| 1 | /* |
| 2 | * Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * Copyright (c) 2018, 2019 SAP SE. All rights reserved. |
| 4 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 5 | * |
| 6 | * This code is free software; you can redistribute it and/or modify it |
| 7 | * under the terms of the GNU General Public License version 2 only, as |
| 8 | * published by the Free Software Foundation. |
| 9 | * |
| 10 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 13 | * version 2 for more details (a copy is included in the LICENSE file that |
| 14 | * accompanied this code). |
| 15 | * |
| 16 | * You should have received a copy of the GNU General Public License version |
| 17 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 18 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 19 | * |
| 20 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 21 | * or visit www.oracle.com if you need additional information or have any |
| 22 | * questions. |
| 23 | * |
| 24 | */ |
| 25 | |
| 26 | #include "precompiled.hpp" |
| 27 | #include "code/codeHeapState.hpp" |
| 28 | #include "compiler/compileBroker.hpp" |
| 29 | #include "runtime/sweeper.hpp" |
| 30 | |
| 31 | // ------------------------- |
| 32 | // | General Description | |
| 33 | // ------------------------- |
| 34 | // The CodeHeap state analytics are divided in two parts. |
| 35 | // The first part examines the entire CodeHeap and aggregates all |
| 36 | // information that is believed useful/important. |
| 37 | // |
| 38 | // Aggregation condenses the information of a piece of the CodeHeap |
| 39 | // (4096 bytes by default) into an analysis granule. These granules |
| 40 | // contain enough detail to gain initial insight while keeping the |
| 41 | // internal structure sizes in check. |
| 42 | // |
| 43 | // The second part, which consists of several, independent steps, |
| 44 | // prints the previously collected information with emphasis on |
| 45 | // various aspects. |
| 46 | // |
| 47 | // The CodeHeap is a living thing. Therefore, protection against concurrent |
| 48 | // modification (by acquiring the CodeCache_lock) is necessary. It has |
| 49 | // to be provided by the caller of the analysis functions. |
| 50 | // If the CodeCache_lock is not held, the analysis functions may print |
| 51 | // less detailed information or may just do nothing. It is by intention |
| 52 | // that an unprotected invocation is not abnormally terminated. |
| 53 | // |
| 54 | // Data collection and printing is done on an "on request" basis. |
| 55 | // While no request is being processed, there is no impact on performance. |
| 56 | // The CodeHeap state analytics do have some memory footprint. |
| 57 | // The "aggregate" step allocates some data structures to hold the aggregated |
| 58 | // information for later output. These data structures live until they are |
| 59 | // explicitly discarded (function "discard") or until the VM terminates. |
| 60 | // There is one exception: the function "all" does not leave any data |
| 61 | // structures allocated. |
| 62 | // |
| 63 | // Requests for real-time, on-the-fly analysis can be issued via |
| 64 | // jcmd <pid> Compiler.CodeHeap_Analytics [<function>] [<granularity>] |
| 65 | // |
| 66 | // If you are (only) interested in how the CodeHeap looks like after running |
| 67 | // a sample workload, you can use the command line option |
| 68 | // -XX:+PrintCodeHeapAnalytics |
| 69 | // It will cause a full analysis to be written to tty. In addition, a full |
| 70 | // analysis will be written the first time a "CodeCache full" condition is |
| 71 | // detected. |
| 72 | // |
| 73 | // The command line option produces output identical to the jcmd function |
| 74 | // jcmd <pid> Compiler.CodeHeap_Analytics all 4096 |
| 75 | // --------------------------------------------------------------------------------- |
| 76 | |
| 77 | // With this declaration macro, it is possible to switch between |
| 78 | // - direct output into an argument-passed outputStream and |
| 79 | // - buffered output into a bufferedStream with subsequent flush |
| 80 | // of the filled buffer to the outputStream. |
| 81 | #define USE_BUFFEREDSTREAM |
| 82 | |
| 83 | // There are instances when composing an output line or a small set of |
| 84 | // output lines out of many tty->print() calls creates significant overhead. |
| 85 | // Writing to a bufferedStream buffer first has a significant advantage: |
| 86 | // It uses noticeably less cpu cycles and reduces (when writing to a |
| 87 | // network file) the required bandwidth by at least a factor of ten. Observed on MacOS. |
| 88 | // That clearly makes up for the increased code complexity. |
| 89 | // |
| 90 | // Conversion of existing code is easy and straightforward, if the code already |
| 91 | // uses a parameterized output destination, e.g. "outputStream st". |
| 92 | // - rename the formal parameter to any other name, e.g. out_st. |
| 93 | // - at a suitable place in your code, insert |
| 94 | // BUFFEREDSTEAM_DECL(buf_st, out_st) |
| 95 | // This will provide all the declarations necessary. After that, all |
| 96 | // buf_st->print() (and the like) calls will be directed to a bufferedStream object. |
| 97 | // Once a block of output (a line or a small set of lines) is composed, insert |
| 98 | // BUFFEREDSTREAM_FLUSH(termstring) |
| 99 | // to flush the bufferedStream to the final destination out_st. termstring is just |
| 100 | // an arbitrary string (e.g. "\n") which is appended to the bufferedStream before |
| 101 | // being written to out_st. Be aware that the last character written MUST be a '\n'. |
| 102 | // Otherwise, buf_st->position() does not correspond to out_st->position() any longer. |
| 103 | // BUFFEREDSTREAM_FLUSH_LOCKED(termstring) |
| 104 | // does the same thing, protected by the ttyLocker lock. |
| 105 | // BUFFEREDSTREAM_FLUSH_IF(termstring, remSize) |
| 106 | // does a flush only if the remaining buffer space is less than remSize. |
| 107 | // |
| 108 | // To activate, #define USE_BUFFERED_STREAM before including this header. |
| 109 | // If not activated, output will directly go to the originally used outputStream |
| 110 | // with no additional overhead. |
| 111 | // |
| 112 | #if defined(USE_BUFFEREDSTREAM) |
| 113 | // All necessary declarations to print via a bufferedStream |
| 114 | // This macro must be placed before any other BUFFEREDSTREAM* |
| 115 | // macro in the function. |
| 116 | #define BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, _capa) \ |
| 117 | ResourceMark _rm; \ |
| 118 | /* _anyst name of the stream as used in the code */ \ |
| 119 | /* _outst stream where final output will go to */ \ |
| 120 | /* _capa allocated capacity of stream buffer */ \ |
| 121 | size_t _nflush = 0; \ |
| 122 | size_t _nforcedflush = 0; \ |
| 123 | size_t _nsavedflush = 0; \ |
| 124 | size_t _nlockedflush = 0; \ |
| 125 | size_t _nflush_bytes = 0; \ |
| 126 | size_t _capacity = _capa; \ |
| 127 | bufferedStream _sstobj(_capa); \ |
| 128 | bufferedStream* _sstbuf = &_sstobj; \ |
| 129 | outputStream* _outbuf = _outst; \ |
| 130 | bufferedStream* _anyst = &_sstobj; /* any stream. Use this to just print - no buffer flush. */ |
| 131 | |
| 132 | // Same as above, but with fixed buffer size. |
| 133 | #define BUFFEREDSTREAM_DECL(_anyst, _outst) \ |
| 134 | BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, 4*K); |
| 135 | |
| 136 | // Flush the buffer contents unconditionally. |
| 137 | // No action if the buffer is empty. |
| 138 | #define BUFFEREDSTREAM_FLUSH(_termString) \ |
| 139 | if (((_termString) != NULL) && (strlen(_termString) > 0)){\ |
| 140 | _sstbuf->print("%s", _termString); \ |
| 141 | } \ |
| 142 | if (_sstbuf != _outbuf) { \ |
| 143 | if (_sstbuf->size() != 0) { \ |
| 144 | _nforcedflush++; _nflush_bytes += _sstbuf->size(); \ |
| 145 | _outbuf->print("%s", _sstbuf->as_string()); \ |
| 146 | _sstbuf->reset(); \ |
| 147 | } \ |
| 148 | } |
| 149 | |
| 150 | // Flush the buffer contents if the remaining capacity is |
| 151 | // less than the given threshold. |
| 152 | #define BUFFEREDSTREAM_FLUSH_IF(_termString, _remSize) \ |
| 153 | if (((_termString) != NULL) && (strlen(_termString) > 0)){\ |
| 154 | _sstbuf->print("%s", _termString); \ |
| 155 | } \ |
| 156 | if (_sstbuf != _outbuf) { \ |
| 157 | if ((_capacity - _sstbuf->size()) < (size_t)(_remSize)){\ |
| 158 | _nflush++; _nforcedflush--; \ |
| 159 | BUFFEREDSTREAM_FLUSH("") \ |
| 160 | } else { \ |
| 161 | _nsavedflush++; \ |
| 162 | } \ |
| 163 | } |
| 164 | |
| 165 | // Flush the buffer contents if the remaining capacity is less |
| 166 | // than the calculated threshold (256 bytes + capacity/16) |
| 167 | // That should suffice for all reasonably sized output lines. |
| 168 | #define BUFFEREDSTREAM_FLUSH_AUTO(_termString) \ |
| 169 | BUFFEREDSTREAM_FLUSH_IF(_termString, 256+(_capacity>>4)) |
| 170 | |
| 171 | #define BUFFEREDSTREAM_FLUSH_LOCKED(_termString) \ |
| 172 | { ttyLocker ttyl;/* keep this output block together */ \ |
| 173 | _nlockedflush++; \ |
| 174 | BUFFEREDSTREAM_FLUSH(_termString) \ |
| 175 | } |
| 176 | |
| 177 | // #define BUFFEREDSTREAM_FLUSH_STAT() \ |
| 178 | // if (_sstbuf != _outbuf) { \ |
| 179 | // _outbuf->print_cr("%ld flushes (buffer full), %ld forced, %ld locked, %ld bytes total, %ld flushes saved", _nflush, _nforcedflush, _nlockedflush, _nflush_bytes, _nsavedflush); \ |
| 180 | // } |
| 181 | |
| 182 | #define BUFFEREDSTREAM_FLUSH_STAT() |
| 183 | #else |
| 184 | #define BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, _capa) \ |
| 185 | size_t _capacity = _capa; \ |
| 186 | outputStream* _outbuf = _outst; \ |
| 187 | outputStream* _anyst = _outst; /* any stream. Use this to just print - no buffer flush. */ |
| 188 | |
| 189 | #define BUFFEREDSTREAM_DECL(_anyst, _outst) \ |
| 190 | BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, 4*K) |
| 191 | |
| 192 | #define BUFFEREDSTREAM_FLUSH(_termString) \ |
| 193 | if (((_termString) != NULL) && (strlen(_termString) > 0)){\ |
| 194 | _outbuf->print("%s", _termString); \ |
| 195 | } |
| 196 | |
| 197 | #define BUFFEREDSTREAM_FLUSH_IF(_termString, _remSize) \ |
| 198 | BUFFEREDSTREAM_FLUSH(_termString) |
| 199 | |
| 200 | #define BUFFEREDSTREAM_FLUSH_AUTO(_termString) \ |
| 201 | BUFFEREDSTREAM_FLUSH(_termString) |
| 202 | |
| 203 | #define BUFFEREDSTREAM_FLUSH_LOCKED(_termString) \ |
| 204 | BUFFEREDSTREAM_FLUSH(_termString) |
| 205 | |
| 206 | #define BUFFEREDSTREAM_FLUSH_STAT() |
| 207 | #endif |
| 208 | #define HEX32_FORMAT "0x%x" // just a helper format string used below multiple times |
| 209 | |
| 210 | const char blobTypeChar[] = {' ', 'C', 'N', 'I', 'X', 'Z', 'U', 'R', '?', 'D', 'T', 'E', 'S', 'A', 'M', 'B', 'L' }; |
| 211 | const char* blobTypeName[] = {"noType" |
| 212 | , "nMethod (under construction)" |
| 213 | , "nMethod (active)" |
| 214 | , "nMethod (inactive)" |
| 215 | , "nMethod (deopt)" |
| 216 | , "nMethod (zombie)" |
| 217 | , "nMethod (unloaded)" |
| 218 | , "runtime stub" |
| 219 | , "ricochet stub" |
| 220 | , "deopt stub" |
| 221 | , "uncommon trap stub" |
| 222 | , "exception stub" |
| 223 | , "safepoint stub" |
| 224 | , "adapter blob" |
| 225 | , "MH adapter blob" |
| 226 | , "buffer blob" |
| 227 | , "lastType" |
| 228 | }; |
| 229 | const char* compTypeName[] = { "none" , "c1" , "c2" , "jvmci" }; |
| 230 | |
| 231 | // Be prepared for ten different CodeHeap segments. Should be enough for a few years. |
| 232 | const unsigned int nSizeDistElements = 31; // logarithmic range growth, max size: 2**32 |
| 233 | const unsigned int maxTopSizeBlocks = 50; |
| 234 | const unsigned int tsbStopper = 2 * maxTopSizeBlocks; |
| 235 | const unsigned int maxHeaps = 10; |
| 236 | static unsigned int nHeaps = 0; |
| 237 | static struct CodeHeapStat CodeHeapStatArray[maxHeaps]; |
| 238 | |
| 239 | // static struct StatElement *StatArray = NULL; |
| 240 | static StatElement* StatArray = NULL; |
| 241 | static int log2_seg_size = 0; |
| 242 | static size_t seg_size = 0; |
| 243 | static size_t alloc_granules = 0; |
| 244 | static size_t granule_size = 0; |
| 245 | static bool segment_granules = false; |
| 246 | static unsigned int nBlocks_t1 = 0; // counting "in_use" nmethods only. |
| 247 | static unsigned int nBlocks_t2 = 0; // counting "in_use" nmethods only. |
| 248 | static unsigned int nBlocks_alive = 0; // counting "not_used" and "not_entrant" nmethods only. |
| 249 | static unsigned int nBlocks_dead = 0; // counting "zombie" and "unloaded" methods only. |
| 250 | static unsigned int nBlocks_inconstr = 0; // counting "inconstruction" nmethods only. This is a transient state. |
| 251 | static unsigned int nBlocks_unloaded = 0; // counting "unloaded" nmethods only. This is a transient state. |
| 252 | static unsigned int nBlocks_stub = 0; |
| 253 | |
| 254 | static struct FreeBlk* FreeArray = NULL; |
| 255 | static unsigned int alloc_freeBlocks = 0; |
| 256 | |
| 257 | static struct TopSizeBlk* TopSizeArray = NULL; |
| 258 | static unsigned int alloc_topSizeBlocks = 0; |
| 259 | static unsigned int used_topSizeBlocks = 0; |
| 260 | |
| 261 | static struct SizeDistributionElement* SizeDistributionArray = NULL; |
| 262 | |
| 263 | // nMethod temperature (hotness) indicators. |
| 264 | static int avgTemp = 0; |
| 265 | static int maxTemp = 0; |
| 266 | static int minTemp = 0; |
| 267 | |
| 268 | static unsigned int latest_compilation_id = 0; |
| 269 | static volatile bool initialization_complete = false; |
| 270 | |
| 271 | const char* CodeHeapState::get_heapName(CodeHeap* heap) { |
| 272 | if (SegmentedCodeCache) { |
| 273 | return heap->name(); |
| 274 | } else { |
| 275 | return "CodeHeap" ; |
| 276 | } |
| 277 | } |
| 278 | |
| 279 | // returns the index for the heap being processed. |
| 280 | unsigned int CodeHeapState::findHeapIndex(outputStream* out, const char* heapName) { |
| 281 | if (heapName == NULL) { |
| 282 | return maxHeaps; |
| 283 | } |
| 284 | if (SegmentedCodeCache) { |
| 285 | // Search for a pre-existing entry. If found, return that index. |
| 286 | for (unsigned int i = 0; i < nHeaps; i++) { |
| 287 | if (CodeHeapStatArray[i].heapName != NULL && strcmp(heapName, CodeHeapStatArray[i].heapName) == 0) { |
| 288 | return i; |
| 289 | } |
| 290 | } |
| 291 | |
| 292 | // check if there are more code heap segments than we can handle. |
| 293 | if (nHeaps == maxHeaps) { |
| 294 | out->print_cr("Too many heap segments for current limit(%d)." , maxHeaps); |
| 295 | return maxHeaps; |
| 296 | } |
| 297 | |
| 298 | // allocate new slot in StatArray. |
| 299 | CodeHeapStatArray[nHeaps].heapName = heapName; |
| 300 | return nHeaps++; |
| 301 | } else { |
| 302 | nHeaps = 1; |
| 303 | CodeHeapStatArray[0].heapName = heapName; |
| 304 | return 0; // This is the default index if CodeCache is not segmented. |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | void CodeHeapState::get_HeapStatGlobals(outputStream* out, const char* heapName) { |
| 309 | unsigned int ix = findHeapIndex(out, heapName); |
| 310 | if (ix < maxHeaps) { |
| 311 | StatArray = CodeHeapStatArray[ix].StatArray; |
| 312 | seg_size = CodeHeapStatArray[ix].segment_size; |
| 313 | log2_seg_size = seg_size == 0 ? 0 : exact_log2(seg_size); |
| 314 | alloc_granules = CodeHeapStatArray[ix].alloc_granules; |
| 315 | granule_size = CodeHeapStatArray[ix].granule_size; |
| 316 | segment_granules = CodeHeapStatArray[ix].segment_granules; |
| 317 | nBlocks_t1 = CodeHeapStatArray[ix].nBlocks_t1; |
| 318 | nBlocks_t2 = CodeHeapStatArray[ix].nBlocks_t2; |
| 319 | nBlocks_alive = CodeHeapStatArray[ix].nBlocks_alive; |
| 320 | nBlocks_dead = CodeHeapStatArray[ix].nBlocks_dead; |
| 321 | nBlocks_inconstr = CodeHeapStatArray[ix].nBlocks_inconstr; |
| 322 | nBlocks_unloaded = CodeHeapStatArray[ix].nBlocks_unloaded; |
| 323 | nBlocks_stub = CodeHeapStatArray[ix].nBlocks_stub; |
| 324 | FreeArray = CodeHeapStatArray[ix].FreeArray; |
| 325 | alloc_freeBlocks = CodeHeapStatArray[ix].alloc_freeBlocks; |
| 326 | TopSizeArray = CodeHeapStatArray[ix].TopSizeArray; |
| 327 | alloc_topSizeBlocks = CodeHeapStatArray[ix].alloc_topSizeBlocks; |
| 328 | used_topSizeBlocks = CodeHeapStatArray[ix].used_topSizeBlocks; |
| 329 | SizeDistributionArray = CodeHeapStatArray[ix].SizeDistributionArray; |
| 330 | avgTemp = CodeHeapStatArray[ix].avgTemp; |
| 331 | maxTemp = CodeHeapStatArray[ix].maxTemp; |
| 332 | minTemp = CodeHeapStatArray[ix].minTemp; |
| 333 | } else { |
| 334 | StatArray = NULL; |
| 335 | seg_size = 0; |
| 336 | log2_seg_size = 0; |
| 337 | alloc_granules = 0; |
| 338 | granule_size = 0; |
| 339 | segment_granules = false; |
| 340 | nBlocks_t1 = 0; |
| 341 | nBlocks_t2 = 0; |
| 342 | nBlocks_alive = 0; |
| 343 | nBlocks_dead = 0; |
| 344 | nBlocks_inconstr = 0; |
| 345 | nBlocks_unloaded = 0; |
| 346 | nBlocks_stub = 0; |
| 347 | FreeArray = NULL; |
| 348 | alloc_freeBlocks = 0; |
| 349 | TopSizeArray = NULL; |
| 350 | alloc_topSizeBlocks = 0; |
| 351 | used_topSizeBlocks = 0; |
| 352 | SizeDistributionArray = NULL; |
| 353 | avgTemp = 0; |
| 354 | maxTemp = 0; |
| 355 | minTemp = 0; |
| 356 | } |
| 357 | } |
| 358 | |
| 359 | void CodeHeapState::set_HeapStatGlobals(outputStream* out, const char* heapName) { |
| 360 | unsigned int ix = findHeapIndex(out, heapName); |
| 361 | if (ix < maxHeaps) { |
| 362 | CodeHeapStatArray[ix].StatArray = StatArray; |
| 363 | CodeHeapStatArray[ix].segment_size = seg_size; |
| 364 | CodeHeapStatArray[ix].alloc_granules = alloc_granules; |
| 365 | CodeHeapStatArray[ix].granule_size = granule_size; |
| 366 | CodeHeapStatArray[ix].segment_granules = segment_granules; |
| 367 | CodeHeapStatArray[ix].nBlocks_t1 = nBlocks_t1; |
| 368 | CodeHeapStatArray[ix].nBlocks_t2 = nBlocks_t2; |
| 369 | CodeHeapStatArray[ix].nBlocks_alive = nBlocks_alive; |
| 370 | CodeHeapStatArray[ix].nBlocks_dead = nBlocks_dead; |
| 371 | CodeHeapStatArray[ix].nBlocks_inconstr = nBlocks_inconstr; |
| 372 | CodeHeapStatArray[ix].nBlocks_unloaded = nBlocks_unloaded; |
| 373 | CodeHeapStatArray[ix].nBlocks_stub = nBlocks_stub; |
| 374 | CodeHeapStatArray[ix].FreeArray = FreeArray; |
| 375 | CodeHeapStatArray[ix].alloc_freeBlocks = alloc_freeBlocks; |
| 376 | CodeHeapStatArray[ix].TopSizeArray = TopSizeArray; |
| 377 | CodeHeapStatArray[ix].alloc_topSizeBlocks = alloc_topSizeBlocks; |
| 378 | CodeHeapStatArray[ix].used_topSizeBlocks = used_topSizeBlocks; |
| 379 | CodeHeapStatArray[ix].SizeDistributionArray = SizeDistributionArray; |
| 380 | CodeHeapStatArray[ix].avgTemp = avgTemp; |
| 381 | CodeHeapStatArray[ix].maxTemp = maxTemp; |
| 382 | CodeHeapStatArray[ix].minTemp = minTemp; |
| 383 | } |
| 384 | } |
| 385 | |
| 386 | //---< get a new statistics array >--- |
| 387 | void CodeHeapState::prepare_StatArray(outputStream* out, size_t nElem, size_t granularity, const char* heapName) { |
| 388 | if (StatArray == NULL) { |
| 389 | StatArray = new StatElement[nElem]; |
| 390 | //---< reset some counts >--- |
| 391 | alloc_granules = nElem; |
| 392 | granule_size = granularity; |
| 393 | } |
| 394 | |
| 395 | if (StatArray == NULL) { |
| 396 | //---< just do nothing if allocation failed >--- |
| 397 | out->print_cr("Statistics could not be collected for %s, probably out of memory." , heapName); |
| 398 | out->print_cr("Current granularity is " SIZE_FORMAT " bytes. Try a coarser granularity." , granularity); |
| 399 | alloc_granules = 0; |
| 400 | granule_size = 0; |
| 401 | } else { |
| 402 | //---< initialize statistics array >--- |
| 403 | memset((void*)StatArray, 0, nElem*sizeof(StatElement)); |
| 404 | } |
| 405 | } |
| 406 | |
| 407 | //---< get a new free block array >--- |
| 408 | void CodeHeapState::prepare_FreeArray(outputStream* out, unsigned int nElem, const char* heapName) { |
| 409 | if (FreeArray == NULL) { |
| 410 | FreeArray = new FreeBlk[nElem]; |
| 411 | //---< reset some counts >--- |
| 412 | alloc_freeBlocks = nElem; |
| 413 | } |
| 414 | |
| 415 | if (FreeArray == NULL) { |
| 416 | //---< just do nothing if allocation failed >--- |
| 417 | out->print_cr("Free space analysis cannot be done for %s, probably out of memory." , heapName); |
| 418 | alloc_freeBlocks = 0; |
| 419 | } else { |
| 420 | //---< initialize free block array >--- |
| 421 | memset((void*)FreeArray, 0, alloc_freeBlocks*sizeof(FreeBlk)); |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | //---< get a new TopSizeArray >--- |
| 426 | void CodeHeapState::prepare_TopSizeArray(outputStream* out, unsigned int nElem, const char* heapName) { |
| 427 | if (TopSizeArray == NULL) { |
| 428 | TopSizeArray = new TopSizeBlk[nElem]; |
| 429 | //---< reset some counts >--- |
| 430 | alloc_topSizeBlocks = nElem; |
| 431 | used_topSizeBlocks = 0; |
| 432 | } |
| 433 | |
| 434 | if (TopSizeArray == NULL) { |
| 435 | //---< just do nothing if allocation failed >--- |
| 436 | out->print_cr("Top-%d list of largest CodeHeap blocks can not be collected for %s, probably out of memory." , nElem, heapName); |
| 437 | alloc_topSizeBlocks = 0; |
| 438 | } else { |
| 439 | //---< initialize TopSizeArray >--- |
| 440 | memset((void*)TopSizeArray, 0, nElem*sizeof(TopSizeBlk)); |
| 441 | used_topSizeBlocks = 0; |
| 442 | } |
| 443 | } |
| 444 | |
| 445 | //---< get a new SizeDistributionArray >--- |
| 446 | void CodeHeapState::prepare_SizeDistArray(outputStream* out, unsigned int nElem, const char* heapName) { |
| 447 | if (SizeDistributionArray == NULL) { |
| 448 | SizeDistributionArray = new SizeDistributionElement[nElem]; |
| 449 | } |
| 450 | |
| 451 | if (SizeDistributionArray == NULL) { |
| 452 | //---< just do nothing if allocation failed >--- |
| 453 | out->print_cr("Size distribution can not be collected for %s, probably out of memory." , heapName); |
| 454 | } else { |
| 455 | //---< initialize SizeDistArray >--- |
| 456 | memset((void*)SizeDistributionArray, 0, nElem*sizeof(SizeDistributionElement)); |
| 457 | // Logarithmic range growth. First range starts at _segment_size. |
| 458 | SizeDistributionArray[log2_seg_size-1].rangeEnd = 1U; |
| 459 | for (unsigned int i = log2_seg_size; i < nElem; i++) { |
| 460 | SizeDistributionArray[i].rangeStart = 1U << (i - log2_seg_size); |
| 461 | SizeDistributionArray[i].rangeEnd = 1U << ((i+1) - log2_seg_size); |
| 462 | } |
| 463 | } |
| 464 | } |
| 465 | |
| 466 | //---< get a new SizeDistributionArray >--- |
| 467 | void CodeHeapState::update_SizeDistArray(outputStream* out, unsigned int len) { |
| 468 | if (SizeDistributionArray != NULL) { |
| 469 | for (unsigned int i = log2_seg_size-1; i < nSizeDistElements; i++) { |
| 470 | if ((SizeDistributionArray[i].rangeStart <= len) && (len < SizeDistributionArray[i].rangeEnd)) { |
| 471 | SizeDistributionArray[i].lenSum += len; |
| 472 | SizeDistributionArray[i].count++; |
| 473 | break; |
| 474 | } |
| 475 | } |
| 476 | } |
| 477 | } |
| 478 | |
| 479 | void CodeHeapState::discard_StatArray(outputStream* out) { |
| 480 | if (StatArray != NULL) { |
| 481 | delete StatArray; |
| 482 | StatArray = NULL; |
| 483 | alloc_granules = 0; |
| 484 | granule_size = 0; |
| 485 | } |
| 486 | } |
| 487 | |
| 488 | void CodeHeapState::discard_FreeArray(outputStream* out) { |
| 489 | if (FreeArray != NULL) { |
| 490 | delete[] FreeArray; |
| 491 | FreeArray = NULL; |
| 492 | alloc_freeBlocks = 0; |
| 493 | } |
| 494 | } |
| 495 | |
| 496 | void CodeHeapState::discard_TopSizeArray(outputStream* out) { |
| 497 | if (TopSizeArray != NULL) { |
| 498 | delete[] TopSizeArray; |
| 499 | TopSizeArray = NULL; |
| 500 | alloc_topSizeBlocks = 0; |
| 501 | used_topSizeBlocks = 0; |
| 502 | } |
| 503 | } |
| 504 | |
| 505 | void CodeHeapState::discard_SizeDistArray(outputStream* out) { |
| 506 | if (SizeDistributionArray != NULL) { |
| 507 | delete[] SizeDistributionArray; |
| 508 | SizeDistributionArray = NULL; |
| 509 | } |
| 510 | } |
| 511 | |
| 512 | // Discard all allocated internal data structures. |
| 513 | // This should be done after an analysis session is completed. |
| 514 | void CodeHeapState::discard(outputStream* out, CodeHeap* heap) { |
| 515 | if (!initialization_complete) { |
| 516 | return; |
| 517 | } |
| 518 | |
| 519 | if (nHeaps > 0) { |
| 520 | for (unsigned int ix = 0; ix < nHeaps; ix++) { |
| 521 | get_HeapStatGlobals(out, CodeHeapStatArray[ix].heapName); |
| 522 | discard_StatArray(out); |
| 523 | discard_FreeArray(out); |
| 524 | discard_TopSizeArray(out); |
| 525 | discard_SizeDistArray(out); |
| 526 | set_HeapStatGlobals(out, CodeHeapStatArray[ix].heapName); |
| 527 | CodeHeapStatArray[ix].heapName = NULL; |
| 528 | } |
| 529 | nHeaps = 0; |
| 530 | } |
| 531 | } |
| 532 | |
| 533 | void CodeHeapState::aggregate(outputStream* out, CodeHeap* heap, size_t granularity) { |
| 534 | unsigned int nBlocks_free = 0; |
| 535 | unsigned int nBlocks_used = 0; |
| 536 | unsigned int nBlocks_zomb = 0; |
| 537 | unsigned int nBlocks_disconn = 0; |
| 538 | unsigned int nBlocks_notentr = 0; |
| 539 | |
| 540 | //---< max & min of TopSizeArray >--- |
| 541 | // it is sufficient to have these sizes as 32bit unsigned ints. |
| 542 | // The CodeHeap is limited in size to 4GB. Furthermore, the sizes |
| 543 | // are stored in _segment_size units, scaling them down by a factor of 64 (at least). |
| 544 | unsigned int currMax = 0; |
| 545 | unsigned int currMin = 0; |
| 546 | unsigned int currMin_ix = 0; |
| 547 | unsigned long total_iterations = 0; |
| 548 | |
| 549 | bool done = false; |
| 550 | const int min_granules = 256; |
| 551 | const int max_granules = 512*K; // limits analyzable CodeHeap (with segment_granules) to 32M..128M |
| 552 | // results in StatArray size of 24M (= max_granules * 48 Bytes per element) |
| 553 | // For a 1GB CodeHeap, the granule size must be at least 2kB to not violate the max_granles limit. |
| 554 | const char* heapName = get_heapName(heap); |
| 555 | BUFFEREDSTREAM_DECL(ast, out) |
| 556 | |
| 557 | if (!initialization_complete) { |
| 558 | memset(CodeHeapStatArray, 0, sizeof(CodeHeapStatArray)); |
| 559 | initialization_complete = true; |
| 560 | |
| 561 | printBox(ast, '=', "C O D E H E A P A N A L Y S I S (general remarks)" , NULL); |
| 562 | ast->print_cr(" The code heap analysis function provides deep insights into\n" |
| 563 | " the inner workings and the internal state of the Java VM's\n" |
| 564 | " code cache - the place where all the JVM generated machine\n" |
| 565 | " code is stored.\n" |
| 566 | " \n" |
| 567 | " This function is designed and provided for support engineers\n" |
| 568 | " to help them understand and solve issues in customer systems.\n" |
| 569 | " It is not intended for use and interpretation by other persons.\n" |
| 570 | " \n" ); |
| 571 | BUFFEREDSTREAM_FLUSH("" ) |
| 572 | } |
| 573 | get_HeapStatGlobals(out, heapName); |
| 574 | |
| 575 | |
| 576 | // Since we are (and must be) analyzing the CodeHeap contents under the CodeCache_lock, |
| 577 | // all heap information is "constant" and can be safely extracted/calculated before we |
| 578 | // enter the while() loop. Actually, the loop will only be iterated once. |
| 579 | char* low_bound = heap->low_boundary(); |
| 580 | size_t size = heap->capacity(); |
| 581 | size_t res_size = heap->max_capacity(); |
| 582 | seg_size = heap->segment_size(); |
| 583 | log2_seg_size = seg_size == 0 ? 0 : exact_log2(seg_size); // This is a global static value. |
| 584 | |
| 585 | if (seg_size == 0) { |
| 586 | printBox(ast, '-', "Heap not fully initialized yet, segment size is zero for segment " , heapName); |
| 587 | BUFFEREDSTREAM_FLUSH("" ) |
| 588 | return; |
| 589 | } |
| 590 | |
| 591 | if (!CodeCache_lock->owned_by_self()) { |
| 592 | printBox(ast, '-', "aggregate function called without holding the CodeCache_lock for " , heapName); |
| 593 | BUFFEREDSTREAM_FLUSH("" ) |
| 594 | return; |
| 595 | } |
| 596 | |
| 597 | // Calculate granularity of analysis (and output). |
| 598 | // The CodeHeap is managed (allocated) in segments (units) of CodeCacheSegmentSize. |
| 599 | // The CodeHeap can become fairly large, in particular in productive real-life systems. |
| 600 | // |
| 601 | // It is often neither feasible nor desirable to aggregate the data with the highest possible |
| 602 | // level of detail, i.e. inspecting and printing each segment on its own. |
| 603 | // |
| 604 | // The granularity parameter allows to specify the level of detail available in the analysis. |
| 605 | // It must be a positive multiple of the segment size and should be selected such that enough |
| 606 | // detail is provided while, at the same time, the printed output does not explode. |
| 607 | // |
| 608 | // By manipulating the granularity value, we enforce that at least min_granules units |
| 609 | // of analysis are available. We also enforce an upper limit of max_granules units to |
| 610 | // keep the amount of allocated storage in check. |
| 611 | // |
| 612 | // Finally, we adjust the granularity such that each granule covers at most 64k-1 segments. |
| 613 | // This is necessary to prevent an unsigned short overflow while accumulating space information. |
| 614 | // |
| 615 | assert(granularity > 0, "granularity should be positive." ); |
| 616 | |
| 617 | if (granularity > size) { |
| 618 | granularity = size; |
| 619 | } |
| 620 | if (size/granularity < min_granules) { |
| 621 | granularity = size/min_granules; // at least min_granules granules |
| 622 | } |
| 623 | granularity = granularity & (~(seg_size - 1)); // must be multiple of seg_size |
| 624 | if (granularity < seg_size) { |
| 625 | granularity = seg_size; // must be at least seg_size |
| 626 | } |
| 627 | if (size/granularity > max_granules) { |
| 628 | granularity = size/max_granules; // at most max_granules granules |
| 629 | } |
| 630 | granularity = granularity & (~(seg_size - 1)); // must be multiple of seg_size |
| 631 | if (granularity>>log2_seg_size >= (1L<<sizeof(unsigned short)*8)) { |
| 632 | granularity = ((1L<<(sizeof(unsigned short)*8))-1)<<log2_seg_size; // Limit: (64k-1) * seg_size |
| 633 | } |
| 634 | segment_granules = granularity == seg_size; |
| 635 | size_t granules = (size + (granularity-1))/granularity; |
| 636 | |
| 637 | printBox(ast, '=', "C O D E H E A P A N A L Y S I S (used blocks) for segment " , heapName); |
| 638 | ast->print_cr(" The aggregate step takes an aggregated snapshot of the CodeHeap.\n" |
| 639 | " Subsequent print functions create their output based on this snapshot.\n" |
| 640 | " The CodeHeap is a living thing, and every effort has been made for the\n" |
| 641 | " collected data to be consistent. Only the method names and signatures\n" |
| 642 | " are retrieved at print time. That may lead to rare cases where the\n" |
| 643 | " name of a method is no longer available, e.g. because it was unloaded.\n" ); |
| 644 | ast->print_cr(" CodeHeap committed size " SIZE_FORMAT "K (" SIZE_FORMAT "M), reserved size " SIZE_FORMAT "K (" SIZE_FORMAT "M), %d%% occupied." , |
| 645 | size/(size_t)K, size/(size_t)M, res_size/(size_t)K, res_size/(size_t)M, (unsigned int)(100.0*size/res_size)); |
| 646 | ast->print_cr(" CodeHeap allocation segment size is " SIZE_FORMAT " bytes. This is the smallest possible granularity." , seg_size); |
| 647 | ast->print_cr(" CodeHeap (committed part) is mapped to " SIZE_FORMAT " granules of size " SIZE_FORMAT " bytes." , granules, granularity); |
| 648 | ast->print_cr(" Each granule takes " SIZE_FORMAT " bytes of C heap, that is " SIZE_FORMAT "K in total for statistics data." , sizeof(StatElement), (sizeof(StatElement)*granules)/(size_t)K); |
| 649 | ast->print_cr(" The number of granules is limited to %dk, requiring a granules size of at least %d bytes for a 1GB heap." , (unsigned int)(max_granules/K), (unsigned int)(G/max_granules)); |
| 650 | BUFFEREDSTREAM_FLUSH("\n" ) |
| 651 | |
| 652 | |
| 653 | while (!done) { |
| 654 | //---< reset counters with every aggregation >--- |
| 655 | nBlocks_t1 = 0; |
| 656 | nBlocks_t2 = 0; |
| 657 | nBlocks_alive = 0; |
| 658 | nBlocks_dead = 0; |
| 659 | nBlocks_inconstr = 0; |
| 660 | nBlocks_unloaded = 0; |
| 661 | nBlocks_stub = 0; |
| 662 | |
| 663 | nBlocks_free = 0; |
| 664 | nBlocks_used = 0; |
| 665 | nBlocks_zomb = 0; |
| 666 | nBlocks_disconn = 0; |
| 667 | nBlocks_notentr = 0; |
| 668 | |
| 669 | //---< discard old arrays if size does not match >--- |
| 670 | if (granules != alloc_granules) { |
| 671 | discard_StatArray(out); |
| 672 | discard_TopSizeArray(out); |
| 673 | } |
| 674 | |
| 675 | //---< allocate arrays if they don't yet exist, initialize >--- |
| 676 | prepare_StatArray(out, granules, granularity, heapName); |
| 677 | if (StatArray == NULL) { |
| 678 | set_HeapStatGlobals(out, heapName); |
| 679 | return; |
| 680 | } |
| 681 | prepare_TopSizeArray(out, maxTopSizeBlocks, heapName); |
| 682 | prepare_SizeDistArray(out, nSizeDistElements, heapName); |
| 683 | |
| 684 | latest_compilation_id = CompileBroker::get_compilation_id(); |
| 685 | unsigned int highest_compilation_id = 0; |
| 686 | size_t usedSpace = 0; |
| 687 | size_t t1Space = 0; |
| 688 | size_t t2Space = 0; |
| 689 | size_t aliveSpace = 0; |
| 690 | size_t disconnSpace = 0; |
| 691 | size_t notentrSpace = 0; |
| 692 | size_t deadSpace = 0; |
| 693 | size_t inconstrSpace = 0; |
| 694 | size_t unloadedSpace = 0; |
| 695 | size_t stubSpace = 0; |
| 696 | size_t freeSpace = 0; |
| 697 | size_t maxFreeSize = 0; |
| 698 | HeapBlock* maxFreeBlock = NULL; |
| 699 | bool insane = false; |
| 700 | |
| 701 | int64_t hotnessAccumulator = 0; |
| 702 | unsigned int n_methods = 0; |
| 703 | avgTemp = 0; |
| 704 | minTemp = (int)(res_size > M ? (res_size/M)*2 : 1); |
| 705 | maxTemp = -minTemp; |
| 706 | |
| 707 | for (HeapBlock *h = heap->first_block(); h != NULL && !insane; h = heap->next_block(h)) { |
| 708 | unsigned int hb_len = (unsigned int)h->length(); // despite being size_t, length can never overflow an unsigned int. |
| 709 | size_t hb_bytelen = ((size_t)hb_len)<<log2_seg_size; |
| 710 | unsigned int ix_beg = (unsigned int)(((char*)h-low_bound)/granule_size); |
| 711 | unsigned int ix_end = (unsigned int)(((char*)h-low_bound+(hb_bytelen-1))/granule_size); |
| 712 | unsigned int compile_id = 0; |
| 713 | CompLevel comp_lvl = CompLevel_none; |
| 714 | compType cType = noComp; |
| 715 | blobType cbType = noType; |
| 716 | |
| 717 | //---< some sanity checks >--- |
| 718 | // Do not assert here, just check, print error message and return. |
| 719 | // This is a diagnostic function. It is not supposed to tear down the VM. |
| 720 | if ((char*)h < low_bound) { |
| 721 | insane = true; ast->print_cr("Sanity check: HeapBlock @%p below low bound (%p)" , (char*)h, low_bound); |
| 722 | } |
| 723 | if ((char*)h > (low_bound + res_size)) { |
| 724 | insane = true; ast->print_cr("Sanity check: HeapBlock @%p outside reserved range (%p)" , (char*)h, low_bound + res_size); |
| 725 | } |
| 726 | if ((char*)h > (low_bound + size)) { |
| 727 | insane = true; ast->print_cr("Sanity check: HeapBlock @%p outside used range (%p)" , (char*)h, low_bound + size); |
| 728 | } |
| 729 | if (ix_end >= granules) { |
| 730 | insane = true; ast->print_cr("Sanity check: end index (%d) out of bounds (" SIZE_FORMAT ")" , ix_end, granules); |
| 731 | } |
| 732 | if (size != heap->capacity()) { |
| 733 | insane = true; ast->print_cr("Sanity check: code heap capacity has changed (" SIZE_FORMAT "K to " SIZE_FORMAT "K)" , size/(size_t)K, heap->capacity()/(size_t)K); |
| 734 | } |
| 735 | if (ix_beg > ix_end) { |
| 736 | insane = true; ast->print_cr("Sanity check: end index (%d) lower than begin index (%d)" , ix_end, ix_beg); |
| 737 | } |
| 738 | if (insane) { |
| 739 | BUFFEREDSTREAM_FLUSH("" ) |
| 740 | continue; |
| 741 | } |
| 742 | |
| 743 | if (h->free()) { |
| 744 | nBlocks_free++; |
| 745 | freeSpace += hb_bytelen; |
| 746 | if (hb_bytelen > maxFreeSize) { |
| 747 | maxFreeSize = hb_bytelen; |
| 748 | maxFreeBlock = h; |
| 749 | } |
| 750 | } else { |
| 751 | update_SizeDistArray(out, hb_len); |
| 752 | nBlocks_used++; |
| 753 | usedSpace += hb_bytelen; |
| 754 | CodeBlob* cb = (CodeBlob*)heap->find_start(h); |
| 755 | if (cb != NULL) { |
| 756 | cbType = get_cbType(cb); |
| 757 | if (cb->is_nmethod()) { |
| 758 | compile_id = ((nmethod*)cb)->compile_id(); |
| 759 | comp_lvl = (CompLevel)((nmethod*)cb)->comp_level(); |
| 760 | if (((nmethod*)cb)->is_compiled_by_c1()) { |
| 761 | cType = c1; |
| 762 | } |
| 763 | if (((nmethod*)cb)->is_compiled_by_c2()) { |
| 764 | cType = c2; |
| 765 | } |
| 766 | if (((nmethod*)cb)->is_compiled_by_jvmci()) { |
| 767 | cType = jvmci; |
| 768 | } |
| 769 | switch (cbType) { |
| 770 | case nMethod_inuse: { // only for executable methods!!! |
| 771 | // space for these cbs is accounted for later. |
| 772 | int temperature = ((nmethod*)cb)->hotness_counter(); |
| 773 | hotnessAccumulator += temperature; |
| 774 | n_methods++; |
| 775 | maxTemp = (temperature > maxTemp) ? temperature : maxTemp; |
| 776 | minTemp = (temperature < minTemp) ? temperature : minTemp; |
| 777 | break; |
| 778 | } |
| 779 | case nMethod_notused: |
| 780 | nBlocks_alive++; |
| 781 | nBlocks_disconn++; |
| 782 | aliveSpace += hb_bytelen; |
| 783 | disconnSpace += hb_bytelen; |
| 784 | break; |
| 785 | case nMethod_notentrant: // equivalent to nMethod_alive |
| 786 | nBlocks_alive++; |
| 787 | nBlocks_notentr++; |
| 788 | aliveSpace += hb_bytelen; |
| 789 | notentrSpace += hb_bytelen; |
| 790 | break; |
| 791 | case nMethod_unloaded: |
| 792 | nBlocks_unloaded++; |
| 793 | unloadedSpace += hb_bytelen; |
| 794 | break; |
| 795 | case nMethod_dead: |
| 796 | nBlocks_dead++; |
| 797 | deadSpace += hb_bytelen; |
| 798 | break; |
| 799 | case nMethod_inconstruction: |
| 800 | nBlocks_inconstr++; |
| 801 | inconstrSpace += hb_bytelen; |
| 802 | break; |
| 803 | default: |
| 804 | break; |
| 805 | } |
| 806 | } |
| 807 | |
| 808 | //------------------------------------------ |
| 809 | //---< register block in TopSizeArray >--- |
| 810 | //------------------------------------------ |
| 811 | if (alloc_topSizeBlocks > 0) { |
| 812 | if (used_topSizeBlocks == 0) { |
| 813 | TopSizeArray[0].start = h; |
| 814 | TopSizeArray[0].len = hb_len; |
| 815 | TopSizeArray[0].index = tsbStopper; |
| 816 | TopSizeArray[0].compiler = cType; |
| 817 | TopSizeArray[0].level = comp_lvl; |
| 818 | TopSizeArray[0].type = cbType; |
| 819 | currMax = hb_len; |
| 820 | currMin = hb_len; |
| 821 | currMin_ix = 0; |
| 822 | used_topSizeBlocks++; |
| 823 | // This check roughly cuts 5000 iterations (JVM98, mixed, dbg, termination stats): |
| 824 | } else if ((used_topSizeBlocks < alloc_topSizeBlocks) && (hb_len < currMin)) { |
| 825 | //---< all blocks in list are larger, but there is room left in array >--- |
| 826 | TopSizeArray[currMin_ix].index = used_topSizeBlocks; |
| 827 | TopSizeArray[used_topSizeBlocks].start = h; |
| 828 | TopSizeArray[used_topSizeBlocks].len = hb_len; |
| 829 | TopSizeArray[used_topSizeBlocks].index = tsbStopper; |
| 830 | TopSizeArray[used_topSizeBlocks].compiler = cType; |
| 831 | TopSizeArray[used_topSizeBlocks].level = comp_lvl; |
| 832 | TopSizeArray[used_topSizeBlocks].type = cbType; |
| 833 | currMin = hb_len; |
| 834 | currMin_ix = used_topSizeBlocks; |
| 835 | used_topSizeBlocks++; |
| 836 | } else { |
| 837 | // This check cuts total_iterations by a factor of 6 (JVM98, mixed, dbg, termination stats): |
| 838 | // We don't need to search the list if we know beforehand that the current block size is |
| 839 | // smaller than the currently recorded minimum and there is no free entry left in the list. |
| 840 | if (!((used_topSizeBlocks == alloc_topSizeBlocks) && (hb_len <= currMin))) { |
| 841 | if (currMax < hb_len) { |
| 842 | currMax = hb_len; |
| 843 | } |
| 844 | unsigned int i; |
| 845 | unsigned int prev_i = tsbStopper; |
| 846 | unsigned int limit_i = 0; |
| 847 | for (i = 0; i != tsbStopper; i = TopSizeArray[i].index) { |
| 848 | if (limit_i++ >= alloc_topSizeBlocks) { |
| 849 | insane = true; break; // emergency exit |
| 850 | } |
| 851 | if (i >= used_topSizeBlocks) { |
| 852 | insane = true; break; // emergency exit |
| 853 | } |
| 854 | total_iterations++; |
| 855 | if (TopSizeArray[i].len < hb_len) { |
| 856 | //---< We want to insert here, element <i> is smaller than the current one >--- |
| 857 | if (used_topSizeBlocks < alloc_topSizeBlocks) { // still room for a new entry to insert |
| 858 | // old entry gets moved to the next free element of the array. |
| 859 | // That's necessary to keep the entry for the largest block at index 0. |
| 860 | // This move might cause the current minimum to be moved to another place |
| 861 | if (i == currMin_ix) { |
| 862 | assert(TopSizeArray[i].len == currMin, "sort error" ); |
| 863 | currMin_ix = used_topSizeBlocks; |
| 864 | } |
| 865 | memcpy((void*)&TopSizeArray[used_topSizeBlocks], (void*)&TopSizeArray[i], sizeof(TopSizeBlk)); |
| 866 | TopSizeArray[i].start = h; |
| 867 | TopSizeArray[i].len = hb_len; |
| 868 | TopSizeArray[i].index = used_topSizeBlocks; |
| 869 | TopSizeArray[i].compiler = cType; |
| 870 | TopSizeArray[i].level = comp_lvl; |
| 871 | TopSizeArray[i].type = cbType; |
| 872 | used_topSizeBlocks++; |
| 873 | } else { // no room for new entries, current block replaces entry for smallest block |
| 874 | //---< Find last entry (entry for smallest remembered block) >--- |
| 875 | unsigned int j = i; |
| 876 | unsigned int prev_j = tsbStopper; |
| 877 | unsigned int limit_j = 0; |
| 878 | while (TopSizeArray[j].index != tsbStopper) { |
| 879 | if (limit_j++ >= alloc_topSizeBlocks) { |
| 880 | insane = true; break; // emergency exit |
| 881 | } |
| 882 | if (j >= used_topSizeBlocks) { |
| 883 | insane = true; break; // emergency exit |
| 884 | } |
| 885 | total_iterations++; |
| 886 | prev_j = j; |
| 887 | j = TopSizeArray[j].index; |
| 888 | } |
| 889 | if (!insane) { |
| 890 | if (prev_j == tsbStopper) { |
| 891 | //---< Above while loop did not iterate, we already are the min entry >--- |
| 892 | //---< We have to just replace the smallest entry >--- |
| 893 | currMin = hb_len; |
| 894 | currMin_ix = j; |
| 895 | TopSizeArray[j].start = h; |
| 896 | TopSizeArray[j].len = hb_len; |
| 897 | TopSizeArray[j].index = tsbStopper; // already set!! |
| 898 | TopSizeArray[j].compiler = cType; |
| 899 | TopSizeArray[j].level = comp_lvl; |
| 900 | TopSizeArray[j].type = cbType; |
| 901 | } else { |
| 902 | //---< second-smallest entry is now smallest >--- |
| 903 | TopSizeArray[prev_j].index = tsbStopper; |
| 904 | currMin = TopSizeArray[prev_j].len; |
| 905 | currMin_ix = prev_j; |
| 906 | //---< smallest entry gets overwritten >--- |
| 907 | memcpy((void*)&TopSizeArray[j], (void*)&TopSizeArray[i], sizeof(TopSizeBlk)); |
| 908 | TopSizeArray[i].start = h; |
| 909 | TopSizeArray[i].len = hb_len; |
| 910 | TopSizeArray[i].index = j; |
| 911 | TopSizeArray[i].compiler = cType; |
| 912 | TopSizeArray[i].level = comp_lvl; |
| 913 | TopSizeArray[i].type = cbType; |
| 914 | } |
| 915 | } // insane |
| 916 | } |
| 917 | break; |
| 918 | } |
| 919 | prev_i = i; |
| 920 | } |
| 921 | if (insane) { |
| 922 | // Note: regular analysis could probably continue by resetting "insane" flag. |
| 923 | out->print_cr("Possible loop in TopSizeBlocks list detected. Analysis aborted." ); |
| 924 | discard_TopSizeArray(out); |
| 925 | } |
| 926 | } |
| 927 | } |
| 928 | } |
| 929 | //---------------------------------------------- |
| 930 | //---< END register block in TopSizeArray >--- |
| 931 | //---------------------------------------------- |
| 932 | } else { |
| 933 | nBlocks_zomb++; |
| 934 | } |
| 935 | |
| 936 | if (ix_beg == ix_end) { |
| 937 | StatArray[ix_beg].type = cbType; |
| 938 | switch (cbType) { |
| 939 | case nMethod_inuse: |
| 940 | highest_compilation_id = (highest_compilation_id >= compile_id) ? highest_compilation_id : compile_id; |
| 941 | if (comp_lvl < CompLevel_full_optimization) { |
| 942 | nBlocks_t1++; |
| 943 | t1Space += hb_bytelen; |
| 944 | StatArray[ix_beg].t1_count++; |
| 945 | StatArray[ix_beg].t1_space += (unsigned short)hb_len; |
| 946 | StatArray[ix_beg].t1_age = StatArray[ix_beg].t1_age < compile_id ? compile_id : StatArray[ix_beg].t1_age; |
| 947 | } else { |
| 948 | nBlocks_t2++; |
| 949 | t2Space += hb_bytelen; |
| 950 | StatArray[ix_beg].t2_count++; |
| 951 | StatArray[ix_beg].t2_space += (unsigned short)hb_len; |
| 952 | StatArray[ix_beg].t2_age = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age; |
| 953 | } |
| 954 | StatArray[ix_beg].level = comp_lvl; |
| 955 | StatArray[ix_beg].compiler = cType; |
| 956 | break; |
| 957 | case nMethod_inconstruction: // let's count "in construction" nmethods here. |
| 958 | case nMethod_alive: |
| 959 | StatArray[ix_beg].tx_count++; |
| 960 | StatArray[ix_beg].tx_space += (unsigned short)hb_len; |
| 961 | StatArray[ix_beg].tx_age = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age; |
| 962 | StatArray[ix_beg].level = comp_lvl; |
| 963 | StatArray[ix_beg].compiler = cType; |
| 964 | break; |
| 965 | case nMethod_dead: |
| 966 | case nMethod_unloaded: |
| 967 | StatArray[ix_beg].dead_count++; |
| 968 | StatArray[ix_beg].dead_space += (unsigned short)hb_len; |
| 969 | break; |
| 970 | default: |
| 971 | // must be a stub, if it's not a dead or alive nMethod |
| 972 | nBlocks_stub++; |
| 973 | stubSpace += hb_bytelen; |
| 974 | StatArray[ix_beg].stub_count++; |
| 975 | StatArray[ix_beg].stub_space += (unsigned short)hb_len; |
| 976 | break; |
| 977 | } |
| 978 | } else { |
| 979 | unsigned int beg_space = (unsigned int)(granule_size - ((char*)h - low_bound - ix_beg*granule_size)); |
| 980 | unsigned int end_space = (unsigned int)(hb_bytelen - beg_space - (ix_end-ix_beg-1)*granule_size); |
| 981 | beg_space = beg_space>>log2_seg_size; // store in units of _segment_size |
| 982 | end_space = end_space>>log2_seg_size; // store in units of _segment_size |
| 983 | StatArray[ix_beg].type = cbType; |
| 984 | StatArray[ix_end].type = cbType; |
| 985 | switch (cbType) { |
| 986 | case nMethod_inuse: |
| 987 | highest_compilation_id = (highest_compilation_id >= compile_id) ? highest_compilation_id : compile_id; |
| 988 | if (comp_lvl < CompLevel_full_optimization) { |
| 989 | nBlocks_t1++; |
| 990 | t1Space += hb_bytelen; |
| 991 | StatArray[ix_beg].t1_count++; |
| 992 | StatArray[ix_beg].t1_space += (unsigned short)beg_space; |
| 993 | StatArray[ix_beg].t1_age = StatArray[ix_beg].t1_age < compile_id ? compile_id : StatArray[ix_beg].t1_age; |
| 994 | |
| 995 | StatArray[ix_end].t1_count++; |
| 996 | StatArray[ix_end].t1_space += (unsigned short)end_space; |
| 997 | StatArray[ix_end].t1_age = StatArray[ix_end].t1_age < compile_id ? compile_id : StatArray[ix_end].t1_age; |
| 998 | } else { |
| 999 | nBlocks_t2++; |
| 1000 | t2Space += hb_bytelen; |
| 1001 | StatArray[ix_beg].t2_count++; |
| 1002 | StatArray[ix_beg].t2_space += (unsigned short)beg_space; |
| 1003 | StatArray[ix_beg].t2_age = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age; |
| 1004 | |
| 1005 | StatArray[ix_end].t2_count++; |
| 1006 | StatArray[ix_end].t2_space += (unsigned short)end_space; |
| 1007 | StatArray[ix_end].t2_age = StatArray[ix_end].t2_age < compile_id ? compile_id : StatArray[ix_end].t2_age; |
| 1008 | } |
| 1009 | StatArray[ix_beg].level = comp_lvl; |
| 1010 | StatArray[ix_beg].compiler = cType; |
| 1011 | StatArray[ix_end].level = comp_lvl; |
| 1012 | StatArray[ix_end].compiler = cType; |
| 1013 | break; |
| 1014 | case nMethod_inconstruction: // let's count "in construction" nmethods here. |
| 1015 | case nMethod_alive: |
| 1016 | StatArray[ix_beg].tx_count++; |
| 1017 | StatArray[ix_beg].tx_space += (unsigned short)beg_space; |
| 1018 | StatArray[ix_beg].tx_age = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age; |
| 1019 | |
| 1020 | StatArray[ix_end].tx_count++; |
| 1021 | StatArray[ix_end].tx_space += (unsigned short)end_space; |
| 1022 | StatArray[ix_end].tx_age = StatArray[ix_end].tx_age < compile_id ? compile_id : StatArray[ix_end].tx_age; |
| 1023 | |
| 1024 | StatArray[ix_beg].level = comp_lvl; |
| 1025 | StatArray[ix_beg].compiler = cType; |
| 1026 | StatArray[ix_end].level = comp_lvl; |
| 1027 | StatArray[ix_end].compiler = cType; |
| 1028 | break; |
| 1029 | case nMethod_dead: |
| 1030 | case nMethod_unloaded: |
| 1031 | StatArray[ix_beg].dead_count++; |
| 1032 | StatArray[ix_beg].dead_space += (unsigned short)beg_space; |
| 1033 | StatArray[ix_end].dead_count++; |
| 1034 | StatArray[ix_end].dead_space += (unsigned short)end_space; |
| 1035 | break; |
| 1036 | default: |
| 1037 | // must be a stub, if it's not a dead or alive nMethod |
| 1038 | nBlocks_stub++; |
| 1039 | stubSpace += hb_bytelen; |
| 1040 | StatArray[ix_beg].stub_count++; |
| 1041 | StatArray[ix_beg].stub_space += (unsigned short)beg_space; |
| 1042 | StatArray[ix_end].stub_count++; |
| 1043 | StatArray[ix_end].stub_space += (unsigned short)end_space; |
| 1044 | break; |
| 1045 | } |
| 1046 | for (unsigned int ix = ix_beg+1; ix < ix_end; ix++) { |
| 1047 | StatArray[ix].type = cbType; |
| 1048 | switch (cbType) { |
| 1049 | case nMethod_inuse: |
| 1050 | if (comp_lvl < CompLevel_full_optimization) { |
| 1051 | StatArray[ix].t1_count++; |
| 1052 | StatArray[ix].t1_space += (unsigned short)(granule_size>>log2_seg_size); |
| 1053 | StatArray[ix].t1_age = StatArray[ix].t1_age < compile_id ? compile_id : StatArray[ix].t1_age; |
| 1054 | } else { |
| 1055 | StatArray[ix].t2_count++; |
| 1056 | StatArray[ix].t2_space += (unsigned short)(granule_size>>log2_seg_size); |
| 1057 | StatArray[ix].t2_age = StatArray[ix].t2_age < compile_id ? compile_id : StatArray[ix].t2_age; |
| 1058 | } |
| 1059 | StatArray[ix].level = comp_lvl; |
| 1060 | StatArray[ix].compiler = cType; |
| 1061 | break; |
| 1062 | case nMethod_inconstruction: // let's count "in construction" nmethods here. |
| 1063 | case nMethod_alive: |
| 1064 | StatArray[ix].tx_count++; |
| 1065 | StatArray[ix].tx_space += (unsigned short)(granule_size>>log2_seg_size); |
| 1066 | StatArray[ix].tx_age = StatArray[ix].tx_age < compile_id ? compile_id : StatArray[ix].tx_age; |
| 1067 | StatArray[ix].level = comp_lvl; |
| 1068 | StatArray[ix].compiler = cType; |
| 1069 | break; |
| 1070 | case nMethod_dead: |
| 1071 | case nMethod_unloaded: |
| 1072 | StatArray[ix].dead_count++; |
| 1073 | StatArray[ix].dead_space += (unsigned short)(granule_size>>log2_seg_size); |
| 1074 | break; |
| 1075 | default: |
| 1076 | // must be a stub, if it's not a dead or alive nMethod |
| 1077 | StatArray[ix].stub_count++; |
| 1078 | StatArray[ix].stub_space += (unsigned short)(granule_size>>log2_seg_size); |
| 1079 | break; |
| 1080 | } |
| 1081 | } |
| 1082 | } |
| 1083 | } |
| 1084 | } |
| 1085 | done = true; |
| 1086 | |
| 1087 | if (!insane) { |
| 1088 | // There is a risk for this block (because it contains many print statements) to get |
| 1089 | // interspersed with print data from other threads. We take this risk intentionally. |
| 1090 | // Getting stalled waiting for tty_lock while holding the CodeCache_lock is not desirable. |
| 1091 | printBox(ast, '-', "Global CodeHeap statistics for segment " , heapName); |
| 1092 | ast->print_cr("freeSpace = " SIZE_FORMAT_W(8) "k, nBlocks_free = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity" , freeSpace/(size_t)K, nBlocks_free, (100.0*freeSpace)/size, (100.0*freeSpace)/res_size); |
| 1093 | ast->print_cr("usedSpace = " SIZE_FORMAT_W(8) "k, nBlocks_used = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity" , usedSpace/(size_t)K, nBlocks_used, (100.0*usedSpace)/size, (100.0*usedSpace)/res_size); |
| 1094 | ast->print_cr(" Tier1 Space = " SIZE_FORMAT_W(8) "k, nBlocks_t1 = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity" , t1Space/(size_t)K, nBlocks_t1, (100.0*t1Space)/size, (100.0*t1Space)/res_size); |
| 1095 | ast->print_cr(" Tier2 Space = " SIZE_FORMAT_W(8) "k, nBlocks_t2 = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity" , t2Space/(size_t)K, nBlocks_t2, (100.0*t2Space)/size, (100.0*t2Space)/res_size); |
| 1096 | ast->print_cr(" Alive Space = " SIZE_FORMAT_W(8) "k, nBlocks_alive = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity" , aliveSpace/(size_t)K, nBlocks_alive, (100.0*aliveSpace)/size, (100.0*aliveSpace)/res_size); |
| 1097 | ast->print_cr(" disconnected = " SIZE_FORMAT_W(8) "k, nBlocks_disconn = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity" , disconnSpace/(size_t)K, nBlocks_disconn, (100.0*disconnSpace)/size, (100.0*disconnSpace)/res_size); |
| 1098 | ast->print_cr(" not entrant = " SIZE_FORMAT_W(8) "k, nBlocks_notentr = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity" , notentrSpace/(size_t)K, nBlocks_notentr, (100.0*notentrSpace)/size, (100.0*notentrSpace)/res_size); |
| 1099 | ast->print_cr(" inconstrSpace = " SIZE_FORMAT_W(8) "k, nBlocks_inconstr = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity" , inconstrSpace/(size_t)K, nBlocks_inconstr, (100.0*inconstrSpace)/size, (100.0*inconstrSpace)/res_size); |
| 1100 | ast->print_cr(" unloadedSpace = " SIZE_FORMAT_W(8) "k, nBlocks_unloaded = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity" , unloadedSpace/(size_t)K, nBlocks_unloaded, (100.0*unloadedSpace)/size, (100.0*unloadedSpace)/res_size); |
| 1101 | ast->print_cr(" deadSpace = " SIZE_FORMAT_W(8) "k, nBlocks_dead = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity" , deadSpace/(size_t)K, nBlocks_dead, (100.0*deadSpace)/size, (100.0*deadSpace)/res_size); |
| 1102 | ast->print_cr(" stubSpace = " SIZE_FORMAT_W(8) "k, nBlocks_stub = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity" , stubSpace/(size_t)K, nBlocks_stub, (100.0*stubSpace)/size, (100.0*stubSpace)/res_size); |
| 1103 | ast->print_cr("ZombieBlocks = %8d. These are HeapBlocks which could not be identified as CodeBlobs." , nBlocks_zomb); |
| 1104 | ast->cr(); |
| 1105 | ast->print_cr("Segment start = " INTPTR_FORMAT ", used space = " SIZE_FORMAT_W(8)"k" , p2i(low_bound), size/K); |
| 1106 | ast->print_cr("Segment end (used) = " INTPTR_FORMAT ", remaining space = " SIZE_FORMAT_W(8)"k" , p2i(low_bound) + size, (res_size - size)/K); |
| 1107 | ast->print_cr("Segment end (reserved) = " INTPTR_FORMAT ", reserved space = " SIZE_FORMAT_W(8)"k" , p2i(low_bound) + res_size, res_size/K); |
| 1108 | ast->cr(); |
| 1109 | ast->print_cr("latest allocated compilation id = %d" , latest_compilation_id); |
| 1110 | ast->print_cr("highest observed compilation id = %d" , highest_compilation_id); |
| 1111 | ast->print_cr("Building TopSizeList iterations = %ld" , total_iterations); |
| 1112 | ast->cr(); |
| 1113 | |
| 1114 | int reset_val = NMethodSweeper::hotness_counter_reset_val(); |
| 1115 | double reverse_free_ratio = (res_size > size) ? (double)res_size/(double)(res_size-size) : (double)res_size; |
| 1116 | printBox(ast, '-', "Method hotness information at time of this analysis" , NULL); |
| 1117 | ast->print_cr("Highest possible method temperature: %12d" , reset_val); |
| 1118 | ast->print_cr("Threshold for method to be considered 'cold': %12.3f" , -reset_val + reverse_free_ratio * NmethodSweepActivity); |
| 1119 | if (n_methods > 0) { |
| 1120 | avgTemp = hotnessAccumulator/n_methods; |
| 1121 | ast->print_cr("min. hotness = %6d" , minTemp); |
| 1122 | ast->print_cr("avg. hotness = %6d" , avgTemp); |
| 1123 | ast->print_cr("max. hotness = %6d" , maxTemp); |
| 1124 | } else { |
| 1125 | avgTemp = 0; |
| 1126 | ast->print_cr("No hotness data available" ); |
| 1127 | } |
| 1128 | BUFFEREDSTREAM_FLUSH("\n" ) |
| 1129 | |
| 1130 | // This loop is intentionally printing directly to "out". |
| 1131 | // It should not print anything, anyway. |
| 1132 | out->print("Verifying collected data..." ); |
| 1133 | size_t granule_segs = granule_size>>log2_seg_size; |
| 1134 | for (unsigned int ix = 0; ix < granules; ix++) { |
| 1135 | if (StatArray[ix].t1_count > granule_segs) { |
| 1136 | out->print_cr("t1_count[%d] = %d" , ix, StatArray[ix].t1_count); |
| 1137 | } |
| 1138 | if (StatArray[ix].t2_count > granule_segs) { |
| 1139 | out->print_cr("t2_count[%d] = %d" , ix, StatArray[ix].t2_count); |
| 1140 | } |
| 1141 | if (StatArray[ix].tx_count > granule_segs) { |
| 1142 | out->print_cr("tx_count[%d] = %d" , ix, StatArray[ix].tx_count); |
| 1143 | } |
| 1144 | if (StatArray[ix].stub_count > granule_segs) { |
| 1145 | out->print_cr("stub_count[%d] = %d" , ix, StatArray[ix].stub_count); |
| 1146 | } |
| 1147 | if (StatArray[ix].dead_count > granule_segs) { |
| 1148 | out->print_cr("dead_count[%d] = %d" , ix, StatArray[ix].dead_count); |
| 1149 | } |
| 1150 | if (StatArray[ix].t1_space > granule_segs) { |
| 1151 | out->print_cr("t1_space[%d] = %d" , ix, StatArray[ix].t1_space); |
| 1152 | } |
| 1153 | if (StatArray[ix].t2_space > granule_segs) { |
| 1154 | out->print_cr("t2_space[%d] = %d" , ix, StatArray[ix].t2_space); |
| 1155 | } |
| 1156 | if (StatArray[ix].tx_space > granule_segs) { |
| 1157 | out->print_cr("tx_space[%d] = %d" , ix, StatArray[ix].tx_space); |
| 1158 | } |
| 1159 | if (StatArray[ix].stub_space > granule_segs) { |
| 1160 | out->print_cr("stub_space[%d] = %d" , ix, StatArray[ix].stub_space); |
| 1161 | } |
| 1162 | if (StatArray[ix].dead_space > granule_segs) { |
| 1163 | out->print_cr("dead_space[%d] = %d" , ix, StatArray[ix].dead_space); |
| 1164 | } |
| 1165 | // this cast is awful! I need it because NT/Intel reports a signed/unsigned mismatch. |
| 1166 | if ((size_t)(StatArray[ix].t1_count+StatArray[ix].t2_count+StatArray[ix].tx_count+StatArray[ix].stub_count+StatArray[ix].dead_count) > granule_segs) { |
| 1167 | out->print_cr("t1_count[%d] = %d, t2_count[%d] = %d, tx_count[%d] = %d, stub_count[%d] = %d" , ix, StatArray[ix].t1_count, ix, StatArray[ix].t2_count, ix, StatArray[ix].tx_count, ix, StatArray[ix].stub_count); |
| 1168 | } |
| 1169 | if ((size_t)(StatArray[ix].t1_space+StatArray[ix].t2_space+StatArray[ix].tx_space+StatArray[ix].stub_space+StatArray[ix].dead_space) > granule_segs) { |
| 1170 | out->print_cr("t1_space[%d] = %d, t2_space[%d] = %d, tx_space[%d] = %d, stub_space[%d] = %d" , ix, StatArray[ix].t1_space, ix, StatArray[ix].t2_space, ix, StatArray[ix].tx_space, ix, StatArray[ix].stub_space); |
| 1171 | } |
| 1172 | } |
| 1173 | |
| 1174 | // This loop is intentionally printing directly to "out". |
| 1175 | // It should not print anything, anyway. |
| 1176 | if (used_topSizeBlocks > 0) { |
| 1177 | unsigned int j = 0; |
| 1178 | if (TopSizeArray[0].len != currMax) { |
| 1179 | out->print_cr("currMax(%d) differs from TopSizeArray[0].len(%d)" , currMax, TopSizeArray[0].len); |
| 1180 | } |
| 1181 | for (unsigned int i = 0; (TopSizeArray[i].index != tsbStopper) && (j++ < alloc_topSizeBlocks); i = TopSizeArray[i].index) { |
| 1182 | if (TopSizeArray[i].len < TopSizeArray[TopSizeArray[i].index].len) { |
| 1183 | out->print_cr("sort error at index %d: %d !>= %d" , i, TopSizeArray[i].len, TopSizeArray[TopSizeArray[i].index].len); |
| 1184 | } |
| 1185 | } |
| 1186 | if (j >= alloc_topSizeBlocks) { |
| 1187 | out->print_cr("Possible loop in TopSizeArray chaining!\n allocBlocks = %d, usedBlocks = %d" , alloc_topSizeBlocks, used_topSizeBlocks); |
| 1188 | for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) { |
| 1189 | out->print_cr(" TopSizeArray[%d].index = %d, len = %d" , i, TopSizeArray[i].index, TopSizeArray[i].len); |
| 1190 | } |
| 1191 | } |
| 1192 | } |
| 1193 | out->print_cr("...done\n\n" ); |
| 1194 | } else { |
| 1195 | // insane heap state detected. Analysis data incomplete. Just throw it away. |
| 1196 | discard_StatArray(out); |
| 1197 | discard_TopSizeArray(out); |
| 1198 | } |
| 1199 | } |
| 1200 | |
| 1201 | |
| 1202 | done = false; |
| 1203 | while (!done && (nBlocks_free > 0)) { |
| 1204 | |
| 1205 | printBox(ast, '=', "C O D E H E A P A N A L Y S I S (free blocks) for segment " , heapName); |
| 1206 | ast->print_cr(" The aggregate step collects information about all free blocks in CodeHeap.\n" |
| 1207 | " Subsequent print functions create their output based on this snapshot.\n" ); |
| 1208 | ast->print_cr(" Free space in %s is distributed over %d free blocks." , heapName, nBlocks_free); |
| 1209 | ast->print_cr(" Each free block takes " SIZE_FORMAT " bytes of C heap for statistics data, that is " SIZE_FORMAT "K in total." , sizeof(FreeBlk), (sizeof(FreeBlk)*nBlocks_free)/K); |
| 1210 | BUFFEREDSTREAM_FLUSH("\n" ) |
| 1211 | |
| 1212 | //---------------------------------------- |
| 1213 | //-- Prepare the FreeArray of FreeBlks -- |
| 1214 | //---------------------------------------- |
| 1215 | |
| 1216 | //---< discard old array if size does not match >--- |
| 1217 | if (nBlocks_free != alloc_freeBlocks) { |
| 1218 | discard_FreeArray(out); |
| 1219 | } |
| 1220 | |
| 1221 | prepare_FreeArray(out, nBlocks_free, heapName); |
| 1222 | if (FreeArray == NULL) { |
| 1223 | done = true; |
| 1224 | continue; |
| 1225 | } |
| 1226 | |
| 1227 | //---------------------------------------- |
| 1228 | //-- Collect all FreeBlks in FreeArray -- |
| 1229 | //---------------------------------------- |
| 1230 | |
| 1231 | unsigned int ix = 0; |
| 1232 | FreeBlock* cur = heap->freelist(); |
| 1233 | |
| 1234 | while (cur != NULL) { |
| 1235 | if (ix < alloc_freeBlocks) { // don't index out of bounds if _freelist has more blocks than anticipated |
| 1236 | FreeArray[ix].start = cur; |
| 1237 | FreeArray[ix].len = (unsigned int)(cur->length()<<log2_seg_size); |
| 1238 | FreeArray[ix].index = ix; |
| 1239 | } |
| 1240 | cur = cur->link(); |
| 1241 | ix++; |
| 1242 | } |
| 1243 | if (ix != alloc_freeBlocks) { |
| 1244 | ast->print_cr("Free block count mismatch. Expected %d free blocks, but found %d." , alloc_freeBlocks, ix); |
| 1245 | ast->print_cr("I will update the counter and retry data collection" ); |
| 1246 | BUFFEREDSTREAM_FLUSH("\n" ) |
| 1247 | nBlocks_free = ix; |
| 1248 | continue; |
| 1249 | } |
| 1250 | done = true; |
| 1251 | } |
| 1252 | |
| 1253 | if (!done || (nBlocks_free == 0)) { |
| 1254 | if (nBlocks_free == 0) { |
| 1255 | printBox(ast, '-', "no free blocks found in " , heapName); |
| 1256 | } else if (!done) { |
| 1257 | ast->print_cr("Free block count mismatch could not be resolved." ); |
| 1258 | ast->print_cr("Try to run \"aggregate\" function to update counters" ); |
| 1259 | } |
| 1260 | BUFFEREDSTREAM_FLUSH("" ) |
| 1261 | |
| 1262 | //---< discard old array and update global values >--- |
| 1263 | discard_FreeArray(out); |
| 1264 | set_HeapStatGlobals(out, heapName); |
| 1265 | return; |
| 1266 | } |
| 1267 | |
| 1268 | //---< calculate and fill remaining fields >--- |
| 1269 | if (FreeArray != NULL) { |
| 1270 | // This loop is intentionally printing directly to "out". |
| 1271 | // It should not print anything, anyway. |
| 1272 | for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) { |
| 1273 | size_t lenSum = 0; |
| 1274 | FreeArray[ix].gap = (unsigned int)((address)FreeArray[ix+1].start - ((address)FreeArray[ix].start + FreeArray[ix].len)); |
| 1275 | for (HeapBlock *h = heap->next_block(FreeArray[ix].start); (h != NULL) && (h != FreeArray[ix+1].start); h = heap->next_block(h)) { |
| 1276 | CodeBlob *cb = (CodeBlob*)(heap->find_start(h)); |
| 1277 | if ((cb != NULL) && !cb->is_nmethod()) { |
| 1278 | FreeArray[ix].stubs_in_gap = true; |
| 1279 | } |
| 1280 | FreeArray[ix].n_gapBlocks++; |
| 1281 | lenSum += h->length()<<log2_seg_size; |
| 1282 | if (((address)h < ((address)FreeArray[ix].start+FreeArray[ix].len)) || (h >= FreeArray[ix+1].start)) { |
| 1283 | out->print_cr("unsorted occupied CodeHeap block found @ %p, gap interval [%p, %p)" , h, (address)FreeArray[ix].start+FreeArray[ix].len, FreeArray[ix+1].start); |
| 1284 | } |
| 1285 | } |
| 1286 | if (lenSum != FreeArray[ix].gap) { |
| 1287 | out->print_cr("Length mismatch for gap between FreeBlk[%d] and FreeBlk[%d]. Calculated: %d, accumulated: %d." , ix, ix+1, FreeArray[ix].gap, (unsigned int)lenSum); |
| 1288 | } |
| 1289 | } |
| 1290 | } |
| 1291 | set_HeapStatGlobals(out, heapName); |
| 1292 | |
| 1293 | printBox(ast, '=', "C O D E H E A P A N A L Y S I S C O M P L E T E for segment " , heapName); |
| 1294 | BUFFEREDSTREAM_FLUSH("\n" ) |
| 1295 | } |
| 1296 | |
| 1297 | |
| 1298 | void CodeHeapState::print_usedSpace(outputStream* out, CodeHeap* heap) { |
| 1299 | if (!initialization_complete) { |
| 1300 | return; |
| 1301 | } |
| 1302 | |
| 1303 | const char* heapName = get_heapName(heap); |
| 1304 | get_HeapStatGlobals(out, heapName); |
| 1305 | |
| 1306 | if ((StatArray == NULL) || (TopSizeArray == NULL) || (used_topSizeBlocks == 0)) { |
| 1307 | return; |
| 1308 | } |
| 1309 | BUFFEREDSTREAM_DECL(ast, out) |
| 1310 | |
| 1311 | { |
| 1312 | printBox(ast, '=', "U S E D S P A C E S T A T I S T I C S for " , heapName); |
| 1313 | ast->print_cr("Note: The Top%d list of the largest used blocks associates method names\n" |
| 1314 | " and other identifying information with the block size data.\n" |
| 1315 | "\n" |
| 1316 | " Method names are dynamically retrieved from the code cache at print time.\n" |
| 1317 | " Due to the living nature of the code cache and because the CodeCache_lock\n" |
| 1318 | " is not continuously held, the displayed name might be wrong or no name\n" |
| 1319 | " might be found at all. The likelihood for that to happen increases\n" |
| 1320 | " over time passed between analysis and print step.\n" , used_topSizeBlocks); |
| 1321 | BUFFEREDSTREAM_FLUSH_LOCKED("\n" ) |
| 1322 | } |
| 1323 | |
| 1324 | //---------------------------- |
| 1325 | //-- Print Top Used Blocks -- |
| 1326 | //---------------------------- |
| 1327 | { |
| 1328 | char* low_bound = heap->low_boundary(); |
| 1329 | bool have_CodeCache_lock = CodeCache_lock->owned_by_self(); |
| 1330 | |
| 1331 | printBox(ast, '-', "Largest Used Blocks in " , heapName); |
| 1332 | print_blobType_legend(ast); |
| 1333 | |
| 1334 | ast->fill_to(51); |
| 1335 | ast->print("%4s" , "blob" ); |
| 1336 | ast->fill_to(56); |
| 1337 | ast->print("%9s" , "compiler" ); |
| 1338 | ast->fill_to(66); |
| 1339 | ast->print_cr("%6s" , "method" ); |
| 1340 | ast->print_cr("%18s %13s %17s %4s %9s %5s %s" , "Addr(module) " , "offset" , "size" , "type" , " type lvl" , " temp" , "Name" ); |
| 1341 | BUFFEREDSTREAM_FLUSH_LOCKED("" ) |
| 1342 | |
| 1343 | //---< print Top Ten Used Blocks >--- |
| 1344 | if (used_topSizeBlocks > 0) { |
| 1345 | unsigned int printed_topSizeBlocks = 0; |
| 1346 | for (unsigned int i = 0; i != tsbStopper; i = TopSizeArray[i].index) { |
| 1347 | printed_topSizeBlocks++; |
| 1348 | nmethod* nm = NULL; |
| 1349 | const char* blob_name = "unnamed blob or blob name unavailable" ; |
| 1350 | // heap->find_start() is safe. Only works on _segmap. |
| 1351 | // Returns NULL or void*. Returned CodeBlob may be uninitialized. |
| 1352 | HeapBlock* heapBlock = TopSizeArray[i].start; |
| 1353 | CodeBlob* this_blob = (CodeBlob*)(heap->find_start(heapBlock)); |
| 1354 | bool blob_is_safe = blob_access_is_safe(this_blob, NULL); |
| 1355 | if (blob_is_safe) { |
| 1356 | //---< access these fields only if we own the CodeCache_lock >--- |
| 1357 | if (have_CodeCache_lock) { |
| 1358 | blob_name = this_blob->name(); |
| 1359 | nm = this_blob->as_nmethod_or_null(); |
| 1360 | } |
| 1361 | //---< blob address >--- |
| 1362 | ast->print(INTPTR_FORMAT, p2i(this_blob)); |
| 1363 | ast->fill_to(19); |
| 1364 | //---< blob offset from CodeHeap begin >--- |
| 1365 | ast->print("(+" PTR32_FORMAT ")" , (unsigned int)((char*)this_blob-low_bound)); |
| 1366 | ast->fill_to(33); |
| 1367 | } else { |
| 1368 | //---< block address >--- |
| 1369 | ast->print(INTPTR_FORMAT, p2i(TopSizeArray[i].start)); |
| 1370 | ast->fill_to(19); |
| 1371 | //---< block offset from CodeHeap begin >--- |
| 1372 | ast->print("(+" PTR32_FORMAT ")" , (unsigned int)((char*)TopSizeArray[i].start-low_bound)); |
| 1373 | ast->fill_to(33); |
| 1374 | } |
| 1375 | |
| 1376 | //---< print size, name, and signature (for nMethods) >--- |
| 1377 | // access nmethod and Method fields only if we own the CodeCache_lock. |
| 1378 | // This fact is implicitly transported via nm != NULL. |
| 1379 | if (CompiledMethod::nmethod_access_is_safe(nm)) { |
| 1380 | ResourceMark rm; |
| 1381 | Method* method = nm->method(); |
| 1382 | if (nm->is_in_use()) { |
| 1383 | blob_name = method->name_and_sig_as_C_string(); |
| 1384 | } |
| 1385 | if (nm->is_not_entrant()) { |
| 1386 | blob_name = method->name_and_sig_as_C_string(); |
| 1387 | } |
| 1388 | //---< nMethod size in hex >--- |
| 1389 | unsigned int total_size = nm->total_size(); |
| 1390 | ast->print(PTR32_FORMAT, total_size); |
| 1391 | ast->print("(" SIZE_FORMAT_W(4) "K)" , total_size/K); |
| 1392 | ast->fill_to(51); |
| 1393 | ast->print(" %c" , blobTypeChar[TopSizeArray[i].type]); |
| 1394 | //---< compiler information >--- |
| 1395 | ast->fill_to(56); |
| 1396 | ast->print("%5s %3d" , compTypeName[TopSizeArray[i].compiler], TopSizeArray[i].level); |
| 1397 | //---< method temperature >--- |
| 1398 | ast->fill_to(67); |
| 1399 | ast->print("%5d" , nm->hotness_counter()); |
| 1400 | //---< name and signature >--- |
| 1401 | ast->fill_to(67+6); |
| 1402 | if (nm->is_not_installed()) { |
| 1403 | ast->print(" not (yet) installed method " ); |
| 1404 | } |
| 1405 | if (nm->is_zombie()) { |
| 1406 | ast->print(" zombie method " ); |
| 1407 | } |
| 1408 | ast->print("%s" , blob_name); |
| 1409 | } else { |
| 1410 | //---< block size in hex >--- |
| 1411 | ast->print(PTR32_FORMAT, (unsigned int)(TopSizeArray[i].len<<log2_seg_size)); |
| 1412 | ast->print("(" SIZE_FORMAT_W(4) "K)" , (TopSizeArray[i].len<<log2_seg_size)/K); |
| 1413 | //---< no compiler information >--- |
| 1414 | ast->fill_to(56); |
| 1415 | //---< name and signature >--- |
| 1416 | ast->fill_to(67+6); |
| 1417 | ast->print("%s" , blob_name); |
| 1418 | } |
| 1419 | ast->cr(); |
| 1420 | BUFFEREDSTREAM_FLUSH_AUTO("" ) |
| 1421 | } |
| 1422 | if (used_topSizeBlocks != printed_topSizeBlocks) { |
| 1423 | ast->print_cr("used blocks: %d, printed blocks: %d" , used_topSizeBlocks, printed_topSizeBlocks); |
| 1424 | for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) { |
| 1425 | ast->print_cr(" TopSizeArray[%d].index = %d, len = %d" , i, TopSizeArray[i].index, TopSizeArray[i].len); |
| 1426 | BUFFEREDSTREAM_FLUSH_AUTO("" ) |
| 1427 | } |
| 1428 | } |
| 1429 | BUFFEREDSTREAM_FLUSH("\n\n" ) |
| 1430 | } |
| 1431 | } |
| 1432 | |
| 1433 | //----------------------------- |
| 1434 | //-- Print Usage Histogram -- |
| 1435 | //----------------------------- |
| 1436 | |
| 1437 | if (SizeDistributionArray != NULL) { |
| 1438 | unsigned long total_count = 0; |
| 1439 | unsigned long total_size = 0; |
| 1440 | const unsigned long pctFactor = 200; |
| 1441 | |
| 1442 | for (unsigned int i = 0; i < nSizeDistElements; i++) { |
| 1443 | total_count += SizeDistributionArray[i].count; |
| 1444 | total_size += SizeDistributionArray[i].lenSum; |
| 1445 | } |
| 1446 | |
| 1447 | if ((total_count > 0) && (total_size > 0)) { |
| 1448 | printBox(ast, '-', "Block count histogram for " , heapName); |
| 1449 | ast->print_cr("Note: The histogram indicates how many blocks (as a percentage\n" |
| 1450 | " of all blocks) have a size in the given range.\n" |
| 1451 | " %ld characters are printed per percentage point.\n" , pctFactor/100); |
| 1452 | ast->print_cr("total size of all blocks: %7ldM" , (total_size<<log2_seg_size)/M); |
| 1453 | ast->print_cr("total number of all blocks: %7ld\n" , total_count); |
| 1454 | BUFFEREDSTREAM_FLUSH_LOCKED("" ) |
| 1455 | |
| 1456 | ast->print_cr("[Size Range)------avg.-size-+----count-+" ); |
| 1457 | for (unsigned int i = 0; i < nSizeDistElements; i++) { |
| 1458 | if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) { |
| 1459 | ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): " |
| 1460 | ,(size_t)(SizeDistributionArray[i].rangeStart<<log2_seg_size) |
| 1461 | ,(size_t)(SizeDistributionArray[i].rangeEnd<<log2_seg_size) |
| 1462 | ); |
| 1463 | } else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) { |
| 1464 | ast->print("[" SIZE_FORMAT_W(5) "K.." SIZE_FORMAT_W(5) "K): " |
| 1465 | ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K |
| 1466 | ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K |
| 1467 | ); |
| 1468 | } else { |
| 1469 | ast->print("[" SIZE_FORMAT_W(5) "M.." SIZE_FORMAT_W(5) "M): " |
| 1470 | ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M |
| 1471 | ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M |
| 1472 | ); |
| 1473 | } |
| 1474 | ast->print(" %8d | %8d |" , |
| 1475 | SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0, |
| 1476 | SizeDistributionArray[i].count); |
| 1477 | |
| 1478 | unsigned int percent = pctFactor*SizeDistributionArray[i].count/total_count; |
| 1479 | for (unsigned int j = 1; j <= percent; j++) { |
| 1480 | ast->print("%c" , (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*'); |
| 1481 | } |
| 1482 | ast->cr(); |
| 1483 | BUFFEREDSTREAM_FLUSH_AUTO("" ) |
| 1484 | } |
| 1485 | ast->print_cr("----------------------------+----------+" ); |
| 1486 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
| 1487 | |
| 1488 | printBox(ast, '-', "Contribution per size range to total size for " , heapName); |
| 1489 | ast->print_cr("Note: The histogram indicates how much space (as a percentage of all\n" |
| 1490 | " occupied space) is used by the blocks in the given size range.\n" |
| 1491 | " %ld characters are printed per percentage point.\n" , pctFactor/100); |
| 1492 | ast->print_cr("total size of all blocks: %7ldM" , (total_size<<log2_seg_size)/M); |
| 1493 | ast->print_cr("total number of all blocks: %7ld\n" , total_count); |
| 1494 | BUFFEREDSTREAM_FLUSH_LOCKED("" ) |
| 1495 | |
| 1496 | ast->print_cr("[Size Range)------avg.-size-+----count-+" ); |
| 1497 | for (unsigned int i = 0; i < nSizeDistElements; i++) { |
| 1498 | if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) { |
| 1499 | ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): " |
| 1500 | ,(size_t)(SizeDistributionArray[i].rangeStart<<log2_seg_size) |
| 1501 | ,(size_t)(SizeDistributionArray[i].rangeEnd<<log2_seg_size) |
| 1502 | ); |
| 1503 | } else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) { |
| 1504 | ast->print("[" SIZE_FORMAT_W(5) "K.." SIZE_FORMAT_W(5) "K): " |
| 1505 | ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K |
| 1506 | ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K |
| 1507 | ); |
| 1508 | } else { |
| 1509 | ast->print("[" SIZE_FORMAT_W(5) "M.." SIZE_FORMAT_W(5) "M): " |
| 1510 | ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M |
| 1511 | ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M |
| 1512 | ); |
| 1513 | } |
| 1514 | ast->print(" %8d | %8d |" , |
| 1515 | SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0, |
| 1516 | SizeDistributionArray[i].count); |
| 1517 | |
| 1518 | unsigned int percent = pctFactor*(unsigned long)SizeDistributionArray[i].lenSum/total_size; |
| 1519 | for (unsigned int j = 1; j <= percent; j++) { |
| 1520 | ast->print("%c" , (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*'); |
| 1521 | } |
| 1522 | ast->cr(); |
| 1523 | BUFFEREDSTREAM_FLUSH_AUTO("" ) |
| 1524 | } |
| 1525 | ast->print_cr("----------------------------+----------+" ); |
| 1526 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
| 1527 | } |
| 1528 | } |
| 1529 | } |
| 1530 | |
| 1531 | |
| 1532 | void CodeHeapState::print_freeSpace(outputStream* out, CodeHeap* heap) { |
| 1533 | if (!initialization_complete) { |
| 1534 | return; |
| 1535 | } |
| 1536 | |
| 1537 | const char* heapName = get_heapName(heap); |
| 1538 | get_HeapStatGlobals(out, heapName); |
| 1539 | |
| 1540 | if ((StatArray == NULL) || (FreeArray == NULL) || (alloc_granules == 0)) { |
| 1541 | return; |
| 1542 | } |
| 1543 | BUFFEREDSTREAM_DECL(ast, out) |
| 1544 | |
| 1545 | { |
| 1546 | printBox(ast, '=', "F R E E S P A C E S T A T I S T I C S for " , heapName); |
| 1547 | ast->print_cr("Note: in this context, a gap is the occupied space between two free blocks.\n" |
| 1548 | " Those gaps are of interest if there is a chance that they become\n" |
| 1549 | " unoccupied, e.g. by class unloading. Then, the two adjacent free\n" |
| 1550 | " blocks, together with the now unoccupied space, form a new, large\n" |
| 1551 | " free block." ); |
| 1552 | BUFFEREDSTREAM_FLUSH_LOCKED("\n" ) |
| 1553 | } |
| 1554 | |
| 1555 | { |
| 1556 | printBox(ast, '-', "List of all Free Blocks in " , heapName); |
| 1557 | |
| 1558 | unsigned int ix = 0; |
| 1559 | for (ix = 0; ix < alloc_freeBlocks-1; ix++) { |
| 1560 | ast->print(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT "," , p2i(FreeArray[ix].start), ix, FreeArray[ix].len); |
| 1561 | ast->fill_to(38); |
| 1562 | ast->print("Gap[%4d..%4d]: " HEX32_FORMAT " bytes," , ix, ix+1, FreeArray[ix].gap); |
| 1563 | ast->fill_to(71); |
| 1564 | ast->print("block count: %6d" , FreeArray[ix].n_gapBlocks); |
| 1565 | if (FreeArray[ix].stubs_in_gap) { |
| 1566 | ast->print(" !! permanent gap, contains stubs and/or blobs !!" ); |
| 1567 | } |
| 1568 | ast->cr(); |
| 1569 | BUFFEREDSTREAM_FLUSH_AUTO("" ) |
| 1570 | } |
| 1571 | ast->print_cr(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT, p2i(FreeArray[ix].start), ix, FreeArray[ix].len); |
| 1572 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n" ) |
| 1573 | } |
| 1574 | |
| 1575 | |
| 1576 | //----------------------------------------- |
| 1577 | //-- Find and Print Top Ten Free Blocks -- |
| 1578 | //----------------------------------------- |
| 1579 | |
| 1580 | //---< find Top Ten Free Blocks >--- |
| 1581 | const unsigned int nTop = 10; |
| 1582 | unsigned int currMax10 = 0; |
| 1583 | struct FreeBlk* FreeTopTen[nTop]; |
| 1584 | memset(FreeTopTen, 0, sizeof(FreeTopTen)); |
| 1585 | |
| 1586 | for (unsigned int ix = 0; ix < alloc_freeBlocks; ix++) { |
| 1587 | if (FreeArray[ix].len > currMax10) { // larger than the ten largest found so far |
| 1588 | unsigned int currSize = FreeArray[ix].len; |
| 1589 | |
| 1590 | unsigned int iy; |
| 1591 | for (iy = 0; iy < nTop && FreeTopTen[iy] != NULL; iy++) { |
| 1592 | if (FreeTopTen[iy]->len < currSize) { |
| 1593 | for (unsigned int iz = nTop-1; iz > iy; iz--) { // make room to insert new free block |
| 1594 | FreeTopTen[iz] = FreeTopTen[iz-1]; |
| 1595 | } |
| 1596 | FreeTopTen[iy] = &FreeArray[ix]; // insert new free block |
| 1597 | if (FreeTopTen[nTop-1] != NULL) { |
| 1598 | currMax10 = FreeTopTen[nTop-1]->len; |
| 1599 | } |
| 1600 | break; // done with this, check next free block |
| 1601 | } |
| 1602 | } |
| 1603 | if (iy >= nTop) { |
| 1604 | ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d" , |
| 1605 | currSize, currMax10); |
| 1606 | continue; |
| 1607 | } |
| 1608 | if (FreeTopTen[iy] == NULL) { |
| 1609 | FreeTopTen[iy] = &FreeArray[ix]; |
| 1610 | if (iy == (nTop-1)) { |
| 1611 | currMax10 = currSize; |
| 1612 | } |
| 1613 | } |
| 1614 | } |
| 1615 | } |
| 1616 | BUFFEREDSTREAM_FLUSH_AUTO("" ) |
| 1617 | |
| 1618 | { |
| 1619 | printBox(ast, '-', "Top Ten Free Blocks in " , heapName); |
| 1620 | |
| 1621 | //---< print Top Ten Free Blocks >--- |
| 1622 | for (unsigned int iy = 0; (iy < nTop) && (FreeTopTen[iy] != NULL); iy++) { |
| 1623 | ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT "," , iy+1, FreeTopTen[iy]->index, FreeTopTen[iy]->len); |
| 1624 | ast->fill_to(39); |
| 1625 | if (FreeTopTen[iy]->index == (alloc_freeBlocks-1)) { |
| 1626 | ast->print("last free block in list." ); |
| 1627 | } else { |
| 1628 | ast->print("Gap (to next) " HEX32_FORMAT "," , FreeTopTen[iy]->gap); |
| 1629 | ast->fill_to(63); |
| 1630 | ast->print("#blocks (in gap) %d" , FreeTopTen[iy]->n_gapBlocks); |
| 1631 | } |
| 1632 | ast->cr(); |
| 1633 | BUFFEREDSTREAM_FLUSH_AUTO("" ) |
| 1634 | } |
| 1635 | } |
| 1636 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n" ) |
| 1637 | |
| 1638 | |
| 1639 | //-------------------------------------------------------- |
| 1640 | //-- Find and Print Top Ten Free-Occupied-Free Triples -- |
| 1641 | //-------------------------------------------------------- |
| 1642 | |
| 1643 | //---< find and print Top Ten Triples (Free-Occupied-Free) >--- |
| 1644 | currMax10 = 0; |
| 1645 | struct FreeBlk *FreeTopTenTriple[nTop]; |
| 1646 | memset(FreeTopTenTriple, 0, sizeof(FreeTopTenTriple)); |
| 1647 | |
| 1648 | for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) { |
| 1649 | // If there are stubs in the gap, this gap will never become completely free. |
| 1650 | // The triple will thus never merge to one free block. |
| 1651 | unsigned int lenTriple = FreeArray[ix].len + (FreeArray[ix].stubs_in_gap ? 0 : FreeArray[ix].gap + FreeArray[ix+1].len); |
| 1652 | FreeArray[ix].len = lenTriple; |
| 1653 | if (lenTriple > currMax10) { // larger than the ten largest found so far |
| 1654 | |
| 1655 | unsigned int iy; |
| 1656 | for (iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) { |
| 1657 | if (FreeTopTenTriple[iy]->len < lenTriple) { |
| 1658 | for (unsigned int iz = nTop-1; iz > iy; iz--) { |
| 1659 | FreeTopTenTriple[iz] = FreeTopTenTriple[iz-1]; |
| 1660 | } |
| 1661 | FreeTopTenTriple[iy] = &FreeArray[ix]; |
| 1662 | if (FreeTopTenTriple[nTop-1] != NULL) { |
| 1663 | currMax10 = FreeTopTenTriple[nTop-1]->len; |
| 1664 | } |
| 1665 | break; |
| 1666 | } |
| 1667 | } |
| 1668 | if (iy == nTop) { |
| 1669 | ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d" , |
| 1670 | lenTriple, currMax10); |
| 1671 | continue; |
| 1672 | } |
| 1673 | if (FreeTopTenTriple[iy] == NULL) { |
| 1674 | FreeTopTenTriple[iy] = &FreeArray[ix]; |
| 1675 | if (iy == (nTop-1)) { |
| 1676 | currMax10 = lenTriple; |
| 1677 | } |
| 1678 | } |
| 1679 | } |
| 1680 | } |
| 1681 | BUFFEREDSTREAM_FLUSH_AUTO("" ) |
| 1682 | |
| 1683 | { |
| 1684 | printBox(ast, '-', "Top Ten Free-Occupied-Free Triples in " , heapName); |
| 1685 | ast->print_cr(" Use this information to judge how likely it is that a large(r) free block\n" |
| 1686 | " might get created by code cache sweeping.\n" |
| 1687 | " If all the occupied blocks can be swept, the three free blocks will be\n" |
| 1688 | " merged into one (much larger) free block. That would reduce free space\n" |
| 1689 | " fragmentation.\n" ); |
| 1690 | |
| 1691 | //---< print Top Ten Free-Occupied-Free Triples >--- |
| 1692 | for (unsigned int iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) { |
| 1693 | ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT "," , iy+1, FreeTopTenTriple[iy]->index, FreeTopTenTriple[iy]->len); |
| 1694 | ast->fill_to(39); |
| 1695 | ast->print("Gap (to next) " HEX32_FORMAT "," , FreeTopTenTriple[iy]->gap); |
| 1696 | ast->fill_to(63); |
| 1697 | ast->print("#blocks (in gap) %d" , FreeTopTenTriple[iy]->n_gapBlocks); |
| 1698 | ast->cr(); |
| 1699 | BUFFEREDSTREAM_FLUSH_AUTO("" ) |
| 1700 | } |
| 1701 | } |
| 1702 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n" ) |
| 1703 | } |
| 1704 | |
| 1705 | |
| 1706 | void CodeHeapState::print_count(outputStream* out, CodeHeap* heap) { |
| 1707 | if (!initialization_complete) { |
| 1708 | return; |
| 1709 | } |
| 1710 | |
| 1711 | const char* heapName = get_heapName(heap); |
| 1712 | get_HeapStatGlobals(out, heapName); |
| 1713 | |
| 1714 | if ((StatArray == NULL) || (alloc_granules == 0)) { |
| 1715 | return; |
| 1716 | } |
| 1717 | BUFFEREDSTREAM_DECL(ast, out) |
| 1718 | |
| 1719 | unsigned int granules_per_line = 32; |
| 1720 | char* low_bound = heap->low_boundary(); |
| 1721 | |
| 1722 | { |
| 1723 | printBox(ast, '=', "B L O C K C O U N T S for " , heapName); |
| 1724 | ast->print_cr(" Each granule contains an individual number of heap blocks. Large blocks\n" |
| 1725 | " may span multiple granules and are counted for each granule they touch.\n" ); |
| 1726 | if (segment_granules) { |
| 1727 | ast->print_cr(" You have selected granule size to be as small as segment size.\n" |
| 1728 | " As a result, each granule contains exactly one block (or a part of one block)\n" |
| 1729 | " or is displayed as empty (' ') if it's BlobType does not match the selection.\n" |
| 1730 | " Occupied granules show their BlobType character, see legend.\n" ); |
| 1731 | print_blobType_legend(ast); |
| 1732 | } |
| 1733 | BUFFEREDSTREAM_FLUSH_LOCKED("" ) |
| 1734 | } |
| 1735 | |
| 1736 | { |
| 1737 | if (segment_granules) { |
| 1738 | printBox(ast, '-', "Total (all types) count for granule size == segment size" , NULL); |
| 1739 | |
| 1740 | granules_per_line = 128; |
| 1741 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
| 1742 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
| 1743 | print_blobType_single(ast, StatArray[ix].type); |
| 1744 | } |
| 1745 | } else { |
| 1746 | printBox(ast, '-', "Total (all tiers) count, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty" , NULL); |
| 1747 | |
| 1748 | granules_per_line = 128; |
| 1749 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
| 1750 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
| 1751 | unsigned int count = StatArray[ix].t1_count + StatArray[ix].t2_count + StatArray[ix].tx_count |
| 1752 | + StatArray[ix].stub_count + StatArray[ix].dead_count; |
| 1753 | print_count_single(ast, count); |
| 1754 | } |
| 1755 | } |
| 1756 | BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n" ) |
| 1757 | } |
| 1758 | |
| 1759 | { |
| 1760 | if (nBlocks_t1 > 0) { |
| 1761 | printBox(ast, '-', "Tier1 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty" , NULL); |
| 1762 | |
| 1763 | granules_per_line = 128; |
| 1764 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
| 1765 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
| 1766 | if (segment_granules && StatArray[ix].t1_count > 0) { |
| 1767 | print_blobType_single(ast, StatArray[ix].type); |
| 1768 | } else { |
| 1769 | print_count_single(ast, StatArray[ix].t1_count); |
| 1770 | } |
| 1771 | } |
| 1772 | ast->print("|" ); |
| 1773 | } else { |
| 1774 | ast->print("No Tier1 nMethods found in CodeHeap." ); |
| 1775 | } |
| 1776 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
| 1777 | } |
| 1778 | |
| 1779 | { |
| 1780 | if (nBlocks_t2 > 0) { |
| 1781 | printBox(ast, '-', "Tier2 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty" , NULL); |
| 1782 | |
| 1783 | granules_per_line = 128; |
| 1784 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
| 1785 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
| 1786 | if (segment_granules && StatArray[ix].t2_count > 0) { |
| 1787 | print_blobType_single(ast, StatArray[ix].type); |
| 1788 | } else { |
| 1789 | print_count_single(ast, StatArray[ix].t2_count); |
| 1790 | } |
| 1791 | } |
| 1792 | ast->print("|" ); |
| 1793 | } else { |
| 1794 | ast->print("No Tier2 nMethods found in CodeHeap." ); |
| 1795 | } |
| 1796 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
| 1797 | } |
| 1798 | |
| 1799 | { |
| 1800 | if (nBlocks_alive > 0) { |
| 1801 | printBox(ast, '-', "not_used/not_entrant/not_installed nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty" , NULL); |
| 1802 | |
| 1803 | granules_per_line = 128; |
| 1804 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
| 1805 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
| 1806 | if (segment_granules && StatArray[ix].tx_count > 0) { |
| 1807 | print_blobType_single(ast, StatArray[ix].type); |
| 1808 | } else { |
| 1809 | print_count_single(ast, StatArray[ix].tx_count); |
| 1810 | } |
| 1811 | } |
| 1812 | ast->print("|" ); |
| 1813 | } else { |
| 1814 | ast->print("No not_used/not_entrant nMethods found in CodeHeap." ); |
| 1815 | } |
| 1816 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
| 1817 | } |
| 1818 | |
| 1819 | { |
| 1820 | if (nBlocks_stub > 0) { |
| 1821 | printBox(ast, '-', "Stub & Blob count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty" , NULL); |
| 1822 | |
| 1823 | granules_per_line = 128; |
| 1824 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
| 1825 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
| 1826 | if (segment_granules && StatArray[ix].stub_count > 0) { |
| 1827 | print_blobType_single(ast, StatArray[ix].type); |
| 1828 | } else { |
| 1829 | print_count_single(ast, StatArray[ix].stub_count); |
| 1830 | } |
| 1831 | } |
| 1832 | ast->print("|" ); |
| 1833 | } else { |
| 1834 | ast->print("No Stubs and Blobs found in CodeHeap." ); |
| 1835 | } |
| 1836 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
| 1837 | } |
| 1838 | |
| 1839 | { |
| 1840 | if (nBlocks_dead > 0) { |
| 1841 | printBox(ast, '-', "Dead nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty" , NULL); |
| 1842 | |
| 1843 | granules_per_line = 128; |
| 1844 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
| 1845 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
| 1846 | if (segment_granules && StatArray[ix].dead_count > 0) { |
| 1847 | print_blobType_single(ast, StatArray[ix].type); |
| 1848 | } else { |
| 1849 | print_count_single(ast, StatArray[ix].dead_count); |
| 1850 | } |
| 1851 | } |
| 1852 | ast->print("|" ); |
| 1853 | } else { |
| 1854 | ast->print("No dead nMethods found in CodeHeap." ); |
| 1855 | } |
| 1856 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
| 1857 | } |
| 1858 | |
| 1859 | { |
| 1860 | if (!segment_granules) { // Prevent totally redundant printouts |
| 1861 | printBox(ast, '-', "Count by tier (combined, no dead blocks): <#t1>:<#t2>:<#s>, 0x0..0xf. '*' indicates >= 16 blocks" , NULL); |
| 1862 | |
| 1863 | granules_per_line = 24; |
| 1864 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
| 1865 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
| 1866 | |
| 1867 | print_count_single(ast, StatArray[ix].t1_count); |
| 1868 | ast->print(":" ); |
| 1869 | print_count_single(ast, StatArray[ix].t2_count); |
| 1870 | ast->print(":" ); |
| 1871 | if (segment_granules && StatArray[ix].stub_count > 0) { |
| 1872 | print_blobType_single(ast, StatArray[ix].type); |
| 1873 | } else { |
| 1874 | print_count_single(ast, StatArray[ix].stub_count); |
| 1875 | } |
| 1876 | ast->print(" " ); |
| 1877 | } |
| 1878 | BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n" ) |
| 1879 | } |
| 1880 | } |
| 1881 | } |
| 1882 | |
| 1883 | |
| 1884 | void CodeHeapState::print_space(outputStream* out, CodeHeap* heap) { |
| 1885 | if (!initialization_complete) { |
| 1886 | return; |
| 1887 | } |
| 1888 | |
| 1889 | const char* heapName = get_heapName(heap); |
| 1890 | get_HeapStatGlobals(out, heapName); |
| 1891 | |
| 1892 | if ((StatArray == NULL) || (alloc_granules == 0)) { |
| 1893 | return; |
| 1894 | } |
| 1895 | BUFFEREDSTREAM_DECL(ast, out) |
| 1896 | |
| 1897 | unsigned int granules_per_line = 32; |
| 1898 | char* low_bound = heap->low_boundary(); |
| 1899 | |
| 1900 | { |
| 1901 | printBox(ast, '=', "S P A C E U S A G E & F R A G M E N T A T I O N for " , heapName); |
| 1902 | ast->print_cr(" The heap space covered by one granule is occupied to a various extend.\n" |
| 1903 | " The granule occupancy is displayed by one decimal digit per granule.\n" ); |
| 1904 | if (segment_granules) { |
| 1905 | ast->print_cr(" You have selected granule size to be as small as segment size.\n" |
| 1906 | " As a result, each granule contains exactly one block (or a part of one block)\n" |
| 1907 | " or is displayed as empty (' ') if it's BlobType does not match the selection.\n" |
| 1908 | " Occupied granules show their BlobType character, see legend.\n" ); |
| 1909 | print_blobType_legend(ast); |
| 1910 | } else { |
| 1911 | ast->print_cr(" These digits represent a fill percentage range (see legend).\n" ); |
| 1912 | print_space_legend(ast); |
| 1913 | } |
| 1914 | BUFFEREDSTREAM_FLUSH_LOCKED("" ) |
| 1915 | } |
| 1916 | |
| 1917 | { |
| 1918 | if (segment_granules) { |
| 1919 | printBox(ast, '-', "Total (all types) space consumption for granule size == segment size" , NULL); |
| 1920 | |
| 1921 | granules_per_line = 128; |
| 1922 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
| 1923 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
| 1924 | print_blobType_single(ast, StatArray[ix].type); |
| 1925 | } |
| 1926 | } else { |
| 1927 | printBox(ast, '-', "Total (all types) space consumption. ' ' indicates empty, '*' indicates full." , NULL); |
| 1928 | |
| 1929 | granules_per_line = 128; |
| 1930 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
| 1931 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
| 1932 | unsigned int space = StatArray[ix].t1_space + StatArray[ix].t2_space + StatArray[ix].tx_space |
| 1933 | + StatArray[ix].stub_space + StatArray[ix].dead_space; |
| 1934 | print_space_single(ast, space); |
| 1935 | } |
| 1936 | } |
| 1937 | BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n" ) |
| 1938 | } |
| 1939 | |
| 1940 | { |
| 1941 | if (nBlocks_t1 > 0) { |
| 1942 | printBox(ast, '-', "Tier1 space consumption. ' ' indicates empty, '*' indicates full" , NULL); |
| 1943 | |
| 1944 | granules_per_line = 128; |
| 1945 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
| 1946 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
| 1947 | if (segment_granules && StatArray[ix].t1_space > 0) { |
| 1948 | print_blobType_single(ast, StatArray[ix].type); |
| 1949 | } else { |
| 1950 | print_space_single(ast, StatArray[ix].t1_space); |
| 1951 | } |
| 1952 | } |
| 1953 | ast->print("|" ); |
| 1954 | } else { |
| 1955 | ast->print("No Tier1 nMethods found in CodeHeap." ); |
| 1956 | } |
| 1957 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
| 1958 | } |
| 1959 | |
| 1960 | { |
| 1961 | if (nBlocks_t2 > 0) { |
| 1962 | printBox(ast, '-', "Tier2 space consumption. ' ' indicates empty, '*' indicates full" , NULL); |
| 1963 | |
| 1964 | granules_per_line = 128; |
| 1965 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
| 1966 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
| 1967 | if (segment_granules && StatArray[ix].t2_space > 0) { |
| 1968 | print_blobType_single(ast, StatArray[ix].type); |
| 1969 | } else { |
| 1970 | print_space_single(ast, StatArray[ix].t2_space); |
| 1971 | } |
| 1972 | } |
| 1973 | ast->print("|" ); |
| 1974 | } else { |
| 1975 | ast->print("No Tier2 nMethods found in CodeHeap." ); |
| 1976 | } |
| 1977 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
| 1978 | } |
| 1979 | |
| 1980 | { |
| 1981 | if (nBlocks_alive > 0) { |
| 1982 | printBox(ast, '-', "not_used/not_entrant/not_installed space consumption. ' ' indicates empty, '*' indicates full" , NULL); |
| 1983 | |
| 1984 | granules_per_line = 128; |
| 1985 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
| 1986 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
| 1987 | if (segment_granules && StatArray[ix].tx_space > 0) { |
| 1988 | print_blobType_single(ast, StatArray[ix].type); |
| 1989 | } else { |
| 1990 | print_space_single(ast, StatArray[ix].tx_space); |
| 1991 | } |
| 1992 | } |
| 1993 | ast->print("|" ); |
| 1994 | } else { |
| 1995 | ast->print("No Tier2 nMethods found in CodeHeap." ); |
| 1996 | } |
| 1997 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
| 1998 | } |
| 1999 | |
| 2000 | { |
| 2001 | if (nBlocks_stub > 0) { |
| 2002 | printBox(ast, '-', "Stub and Blob space consumption. ' ' indicates empty, '*' indicates full" , NULL); |
| 2003 | |
| 2004 | granules_per_line = 128; |
| 2005 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
| 2006 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
| 2007 | if (segment_granules && StatArray[ix].stub_space > 0) { |
| 2008 | print_blobType_single(ast, StatArray[ix].type); |
| 2009 | } else { |
| 2010 | print_space_single(ast, StatArray[ix].stub_space); |
| 2011 | } |
| 2012 | } |
| 2013 | ast->print("|" ); |
| 2014 | } else { |
| 2015 | ast->print("No Stubs and Blobs found in CodeHeap." ); |
| 2016 | } |
| 2017 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
| 2018 | } |
| 2019 | |
| 2020 | { |
| 2021 | if (nBlocks_dead > 0) { |
| 2022 | printBox(ast, '-', "Dead space consumption. ' ' indicates empty, '*' indicates full" , NULL); |
| 2023 | |
| 2024 | granules_per_line = 128; |
| 2025 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
| 2026 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
| 2027 | print_space_single(ast, StatArray[ix].dead_space); |
| 2028 | } |
| 2029 | ast->print("|" ); |
| 2030 | } else { |
| 2031 | ast->print("No dead nMethods found in CodeHeap." ); |
| 2032 | } |
| 2033 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
| 2034 | } |
| 2035 | |
| 2036 | { |
| 2037 | if (!segment_granules) { // Prevent totally redundant printouts |
| 2038 | printBox(ast, '-', "Space consumption by tier (combined): <t1%>:<t2%>:<s%>. ' ' indicates empty, '*' indicates full" , NULL); |
| 2039 | |
| 2040 | granules_per_line = 24; |
| 2041 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
| 2042 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
| 2043 | |
| 2044 | if (segment_granules && StatArray[ix].t1_space > 0) { |
| 2045 | print_blobType_single(ast, StatArray[ix].type); |
| 2046 | } else { |
| 2047 | print_space_single(ast, StatArray[ix].t1_space); |
| 2048 | } |
| 2049 | ast->print(":" ); |
| 2050 | if (segment_granules && StatArray[ix].t2_space > 0) { |
| 2051 | print_blobType_single(ast, StatArray[ix].type); |
| 2052 | } else { |
| 2053 | print_space_single(ast, StatArray[ix].t2_space); |
| 2054 | } |
| 2055 | ast->print(":" ); |
| 2056 | if (segment_granules && StatArray[ix].stub_space > 0) { |
| 2057 | print_blobType_single(ast, StatArray[ix].type); |
| 2058 | } else { |
| 2059 | print_space_single(ast, StatArray[ix].stub_space); |
| 2060 | } |
| 2061 | ast->print(" " ); |
| 2062 | } |
| 2063 | ast->print("|" ); |
| 2064 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
| 2065 | } |
| 2066 | } |
| 2067 | } |
| 2068 | |
| 2069 | void CodeHeapState::print_age(outputStream* out, CodeHeap* heap) { |
| 2070 | if (!initialization_complete) { |
| 2071 | return; |
| 2072 | } |
| 2073 | |
| 2074 | const char* heapName = get_heapName(heap); |
| 2075 | get_HeapStatGlobals(out, heapName); |
| 2076 | |
| 2077 | if ((StatArray == NULL) || (alloc_granules == 0)) { |
| 2078 | return; |
| 2079 | } |
| 2080 | BUFFEREDSTREAM_DECL(ast, out) |
| 2081 | |
| 2082 | unsigned int granules_per_line = 32; |
| 2083 | char* low_bound = heap->low_boundary(); |
| 2084 | |
| 2085 | { |
| 2086 | printBox(ast, '=', "M E T H O D A G E by CompileID for " , heapName); |
| 2087 | ast->print_cr(" The age of a compiled method in the CodeHeap is not available as a\n" |
| 2088 | " time stamp. Instead, a relative age is deducted from the method's compilation ID.\n" |
| 2089 | " Age information is available for tier1 and tier2 methods only. There is no\n" |
| 2090 | " age information for stubs and blobs, because they have no compilation ID assigned.\n" |
| 2091 | " Information for the youngest method (highest ID) in the granule is printed.\n" |
| 2092 | " Refer to the legend to learn how method age is mapped to the displayed digit." ); |
| 2093 | print_age_legend(ast); |
| 2094 | BUFFEREDSTREAM_FLUSH_LOCKED("" ) |
| 2095 | } |
| 2096 | |
| 2097 | { |
| 2098 | printBox(ast, '-', "Age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information" , NULL); |
| 2099 | |
| 2100 | granules_per_line = 128; |
| 2101 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
| 2102 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
| 2103 | unsigned int age1 = StatArray[ix].t1_age; |
| 2104 | unsigned int age2 = StatArray[ix].t2_age; |
| 2105 | unsigned int agex = StatArray[ix].tx_age; |
| 2106 | unsigned int age = age1 > age2 ? age1 : age2; |
| 2107 | age = age > agex ? age : agex; |
| 2108 | print_age_single(ast, age); |
| 2109 | } |
| 2110 | ast->print("|" ); |
| 2111 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
| 2112 | } |
| 2113 | |
| 2114 | { |
| 2115 | if (nBlocks_t1 > 0) { |
| 2116 | printBox(ast, '-', "Tier1 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information" , NULL); |
| 2117 | |
| 2118 | granules_per_line = 128; |
| 2119 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
| 2120 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
| 2121 | print_age_single(ast, StatArray[ix].t1_age); |
| 2122 | } |
| 2123 | ast->print("|" ); |
| 2124 | } else { |
| 2125 | ast->print("No Tier1 nMethods found in CodeHeap." ); |
| 2126 | } |
| 2127 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
| 2128 | } |
| 2129 | |
| 2130 | { |
| 2131 | if (nBlocks_t2 > 0) { |
| 2132 | printBox(ast, '-', "Tier2 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information" , NULL); |
| 2133 | |
| 2134 | granules_per_line = 128; |
| 2135 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
| 2136 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
| 2137 | print_age_single(ast, StatArray[ix].t2_age); |
| 2138 | } |
| 2139 | ast->print("|" ); |
| 2140 | } else { |
| 2141 | ast->print("No Tier2 nMethods found in CodeHeap." ); |
| 2142 | } |
| 2143 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
| 2144 | } |
| 2145 | |
| 2146 | { |
| 2147 | if (nBlocks_alive > 0) { |
| 2148 | printBox(ast, '-', "not_used/not_entrant/not_installed age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information" , NULL); |
| 2149 | |
| 2150 | granules_per_line = 128; |
| 2151 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
| 2152 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
| 2153 | print_age_single(ast, StatArray[ix].tx_age); |
| 2154 | } |
| 2155 | ast->print("|" ); |
| 2156 | } else { |
| 2157 | ast->print("No Tier2 nMethods found in CodeHeap." ); |
| 2158 | } |
| 2159 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
| 2160 | } |
| 2161 | |
| 2162 | { |
| 2163 | if (!segment_granules) { // Prevent totally redundant printouts |
| 2164 | printBox(ast, '-', "age distribution by tier <a1>:<a2>. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information" , NULL); |
| 2165 | |
| 2166 | granules_per_line = 32; |
| 2167 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
| 2168 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
| 2169 | print_age_single(ast, StatArray[ix].t1_age); |
| 2170 | ast->print(":" ); |
| 2171 | print_age_single(ast, StatArray[ix].t2_age); |
| 2172 | ast->print(" " ); |
| 2173 | } |
| 2174 | ast->print("|" ); |
| 2175 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
| 2176 | } |
| 2177 | } |
| 2178 | } |
| 2179 | |
| 2180 | |
| 2181 | void CodeHeapState::print_names(outputStream* out, CodeHeap* heap) { |
| 2182 | if (!initialization_complete) { |
| 2183 | return; |
| 2184 | } |
| 2185 | |
| 2186 | const char* heapName = get_heapName(heap); |
| 2187 | get_HeapStatGlobals(out, heapName); |
| 2188 | |
| 2189 | if ((StatArray == NULL) || (alloc_granules == 0)) { |
| 2190 | return; |
| 2191 | } |
| 2192 | BUFFEREDSTREAM_DECL(ast, out) |
| 2193 | |
| 2194 | unsigned int granules_per_line = 128; |
| 2195 | char* low_bound = heap->low_boundary(); |
| 2196 | CodeBlob* last_blob = NULL; |
| 2197 | bool name_in_addr_range = true; |
| 2198 | bool have_CodeCache_lock = CodeCache_lock->owned_by_self(); |
| 2199 | |
| 2200 | //---< print at least 128K per block (i.e. between headers) >--- |
| 2201 | if (granules_per_line*granule_size < 128*K) { |
| 2202 | granules_per_line = (unsigned int)((128*K)/granule_size); |
| 2203 | } |
| 2204 | |
| 2205 | printBox(ast, '=', "M E T H O D N A M E S for " , heapName); |
| 2206 | ast->print_cr(" Method names are dynamically retrieved from the code cache at print time.\n" |
| 2207 | " Due to the living nature of the code heap and because the CodeCache_lock\n" |
| 2208 | " is not continuously held, the displayed name might be wrong or no name\n" |
| 2209 | " might be found at all. The likelihood for that to happen increases\n" |
| 2210 | " over time passed between aggregtion and print steps.\n" ); |
| 2211 | BUFFEREDSTREAM_FLUSH_LOCKED("" ) |
| 2212 | |
| 2213 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
| 2214 | //---< print a new blob on a new line >--- |
| 2215 | if (ix%granules_per_line == 0) { |
| 2216 | if (!name_in_addr_range) { |
| 2217 | ast->print_cr("No methods, blobs, or stubs found in this address range" ); |
| 2218 | } |
| 2219 | name_in_addr_range = false; |
| 2220 | |
| 2221 | size_t end_ix = (ix+granules_per_line <= alloc_granules) ? ix+granules_per_line : alloc_granules; |
| 2222 | ast->cr(); |
| 2223 | ast->print_cr("--------------------------------------------------------------------" ); |
| 2224 | ast->print_cr("Address range [" INTPTR_FORMAT "," INTPTR_FORMAT "), " SIZE_FORMAT "k" , p2i(low_bound+ix*granule_size), p2i(low_bound + end_ix*granule_size), (end_ix - ix)*granule_size/(size_t)K); |
| 2225 | ast->print_cr("--------------------------------------------------------------------" ); |
| 2226 | BUFFEREDSTREAM_FLUSH_AUTO("" ) |
| 2227 | } |
| 2228 | // Only check granule if it contains at least one blob. |
| 2229 | unsigned int nBlobs = StatArray[ix].t1_count + StatArray[ix].t2_count + StatArray[ix].tx_count + |
| 2230 | StatArray[ix].stub_count + StatArray[ix].dead_count; |
| 2231 | if (nBlobs > 0 ) { |
| 2232 | for (unsigned int is = 0; is < granule_size; is+=(unsigned int)seg_size) { |
| 2233 | // heap->find_start() is safe. Only works on _segmap. |
| 2234 | // Returns NULL or void*. Returned CodeBlob may be uninitialized. |
| 2235 | char* this_seg = low_bound + ix*granule_size + is; |
| 2236 | CodeBlob* this_blob = (CodeBlob*)(heap->find_start(this_seg)); |
| 2237 | bool blob_is_safe = blob_access_is_safe(this_blob, NULL); |
| 2238 | // blob could have been flushed, freed, and merged. |
| 2239 | // this_blob < last_blob is an indicator for that. |
| 2240 | if (blob_is_safe && (this_blob > last_blob)) { |
| 2241 | last_blob = this_blob; |
| 2242 | |
| 2243 | //---< get type and name >--- |
| 2244 | blobType cbType = noType; |
| 2245 | if (segment_granules) { |
| 2246 | cbType = (blobType)StatArray[ix].type; |
| 2247 | } else { |
| 2248 | //---< access these fields only if we own the CodeCache_lock >--- |
| 2249 | if (have_CodeCache_lock) { |
| 2250 | cbType = get_cbType(this_blob); |
| 2251 | } |
| 2252 | } |
| 2253 | |
| 2254 | //---< access these fields only if we own the CodeCache_lock >--- |
| 2255 | const char* blob_name = "<unavailable>" ; |
| 2256 | nmethod* nm = NULL; |
| 2257 | if (have_CodeCache_lock) { |
| 2258 | blob_name = this_blob->name(); |
| 2259 | nm = this_blob->as_nmethod_or_null(); |
| 2260 | // this_blob->name() could return NULL if no name was given to CTOR. Inlined, maybe invisible on stack |
| 2261 | if ((blob_name == NULL) || !os::is_readable_pointer(blob_name)) { |
| 2262 | blob_name = "<unavailable>" ; |
| 2263 | } |
| 2264 | } |
| 2265 | |
| 2266 | //---< print table header for new print range >--- |
| 2267 | if (!name_in_addr_range) { |
| 2268 | name_in_addr_range = true; |
| 2269 | ast->fill_to(51); |
| 2270 | ast->print("%9s" , "compiler" ); |
| 2271 | ast->fill_to(61); |
| 2272 | ast->print_cr("%6s" , "method" ); |
| 2273 | ast->print_cr("%18s %13s %17s %9s %5s %18s %s" , "Addr(module) " , "offset" , "size" , " type lvl" , " temp" , "blobType " , "Name" ); |
| 2274 | BUFFEREDSTREAM_FLUSH_AUTO("" ) |
| 2275 | } |
| 2276 | |
| 2277 | //---< print line prefix (address and offset from CodeHeap start) >--- |
| 2278 | ast->print(INTPTR_FORMAT, p2i(this_blob)); |
| 2279 | ast->fill_to(19); |
| 2280 | ast->print("(+" PTR32_FORMAT ")" , (unsigned int)((char*)this_blob-low_bound)); |
| 2281 | ast->fill_to(33); |
| 2282 | |
| 2283 | // access nmethod and Method fields only if we own the CodeCache_lock. |
| 2284 | // This fact is implicitly transported via nm != NULL. |
| 2285 | if (CompiledMethod::nmethod_access_is_safe(nm)) { |
| 2286 | Method* method = nm->method(); |
| 2287 | ResourceMark rm; |
| 2288 | //---< collect all data to locals as quickly as possible >--- |
| 2289 | unsigned int total_size = nm->total_size(); |
| 2290 | int hotness = nm->hotness_counter(); |
| 2291 | bool get_name = (cbType == nMethod_inuse) || (cbType == nMethod_notused); |
| 2292 | //---< nMethod size in hex >--- |
| 2293 | ast->print(PTR32_FORMAT, total_size); |
| 2294 | ast->print("(" SIZE_FORMAT_W(4) "K)" , total_size/K); |
| 2295 | //---< compiler information >--- |
| 2296 | ast->fill_to(51); |
| 2297 | ast->print("%5s %3d" , compTypeName[StatArray[ix].compiler], StatArray[ix].level); |
| 2298 | //---< method temperature >--- |
| 2299 | ast->fill_to(62); |
| 2300 | ast->print("%5d" , hotness); |
| 2301 | //---< name and signature >--- |
| 2302 | ast->fill_to(62+6); |
| 2303 | ast->print("%s" , blobTypeName[cbType]); |
| 2304 | ast->fill_to(82+6); |
| 2305 | if (cbType == nMethod_dead) { |
| 2306 | ast->print("%14s" , " zombie method" ); |
| 2307 | } |
| 2308 | |
| 2309 | if (get_name) { |
| 2310 | Symbol* methName = method->name(); |
| 2311 | const char* methNameS = (methName == NULL) ? NULL : methName->as_C_string(); |
| 2312 | methNameS = (methNameS == NULL) ? "<method name unavailable>" : methNameS; |
| 2313 | Symbol* methSig = method->signature(); |
| 2314 | const char* methSigS = (methSig == NULL) ? NULL : methSig->as_C_string(); |
| 2315 | methSigS = (methSigS == NULL) ? "<method signature unavailable>" : methSigS; |
| 2316 | ast->print("%s" , methNameS); |
| 2317 | ast->print("%s" , methSigS); |
| 2318 | } else { |
| 2319 | ast->print("%s" , blob_name); |
| 2320 | } |
| 2321 | } else if (blob_is_safe) { |
| 2322 | ast->fill_to(62+6); |
| 2323 | ast->print("%s" , blobTypeName[cbType]); |
| 2324 | ast->fill_to(82+6); |
| 2325 | ast->print("%s" , blob_name); |
| 2326 | } else { |
| 2327 | ast->fill_to(62+6); |
| 2328 | ast->print("<stale blob>" ); |
| 2329 | } |
| 2330 | ast->cr(); |
| 2331 | BUFFEREDSTREAM_FLUSH_AUTO("" ) |
| 2332 | } else if (!blob_is_safe && (this_blob != last_blob) && (this_blob != NULL)) { |
| 2333 | last_blob = this_blob; |
| 2334 | } |
| 2335 | } |
| 2336 | } // nBlobs > 0 |
| 2337 | } |
| 2338 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n" ) |
| 2339 | } |
| 2340 | |
| 2341 | |
| 2342 | void CodeHeapState::printBox(outputStream* ast, const char border, const char* text1, const char* text2) { |
| 2343 | unsigned int lineLen = 1 + 2 + 2 + 1; |
| 2344 | char edge, frame; |
| 2345 | |
| 2346 | if (text1 != NULL) { |
| 2347 | lineLen += (unsigned int)strlen(text1); // text1 is much shorter than MAX_INT chars. |
| 2348 | } |
| 2349 | if (text2 != NULL) { |
| 2350 | lineLen += (unsigned int)strlen(text2); // text2 is much shorter than MAX_INT chars. |
| 2351 | } |
| 2352 | if (border == '-') { |
| 2353 | edge = '+'; |
| 2354 | frame = '|'; |
| 2355 | } else { |
| 2356 | edge = border; |
| 2357 | frame = border; |
| 2358 | } |
| 2359 | |
| 2360 | ast->print("%c" , edge); |
| 2361 | for (unsigned int i = 0; i < lineLen-2; i++) { |
| 2362 | ast->print("%c" , border); |
| 2363 | } |
| 2364 | ast->print_cr("%c" , edge); |
| 2365 | |
| 2366 | ast->print("%c " , frame); |
| 2367 | if (text1 != NULL) { |
| 2368 | ast->print("%s" , text1); |
| 2369 | } |
| 2370 | if (text2 != NULL) { |
| 2371 | ast->print("%s" , text2); |
| 2372 | } |
| 2373 | ast->print_cr(" %c" , frame); |
| 2374 | |
| 2375 | ast->print("%c" , edge); |
| 2376 | for (unsigned int i = 0; i < lineLen-2; i++) { |
| 2377 | ast->print("%c" , border); |
| 2378 | } |
| 2379 | ast->print_cr("%c" , edge); |
| 2380 | } |
| 2381 | |
| 2382 | void CodeHeapState::print_blobType_legend(outputStream* out) { |
| 2383 | out->cr(); |
| 2384 | printBox(out, '-', "Block types used in the following CodeHeap dump" , NULL); |
| 2385 | for (int type = noType; type < lastType; type += 1) { |
| 2386 | out->print_cr(" %c - %s" , blobTypeChar[type], blobTypeName[type]); |
| 2387 | } |
| 2388 | out->print_cr(" -----------------------------------------------------" ); |
| 2389 | out->cr(); |
| 2390 | } |
| 2391 | |
| 2392 | void CodeHeapState::print_space_legend(outputStream* out) { |
| 2393 | unsigned int indicator = 0; |
| 2394 | unsigned int age_range = 256; |
| 2395 | unsigned int range_beg = latest_compilation_id; |
| 2396 | out->cr(); |
| 2397 | printBox(out, '-', "Space ranges, based on granule occupancy" , NULL); |
| 2398 | out->print_cr(" - 0%% == occupancy" ); |
| 2399 | for (int i=0; i<=9; i++) { |
| 2400 | out->print_cr(" %d - %3d%% < occupancy < %3d%%" , i, 10*i, 10*(i+1)); |
| 2401 | } |
| 2402 | out->print_cr(" * - 100%% == occupancy" ); |
| 2403 | out->print_cr(" ----------------------------------------------" ); |
| 2404 | out->cr(); |
| 2405 | } |
| 2406 | |
| 2407 | void CodeHeapState::print_age_legend(outputStream* out) { |
| 2408 | unsigned int indicator = 0; |
| 2409 | unsigned int age_range = 256; |
| 2410 | unsigned int range_beg = latest_compilation_id; |
| 2411 | out->cr(); |
| 2412 | printBox(out, '-', "Age ranges, based on compilation id" , NULL); |
| 2413 | while (age_range > 0) { |
| 2414 | out->print_cr(" %d - %6d to %6d" , indicator, range_beg, latest_compilation_id - latest_compilation_id/age_range); |
| 2415 | range_beg = latest_compilation_id - latest_compilation_id/age_range; |
| 2416 | age_range /= 2; |
| 2417 | indicator += 1; |
| 2418 | } |
| 2419 | out->print_cr(" -----------------------------------------" ); |
| 2420 | out->cr(); |
| 2421 | } |
| 2422 | |
| 2423 | void CodeHeapState::print_blobType_single(outputStream* out, u2 /* blobType */ type) { |
| 2424 | out->print("%c" , blobTypeChar[type]); |
| 2425 | } |
| 2426 | |
| 2427 | void CodeHeapState::print_count_single(outputStream* out, unsigned short count) { |
| 2428 | if (count >= 16) out->print("*" ); |
| 2429 | else if (count > 0) out->print("%1.1x" , count); |
| 2430 | else out->print(" " ); |
| 2431 | } |
| 2432 | |
| 2433 | void CodeHeapState::print_space_single(outputStream* out, unsigned short space) { |
| 2434 | size_t space_in_bytes = ((unsigned int)space)<<log2_seg_size; |
| 2435 | char fraction = (space == 0) ? ' ' : (space_in_bytes >= granule_size-1) ? '*' : char('0'+10*space_in_bytes/granule_size); |
| 2436 | out->print("%c" , fraction); |
| 2437 | } |
| 2438 | |
| 2439 | void CodeHeapState::print_age_single(outputStream* out, unsigned int age) { |
| 2440 | unsigned int indicator = 0; |
| 2441 | unsigned int age_range = 256; |
| 2442 | if (age > 0) { |
| 2443 | while ((age_range > 0) && (latest_compilation_id-age > latest_compilation_id/age_range)) { |
| 2444 | age_range /= 2; |
| 2445 | indicator += 1; |
| 2446 | } |
| 2447 | out->print("%c" , char('0'+indicator)); |
| 2448 | } else { |
| 2449 | out->print(" " ); |
| 2450 | } |
| 2451 | } |
| 2452 | |
| 2453 | void CodeHeapState::print_line_delim(outputStream* out, outputStream* ast, char* low_bound, unsigned int ix, unsigned int gpl) { |
| 2454 | if (ix % gpl == 0) { |
| 2455 | if (ix > 0) { |
| 2456 | ast->print("|" ); |
| 2457 | } |
| 2458 | ast->cr(); |
| 2459 | assert(out == ast, "must use the same stream!" ); |
| 2460 | |
| 2461 | ast->print(INTPTR_FORMAT, p2i(low_bound + ix*granule_size)); |
| 2462 | ast->fill_to(19); |
| 2463 | ast->print("(+" PTR32_FORMAT "): |" , (unsigned int)(ix*granule_size)); |
| 2464 | } |
| 2465 | } |
| 2466 | |
| 2467 | void CodeHeapState::print_line_delim(outputStream* out, bufferedStream* ast, char* low_bound, unsigned int ix, unsigned int gpl) { |
| 2468 | assert(out != ast, "must not use the same stream!" ); |
| 2469 | if (ix % gpl == 0) { |
| 2470 | if (ix > 0) { |
| 2471 | ast->print("|" ); |
| 2472 | } |
| 2473 | ast->cr(); |
| 2474 | |
| 2475 | // can't use BUFFEREDSTREAM_FLUSH_IF("", 512) here. |
| 2476 | // can't use this expression. bufferedStream::capacity() does not exist. |
| 2477 | // if ((ast->capacity() - ast->size()) < 512) { |
| 2478 | // Assume instead that default bufferedStream capacity (4K) was used. |
| 2479 | if (ast->size() > 3*K) { |
| 2480 | ttyLocker ttyl; |
| 2481 | out->print("%s" , ast->as_string()); |
| 2482 | ast->reset(); |
| 2483 | } |
| 2484 | |
| 2485 | ast->print(INTPTR_FORMAT, p2i(low_bound + ix*granule_size)); |
| 2486 | ast->fill_to(19); |
| 2487 | ast->print("(+" PTR32_FORMAT "): |" , (unsigned int)(ix*granule_size)); |
| 2488 | } |
| 2489 | } |
| 2490 | |
| 2491 | CodeHeapState::blobType CodeHeapState::get_cbType(CodeBlob* cb) { |
| 2492 | if ((cb != NULL) && os::is_readable_pointer(cb)) { |
| 2493 | if (cb->is_runtime_stub()) return runtimeStub; |
| 2494 | if (cb->is_deoptimization_stub()) return deoptimizationStub; |
| 2495 | if (cb->is_uncommon_trap_stub()) return uncommonTrapStub; |
| 2496 | if (cb->is_exception_stub()) return exceptionStub; |
| 2497 | if (cb->is_safepoint_stub()) return safepointStub; |
| 2498 | if (cb->is_adapter_blob()) return adapterBlob; |
| 2499 | if (cb->is_method_handles_adapter_blob()) return mh_adapterBlob; |
| 2500 | if (cb->is_buffer_blob()) return bufferBlob; |
| 2501 | |
| 2502 | //---< access these fields only if we own the CodeCache_lock >--- |
| 2503 | // Should be ensured by caller. aggregate() amd print_names() do that. |
| 2504 | if (CodeCache_lock->owned_by_self()) { |
| 2505 | nmethod* nm = cb->as_nmethod_or_null(); |
| 2506 | if (nm != NULL) { // no is_readable check required, nm = (nmethod*)cb. |
| 2507 | if (nm->is_not_installed()) return nMethod_inconstruction; |
| 2508 | if (nm->is_zombie()) return nMethod_dead; |
| 2509 | if (nm->is_unloaded()) return nMethod_unloaded; |
| 2510 | if (nm->is_in_use()) return nMethod_inuse; |
| 2511 | if (nm->is_alive() && !(nm->is_not_entrant())) return nMethod_notused; |
| 2512 | if (nm->is_alive()) return nMethod_alive; |
| 2513 | return nMethod_dead; |
| 2514 | } |
| 2515 | } |
| 2516 | } |
| 2517 | return noType; |
| 2518 | } |
| 2519 | |
| 2520 | bool CodeHeapState::blob_access_is_safe(CodeBlob* this_blob, CodeBlob* prev_blob) { |
| 2521 | return (this_blob != NULL) && // a blob must have been found, obviously |
| 2522 | ((this_blob == prev_blob) || (prev_blob == NULL)) && // when re-checking, the same blob must have been found |
| 2523 | (this_blob->header_size() >= 0) && |
| 2524 | (this_blob->relocation_size() >= 0) && |
| 2525 | ((address)this_blob + this_blob->header_size() == (address)(this_blob->relocation_begin())) && |
| 2526 | ((address)this_blob + CodeBlob::align_code_offset(this_blob->header_size() + this_blob->relocation_size()) == (address)(this_blob->content_begin())) && |
| 2527 | os::is_readable_pointer((address)(this_blob->relocation_begin())) && |
| 2528 | os::is_readable_pointer(this_blob->content_begin()); |
| 2529 | } |
| 2530 | |