;
695 size_t stubSpace = 0;
696 size_t freeSpace = 0;
697 size_t maxFreeSize = 0;
698 HeapBlock* maxFreeBlock = NULL;
699 bool insane = false;
700
701 int64_t hotnessAccumulator = 0;
702 unsigned int n_methods = 0;
703 avgTemp = 0;
704 minTemp = (int)(res_size > M ? (res_size/M)*2 : 1);
705 maxTemp = -minTemp;
706
707 for (HeapBlock *h = heap->first_block(); h != NULL && !insane; h = heap->next_block(h)) {
708 unsigned int hb_len = (unsigned int)h->length(); // despite being size_t, length can never overflow an unsigned int.
709 size_t hb_bytelen = ((size_t)hb_len)<<log2_seg_size;
710 unsigned int ix_beg = (unsigned int)(((char*)h-low_bound)/granule_size);
711 unsigned int ix_end = (unsigned int)(((char*)h-low_bound+(hb_bytelen-1))/granule_size);
712 unsigned int compile_id = 0;
713 CompLevel comp_lvl = CompLevel_none;
714 compType cType = noComp;
715 blobType cbType = noType;
716
717 //---< some sanity checks >---
718 // Do not assert here, just check, print error message and return.
719 // This is a diagnostic function. It is not supposed to tear down the VM.
720 if ((char*)h < low_bound) {
721 insane = true; ast->print_cr("Sanity check: HeapBlock @%p below low bound (%p)", (char*)h, low_bound);
722 }
723 if ((char*)h > (low_bound + res_size)) {
724 insane = true; ast->print_cr("Sanity check: HeapBlock @%p outside reserved range (%p)", (char*)h, low_bound + res_size);
725 }
726 if ((char*)h > (low_bound + size)) {
727 insane = true; ast->print_cr("Sanity check: HeapBlock @%p outside used range (%p)", (char*)h, low_bound + size);
728 }
729 if (ix_end >= granules) {
730 insane = true; ast->print_cr("Sanity check: end index (%d) out of bounds (" SIZE_FORMAT ")", ix_end, granules);
731 }
732 if (size != heap->capacity()) {
733 insane = true; ast->print_cr("Sanity check: code heap capacity has changed (" SIZE_FORMAT "K to " SIZE_FORMAT "K)", size/(size_t)K, heap->capacity()/(size_t)K);
734 }
735 if (ix_beg > ix_end) {
736 insane = true; ast->print_cr("Sanity check: end index (%d) lower than begin index (%d)", ix_end, ix_beg);
737 }
738 if (insane) {
739 BUFFEREDSTREAM_FLUSH("")
740 continue;
741 }
742
743 if (h->free()) {
744 nBlocks_free++;
745 freeSpace += hb_bytelen;
746 if (hb_bytelen > maxFreeSize) {
747 maxFreeSize = hb_bytelen;
748 maxFreeBlock = h;
749 }
750 } else {
751 update_SizeDistArray(out, hb_len);
752 nBlocks_used++;
753 usedSpace += hb_bytelen;
754 CodeBlob* cb = (CodeBlob*)heap->find_start(h);
755 if (cb != NULL) {
756 cbType = get_cbType(cb);
757 if (cb->is_nmethod()) {
758 compile_id = ((nmethod*)cb)->compile_id();
759 comp_lvl = (CompLevel)((nmethod*)cb)->comp_level();
760 if (((nmethod*)cb)->is_compiled_by_c1()) {
761 cType = c1;
762 }
763 if (((nmethod*)cb)->is_compiled_by_c2()) {
764 cType = c2;
765 }
766 if (((nmethod*)cb)->is_compiled_by_jvmci()) {
767 cType = jvmci;
768 }
769 switch (cbType) {
770 case nMethod_inuse: { // only for executable methods!!!
771 // space for these cbs is accounted for later.
772 int temperature = ((nmethod*)cb)->hotness_counter();
773 hotnessAccumulator += temperature;
774 n_methods++;
775 maxTemp = (temperature > maxTemp) ? temperature : maxTemp;
776 minTemp = (temperature < minTemp) ? temperature : minTemp;
777 break;
778 }
779 case nMethod_notused:
780 nBlocks_alive++;
781 nBlocks_disconn++;
782 aliveSpace += hb_bytelen;
783 disconnSpace += hb_bytelen;
784 break;
785 case nMethod_notentrant: // equivalent to nMethod_alive
786 nBlocks_alive++;
787 nBlocks_notentr++;
788 aliveSpace += hb_bytelen;
789 notentrSpace += hb_bytelen;
790 break;
791 case nMethod_unloaded:
792 nBlocks_unloaded++;
793 unloadedSpace += hb_bytelen;
794 break;
795 case nMethod_dead:
796 nBlocks_dead++;
797 deadSpace += hb_bytelen;
798 break;
799 case nMethod_inconstruction:
800 nBlocks_inconstr++;
801 inconstrSpace += hb_bytelen;
802 break;
803 default:
804 break;
805 }
806 }
807
808 //------------------------------------------
809 //---< register block in TopSizeArray >---
810 //------------------------------------------
811 if (alloc_topSizeBlocks > 0) {
812 if (used_topSizeBlocks == 0) {
813 TopSizeArray[0].start = h;
814 TopSizeArray[0].len = hb_len;
815 TopSizeArray[0].index = tsbStopper;
816 TopSizeArray[0].compiler = cType;
817 TopSizeArray[0].level = comp_lvl;
818 TopSizeArray[0].type = cbType;
819 currMax = hb_len;
820 currMin = hb_len;
821 currMin_ix = 0;
822 used_topSizeBlocks++;
823 // This check roughly cuts 5000 iterations (JVM98, mixed, dbg, termination stats):
824 } else if ((used_topSizeBlocks < alloc_topSizeBlocks) && (hb_len < currMin)) {
825 //---< all blocks in list are larger, but there is room left in array >---
826 TopSizeArray[currMin_ix].index = used_topSizeBlocks;
827 TopSizeArray[used_topSizeBlocks].start = h;
828 TopSizeArray[used_topSizeBlocks].len = hb_len;
829 TopSizeArray[used_topSizeBlocks].index = tsbStopper;
830 TopSizeArray[used_topSizeBlocks].compiler = cType;
831 TopSizeArray[used_topSizeBlocks].level = comp_lvl;
832 TopSizeArray[used_topSizeBlocks].type = cbType;
833 currMin = hb_len;
834 currMin_ix = used_topSizeBlocks;
835 used_topSizeBlocks++;
836 } else {
837 // This check cuts total_iterations by a factor of 6 (JVM98, mixed, dbg, termination stats):
838 // We don't need to search the list if we know beforehand that the current block size is
839 // smaller than the currently recorded minimum and there is no free entry left in the list.
840 if (!((used_topSizeBlocks == alloc_topSizeBlocks) && (hb_len <= currMin))) {
841 if (currMax < hb_len) {
842 currMax = hb_len;
843 }
844 unsigned int i;
845 unsigned int prev_i = tsbStopper;
846 unsigned int limit_i = 0;
847 for (i = 0; i != tsbStopper; i = TopSizeArray[i].index) {
848 if (limit_i++ >= alloc_topSizeBlocks) {
849 insane = true; break; // emergency exit
850 }
851 if (i >= used_topSizeBlocks) {
852 insane = true; break; // emergency exit
853 }
854 total_iterations++;
855 if (TopSizeArray[i].len < hb_len) {
856 //---< We want to insert here, element <i> is smaller than the current one >---
857 if (used_topSizeBlocks < alloc_topSizeBlocks) { // still room for a new entry to insert
858 // old entry gets moved to the next free element of the array.
859 // That's necessary to keep the entry for the largest block at index 0.
860 // This move might cause the current minimum to be moved to another place
861 if (i == currMin_ix) {
862 assert(TopSizeArray[i].len == currMin, "sort error");
863 currMin_ix = used_topSizeBlocks;
864 }
865 memcpy((void*)&TopSizeArray[used_topSizeBlocks], (void*)&TopSizeArray[i], sizeof(TopSizeBlk));
866 TopSizeArray[i].start = h;
867 TopSizeArray[i].len = hb_len;
868 TopSizeArray[i].index = used_topSizeBlocks;
869 TopSizeArray[i].compiler = cType;
870 TopSizeArray[i].level = comp_lvl;
871 TopSizeArray[i].type = cbType;
872 used_topSizeBlocks++;
873 } else { // no room for new entries, current block replaces entry for smallest block
874 //---< Find last entry (entry for smallest remembered block) >---
875 unsigned int j = i;
876 unsigned int prev_j = tsbStopper;
877 unsigned int limit_j = 0;
878 while (TopSizeArray[j].index != tsbStopper) {
879 if (limit_j++ >= alloc_topSizeBlocks) {
880 insane = true; break; // emergency exit
881 }
882 if (j >= used_topSizeBlocks) {
883 insane = true; break; // emergency exit
884 }
885 total_iterations++;
886 prev_j = j;
887 j = TopSizeArray[j].index;
888 }
889 if (!insane) {
890 if (prev_j == tsbStopper) {
891 //---< Above while loop did not iterate, we already are the min entry >---
892 //---< We have to just replace the smallest entry >---
893 currMin = hb_len;
894 currMin_ix = j;
895 TopSizeArray[j].start = h;
896 TopSizeArray[j].len = hb_len;
897 TopSizeArray[j].index = tsbStopper; // already set!!
898 TopSizeArray[j].compiler = cType;
899 TopSizeArray[j].level = comp_lvl;
900 TopSizeArray[j].type = cbType;
901 } else {
902 //---< second-smallest entry is now smallest >---
903 TopSizeArray[prev_j].index = tsbStopper;
904 currMin = TopSizeArray[prev_j].len;
905 currMin_ix = prev_j;
906 //---< smallest entry gets overwritten >---
907 memcpy((void*)&TopSizeArray[j], (void*)&TopSizeArray[i], sizeof(TopSizeBlk));
908 TopSizeArray[i].start = h;
909 TopSizeArray[i].len = hb_len;
910 TopSizeArray[i].index = j;
911 TopSizeArray[i].compiler = cType;
912 TopSizeArray[i].level = comp_lvl;
913 TopSizeArray[i].type = cbType;
914 }
915 } // insane
916 }
917 break;
918 }
919 prev_i = i;
920 }
921 if (insane) {
922 // Note: regular analysis could probably continue by resetting "insane" flag.
923 out->print_cr("Possible loop in TopSizeBlocks list detected. Analysis aborted.");
924 discard_TopSizeArray(out);
925 }
926 }
927 }
928 }
929 //----------------------------------------------
930 //---< END register block in TopSizeArray >---
931 //----------------------------------------------
932 } else {
933 nBlocks_zomb++;
934 }
935
936 if (ix_beg == ix_end) {
937 StatArray[ix_beg].type = cbType;
938 switch (cbType) {
939 case nMethod_inuse:
940 highest_compilation_id = (highest_compilation_id >= compile_id) ? highest_compilation_id : compile_id;
941 if (comp_lvl < CompLevel_full_optimization) {
942 nBlocks_t1++;
943 t1Space += hb_bytelen;
944 StatArray[ix_beg].t1_count++;
945 StatArray[ix_beg].t1_space += (unsigned short)hb_len;
946 StatArray[ix_beg].t1_age = StatArray[ix_beg].t1_age < compile_id ? compile_id : StatArray[ix_beg].t1_age;
947 } else {
948 nBlocks_t2++;
949 t2Space += hb_bytelen;
950 StatArray[ix_beg].t2_count++;
951 StatArray[ix_beg].t2_space += (unsigned short)hb_len;
952 StatArray[ix_beg].t2_age = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age;
953 }
954 StatArray[ix_beg].level = comp_lvl;
955 StatArray[ix_beg].compiler = cType;
956 break;
957 case nMethod_inconstruction: // let's count "in construction" nmethods here.
958 case nMethod_alive:
959 StatArray[ix_beg].tx_count++;
960 StatArray[ix_beg].tx_space += (unsigned short)hb_len;
961 StatArray[ix_beg].tx_age = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age;
962 StatArray[ix_beg].level = comp_lvl;
963 StatArray[ix_beg].compiler = cType;
964 break;
965 case nMethod_dead:
966 case nMethod_unloaded:
967 StatArray[ix_beg].dead_count++;
968 StatArray[ix_beg].dead_space += (unsigned short)hb_len;
969 break;
970 default:
971 // must be a stub, if it's not a dead or alive nMethod
972 nBlocks_stub++;
973 stubSpace += hb_bytelen;
974 StatArray[ix_beg].stub_count++;
975 StatArray[ix_beg].stub_space += (unsigned short)hb_len;
976 break;
977 }
978 } else {
979 unsigned int beg_space = (unsigned int)(granule_size - ((char*)h - low_bound - ix_beg*granule_size));
980 unsigned int end_space = (unsigned int)(hb_bytelen - beg_space - (ix_end-ix_beg-1)*granule_size);
981 beg_space = beg_space>>log2_seg_size; // store in units of _segment_size
982 end_space = end_space>>log2_seg_size; // store in units of _segment_size
983 StatArray[ix_beg].type = cbType;
984 StatArray[ix_end].type = cbType;
985 switch (cbType) {
986 case nMethod_inuse:
987 highest_compilation_id = (highest_compilation_id >= compile_id) ? highest_compilation_id : compile_id;
988 if (comp_lvl < CompLevel_full_optimization) {
989 nBlocks_t1++;
990 t1Space += hb_bytelen;
991 StatArray[ix_beg].t1_count++;
992 StatArray[ix_beg].t1_space += (unsigned short)beg_space;
993 StatArray[ix_beg].t1_age = StatArray[ix_beg].t1_age < compile_id ? compile_id : StatArray[ix_beg].t1_age;
994
995 StatArray[ix_end].t1_count++;
996 StatArray[ix_end].t1_space += (unsigned short)end_space;
997 StatArray[ix_end].t1_age = StatArray[ix_end].t1_age < compile_id ? compile_id : StatArray[ix_end].t1_age;
998 } else {
999 nBlocks_t2++;
1000 t2Space += hb_bytelen;
1001 StatArray[ix_beg].t2_count++;
1002 StatArray[ix_beg].t2_space += (unsigned short)beg_space;
1003 StatArray[ix_beg].t2_age = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age;
1004
1005 StatArray[ix_end].t2_count++;
1006 StatArray[ix_end].t2_space += (unsigned short)end_space;
1007 StatArray[ix_end].t2_age = StatArray[ix_end].t2_age < compile_id ? compile_id : StatArray[ix_end].t2_age;
1008 }
1009 StatArray[ix_beg].level = comp_lvl;
1010 StatArray[ix_beg].compiler = cType;
1011 StatArray[ix_end].level = comp_lvl;
1012 StatArray[ix_end].compiler = cType;
1013 break;
1014 case nMethod_inconstruction: // let's count "in construction" nmethods here.
1015 case nMethod_alive:
1016 StatArray[ix_beg].tx_count++;
1017 StatArray[ix_beg].tx_space += (unsigned short)beg_space;
1018 StatArray[ix_beg].tx_age = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age;
1019
1020 StatArray[ix_end].tx_count++;
1021 StatArray[ix_end].tx_space += (unsigned short)end_space;
1022 StatArray[ix_end].tx_age = StatArray[ix_end].tx_age < compile_id ? compile_id : StatArray[ix_end].tx_age;
1023
1024 StatArray[ix_beg].level = comp_lvl;
1025 StatArray[ix_beg].compiler = cType;
1026 StatArray[ix_end].level = comp_lvl;
1027 StatArray[ix_end].compiler = cType;
1028 break;
1029 case nMethod_dead:
1030 case nMethod_unloaded:
1031 StatArray[ix_beg].dead_count++;
1032 StatArray[ix_beg].dead_space += (unsigned short)beg_space;
1033 StatArray[ix_end].dead_count++;
1034 StatArray[ix_end].dead_space += (unsigned short)end_space;
1035 break;
1036 default:
1037 // must be a stub, if it's not a dead or alive nMethod
1038 nBlocks_stub++;
1039 stubSpace += hb_bytelen;
1040 StatArray[ix_beg].stub_count++;
1041 StatArray[ix_beg].stub_space += (unsigned short)beg_space;
1042 StatArray[ix_end].stub_count++;
1043 StatArray[ix_end].stub_space += (unsigned short)end_space;
1044 break;
1045 }
1046 for (unsigned int ix = ix_beg+1; ix < ix_end; ix++) {
1047 StatArray[ix].type = cbType;
1048 switch (cbType) {
1049 case nMethod_inuse:
1050 if (comp_lvl < CompLevel_full_optimization) {
1051 StatArray[ix].t1_count++;
1052 StatArray[ix].t1_space += (unsigned short)(granule_size>>log2_seg_size);
1053 StatArray[ix].t1_age = StatArray[ix].t1_age < compile_id ? compile_id : StatArray[ix].t1_age;
1054 } else {
1055 StatArray[ix].t2_count++;
1056 StatArray[ix].t2_space += (unsigned short)(granule_size>>log2_seg_size);
1057 StatArray[ix].t2_age = StatArray[ix].t2_age < compile_id ? compile_id : StatArray[ix].t2_age;
1058 }
1059 StatArray[ix].level = comp_lvl;
1060 StatArray[ix].compiler = cType;
1061 break;
1062 case nMethod_inconstruction: // let's count "in construction" nmethods here.
1063 case nMethod_alive:
1064 StatArray[ix].tx_count++;
1065 StatArray[ix].tx_space += (unsigned short)(granule_size>>log2_seg_size);
1066 StatArray[ix].tx_age = StatArray[ix].tx_age < compile_id ? compile_id : StatArray[ix].tx_age;
1067 StatArray[ix].level = comp_lvl;
1068 StatArray[ix].compiler = cType;
1069 break;
1070 case nMethod_dead:
1071 case nMethod_unloaded:
1072 StatArray[ix].dead_count++;
1073 StatArray[ix].dead_space += (unsigned short)(granule_size>>log2_seg_size);
1074 break;
1075 default:
1076 // must be a stub, if it's not a dead or alive nMethod
1077 StatArray[ix].stub_count++;
1078 StatArray[ix].stub_space += (unsigned short)(granule_size>>log2_seg_size);
1079 break;
1080 }
1081 }
1082 }
1083 }
1084 }
1085 done = true;
1086
1087 if (!insane) {
1088 // There is a risk for this block (because it contains many print statements) to get
1089 // interspersed with print data from other threads. We take this risk intentionally.
1090 // Getting stalled waiting for tty_lock while holding the CodeCache_lock is not desirable.
1091 printBox(ast, '-', "Global CodeHeap statistics for segment ", heapName);
1092 ast->print_cr("freeSpace = " SIZE_FORMAT_W(8) "k, nBlocks_free = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", freeSpace/(size_t)K, nBlocks_free, (100.0*freeSpace)/size, (100.0*freeSpace)/res_size);
1093 ast->print_cr("usedSpace = " SIZE_FORMAT_W(8) "k, nBlocks_used = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", usedSpace/(size_t)K, nBlocks_used, (100.0*usedSpace)/size, (100.0*usedSpace)/res_size);
1094 ast->print_cr(" Tier1 Space = " SIZE_FORMAT_W(8) "k, nBlocks_t1 = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", t1Space/(size_t)K, nBlocks_t1, (100.0*t1Space)/size, (100.0*t1Space)/res_size);
1095 ast->print_cr(" Tier2 Space = " SIZE_FORMAT_W(8) "k, nBlocks_t2 = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", t2Space/(size_t)K, nBlocks_t2, (100.0*t2Space)/size, (100.0*t2Space)/res_size);
1096 ast->print_cr(" Alive Space = " SIZE_FORMAT_W(8) "k, nBlocks_alive = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", aliveSpace/(size_t)K, nBlocks_alive, (100.0*aliveSpace)/size, (100.0*aliveSpace)/res_size);
1097 ast->print_cr(" disconnected = " SIZE_FORMAT_W(8) "k, nBlocks_disconn = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", disconnSpace/(size_t)K, nBlocks_disconn, (100.0*disconnSpace)/size, (100.0*disconnSpace)/res_size);
1098 ast->print_cr(" not entrant = " SIZE_FORMAT_W(8) "k, nBlocks_notentr = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", notentrSpace/(size_t)K, nBlocks_notentr, (100.0*notentrSpace)/size, (100.0*notentrSpace)/res_size);
1099 ast->print_cr(" inconstrSpace = " SIZE_FORMAT_W(8) "k, nBlocks_inconstr = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", inconstrSpace/(size_t)K, nBlocks_inconstr, (100.0*inconstrSpace)/size, (100.0*inconstrSpace)/res_size);
1100 ast->print_cr(" unloadedSpace = " SIZE_FORMAT_W(8) "k, nBlocks_unloaded = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", unloadedSpace/(size_t)K, nBlocks_unloaded, (100.0*unloadedSpace)/size, (100.0*unloadedSpace)/res_size);
1101 ast->print_cr(" deadSpace = " SIZE_FORMAT_W(8) "k, nBlocks_dead = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", deadSpace/(size_t)K, nBlocks_dead, (100.0*deadSpace)/size, (100.0*deadSpace)/res_size);
1102 ast->print_cr(" stubSpace = " SIZE_FORMAT_W(8) "k, nBlocks_stub = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", stubSpace/(size_t)K, nBlocks_stub, (100.0*stubSpace)/size, (100.0*stubSpace)/res_size);
1103 ast->print_cr("ZombieBlocks = %8d. These are HeapBlocks which could not be identified as CodeBlobs.", nBlocks_zomb);
1104 ast->cr();
1105 ast->print_cr("Segment start = " INTPTR_FORMAT ", used space = " SIZE_FORMAT_W(8)"k", p2i(low_bound), size/K);
1106 ast->print_cr("Segment end (used) = " INTPTR_FORMAT ", remaining space = " SIZE_FORMAT_W(8)"k", p2i(low_bound) + size, (res_size - size)/K);
1107 ast->print_cr("Segment end (reserved) = " INTPTR_FORMAT ", reserved space = " SIZE_FORMAT_W(8)"k", p2i(low_bound) + res_size, res_size/K);
1108 ast->cr();
1109 ast->print_cr("latest allocated compilation id = %d", latest_compilation_id);
1110 ast->print_cr("highest observed compilation id = %d", highest_compilation_id);
1111 ast->print_cr("Building TopSizeList iterations = %ld", total_iterations);
1112 ast->cr();
1113
1114 int reset_val = NMethodSweeper::hotness_counter_reset_val();
1115 double reverse_free_ratio = (res_size > size) ? (double)res_size/(double)(res_size-size) : (double)res_size;
1116 printBox(ast, '-', "Method hotness information at time of this analysis", NULL);
1117 ast->print_cr("Highest possible method temperature: %12d", reset_val);
1118 ast->print_cr("Threshold for method to be considered 'cold': %12.3f", -reset_val + reverse_free_ratio * NmethodSweepActivity);
1119 if (n_methods > 0) {
1120 avgTemp = hotnessAccumulator/n_methods;
1121 ast->print_cr("min. hotness = %6d", minTemp);
1122 ast->print_cr("avg. hotness = %6d", avgTemp);
1123 ast->print_cr("max. hotness = %6d", maxTemp);
1124 } else {
1125 avgTemp = 0;
1126 ast->print_cr("No hotness data available");
1127 }
1128 BUFFEREDSTREAM_FLUSH("\n")
1129
1130 // This loop is intentionally printing directly to "out".
1131 // It should not print anything, anyway.
1132 out->print("Verifying collected data...");
1133 size_t granule_segs = granule_size>>log2_seg_size;
1134 for (unsigned int ix = 0; ix < granules; ix++) {
1135 if (StatArray[ix].t1_count > granule_segs) {
1136 out->print_cr("t1_count[%d] = %d", ix, StatArray[ix].t1_count);
1137 }
1138 if (StatArray[ix].t2_count > granule_segs) {
1139 out->print_cr("t2_count[%d] = %d", ix, StatArray[ix].t2_count);
1140 }
1141 if (StatArray[ix].tx_count > granule_segs) {
1142 out->print_cr("tx_count[%d] = %d", ix, StatArray[ix].tx_count);
1143 }
1144 if (StatArray[ix].stub_count > granule_segs) {
1145 out->print_cr("stub_count[%d] = %d", ix, StatArray[ix].stub_count);
1146 }
1147 if (StatArray[ix].dead_count > granule_segs) {
1148 out->print_cr("dead_count[%d] = %d", ix, StatArray[ix].dead_count);
1149 }
1150 if (StatArray[ix].t1_space > granule_segs) {
1151 out->print_cr("t1_space[%d] = %d", ix, StatArray[ix].t1_space);
1152 }
1153 if (StatArray[ix].t2_space > granule_segs) {
1154 out->print_cr("t2_space[%d] = %d", ix, StatArray[ix].t2_space);
1155 }
1156 if (StatArray[ix].tx_space > granule_segs) {
1157 out->print_cr("tx_space[%d] = %d", ix, StatArray[ix].tx_space);
1158 }
1159 if (StatArray[ix].stub_space > granule_segs) {
1160 out->print_cr("stub_space[%d] = %d", ix, StatArray[ix].stub_space);
1161 }
1162 if (StatArray[ix].dead_space > granule_segs) {
1163 out->print_cr("dead_space[%d] = %d", ix, StatArray[ix].dead_space);
1164 }
1165 // this cast is awful! I need it because NT/Intel reports a signed/unsigned mismatch.
1166 if ((size_t)(StatArray[ix].t1_count+StatArray[ix].t2_count+StatArray[ix].tx_count+StatArray[ix].stub_count+StatArray[ix].dead_count) > granule_segs) {
1167 out->print_cr("t1_count[%d] = %d, t2_count[%d] = %d, tx_count[%d] = %d, stub_count[%d] = %d", ix, StatArray[ix].t1_count, ix, StatArray[ix].t2_count, ix, StatArray[ix].tx_count, ix, StatArray[ix].stub_count);
1168 }
1169 if ((size_t)(StatArray[ix].t1_space+StatArray[ix].t2_space+StatArray[ix].tx_space+StatArray[ix].stub_space+StatArray[ix].dead_space) > granule_segs) {
1170 out->print_cr("t1_space[%d] = %d, t2_space[%d] = %d, tx_space[%d] = %d, stub_space[%d] = %d", ix, StatArray[ix].t1_space, ix, StatArray[ix].t2_space, ix, StatArray[ix].tx_space, ix, StatArray[ix].stub_space);
1171 }
1172 }
1173
1174 // This loop is intentionally printing directly to "out".
1175 // It should not print anything, anyway.
1176 if (used_topSizeBlocks > 0) {
1177 unsigned int j = 0;
1178 if (TopSizeArray[0].len != currMax) {
1179 out->print_cr("currMax(%d) differs from TopSizeArray[0].len(%d)", currMax, TopSizeArray[0].len);
1180 }
1181 for (unsigned int i = 0; (TopSizeArray[i].index != tsbStopper) && (j++ < alloc_topSizeBlocks); i = TopSizeArray[i].index) {
1182 if (TopSizeArray[i].len < TopSizeArray[TopSizeArray[i].index].len) {
1183 out->print_cr("sort error at index %d: %d !>= %d", i, TopSizeArray[i].len, TopSizeArray[TopSizeArray[i].index].len);
1184 }
1185 }
1186 if (j >= alloc_topSizeBlocks) {
1187 out->print_cr("Possible loop in TopSizeArray chaining!\n allocBlocks = %d, usedBlocks = %d", alloc_topSizeBlocks, used_topSizeBlocks);
1188 for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) {
1189 out->print_cr(" TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len);
1190 }
1191 }
1192 }
1193 out->print_cr("...done\n\n");
1194 } else {
1195 // insane heap state detected. Analysis data incomplete. Just throw it away.
1196 discard_StatArray(out);
1197 discard_TopSizeArray(out);
1198 }
1199 }
1200
1201
1202 done = false;
1203 while (!done && (nBlocks_free > 0)) {
1204
1205 printBox(ast, '=', "C O D E H E A P A N A L Y S I S (free blocks) for segment ", heapName);
1206 ast->print_cr(" The aggregate step collects information about all free blocks in CodeHeap.\n"
1207 " Subsequent print functions create their output based on this snapshot.\n");
1208 ast->print_cr(" Free space in %s is distributed over %d free blocks.", heapName, nBlocks_free);
1209 ast->print_cr(" Each free block takes " SIZE_FORMAT " bytes of C heap for statistics data, that is " SIZE_FORMAT "K in total.", sizeof(FreeBlk), (sizeof(FreeBlk)*nBlocks_free)/K);
1210 BUFFEREDSTREAM_FLUSH("\n")
1211
1212 //----------------------------------------
1213 //-- Prepare the FreeArray of FreeBlks --
1214 //----------------------------------------
1215
1216 //---< discard old array if size does not match >---
1217 if (nBlocks_free != alloc_freeBlocks) {
1218 discard_FreeArray(out);
1219 }
1220
1221 prepare_FreeArray(out, nBlocks_free, heapName);
1222 if (FreeArray == NULL) {
1223 done = true;
1224 continue;
1225 }
1226
1227 //----------------------------------------
1228 //-- Collect all FreeBlks in FreeArray --
1229 //----------------------------------------
1230
1231 unsigned int ix = 0;
1232 FreeBlock* cur = heap->freelist();
1233
1234 while (cur != NULL) {
1235 if (ix < alloc_freeBlocks) { // don't index out of bounds if _freelist has more blocks than anticipated
1236 FreeArray[ix].start = cur;
1237 FreeArray[ix].len = (unsigned int)(cur->length()<<log2_seg_size);
1238 FreeArray[ix].index = ix;
1239 }
1240 cur = cur->link();
1241 ix++;
1242 }
1243 if (ix != alloc_freeBlocks) {
1244 ast->print_cr("Free block count mismatch. Expected %d free blocks, but found %d.", alloc_freeBlocks, ix);
1245 ast->print_cr("I will update the counter and retry data collection");
1246 BUFFEREDSTREAM_FLUSH("\n")
1247 nBlocks_free = ix;
1248 continue;
1249 }
1250 done = true;
1251 }
1252
1253 if (!done || (nBlocks_free == 0)) {
1254 if (nBlocks_free == 0) {
1255 printBox(ast, '-', "no free blocks found in ", heapName);
1256 } else if (!done) {
1257 ast->print_cr("Free block count mismatch could not be resolved.");
1258 ast->print_cr("Try to run \"aggregate\" function to update counters");
1259 }
1260 BUFFEREDSTREAM_FLUSH("")
1261
1262 //---< discard old array and update global values >---
1263 discard_FreeArray(out);
1264 set_HeapStatGlobals(out, heapName);
1265 return;
1266 }
1267
1268 //---< calculate and fill remaining fields >---
1269 if (FreeArray != NULL) {
1270 // This loop is intentionally printing directly to "out".
1271 // It should not print anything, anyway.
1272 for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) {
1273 size_t lenSum = 0;
1274 FreeArray[ix].gap = (unsigned int)((address)FreeArray[ix+1].start - ((address)FreeArray[ix].start + FreeArray[ix].len));
1275 for (HeapBlock *h = heap->next_block(FreeArray[ix].start); (h != NULL) && (h != FreeArray[ix+1].start); h = heap->next_block(h)) {
1276 CodeBlob *cb = (CodeBlob*)(heap->find_start(h));
1277 if ((cb != NULL) && !cb->is_nmethod()) {
1278 FreeArray[ix].stubs_in_gap = true;
1279 }
1280 FreeArray[ix].n_gapBlocks++;
1281 lenSum += h->length()<<log2_seg_size;
1282 if (((address)h < ((address)FreeArray[ix].start+FreeArray[ix].len)) || (h >= FreeArray[ix+1].start)) {
1283 out->print_cr("unsorted occupied CodeHeap block found @ %p, gap interval [%p, %p)", h, (address)FreeArray[ix].start+FreeArray[ix].len, FreeArray[ix+1].start);
1284 }
1285 }
1286 if (lenSum != FreeArray[ix].gap) {
1287 out->print_cr("Length mismatch for gap between FreeBlk[%d] and FreeBlk[%d]. Calculated: %d, accumulated: %d.", ix, ix+1, FreeArray[ix].gap, (unsigned int)lenSum);
1288 }
1289 }
1290 }
1291 set_HeapStatGlobals(out, heapName);
1292
1293 printBox(ast, '=', "C O D E H E A P A N A L Y S I S C O M P L E T E for segment ", heapName);
1294 BUFFEREDSTREAM_FLUSH("\n")
1295}
1296
1297
1298void CodeHeapState::print_usedSpace(outputStream* out, CodeHeap* heap) {
1299 if (!initialization_complete) {
1300 return;
1301 }
1302
1303 const char* heapName = get_heapName(heap);
1304 get_HeapStatGlobals(out, heapName);
1305
1306 if ((StatArray == NULL) || (TopSizeArray == NULL) || (used_topSizeBlocks == 0)) {
1307 return;
1308 }
1309 BUFFEREDSTREAM_DECL(ast, out)
1310
1311 {
1312 printBox(ast, '=', "U S E D S P A C E S T A T I S T I C S for ", heapName);
1313 ast->print_cr("Note: The Top%d list of the largest used blocks associates method names\n"
1314 " and other identifying information with the block size data.\n"
1315 "\n"
1316 " Method names are dynamically retrieved from the code cache at print time.\n"
1317 " Due to the living nature of the code cache and because the CodeCache_lock\n"
1318 " is not continuously held, the displayed name might be wrong or no name\n"
1319 " might be found at all. The likelihood for that to happen increases\n"
1320 " over time passed between analysis and print step.\n", used_topSizeBlocks);
1321 BUFFEREDSTREAM_FLUSH_LOCKED("\n")
1322 }
1323
1324 //----------------------------
1325 //-- Print Top Used Blocks --
1326 //----------------------------
1327 {
1328 char* low_bound = heap->low_boundary();
1329 bool have_CodeCache_lock = CodeCache_lock->owned_by_self();
1330
1331 printBox(ast, '-', "Largest Used Blocks in ", heapName);
1332 print_blobType_legend(ast);
1333
1334 ast->fill_to(51);
1335 ast->print("%4s", "blob");
1336 ast->fill_to(56);
1337 ast->print("%9s", "compiler");
1338 ast->fill_to(66);
1339 ast->print_cr("%6s", "method");
1340 ast->print_cr("%18s %13s %17s %4s %9s %5s %s", "Addr(module) ", "offset", "size", "type", " type lvl", " temp", "Name");
1341 BUFFEREDSTREAM_FLUSH_LOCKED("")
1342
1343 //---< print Top Ten Used Blocks >---
1344 if (used_topSizeBlocks > 0) {
1345 unsigned int printed_topSizeBlocks = 0;
1346 for (unsigned int i = 0; i != tsbStopper; i = TopSizeArray[i].index) {
1347 printed_topSizeBlocks++;
1348 nmethod* nm = NULL;
1349 const char* blob_name = "unnamed blob or blob name unavailable";
1350 // heap->find_start() is safe. Only works on _segmap.
1351 // Returns NULL or void*. Returned CodeBlob may be uninitialized.
1352 HeapBlock* heapBlock = TopSizeArray[i].start;
1353 CodeBlob* this_blob = (CodeBlob*)(heap->find_start(heapBlock));
1354 bool blob_is_safe = blob_access_is_safe(this_blob, NULL);
1355 if (blob_is_safe) {
1356 //---< access these fields only if we own the CodeCache_lock >---
1357 if (have_CodeCache_lock) {
1358 blob_name = this_blob->name();
1359 nm = this_blob->as_nmethod_or_null();
1360 }
1361 //---< blob address >---
1362 ast->print(INTPTR_FORMAT, p2i(this_blob));
1363 ast->fill_to(19);
1364 //---< blob offset from CodeHeap begin >---
1365 ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound));
1366 ast->fill_to(33);
1367 } else {
1368 //---< block address >---
1369 ast->print(INTPTR_FORMAT, p2i(TopSizeArray[i].start));
1370 ast->fill_to(19);
1371 //---< block offset from CodeHeap begin >---
1372 ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)TopSizeArray[i].start-low_bound));
1373 ast->fill_to(33);
1374 }
1375
1376 //---< print size, name, and signature (for nMethods) >---
1377 // access nmethod and Method fields only if we own the CodeCache_lock.
1378 // This fact is implicitly transported via nm != NULL.
1379 if (CompiledMethod::nmethod_access_is_safe(nm)) {
1380 ResourceMark rm;
1381 Method* method = nm->method();
1382 if (nm->is_in_use()) {
1383 blob_name = method->name_and_sig_as_C_string();
1384 }
1385 if (nm->is_not_entrant()) {
1386 blob_name = method->name_and_sig_as_C_string();
1387 }
1388 //---< nMethod size in hex >---
1389 unsigned int total_size = nm->total_size();
1390 ast->print(PTR32_FORMAT, total_size);
1391 ast->print("(" SIZE_FORMAT_W(4) "K)", total_size/K);
1392 ast->fill_to(51);
1393 ast->print(" %c", blobTypeChar[TopSizeArray[i].type]);
1394 //---< compiler information >---
1395 ast->fill_to(56);
1396 ast->print("%5s %3d", compTypeName[TopSizeArray[i].compiler], TopSizeArray[i].level);
1397 //---< method temperature >---
1398 ast->fill_to(67);
1399 ast->print("%5d", nm->hotness_counter());
1400 //---< name and signature >---
1401 ast->fill_to(67+6);
1402 if (nm->is_not_installed()) {
1403 ast->print(" not (yet) installed method ");
1404 }
1405 if (nm->is_zombie()) {
1406 ast->print(" zombie method ");
1407 }
1408 ast->print("%s", blob_name);
1409 } else {
1410 //---< block size in hex >---
1411 ast->print(PTR32_FORMAT, (unsigned int)(TopSizeArray[i].len<<log2_seg_size));
1412 ast->print("(" SIZE_FORMAT_W(4) "K)", (TopSizeArray[i].len<<log2_seg_size)/K);
1413 //---< no compiler information >---
1414 ast->fill_to(56);
1415 //---< name and signature >---
1416 ast->fill_to(67+6);
1417 ast->print("%s", blob_name);
1418 }
1419 ast->cr();
1420 BUFFEREDSTREAM_FLUSH_AUTO("")
1421 }
1422 if (used_topSizeBlocks != printed_topSizeBlocks) {
1423 ast->print_cr("used blocks: %d, printed blocks: %d", used_topSizeBlocks, printed_topSizeBlocks);
1424 for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) {
1425 ast->print_cr(" TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len);
1426 BUFFEREDSTREAM_FLUSH_AUTO("")
1427 }
1428 }
1429 BUFFEREDSTREAM_FLUSH("\n\n")
1430 }
1431 }
1432
1433 //-----------------------------
1434 //-- Print Usage Histogram --
1435 //-----------------------------
1436
1437 if (SizeDistributionArray != NULL) {
1438 unsigned long total_count = 0;
1439 unsigned long total_size = 0;
1440 const unsigned long pctFactor = 200;
1441
1442 for (unsigned int i = 0; i < nSizeDistElements; i++) {
1443 total_count += SizeDistributionArray[i].count;
1444 total_size += SizeDistributionArray[i].lenSum;
1445 }
1446
1447 if ((total_count > 0) && (total_size > 0)) {
1448 printBox(ast, '-', "Block count histogram for ", heapName);
1449 ast->print_cr("Note: The histogram indicates how many blocks (as a percentage\n"
1450 " of all blocks) have a size in the given range.\n"
1451 " %ld characters are printed per percentage point.\n", pctFactor/100);
1452 ast->print_cr("total size of all blocks: %7ldM", (total_size<<log2_seg_size)/M);
1453 ast->print_cr("total number of all blocks: %7ld\n", total_count);
1454 BUFFEREDSTREAM_FLUSH_LOCKED("")
1455
1456 ast->print_cr("[Size Range)------avg.-size-+----count-+");
1457 for (unsigned int i = 0; i < nSizeDistElements; i++) {
1458 if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) {
1459 ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): "
1460 ,(size_t)(SizeDistributionArray[i].rangeStart<<log2_seg_size)
1461 ,(size_t)(SizeDistributionArray[i].rangeEnd<<log2_seg_size)
1462 );
1463 } else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) {
1464 ast->print("[" SIZE_FORMAT_W(5) "K.." SIZE_FORMAT_W(5) "K): "
1465 ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K
1466 ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K
1467 );
1468 } else {
1469 ast->print("[" SIZE_FORMAT_W(5) "M.." SIZE_FORMAT_W(5) "M): "
1470 ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M
1471 ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M
1472 );
1473 }
1474 ast->print(" %8d | %8d |",
1475 SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0,
1476 SizeDistributionArray[i].count);
1477
1478 unsigned int percent = pctFactor*SizeDistributionArray[i].count/total_count;
1479 for (unsigned int j = 1; j <= percent; j++) {
1480 ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*');
1481 }
1482 ast->cr();
1483 BUFFEREDSTREAM_FLUSH_AUTO("")
1484 }
1485 ast->print_cr("----------------------------+----------+");
1486 BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1487
1488 printBox(ast, '-', "Contribution per size range to total size for ", heapName);
1489 ast->print_cr("Note: The histogram indicates how much space (as a percentage of all\n"
1490 " occupied space) is used by the blocks in the given size range.\n"
1491 " %ld characters are printed per percentage point.\n", pctFactor/100);
1492 ast->print_cr("total size of all blocks: %7ldM", (total_size<<log2_seg_size)/M);
1493 ast->print_cr("total number of all blocks: %7ld\n", total_count);
1494 BUFFEREDSTREAM_FLUSH_LOCKED("")
1495
1496 ast->print_cr("[Size Range)------avg.-size-+----count-+");
1497 for (unsigned int i = 0; i < nSizeDistElements; i++) {
1498 if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) {
1499 ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): "
1500 ,(size_t)(SizeDistributionArray[i].rangeStart<<log2_seg_size)
1501 ,(size_t)(SizeDistributionArray[i].rangeEnd<<log2_seg_size)
1502 );
1503 } else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) {
1504 ast->print("[" SIZE_FORMAT_W(5) "K.." SIZE_FORMAT_W(5) "K): "
1505 ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K
1506 ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K
1507 );
1508 } else {
1509 ast->print("[" SIZE_FORMAT_W(5) "M.." SIZE_FORMAT_W(5) "M): "
1510 ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M
1511 ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M
1512 );
1513 }
1514 ast->print(" %8d | %8d |",
1515 SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0,
1516 SizeDistributionArray[i].count);
1517
1518 unsigned int percent = pctFactor*(unsigned long)SizeDistributionArray[i].lenSum/total_size;
1519 for (unsigned int j = 1; j <= percent; j++) {
1520 ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*');
1521 }
1522 ast->cr();
1523 BUFFEREDSTREAM_FLUSH_AUTO("")
1524 }
1525 ast->print_cr("----------------------------+----------+");
1526 BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1527 }
1528 }
1529}
1530
1531
1532void CodeHeapState::print_freeSpace(outputStream* out, CodeHeap* heap) {
1533 if (!initialization_complete) {
1534 return;
1535 }
1536
1537 const char* heapName = get_heapName(heap);
1538 get_HeapStatGlobals(out, heapName);
1539
1540 if ((StatArray == NULL) || (FreeArray == NULL) || (alloc_granules == 0)) {
1541 return;
1542 }
1543 BUFFEREDSTREAM_DECL(ast, out)
1544
1545 {
1546 printBox(ast, '=', "F R E E S P A C E S T A T I S T I C S for ", heapName);
1547 ast->print_cr("Note: in this context, a gap is the occupied space between two free blocks.\n"
1548 " Those gaps are of interest if there is a chance that they become\n"
1549 " unoccupied, e.g. by class unloading. Then, the two adjacent free\n"
1550 " blocks, together with the now unoccupied space, form a new, large\n"
1551 " free block.");
1552 BUFFEREDSTREAM_FLUSH_LOCKED("\n")
1553 }
1554
1555 {
1556 printBox(ast, '-', "List of all Free Blocks in ", heapName);
1557
1558 unsigned int ix = 0;
1559 for (ix = 0; ix < alloc_freeBlocks-1; ix++) {
1560 ast->print(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT ",", p2i(FreeArray[ix].start), ix, FreeArray[ix].len);
1561 ast->fill_to(38);
1562 ast->print("Gap[%4d..%4d]: " HEX32_FORMAT " bytes,", ix, ix+1, FreeArray[ix].gap);
1563 ast->fill_to(71);
1564 ast->print("block count: %6d", FreeArray[ix].n_gapBlocks);
1565 if (FreeArray[ix].stubs_in_gap) {
1566 ast->print(" !! permanent gap, contains stubs and/or blobs !!");
1567 }
1568 ast->cr();
1569 BUFFEREDSTREAM_FLUSH_AUTO("")
1570 }
1571 ast->print_cr(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT, p2i(FreeArray[ix].start), ix, FreeArray[ix].len);
1572 BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
1573 }
1574
1575
1576 //-----------------------------------------
1577 //-- Find and Print Top Ten Free Blocks --
1578 //-----------------------------------------
1579
1580 //---< find Top Ten Free Blocks >---
1581 const unsigned int nTop = 10;
1582 unsigned int currMax10 = 0;
1583 struct FreeBlk* FreeTopTen[nTop];
1584 memset(FreeTopTen, 0, sizeof(FreeTopTen));
1585
1586 for (unsigned int ix = 0; ix < alloc_freeBlocks; ix++) {
1587 if (FreeArray[ix].len > currMax10) { // larger than the ten largest found so far
1588 unsigned int currSize = FreeArray[ix].len;
1589
1590 unsigned int iy;
1591 for (iy = 0; iy < nTop && FreeTopTen[iy] != NULL; iy++) {
1592 if (FreeTopTen[iy]->len < currSize) {
1593 for (unsigned int iz = nTop-1; iz > iy; iz--) { // make room to insert new free block
1594 FreeTopTen[iz] = FreeTopTen[iz-1];
1595 }
1596 FreeTopTen[iy] = &FreeArray[ix]; // insert new free block
1597 if (FreeTopTen[nTop-1] != NULL) {
1598 currMax10 = FreeTopTen[nTop-1]->len;
1599 }
1600 break; // done with this, check next free block
1601 }
1602 }
1603 if (iy >= nTop) {
1604 ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d",
1605 currSize, currMax10);
1606 continue;
1607 }
1608 if (FreeTopTen[iy] == NULL) {
1609 FreeTopTen[iy] = &FreeArray[ix];
1610 if (iy == (nTop-1)) {
1611 currMax10 = currSize;
1612 }
1613 }
1614 }
1615 }
1616 BUFFEREDSTREAM_FLUSH_AUTO("")
1617
1618 {
1619 printBox(ast, '-', "Top Ten Free Blocks in ", heapName);
1620
1621 //---< print Top Ten Free Blocks >---
1622 for (unsigned int iy = 0; (iy < nTop) && (FreeTopTen[iy] != NULL); iy++) {
1623 ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTen[iy]->index, FreeTopTen[iy]->len);
1624 ast->fill_to(39);
1625 if (FreeTopTen[iy]->index == (alloc_freeBlocks-1)) {
1626 ast->print("last free block in list.");
1627 } else {
1628 ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTen[iy]->gap);
1629 ast->fill_to(63);
1630 ast->print("#blocks (in gap) %d", FreeTopTen[iy]->n_gapBlocks);
1631 }
1632 ast->cr();
1633 BUFFEREDSTREAM_FLUSH_AUTO("")
1634 }
1635 }
1636 BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
1637
1638
1639 //--------------------------------------------------------
1640 //-- Find and Print Top Ten Free-Occupied-Free Triples --
1641 //--------------------------------------------------------
1642
1643 //---< find and print Top Ten Triples (Free-Occupied-Free) >---
1644 currMax10 = 0;
1645 struct FreeBlk *FreeTopTenTriple[nTop];
1646 memset(FreeTopTenTriple, 0, sizeof(FreeTopTenTriple));
1647
1648 for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) {
1649 // If there are stubs in the gap, this gap will never become completely free.
1650 // The triple will thus never merge to one free block.
1651 unsigned int lenTriple = FreeArray[ix].len + (FreeArray[ix].stubs_in_gap ? 0 : FreeArray[ix].gap + FreeArray[ix+1].len);
1652 FreeArray[ix].len = lenTriple;
1653 if (lenTriple > currMax10) { // larger than the ten largest found so far
1654
1655 unsigned int iy;
1656 for (iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) {
1657 if (FreeTopTenTriple[iy]->len < lenTriple) {
1658 for (unsigned int iz = nTop-1; iz > iy; iz--) {
1659 FreeTopTenTriple[iz] = FreeTopTenTriple[iz-1];
1660 }
1661 FreeTopTenTriple[iy] = &FreeArray[ix];
1662 if (FreeTopTenTriple[nTop-1] != NULL) {
1663 currMax10 = FreeTopTenTriple[nTop-1]->len;
1664 }
1665 break;
1666 }
1667 }
1668 if (iy == nTop) {
1669 ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d",
1670 lenTriple, currMax10);
1671 continue;
1672 }
1673 if (FreeTopTenTriple[iy] == NULL) {
1674 FreeTopTenTriple[iy] = &FreeArray[ix];
1675 if (iy == (nTop-1)) {
1676 currMax10 = lenTriple;
1677 }
1678 }
1679 }
1680 }
1681 BUFFEREDSTREAM_FLUSH_AUTO("")
1682
1683 {
1684 printBox(ast, '-', "Top Ten Free-Occupied-Free Triples in ", heapName);
1685 ast->print_cr(" Use this information to judge how likely it is that a large(r) free block\n"
1686 " might get created by code cache sweeping.\n"
1687 " If all the occupied blocks can be swept, the three free blocks will be\n"
1688 " merged into one (much larger) free block. That would reduce free space\n"
1689 " fragmentation.\n");
1690
1691 //---< print Top Ten Free-Occupied-Free Triples >---
1692 for (unsigned int iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) {
1693 ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTenTriple[iy]->index, FreeTopTenTriple[iy]->len);
1694 ast->fill_to(39);
1695 ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTenTriple[iy]->gap);
1696 ast->fill_to(63);
1697 ast->print("#blocks (in gap) %d", FreeTopTenTriple[iy]->n_gapBlocks);
1698 ast->cr();
1699 BUFFEREDSTREAM_FLUSH_AUTO("")
1700 }
1701 }
1702 BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
1703}
1704
1705
1706void CodeHeapState::print_count(outputStream* out, CodeHeap* heap) {
1707 if (!initialization_complete) {
1708 return;
1709 }
1710
1711 const char* heapName = get_heapName(heap);
1712 get_HeapStatGlobals(out, heapName);
1713
1714 if ((StatArray == NULL) || (alloc_granules == 0)) {
1715 return;
1716 }
1717 BUFFEREDSTREAM_DECL(ast, out)
1718
1719 unsigned int granules_per_line = 32;
1720 char* low_bound = heap->low_boundary();
1721
1722 {
1723 printBox(ast, '=', "B L O C K C O U N T S for ", heapName);
1724 ast->print_cr(" Each granule contains an individual number of heap blocks. Large blocks\n"
1725 " may span multiple granules and are counted for each granule they touch.\n");
1726 if (segment_granules) {
1727 ast->print_cr(" You have selected granule size to be as small as segment size.\n"
1728 " As a result, each granule contains exactly one block (or a part of one block)\n"
1729 " or is displayed as empty (' ') if it's BlobType does not match the selection.\n"
1730 " Occupied granules show their BlobType character, see legend.\n");
1731 print_blobType_legend(ast);
1732 }
1733 BUFFEREDSTREAM_FLUSH_LOCKED("")
1734 }
1735
1736 {
1737 if (segment_granules) {
1738 printBox(ast, '-', "Total (all types) count for granule size == segment size", NULL);
1739
1740 granules_per_line = 128;
1741 for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1742 print_line_delim(out, ast, low_bound, ix, granules_per_line);
1743 print_blobType_single(ast, StatArray[ix].type);
1744 }
1745 } else {
1746 printBox(ast, '-', "Total (all tiers) count, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1747
1748 granules_per_line = 128;
1749 for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1750 print_line_delim(out, ast, low_bound, ix, granules_per_line);
1751 unsigned int count = StatArray[ix].t1_count + StatArray[ix].t2_count + StatArray[ix].tx_count
1752 + StatArray[ix].stub_count + StatArray[ix].dead_count;
1753 print_count_single(ast, count);
1754 }
1755 }
1756 BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n")
1757 }
1758
1759 {
1760 if (nBlocks_t1 > 0) {
1761 printBox(ast, '-', "Tier1 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1762
1763 granules_per_line = 128;
1764 for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1765 print_line_delim(out, ast, low_bound, ix, granules_per_line);
1766 if (segment_granules && StatArray[ix].t1_count > 0) {
1767 print_blobType_single(ast, StatArray[ix].type);
1768 } else {
1769 print_count_single(ast, StatArray[ix].t1_count);
1770 }
1771 }
1772 ast->print("|");
1773 } else {
1774 ast->print("No Tier1 nMethods found in CodeHeap.");
1775 }
1776 BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1777 }
1778
1779 {
1780 if (nBlocks_t2 > 0) {
1781 printBox(ast, '-', "Tier2 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1782
1783 granules_per_line = 128;
1784 for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1785 print_line_delim(out, ast, low_bound, ix, granules_per_line);
1786 if (segment_granules && StatArray[ix].t2_count > 0) {
1787 print_blobType_single(ast, StatArray[ix].type);
1788 } else {
1789 print_count_single(ast, StatArray[ix].t2_count);
1790 }
1791 }
1792 ast->print("|");
1793 } else {
1794 ast->print("No Tier2 nMethods found in CodeHeap.");
1795 }
1796 BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1797 }
1798
1799 {
1800 if (nBlocks_alive > 0) {
1801 printBox(ast, '-', "not_used/not_entrant/not_installed nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1802
1803 granules_per_line = 128;
1804 for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1805 print_line_delim(out, ast, low_bound, ix, granules_per_line);
1806 if (segment_granules && StatArray[ix].tx_count > 0) {
1807 print_blobType_single(ast, StatArray[ix].type);
1808 } else {
1809 print_count_single(ast, StatArray[ix].tx_count);
1810 }
1811 }
1812 ast->print("|");
1813 } else {
1814 ast->print("No not_used/not_entrant nMethods found in CodeHeap.");
1815 }
1816 BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1817 }
1818
1819 {
1820 if (nBlocks_stub > 0) {
1821 printBox(ast, '-', "Stub & Blob count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1822
1823 granules_per_line = 128;
1824 for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1825 print_line_delim(out, ast, low_bound, ix, granules_per_line);
1826 if (segment_granules && StatArray[ix].stub_count > 0) {
1827 print_blobType_single(ast, StatArray[ix].type);
1828 } else {
1829 print_count_single(ast, StatArray[ix].stub_count);
1830 }
1831 }
1832 ast->print("|");
1833 } else {
1834 ast->print("No Stubs and Blobs found in CodeHeap.");
1835 }
1836 BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1837 }
1838
1839 {
1840 if (nBlocks_dead > 0) {
1841 printBox(ast, '-', "Dead nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1842
1843 granules_per_line = 128;
1844 for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1845 print_line_delim(out, ast, low_bound, ix, granules_per_line);
1846 if (segment_granules && StatArray[ix].dead_count > 0) {
1847 print_blobType_single(ast, StatArray[ix].type);
1848 } else {
1849 print_count_single(ast, StatArray[ix].dead_count);
1850 }
1851 }
1852 ast->print("|");
1853 } else {
1854 ast->print("No dead nMethods found in CodeHeap.");
1855 }
1856 BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1857 }
1858
1859 {
1860 if (!segment_granules) { // Prevent totally redundant printouts
1861 printBox(ast, '-', "Count by tier (combined, no dead blocks): <#t1>:<#t2>:<#s>, 0x0..0xf. '*' indicates >= 16 blocks", NULL);
1862
1863 granules_per_line = 24;
1864 for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1865 print_line_delim(out, ast, low_bound, ix, granules_per_line);
1866
1867 print_count_single(ast, StatArray[ix].t1_count);
1868 ast->print(":");
1869 print_count_single(ast, StatArray[ix].t2_count);
1870 ast->print(":");
1871 if (segment_granules && StatArray[ix].stub_count > 0) {
1872 print_blobType_single(ast, StatArray[ix].type);
1873 } else {
1874 print_count_single(ast, StatArray[ix].stub_count);
1875 }
1876 ast->print(" ");
1877 }
1878 BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n")
1879 }
1880 }
1881}
1882
1883
1884void CodeHeapState::print_space(outputStream* out, CodeHeap* heap) {
1885 if (!initialization_complete) {
1886 return;
1887 }
1888
1889 const char* heapName = get_heapName(heap);
1890 get_HeapStatGlobals(out, heapName);
1891
1892 if ((StatArray == NULL) || (alloc_granules == 0)) {
1893 return;
1894 }
1895 BUFFEREDSTREAM_DECL(ast, out)
1896
1897 unsigned int granules_per_line = 32;
1898 char* low_bound = heap->low_boundary();
1899
1900 {
1901 printBox(ast, '=', "S P A C E U S A G E & F R A G M E N T A T I O N for ", heapName);
1902 ast->print_cr(" The heap space covered by one granule is occupied to a various extend.\n"
1903 " The granule occupancy is displayed by one decimal digit per granule.\n");
1904 if (segment_granules) {
1905 ast->print_cr(" You have selected granule size to be as small as segment size.\n"
1906 " As a result, each granule contains exactly one block (or a part of one block)\n"
1907 " or is displayed as empty (' ') if it's BlobType does not match the selection.\n"
1908 " Occupied granules show their BlobType character, see legend.\n");
1909 print_blobType_legend(ast);
1910 } else {
1911 ast->print_cr(" These digits represent a fill percentage range (see legend).\n");
1912 print_space_legend(ast);
1913 }
1914 BUFFEREDSTREAM_FLUSH_LOCKED("")
1915 }
1916
1917 {
1918 if (segment_granules) {
1919 printBox(ast, '-', "Total (all types) space consumption for granule size == segment size", NULL);
1920
1921 granules_per_line = 128;
1922 for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1923 print_line_delim(out, ast, low_bound, ix, granules_per_line);
1924 print_blobType_single(ast, StatArray[ix].type);
1925 }
1926 } else {
1927 printBox(ast, '-', "Total (all types) space consumption. ' ' indicates empty, '*' indicates full.", NULL);
1928
1929 granules_per_line = 128;
1930 for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1931 print_line_delim(out, ast, low_bound, ix, granules_per_line);
1932 unsigned int space = StatArray[ix].t1_space + StatArray[ix].t2_space + StatArray[ix].tx_space
1933 + StatArray[ix].stub_space + StatArray[ix].dead_space;
1934 print_space_single(ast, space);
1935 }
1936 }
1937 BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n")
1938 }
1939
1940 {
1941 if (nBlocks_t1 > 0) {
1942 printBox(ast, '-', "Tier1 space consumption. ' ' indicates empty, '*' indicates full", NULL);
1943
1944 granules_per_line = 128;
1945 for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1946 print_line_delim(out, ast, low_bound, ix, granules_per_line);
1947 if (segment_granules && StatArray[ix].t1_space > 0) {
1948 print_blobType_single(ast, StatArray[ix].type);
1949 } else {
1950 print_space_single(ast, StatArray[ix].t1_space);
1951 }
1952 }
1953 ast->print("|");
1954 } else {
1955 ast->print("No Tier1 nMethods found in CodeHeap.");
1956 }
1957 BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1958 }
1959
1960 {
1961 if (nBlocks_t2 > 0) {
1962 printBox(ast, '-', "Tier2 space consumption. ' ' indicates empty, '*' indicates full", NULL);
1963
1964 granules_per_line = 128;
1965 for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1966 print_line_delim(out, ast, low_bound, ix, granules_per_line);
1967 if (segment_granules && StatArray[ix].t2_space > 0) {
1968 print_blobType_single(ast, StatArray[ix].type);
1969 } else {
1970 print_space_single(ast, StatArray[ix].t2_space);
1971 }
1972 }
1973 ast->print("|");
1974 } else {
1975 ast->print("No Tier2 nMethods found in CodeHeap.");
1976 }
1977 BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1978 }
1979
1980 {
1981 if (nBlocks_alive > 0) {
1982 printBox(ast, '-', "not_used/not_entrant/not_installed space consumption. ' ' indicates empty, '*' indicates full", NULL);
1983
1984 granules_per_line = 128;
1985 for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1986 print_line_delim(out, ast, low_bound, ix, granules_per_line);
1987 if (segment_granules && StatArray[ix].tx_space > 0) {
1988 print_blobType_single(ast, StatArray[ix].type);
1989 } else {
1990 print_space_single(ast, StatArray[ix].tx_space);
1991 }
1992 }
1993 ast->print("|");
1994 } else {
1995 ast->print("No Tier2 nMethods found in CodeHeap.");
1996 }
1997 BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1998 }
1999
2000 {
2001 if (nBlocks_stub > 0) {
2002 printBox(ast, '-', "Stub and Blob space consumption. ' ' indicates empty, '*' indicates full", NULL);
2003
2004 granules_per_line = 128;
2005 for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2006 print_line_delim(out, ast, low_bound, ix, granules_per_line);
2007 if (segment_granules && StatArray[ix].stub_space > 0) {
2008 print_blobType_single(ast, StatArray[ix].type);
2009 } else {
2010 print_space_single(ast, StatArray[ix].stub_space);
2011 }
2012 }
2013 ast->print("|");
2014 } else {
2015 ast->print("No Stubs and Blobs found in CodeHeap.");
2016 }
2017 BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2018 }
2019
2020 {
2021 if (nBlocks_dead > 0) {
2022 printBox(ast, '-', "Dead space consumption. ' ' indicates empty, '*' indicates full", NULL);
2023
2024 granules_per_line = 128;
2025 for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2026 print_line_delim(out, ast, low_bound, ix, granules_per_line);
2027 print_space_single(ast, StatArray[ix].dead_space);
2028 }
2029 ast->print("|");
2030 } else {
2031 ast->print("No dead nMethods found in CodeHeap.");
2032 }
2033 BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2034 }
2035
2036 {
2037 if (!segment_granules) { // Prevent totally redundant printouts
2038 printBox(ast, '-', "Space consumption by tier (combined): <t1%>:<t2%>:<s%>. ' ' indicates empty, '*' indicates full", NULL);
2039
2040 granules_per_line = 24;
2041 for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2042 print_line_delim(out, ast, low_bound, ix, granules_per_line);
2043
2044 if (segment_granules && StatArray[ix].t1_space > 0) {
2045 print_blobType_single(ast, StatArray[ix].type);
2046 } else {
2047 print_space_single(ast, StatArray[ix].t1_space);
2048 }
2049 ast->print(":");
2050 if (segment_granules && StatArray[ix].t2_space > 0) {
2051 print_blobType_single(ast, StatArray[ix].type);
2052 } else {
2053 print_space_single(ast, StatArray[ix].t2_space);
2054 }
2055 ast->print(":");
2056 if (segment_granules && StatArray[ix].stub_space > 0) {
2057 print_blobType_single(ast, StatArray[ix].type);
2058 } else {
2059 print_space_single(ast, StatArray[ix].stub_space);
2060 }
2061 ast->print(" ");
2062 }
2063 ast->print("|");
2064 BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2065 }
2066 }
2067}
2068
2069void CodeHeapState::print_age(outputStream* out, CodeHeap* heap) {
2070 if (!initialization_complete) {
2071 return;
2072 }
2073
2074 const char* heapName = get_heapName(heap);
2075 get_HeapStatGlobals(out, heapName);
2076
2077 if ((StatArray == NULL) || (alloc_granules == 0)) {
2078 return;
2079 }
2080 BUFFEREDSTREAM_DECL(ast, out)
2081
2082 unsigned int granules_per_line = 32;
2083 char* low_bound = heap->low_boundary();
2084
2085 {
2086 printBox(ast, '=', "M E T H O D A G E by CompileID for ", heapName);
2087 ast->print_cr(" The age of a compiled method in the CodeHeap is not available as a\n"
2088 " time stamp. Instead, a relative age is deducted from the method's compilation ID.\n"
2089 " Age information is available for tier1 and tier2 methods only. There is no\n"
2090 " age information for stubs and blobs, because they have no compilation ID assigned.\n"
2091 " Information for the youngest method (highest ID) in the granule is printed.\n"
2092 " Refer to the legend to learn how method age is mapped to the displayed digit.");
2093 print_age_legend(ast);
2094 BUFFEREDSTREAM_FLUSH_LOCKED("")
2095 }
2096
2097 {
2098 printBox(ast, '-', "Age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2099
2100 granules_per_line = 128;
2101 for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2102 print_line_delim(out, ast, low_bound, ix, granules_per_line);
2103 unsigned int age1 = StatArray[ix].t1_age;
2104 unsigned int age2 = StatArray[ix].t2_age;
2105 unsigned int agex = StatArray[ix].tx_age;
2106 unsigned int age = age1 > age2 ? age1 : age2;
2107 age = age > agex ? age : agex;
2108 print_age_single(ast, age);
2109 }
2110 ast->print("|");
2111 BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2112 }
2113
2114 {
2115 if (nBlocks_t1 > 0) {
2116 printBox(ast, '-', "Tier1 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2117
2118 granules_per_line = 128;
2119 for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2120 print_line_delim(out, ast, low_bound, ix, granules_per_line);
2121 print_age_single(ast, StatArray[ix].t1_age);
2122 }
2123 ast->print("|");
2124 } else {
2125 ast->print("No Tier1 nMethods found in CodeHeap.");
2126 }
2127 BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2128 }
2129
2130 {
2131 if (nBlocks_t2 > 0) {
2132 printBox(ast, '-', "Tier2 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2133
2134 granules_per_line = 128;
2135 for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2136 print_line_delim(out, ast, low_bound, ix, granules_per_line);
2137 print_age_single(ast, StatArray[ix].t2_age);
2138 }
2139 ast->print("|");
2140 } else {
2141 ast->print("No Tier2 nMethods found in CodeHeap.");
2142 }
2143 BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2144 }
2145
2146 {
2147 if (nBlocks_alive > 0) {
2148 printBox(ast, '-', "not_used/not_entrant/not_installed age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2149
2150 granules_per_line = 128;
2151 for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2152 print_line_delim(out, ast, low_bound, ix, granules_per_line);
2153 print_age_single(ast, StatArray[ix].tx_age);
2154 }
2155 ast->print("|");
2156 } else {
2157 ast->print("No Tier2 nMethods found in CodeHeap.");
2158 }
2159 BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2160 }
2161
2162 {
2163 if (!segment_granules) { // Prevent totally redundant printouts
2164 printBox(ast, '-', "age distribution by tier <a1>:<a2>. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2165
2166 granules_per_line = 32;
2167 for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2168 print_line_delim(out, ast, low_bound, ix, granules_per_line);
2169 print_age_single(ast, StatArray[ix].t1_age);
2170 ast->print(":");
2171 print_age_single(ast, StatArray[ix].t2_age);
2172 ast->print(" ");
2173 }
2174 ast->print("|");
2175 BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2176 }
2177 }
2178}
2179
2180
2181void CodeHeapState::print_names(outputStream* out, CodeHeap* heap) {
2182 if (!initialization_complete) {
2183 return;
2184 }
2185
2186 const char* heapName = get_heapName(heap);
2187 get_HeapStatGlobals(out, heapName);
2188
2189 if ((StatArray == NULL) || (alloc_granules == 0)) {
2190 return;
2191 }
2192 BUFFEREDSTREAM_DECL(ast, out)
2193
2194 unsigned int granules_per_line = 128;
2195 char* low_bound = heap->low_boundary();
2196 CodeBlob* last_blob = NULL;
2197 bool name_in_addr_range = true;
2198 bool have_CodeCache_lock = CodeCache_lock->owned_by_self();
2199
2200 //---< print at least 128K per block (i.e. between headers) >---
2201 if (granules_per_line*granule_size < 128*K) {
2202 granules_per_line = (unsigned int)((128*K)/granule_size);
2203 }
2204
2205 printBox(ast, '=', "M E T H O D N A M E S for ", heapName);
2206 ast->print_cr(" Method names are dynamically retrieved from the code cache at print time.\n"
2207 " Due to the living nature of the code heap and because the CodeCache_lock\n"
2208 " is not continuously held, the displayed name might be wrong or no name\n"
2209 " might be found at all. The likelihood for that to happen increases\n"
2210 " over time passed between aggregtion and print steps.\n");
2211 BUFFEREDSTREAM_FLUSH_LOCKED("")
2212
2213 for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2214 //---< print a new blob on a new line >---
2215 if (ix%granules_per_line == 0) {
2216 if (!name_in_addr_range) {
2217 ast->print_cr("No methods, blobs, or stubs found in this address range");
2218 }
2219 name_in_addr_range = false;
2220
2221 size_t end_ix = (ix+granules_per_line <= alloc_granules) ? ix+granules_per_line : alloc_granules;
2222 ast->cr();
2223 ast->print_cr("--------------------------------------------------------------------");
2224 ast->print_cr("Address range [" INTPTR_FORMAT "," INTPTR_FORMAT "), " SIZE_FORMAT "k", p2i(low_bound+ix*granule_size), p2i(low_bound + end_ix*granule_size), (end_ix - ix)*granule_size/(size_t)K);
2225 ast->print_cr("--------------------------------------------------------------------");
2226 BUFFEREDSTREAM_FLUSH_AUTO("")
2227 }
2228 // Only check granule if it contains at least one blob.
2229 unsigned int nBlobs = StatArray[ix].t1_count + StatArray[ix].t2_count + StatArray[ix].tx_count +
2230 StatArray[ix].stub_count + StatArray[ix].dead_count;
2231 if (nBlobs > 0 ) {
2232 for (unsigned int is = 0; is < granule_size; is+=(unsigned int)seg_size) {
2233 // heap->find_start() is safe. Only works on _segmap.
2234 // Returns NULL or void*. Returned CodeBlob may be uninitialized.
2235 char* this_seg = low_bound + ix*granule_size + is;
2236 CodeBlob* this_blob = (CodeBlob*)(heap->find_start(this_seg));
2237 bool blob_is_safe = blob_access_is_safe(this_blob, NULL);
2238 // blob could have been flushed, freed, and merged.
2239 // this_blob < last_blob is an indicator for that.
2240 if (blob_is_safe && (this_blob > last_blob)) {
2241 last_blob = this_blob;
2242
2243 //---< get type and name >---
2244 blobType cbType = noType;
2245 if (segment_granules) {
2246 cbType = (blobType)StatArray[ix].type;
2247 } else {
2248 //---< access these fields only if we own the CodeCache_lock >---
2249 if (have_CodeCache_lock) {
2250 cbType = get_cbType(this_blob);
2251 }
2252 }
2253
2254 //---< access these fields only if we own the CodeCache_lock >---
2255 const char* blob_name = "<unavailable>";
2256 nmethod* nm = NULL;
2257 if (have_CodeCache_lock) {
2258 blob_name = this_blob->name();
2259 nm = this_blob->as_nmethod_or_null();
2260 // this_blob->name() could return NULL if no name was given to CTOR. Inlined, maybe invisible on stack
2261 if ((blob_name == NULL) || !os::is_readable_pointer(blob_name)) {
2262 blob_name = "<unavailable>";
2263 }
2264 }
2265
2266 //---< print table header for new print range >---
2267 if (!name_in_addr_range) {
2268 name_in_addr_range = true;
2269 ast->fill_to(51);
2270 ast->print("%9s", "compiler");
2271 ast->fill_to(61);
2272 ast->print_cr("%6s", "method");
2273 ast->print_cr("%18s %13s %17s %9s %5s %18s %s", "Addr(module) ", "offset", "size", " type lvl", " temp", "blobType ", "Name");
2274 BUFFEREDSTREAM_FLUSH_AUTO("")
2275 }
2276
2277 //---< print line prefix (address and offset from CodeHeap start) >---
2278 ast->print(INTPTR_FORMAT, p2i(this_blob));
2279 ast->fill_to(19);
2280 ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound));
2281 ast->fill_to(33);
2282
2283 // access nmethod and Method fields only if we own the CodeCache_lock.
2284 // This fact is implicitly transported via nm != NULL.
2285 if (CompiledMethod::nmethod_access_is_safe(nm)) {
2286 Method* method = nm->method();
2287 ResourceMark rm;
2288 //---< collect all data to locals as quickly as possible >---
2289 unsigned int total_size = nm->total_size();
2290 int hotness = nm->hotness_counter();
2291 bool get_name = (cbType == nMethod_inuse) || (cbType == nMethod_notused);
2292 //---< nMethod size in hex >---
2293 ast->print(PTR32_FORMAT, total_size);
2294 ast->print("(" SIZE_FORMAT_W(4) "K)", total_size/K);
2295 //---< compiler information >---
2296 ast->fill_to(51);
2297 ast->print("%5s %3d", compTypeName[StatArray[ix].compiler], StatArray[ix].level);
2298 //---< method temperature >---
2299 ast->fill_to(62);
2300 ast->print("%5d", hotness);
2301 //---< name and signature >---
2302 ast->fill_to(62+6);
2303 ast->print("%s", blobTypeName[cbType]);
2304 ast->fill_to(82+6);
2305 if (cbType == nMethod_dead) {
2306 ast->print("%14s", " zombie method");
2307 }
2308
2309 if (get_name) {
2310 Symbol* methName = method->name();
2311 const char* methNameS = (methName == NULL) ? NULL : methName->as_C_string();
2312 methNameS = (methNameS == NULL) ? "<method name unavailable>" : methNameS;
2313 Symbol* methSig = method->signature();
2314 const char* methSigS = (methSig == NULL) ? NULL : methSig->as_C_string();
2315 methSigS = (methSigS == NULL) ? "<method signature unavailable>" : methSigS;
2316 ast->print("%s", methNameS);
2317 ast->print("%s", methSigS);
2318 } else {
2319 ast->print("%s", blob_name);
2320 }
2321 } else if (blob_is_safe) {
2322 ast->fill_to(62+6);
2323 ast->print("%s", blobTypeName[cbType]);
2324 ast->fill_to(82+6);
2325 ast->print("%s", blob_name);
2326 } else {
2327 ast->fill_to(62+6);
2328 ast->print("<stale blob>");
2329 }
2330 ast->cr();
2331 BUFFEREDSTREAM_FLUSH_AUTO("")
2332 } else if (!blob_is_safe && (this_blob != last_blob) && (this_blob != NULL)) {
2333 last_blob = this_blob;
2334 }
2335 }
2336 } // nBlobs > 0
2337 }
2338 BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
2339}
2340
2341
2342void CodeHeapState::printBox(outputStream* ast, const char border, const char* text1, const char* text2) {
2343 unsigned int lineLen = 1 + 2 + 2 + 1;
2344 char edge, frame;
2345
2346 if (text1 != NULL) {
2347 lineLen += (unsigned int)strlen(text1); // text1 is much shorter than MAX_INT chars.
2348 }
2349 if (text2 != NULL) {
2350 lineLen += (unsigned int)strlen(text2); // text2 is much shorter than MAX_INT chars.
2351 }
2352 if (border == '-') {
2353 edge = '+';
2354 frame = '|';
2355 } else {
2356 edge = border;
2357 frame = border;
2358 }
2359
2360 ast->print("%c", edge);
2361 for (unsigned int i = 0; i < lineLen-2; i++) {
2362 ast->print("%c", border);
2363 }
2364 ast->print_cr("%c", edge);
2365
2366 ast->print("%c ", frame);
2367 if (text1 != NULL) {
2368 ast->print("%s", text1);
2369 }
2370 if (text2 != NULL) {
2371 ast->print("%s", text2);
2372 }
2373 ast->print_cr(" %c", frame);
2374
2375 ast->print("%c", edge);
2376 for (unsigned int i = 0; i < lineLen-2; i++) {
2377 ast->print("%c", border);
2378 }
2379 ast->print_cr("%c", edge);
2380}
2381
2382void CodeHeapState::print_blobType_legend(outputStream* out) {
2383 out->cr();
2384 printBox(out, '-', "Block types used in the following CodeHeap dump", NULL);
2385 for (int type = noType; type < lastType; type += 1) {
2386 out->print_cr(" %c - %s", blobTypeChar[type], blobTypeName[type]);
2387 }
2388 out->print_cr(" -----------------------------------------------------");
2389 out->cr();
2390}
2391
2392void CodeHeapState::print_space_legend(outputStream* out) {
2393 unsigned int indicator = 0;
2394 unsigned int age_range = 256;
2395 unsigned int range_beg = latest_compilation_id;
2396 out->cr();
2397 printBox(out, '-', "Space ranges, based on granule occupancy", NULL);
2398 out->print_cr(" - 0%% == occupancy");
2399 for (int i=0; i<=9; i++) {
2400 out->print_cr(" %d - %3d%% < occupancy < %3d%%", i, 10*i, 10*(i+1));
2401 }
2402 out->print_cr(" * - 100%% == occupancy");
2403 out->print_cr(" ----------------------------------------------");
2404 out->cr();
2405}
2406
2407void CodeHeapState::print_age_legend(outputStream* out) {
2408 unsigned int indicator = 0;
2409 unsigned int age_range = 256;
2410 unsigned int range_beg = latest_compilation_id;
2411 out->cr();
2412 printBox(out, '-', "Age ranges, based on compilation id", NULL);
2413 while (age_range > 0) {
2414 out->print_cr(" %d - %6d to %6d", indicator, range_beg, latest_compilation_id - latest_compilation_id/age_range);
2415 range_beg = latest_compilation_id - latest_compilation_id/age_range;
2416 age_range /= 2;
2417 indicator += 1;
2418 }
2419 out->print_cr(" -----------------------------------------");
2420 out->cr();
2421}
2422
2423void CodeHeapState::print_blobType_single(outputStream* out, u2 /* blobType */ type) {
2424 out->print("%c", blobTypeChar[type]);
2425}
2426
2427void CodeHeapState::print_count_single(outputStream* out, unsigned short count) {
2428 if (count >= 16) out->print("*");
2429 else if (count > 0) out->print("%1.1x", count);
2430 else out->print(" ");
2431}
2432
2433void CodeHeapState::print_space_single(outputStream* out, unsigned short space) {
2434 size_t space_in_bytes = ((unsigned int)space)<<log2_seg_size;
2435 char fraction = (space == 0) ? ' ' : (space_in_bytes >= granule_size-1) ? '*' : char('0'+10*space_in_bytes/granule_size);
2436 out->print("%c", fraction);
2437}
2438
2439void CodeHeapState::print_age_single(outputStream* out, unsigned int age) {
2440 unsigned int indicator = 0;
2441 unsigned int age_range = 256;
2442 if (age > 0) {
2443 while ((age_range > 0) && (latest_compilation_id-age > latest_compilation_id/age_range)) {
2444 age_range /= 2;
2445 indicator += 1;
2446 }
2447 out->print("%c", char('0'+indicator));
2448 } else {
2449 out->print(" ");
2450 }
2451}
2452
2453void CodeHeapState::print_line_delim(outputStream* out, outputStream* ast, char* low_bound, unsigned int ix, unsigned int gpl) {
2454 if (ix % gpl == 0) {
2455 if (ix > 0) {
2456 ast->print("|");
2457 }
2458 ast->cr();
2459 assert(out == ast, "must use the same stream!");
2460
2461 ast->print(INTPTR_FORMAT, p2i(low_bound + ix*granule_size));
2462 ast->fill_to(19);
2463 ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size));
2464 }
2465}
2466
2467void CodeHeapState::print_line_delim(outputStream* out, bufferedStream* ast, char* low_bound, unsigned int ix, unsigned int gpl) {
2468 assert(out != ast, "must not use the same stream!");
2469 if (ix % gpl == 0) {
2470 if (ix > 0) {
2471 ast->print("|");
2472 }
2473 ast->cr();
2474
2475 // can't use BUFFEREDSTREAM_FLUSH_IF("", 512) here.
2476 // can't use this expression. bufferedStream::capacity() does not exist.
2477 // if ((ast->capacity() - ast->size()) < 512) {
2478 // Assume instead that default bufferedStream capacity (4K) was used.
2479 if (ast->size() > 3*K) {
2480 ttyLocker ttyl;
2481 out->print("%s", ast->as_string());
2482 ast->reset();
2483 }
2484
2485 ast->print(INTPTR_FORMAT, p2i(low_bound + ix*granule_size));
2486 ast->fill_to(19);
2487 ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size));
2488 }
2489}
2490
2491CodeHeapState::blobType CodeHeapState::get_cbType(CodeBlob* cb) {
2492 if ((cb != NULL) && os::is_readable_pointer(cb)) {
2493 if (cb->is_runtime_stub()) return runtimeStub;
2494 if (cb->is_deoptimization_stub()) return deoptimizationStub;
2495 if (cb->is_uncommon_trap_stub()) return uncommonTrapStub;
2496 if (cb->is_exception_stub()) return exceptionStub;
2497 if (cb->is_safepoint_stub()) return safepointStub;
2498 if (cb->is_adapter_blob()) return adapterBlob;
2499 if (cb->is_method_handles_adapter_blob()) return mh_adapterBlob;
2500 if (cb->is_buffer_blob()) return bufferBlob;
2501
2502 //---< access these fields only if we own the CodeCache_lock >---
2503 // Should be ensured by caller. aggregate() amd print_names() do that.
2504 if (CodeCache_lock->owned_by_self()) {
2505 nmethod* nm = cb->as_nmethod_or_null();
2506 if (nm != NULL) { // no is_readable check required, nm = (nmethod*)cb.
2507 if (nm->is_not_installed()) return nMethod_inconstruction;
2508 if (nm->is_zombie()) return nMethod_dead;
2509 if (nm->is_unloaded()) return nMethod_unloaded;
2510 if (nm->is_in_use()) return nMethod_inuse;
2511 if (nm->is_alive() && !(nm->is_not_entrant())) return nMethod_notused;
2512 if (nm->is_alive()) return nMethod_alive;
2513 return nMethod_dead;
2514 }
2515 }
2516 }
2517 return noType;
2518}
2519
2520bool CodeHeapState::blob_access_is_safe(CodeBlob* this_blob, CodeBlob* prev_blob) {
2521 return (this_blob != NULL) && // a blob must have been found, obviously
2522 ((this_blob == prev_blob) || (prev_blob == NULL)) && // when re-checking, the same blob must have been found
2523 (this_blob->header_size() >= 0) &&
2524 (this_blob->relocation_size() >= 0) &&
2525 ((address)this_blob + this_blob->header_size() == (address)(this_blob->relocation_begin())) &&
2526 ((address)this_blob + CodeBlob::align_code_offset(this_blob->header_size() + this_blob->relocation_size()) == (address)(this_blob->content_begin())) &&
2527 os::is_readable_pointer((address)(this_blob->relocation_begin())) &&
2528 os::is_readable_pointer(this_blob->content_begin());
2529}
2530