1 | /* |
2 | * Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * Copyright (c) 2018, 2019 SAP SE. All rights reserved. |
4 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
5 | * |
6 | * This code is free software; you can redistribute it and/or modify it |
7 | * under the terms of the GNU General Public License version 2 only, as |
8 | * published by the Free Software Foundation. |
9 | * |
10 | * This code is distributed in the hope that it will be useful, but WITHOUT |
11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13 | * version 2 for more details (a copy is included in the LICENSE file that |
14 | * accompanied this code). |
15 | * |
16 | * You should have received a copy of the GNU General Public License version |
17 | * 2 along with this work; if not, write to the Free Software Foundation, |
18 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
19 | * |
20 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
21 | * or visit www.oracle.com if you need additional information or have any |
22 | * questions. |
23 | * |
24 | */ |
25 | |
26 | #include "precompiled.hpp" |
27 | #include "code/codeHeapState.hpp" |
28 | #include "compiler/compileBroker.hpp" |
29 | #include "runtime/sweeper.hpp" |
30 | |
31 | // ------------------------- |
32 | // | General Description | |
33 | // ------------------------- |
34 | // The CodeHeap state analytics are divided in two parts. |
35 | // The first part examines the entire CodeHeap and aggregates all |
36 | // information that is believed useful/important. |
37 | // |
38 | // Aggregation condenses the information of a piece of the CodeHeap |
39 | // (4096 bytes by default) into an analysis granule. These granules |
40 | // contain enough detail to gain initial insight while keeping the |
41 | // internal structure sizes in check. |
42 | // |
43 | // The second part, which consists of several, independent steps, |
44 | // prints the previously collected information with emphasis on |
45 | // various aspects. |
46 | // |
47 | // The CodeHeap is a living thing. Therefore, protection against concurrent |
48 | // modification (by acquiring the CodeCache_lock) is necessary. It has |
49 | // to be provided by the caller of the analysis functions. |
50 | // If the CodeCache_lock is not held, the analysis functions may print |
51 | // less detailed information or may just do nothing. It is by intention |
52 | // that an unprotected invocation is not abnormally terminated. |
53 | // |
54 | // Data collection and printing is done on an "on request" basis. |
55 | // While no request is being processed, there is no impact on performance. |
56 | // The CodeHeap state analytics do have some memory footprint. |
57 | // The "aggregate" step allocates some data structures to hold the aggregated |
58 | // information for later output. These data structures live until they are |
59 | // explicitly discarded (function "discard") or until the VM terminates. |
60 | // There is one exception: the function "all" does not leave any data |
61 | // structures allocated. |
62 | // |
63 | // Requests for real-time, on-the-fly analysis can be issued via |
64 | // jcmd <pid> Compiler.CodeHeap_Analytics [<function>] [<granularity>] |
65 | // |
66 | // If you are (only) interested in how the CodeHeap looks like after running |
67 | // a sample workload, you can use the command line option |
68 | // -XX:+PrintCodeHeapAnalytics |
69 | // It will cause a full analysis to be written to tty. In addition, a full |
70 | // analysis will be written the first time a "CodeCache full" condition is |
71 | // detected. |
72 | // |
73 | // The command line option produces output identical to the jcmd function |
74 | // jcmd <pid> Compiler.CodeHeap_Analytics all 4096 |
75 | // --------------------------------------------------------------------------------- |
76 | |
77 | // With this declaration macro, it is possible to switch between |
78 | // - direct output into an argument-passed outputStream and |
79 | // - buffered output into a bufferedStream with subsequent flush |
80 | // of the filled buffer to the outputStream. |
81 | #define USE_BUFFEREDSTREAM |
82 | |
83 | // There are instances when composing an output line or a small set of |
84 | // output lines out of many tty->print() calls creates significant overhead. |
85 | // Writing to a bufferedStream buffer first has a significant advantage: |
86 | // It uses noticeably less cpu cycles and reduces (when writing to a |
87 | // network file) the required bandwidth by at least a factor of ten. Observed on MacOS. |
88 | // That clearly makes up for the increased code complexity. |
89 | // |
90 | // Conversion of existing code is easy and straightforward, if the code already |
91 | // uses a parameterized output destination, e.g. "outputStream st". |
92 | // - rename the formal parameter to any other name, e.g. out_st. |
93 | // - at a suitable place in your code, insert |
94 | // BUFFEREDSTEAM_DECL(buf_st, out_st) |
95 | // This will provide all the declarations necessary. After that, all |
96 | // buf_st->print() (and the like) calls will be directed to a bufferedStream object. |
97 | // Once a block of output (a line or a small set of lines) is composed, insert |
98 | // BUFFEREDSTREAM_FLUSH(termstring) |
99 | // to flush the bufferedStream to the final destination out_st. termstring is just |
100 | // an arbitrary string (e.g. "\n") which is appended to the bufferedStream before |
101 | // being written to out_st. Be aware that the last character written MUST be a '\n'. |
102 | // Otherwise, buf_st->position() does not correspond to out_st->position() any longer. |
103 | // BUFFEREDSTREAM_FLUSH_LOCKED(termstring) |
104 | // does the same thing, protected by the ttyLocker lock. |
105 | // BUFFEREDSTREAM_FLUSH_IF(termstring, remSize) |
106 | // does a flush only if the remaining buffer space is less than remSize. |
107 | // |
108 | // To activate, #define USE_BUFFERED_STREAM before including this header. |
109 | // If not activated, output will directly go to the originally used outputStream |
110 | // with no additional overhead. |
111 | // |
112 | #if defined(USE_BUFFEREDSTREAM) |
113 | // All necessary declarations to print via a bufferedStream |
114 | // This macro must be placed before any other BUFFEREDSTREAM* |
115 | // macro in the function. |
116 | #define BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, _capa) \ |
117 | ResourceMark _rm; \ |
118 | /* _anyst name of the stream as used in the code */ \ |
119 | /* _outst stream where final output will go to */ \ |
120 | /* _capa allocated capacity of stream buffer */ \ |
121 | size_t _nflush = 0; \ |
122 | size_t _nforcedflush = 0; \ |
123 | size_t _nsavedflush = 0; \ |
124 | size_t _nlockedflush = 0; \ |
125 | size_t _nflush_bytes = 0; \ |
126 | size_t _capacity = _capa; \ |
127 | bufferedStream _sstobj(_capa); \ |
128 | bufferedStream* _sstbuf = &_sstobj; \ |
129 | outputStream* _outbuf = _outst; \ |
130 | bufferedStream* _anyst = &_sstobj; /* any stream. Use this to just print - no buffer flush. */ |
131 | |
132 | // Same as above, but with fixed buffer size. |
133 | #define BUFFEREDSTREAM_DECL(_anyst, _outst) \ |
134 | BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, 4*K); |
135 | |
136 | // Flush the buffer contents unconditionally. |
137 | // No action if the buffer is empty. |
138 | #define BUFFEREDSTREAM_FLUSH(_termString) \ |
139 | if (((_termString) != NULL) && (strlen(_termString) > 0)){\ |
140 | _sstbuf->print("%s", _termString); \ |
141 | } \ |
142 | if (_sstbuf != _outbuf) { \ |
143 | if (_sstbuf->size() != 0) { \ |
144 | _nforcedflush++; _nflush_bytes += _sstbuf->size(); \ |
145 | _outbuf->print("%s", _sstbuf->as_string()); \ |
146 | _sstbuf->reset(); \ |
147 | } \ |
148 | } |
149 | |
150 | // Flush the buffer contents if the remaining capacity is |
151 | // less than the given threshold. |
152 | #define BUFFEREDSTREAM_FLUSH_IF(_termString, _remSize) \ |
153 | if (((_termString) != NULL) && (strlen(_termString) > 0)){\ |
154 | _sstbuf->print("%s", _termString); \ |
155 | } \ |
156 | if (_sstbuf != _outbuf) { \ |
157 | if ((_capacity - _sstbuf->size()) < (size_t)(_remSize)){\ |
158 | _nflush++; _nforcedflush--; \ |
159 | BUFFEREDSTREAM_FLUSH("") \ |
160 | } else { \ |
161 | _nsavedflush++; \ |
162 | } \ |
163 | } |
164 | |
165 | // Flush the buffer contents if the remaining capacity is less |
166 | // than the calculated threshold (256 bytes + capacity/16) |
167 | // That should suffice for all reasonably sized output lines. |
168 | #define BUFFEREDSTREAM_FLUSH_AUTO(_termString) \ |
169 | BUFFEREDSTREAM_FLUSH_IF(_termString, 256+(_capacity>>4)) |
170 | |
171 | #define BUFFEREDSTREAM_FLUSH_LOCKED(_termString) \ |
172 | { ttyLocker ttyl;/* keep this output block together */ \ |
173 | _nlockedflush++; \ |
174 | BUFFEREDSTREAM_FLUSH(_termString) \ |
175 | } |
176 | |
177 | // #define BUFFEREDSTREAM_FLUSH_STAT() \ |
178 | // if (_sstbuf != _outbuf) { \ |
179 | // _outbuf->print_cr("%ld flushes (buffer full), %ld forced, %ld locked, %ld bytes total, %ld flushes saved", _nflush, _nforcedflush, _nlockedflush, _nflush_bytes, _nsavedflush); \ |
180 | // } |
181 | |
182 | #define BUFFEREDSTREAM_FLUSH_STAT() |
183 | #else |
184 | #define BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, _capa) \ |
185 | size_t _capacity = _capa; \ |
186 | outputStream* _outbuf = _outst; \ |
187 | outputStream* _anyst = _outst; /* any stream. Use this to just print - no buffer flush. */ |
188 | |
189 | #define BUFFEREDSTREAM_DECL(_anyst, _outst) \ |
190 | BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, 4*K) |
191 | |
192 | #define BUFFEREDSTREAM_FLUSH(_termString) \ |
193 | if (((_termString) != NULL) && (strlen(_termString) > 0)){\ |
194 | _outbuf->print("%s", _termString); \ |
195 | } |
196 | |
197 | #define BUFFEREDSTREAM_FLUSH_IF(_termString, _remSize) \ |
198 | BUFFEREDSTREAM_FLUSH(_termString) |
199 | |
200 | #define BUFFEREDSTREAM_FLUSH_AUTO(_termString) \ |
201 | BUFFEREDSTREAM_FLUSH(_termString) |
202 | |
203 | #define BUFFEREDSTREAM_FLUSH_LOCKED(_termString) \ |
204 | BUFFEREDSTREAM_FLUSH(_termString) |
205 | |
206 | #define BUFFEREDSTREAM_FLUSH_STAT() |
207 | #endif |
208 | #define HEX32_FORMAT "0x%x" // just a helper format string used below multiple times |
209 | |
210 | const char blobTypeChar[] = {' ', 'C', 'N', 'I', 'X', 'Z', 'U', 'R', '?', 'D', 'T', 'E', 'S', 'A', 'M', 'B', 'L' }; |
211 | const char* blobTypeName[] = {"noType" |
212 | , "nMethod (under construction)" |
213 | , "nMethod (active)" |
214 | , "nMethod (inactive)" |
215 | , "nMethod (deopt)" |
216 | , "nMethod (zombie)" |
217 | , "nMethod (unloaded)" |
218 | , "runtime stub" |
219 | , "ricochet stub" |
220 | , "deopt stub" |
221 | , "uncommon trap stub" |
222 | , "exception stub" |
223 | , "safepoint stub" |
224 | , "adapter blob" |
225 | , "MH adapter blob" |
226 | , "buffer blob" |
227 | , "lastType" |
228 | }; |
229 | const char* compTypeName[] = { "none" , "c1" , "c2" , "jvmci" }; |
230 | |
231 | // Be prepared for ten different CodeHeap segments. Should be enough for a few years. |
232 | const unsigned int nSizeDistElements = 31; // logarithmic range growth, max size: 2**32 |
233 | const unsigned int maxTopSizeBlocks = 50; |
234 | const unsigned int tsbStopper = 2 * maxTopSizeBlocks; |
235 | const unsigned int maxHeaps = 10; |
236 | static unsigned int nHeaps = 0; |
237 | static struct CodeHeapStat CodeHeapStatArray[maxHeaps]; |
238 | |
239 | // static struct StatElement *StatArray = NULL; |
240 | static StatElement* StatArray = NULL; |
241 | static int log2_seg_size = 0; |
242 | static size_t seg_size = 0; |
243 | static size_t alloc_granules = 0; |
244 | static size_t granule_size = 0; |
245 | static bool segment_granules = false; |
246 | static unsigned int nBlocks_t1 = 0; // counting "in_use" nmethods only. |
247 | static unsigned int nBlocks_t2 = 0; // counting "in_use" nmethods only. |
248 | static unsigned int nBlocks_alive = 0; // counting "not_used" and "not_entrant" nmethods only. |
249 | static unsigned int nBlocks_dead = 0; // counting "zombie" and "unloaded" methods only. |
250 | static unsigned int nBlocks_inconstr = 0; // counting "inconstruction" nmethods only. This is a transient state. |
251 | static unsigned int nBlocks_unloaded = 0; // counting "unloaded" nmethods only. This is a transient state. |
252 | static unsigned int nBlocks_stub = 0; |
253 | |
254 | static struct FreeBlk* FreeArray = NULL; |
255 | static unsigned int alloc_freeBlocks = 0; |
256 | |
257 | static struct TopSizeBlk* TopSizeArray = NULL; |
258 | static unsigned int alloc_topSizeBlocks = 0; |
259 | static unsigned int used_topSizeBlocks = 0; |
260 | |
261 | static struct SizeDistributionElement* SizeDistributionArray = NULL; |
262 | |
263 | // nMethod temperature (hotness) indicators. |
264 | static int avgTemp = 0; |
265 | static int maxTemp = 0; |
266 | static int minTemp = 0; |
267 | |
268 | static unsigned int latest_compilation_id = 0; |
269 | static volatile bool initialization_complete = false; |
270 | |
271 | const char* CodeHeapState::get_heapName(CodeHeap* heap) { |
272 | if (SegmentedCodeCache) { |
273 | return heap->name(); |
274 | } else { |
275 | return "CodeHeap" ; |
276 | } |
277 | } |
278 | |
279 | // returns the index for the heap being processed. |
280 | unsigned int CodeHeapState::findHeapIndex(outputStream* out, const char* heapName) { |
281 | if (heapName == NULL) { |
282 | return maxHeaps; |
283 | } |
284 | if (SegmentedCodeCache) { |
285 | // Search for a pre-existing entry. If found, return that index. |
286 | for (unsigned int i = 0; i < nHeaps; i++) { |
287 | if (CodeHeapStatArray[i].heapName != NULL && strcmp(heapName, CodeHeapStatArray[i].heapName) == 0) { |
288 | return i; |
289 | } |
290 | } |
291 | |
292 | // check if there are more code heap segments than we can handle. |
293 | if (nHeaps == maxHeaps) { |
294 | out->print_cr("Too many heap segments for current limit(%d)." , maxHeaps); |
295 | return maxHeaps; |
296 | } |
297 | |
298 | // allocate new slot in StatArray. |
299 | CodeHeapStatArray[nHeaps].heapName = heapName; |
300 | return nHeaps++; |
301 | } else { |
302 | nHeaps = 1; |
303 | CodeHeapStatArray[0].heapName = heapName; |
304 | return 0; // This is the default index if CodeCache is not segmented. |
305 | } |
306 | } |
307 | |
308 | void CodeHeapState::get_HeapStatGlobals(outputStream* out, const char* heapName) { |
309 | unsigned int ix = findHeapIndex(out, heapName); |
310 | if (ix < maxHeaps) { |
311 | StatArray = CodeHeapStatArray[ix].StatArray; |
312 | seg_size = CodeHeapStatArray[ix].segment_size; |
313 | log2_seg_size = seg_size == 0 ? 0 : exact_log2(seg_size); |
314 | alloc_granules = CodeHeapStatArray[ix].alloc_granules; |
315 | granule_size = CodeHeapStatArray[ix].granule_size; |
316 | segment_granules = CodeHeapStatArray[ix].segment_granules; |
317 | nBlocks_t1 = CodeHeapStatArray[ix].nBlocks_t1; |
318 | nBlocks_t2 = CodeHeapStatArray[ix].nBlocks_t2; |
319 | nBlocks_alive = CodeHeapStatArray[ix].nBlocks_alive; |
320 | nBlocks_dead = CodeHeapStatArray[ix].nBlocks_dead; |
321 | nBlocks_inconstr = CodeHeapStatArray[ix].nBlocks_inconstr; |
322 | nBlocks_unloaded = CodeHeapStatArray[ix].nBlocks_unloaded; |
323 | nBlocks_stub = CodeHeapStatArray[ix].nBlocks_stub; |
324 | FreeArray = CodeHeapStatArray[ix].FreeArray; |
325 | alloc_freeBlocks = CodeHeapStatArray[ix].alloc_freeBlocks; |
326 | TopSizeArray = CodeHeapStatArray[ix].TopSizeArray; |
327 | alloc_topSizeBlocks = CodeHeapStatArray[ix].alloc_topSizeBlocks; |
328 | used_topSizeBlocks = CodeHeapStatArray[ix].used_topSizeBlocks; |
329 | SizeDistributionArray = CodeHeapStatArray[ix].SizeDistributionArray; |
330 | avgTemp = CodeHeapStatArray[ix].avgTemp; |
331 | maxTemp = CodeHeapStatArray[ix].maxTemp; |
332 | minTemp = CodeHeapStatArray[ix].minTemp; |
333 | } else { |
334 | StatArray = NULL; |
335 | seg_size = 0; |
336 | log2_seg_size = 0; |
337 | alloc_granules = 0; |
338 | granule_size = 0; |
339 | segment_granules = false; |
340 | nBlocks_t1 = 0; |
341 | nBlocks_t2 = 0; |
342 | nBlocks_alive = 0; |
343 | nBlocks_dead = 0; |
344 | nBlocks_inconstr = 0; |
345 | nBlocks_unloaded = 0; |
346 | nBlocks_stub = 0; |
347 | FreeArray = NULL; |
348 | alloc_freeBlocks = 0; |
349 | TopSizeArray = NULL; |
350 | alloc_topSizeBlocks = 0; |
351 | used_topSizeBlocks = 0; |
352 | SizeDistributionArray = NULL; |
353 | avgTemp = 0; |
354 | maxTemp = 0; |
355 | minTemp = 0; |
356 | } |
357 | } |
358 | |
359 | void CodeHeapState::set_HeapStatGlobals(outputStream* out, const char* heapName) { |
360 | unsigned int ix = findHeapIndex(out, heapName); |
361 | if (ix < maxHeaps) { |
362 | CodeHeapStatArray[ix].StatArray = StatArray; |
363 | CodeHeapStatArray[ix].segment_size = seg_size; |
364 | CodeHeapStatArray[ix].alloc_granules = alloc_granules; |
365 | CodeHeapStatArray[ix].granule_size = granule_size; |
366 | CodeHeapStatArray[ix].segment_granules = segment_granules; |
367 | CodeHeapStatArray[ix].nBlocks_t1 = nBlocks_t1; |
368 | CodeHeapStatArray[ix].nBlocks_t2 = nBlocks_t2; |
369 | CodeHeapStatArray[ix].nBlocks_alive = nBlocks_alive; |
370 | CodeHeapStatArray[ix].nBlocks_dead = nBlocks_dead; |
371 | CodeHeapStatArray[ix].nBlocks_inconstr = nBlocks_inconstr; |
372 | CodeHeapStatArray[ix].nBlocks_unloaded = nBlocks_unloaded; |
373 | CodeHeapStatArray[ix].nBlocks_stub = nBlocks_stub; |
374 | CodeHeapStatArray[ix].FreeArray = FreeArray; |
375 | CodeHeapStatArray[ix].alloc_freeBlocks = alloc_freeBlocks; |
376 | CodeHeapStatArray[ix].TopSizeArray = TopSizeArray; |
377 | CodeHeapStatArray[ix].alloc_topSizeBlocks = alloc_topSizeBlocks; |
378 | CodeHeapStatArray[ix].used_topSizeBlocks = used_topSizeBlocks; |
379 | CodeHeapStatArray[ix].SizeDistributionArray = SizeDistributionArray; |
380 | CodeHeapStatArray[ix].avgTemp = avgTemp; |
381 | CodeHeapStatArray[ix].maxTemp = maxTemp; |
382 | CodeHeapStatArray[ix].minTemp = minTemp; |
383 | } |
384 | } |
385 | |
386 | //---< get a new statistics array >--- |
387 | void CodeHeapState::prepare_StatArray(outputStream* out, size_t nElem, size_t granularity, const char* heapName) { |
388 | if (StatArray == NULL) { |
389 | StatArray = new StatElement[nElem]; |
390 | //---< reset some counts >--- |
391 | alloc_granules = nElem; |
392 | granule_size = granularity; |
393 | } |
394 | |
395 | if (StatArray == NULL) { |
396 | //---< just do nothing if allocation failed >--- |
397 | out->print_cr("Statistics could not be collected for %s, probably out of memory." , heapName); |
398 | out->print_cr("Current granularity is " SIZE_FORMAT " bytes. Try a coarser granularity." , granularity); |
399 | alloc_granules = 0; |
400 | granule_size = 0; |
401 | } else { |
402 | //---< initialize statistics array >--- |
403 | memset((void*)StatArray, 0, nElem*sizeof(StatElement)); |
404 | } |
405 | } |
406 | |
407 | //---< get a new free block array >--- |
408 | void CodeHeapState::prepare_FreeArray(outputStream* out, unsigned int nElem, const char* heapName) { |
409 | if (FreeArray == NULL) { |
410 | FreeArray = new FreeBlk[nElem]; |
411 | //---< reset some counts >--- |
412 | alloc_freeBlocks = nElem; |
413 | } |
414 | |
415 | if (FreeArray == NULL) { |
416 | //---< just do nothing if allocation failed >--- |
417 | out->print_cr("Free space analysis cannot be done for %s, probably out of memory." , heapName); |
418 | alloc_freeBlocks = 0; |
419 | } else { |
420 | //---< initialize free block array >--- |
421 | memset((void*)FreeArray, 0, alloc_freeBlocks*sizeof(FreeBlk)); |
422 | } |
423 | } |
424 | |
425 | //---< get a new TopSizeArray >--- |
426 | void CodeHeapState::prepare_TopSizeArray(outputStream* out, unsigned int nElem, const char* heapName) { |
427 | if (TopSizeArray == NULL) { |
428 | TopSizeArray = new TopSizeBlk[nElem]; |
429 | //---< reset some counts >--- |
430 | alloc_topSizeBlocks = nElem; |
431 | used_topSizeBlocks = 0; |
432 | } |
433 | |
434 | if (TopSizeArray == NULL) { |
435 | //---< just do nothing if allocation failed >--- |
436 | out->print_cr("Top-%d list of largest CodeHeap blocks can not be collected for %s, probably out of memory." , nElem, heapName); |
437 | alloc_topSizeBlocks = 0; |
438 | } else { |
439 | //---< initialize TopSizeArray >--- |
440 | memset((void*)TopSizeArray, 0, nElem*sizeof(TopSizeBlk)); |
441 | used_topSizeBlocks = 0; |
442 | } |
443 | } |
444 | |
445 | //---< get a new SizeDistributionArray >--- |
446 | void CodeHeapState::prepare_SizeDistArray(outputStream* out, unsigned int nElem, const char* heapName) { |
447 | if (SizeDistributionArray == NULL) { |
448 | SizeDistributionArray = new SizeDistributionElement[nElem]; |
449 | } |
450 | |
451 | if (SizeDistributionArray == NULL) { |
452 | //---< just do nothing if allocation failed >--- |
453 | out->print_cr("Size distribution can not be collected for %s, probably out of memory." , heapName); |
454 | } else { |
455 | //---< initialize SizeDistArray >--- |
456 | memset((void*)SizeDistributionArray, 0, nElem*sizeof(SizeDistributionElement)); |
457 | // Logarithmic range growth. First range starts at _segment_size. |
458 | SizeDistributionArray[log2_seg_size-1].rangeEnd = 1U; |
459 | for (unsigned int i = log2_seg_size; i < nElem; i++) { |
460 | SizeDistributionArray[i].rangeStart = 1U << (i - log2_seg_size); |
461 | SizeDistributionArray[i].rangeEnd = 1U << ((i+1) - log2_seg_size); |
462 | } |
463 | } |
464 | } |
465 | |
466 | //---< get a new SizeDistributionArray >--- |
467 | void CodeHeapState::update_SizeDistArray(outputStream* out, unsigned int len) { |
468 | if (SizeDistributionArray != NULL) { |
469 | for (unsigned int i = log2_seg_size-1; i < nSizeDistElements; i++) { |
470 | if ((SizeDistributionArray[i].rangeStart <= len) && (len < SizeDistributionArray[i].rangeEnd)) { |
471 | SizeDistributionArray[i].lenSum += len; |
472 | SizeDistributionArray[i].count++; |
473 | break; |
474 | } |
475 | } |
476 | } |
477 | } |
478 | |
479 | void CodeHeapState::discard_StatArray(outputStream* out) { |
480 | if (StatArray != NULL) { |
481 | delete StatArray; |
482 | StatArray = NULL; |
483 | alloc_granules = 0; |
484 | granule_size = 0; |
485 | } |
486 | } |
487 | |
488 | void CodeHeapState::discard_FreeArray(outputStream* out) { |
489 | if (FreeArray != NULL) { |
490 | delete[] FreeArray; |
491 | FreeArray = NULL; |
492 | alloc_freeBlocks = 0; |
493 | } |
494 | } |
495 | |
496 | void CodeHeapState::discard_TopSizeArray(outputStream* out) { |
497 | if (TopSizeArray != NULL) { |
498 | delete[] TopSizeArray; |
499 | TopSizeArray = NULL; |
500 | alloc_topSizeBlocks = 0; |
501 | used_topSizeBlocks = 0; |
502 | } |
503 | } |
504 | |
505 | void CodeHeapState::discard_SizeDistArray(outputStream* out) { |
506 | if (SizeDistributionArray != NULL) { |
507 | delete[] SizeDistributionArray; |
508 | SizeDistributionArray = NULL; |
509 | } |
510 | } |
511 | |
512 | // Discard all allocated internal data structures. |
513 | // This should be done after an analysis session is completed. |
514 | void CodeHeapState::discard(outputStream* out, CodeHeap* heap) { |
515 | if (!initialization_complete) { |
516 | return; |
517 | } |
518 | |
519 | if (nHeaps > 0) { |
520 | for (unsigned int ix = 0; ix < nHeaps; ix++) { |
521 | get_HeapStatGlobals(out, CodeHeapStatArray[ix].heapName); |
522 | discard_StatArray(out); |
523 | discard_FreeArray(out); |
524 | discard_TopSizeArray(out); |
525 | discard_SizeDistArray(out); |
526 | set_HeapStatGlobals(out, CodeHeapStatArray[ix].heapName); |
527 | CodeHeapStatArray[ix].heapName = NULL; |
528 | } |
529 | nHeaps = 0; |
530 | } |
531 | } |
532 | |
533 | void CodeHeapState::aggregate(outputStream* out, CodeHeap* heap, size_t granularity) { |
534 | unsigned int nBlocks_free = 0; |
535 | unsigned int nBlocks_used = 0; |
536 | unsigned int nBlocks_zomb = 0; |
537 | unsigned int nBlocks_disconn = 0; |
538 | unsigned int nBlocks_notentr = 0; |
539 | |
540 | //---< max & min of TopSizeArray >--- |
541 | // it is sufficient to have these sizes as 32bit unsigned ints. |
542 | // The CodeHeap is limited in size to 4GB. Furthermore, the sizes |
543 | // are stored in _segment_size units, scaling them down by a factor of 64 (at least). |
544 | unsigned int currMax = 0; |
545 | unsigned int currMin = 0; |
546 | unsigned int currMin_ix = 0; |
547 | unsigned long total_iterations = 0; |
548 | |
549 | bool done = false; |
550 | const int min_granules = 256; |
551 | const int max_granules = 512*K; // limits analyzable CodeHeap (with segment_granules) to 32M..128M |
552 | // results in StatArray size of 24M (= max_granules * 48 Bytes per element) |
553 | // For a 1GB CodeHeap, the granule size must be at least 2kB to not violate the max_granles limit. |
554 | const char* heapName = get_heapName(heap); |
555 | BUFFEREDSTREAM_DECL(ast, out) |
556 | |
557 | if (!initialization_complete) { |
558 | memset(CodeHeapStatArray, 0, sizeof(CodeHeapStatArray)); |
559 | initialization_complete = true; |
560 | |
561 | printBox(ast, '=', "C O D E H E A P A N A L Y S I S (general remarks)" , NULL); |
562 | ast->print_cr(" The code heap analysis function provides deep insights into\n" |
563 | " the inner workings and the internal state of the Java VM's\n" |
564 | " code cache - the place where all the JVM generated machine\n" |
565 | " code is stored.\n" |
566 | " \n" |
567 | " This function is designed and provided for support engineers\n" |
568 | " to help them understand and solve issues in customer systems.\n" |
569 | " It is not intended for use and interpretation by other persons.\n" |
570 | " \n" ); |
571 | BUFFEREDSTREAM_FLUSH("" ) |
572 | } |
573 | get_HeapStatGlobals(out, heapName); |
574 | |
575 | |
576 | // Since we are (and must be) analyzing the CodeHeap contents under the CodeCache_lock, |
577 | // all heap information is "constant" and can be safely extracted/calculated before we |
578 | // enter the while() loop. Actually, the loop will only be iterated once. |
579 | char* low_bound = heap->low_boundary(); |
580 | size_t size = heap->capacity(); |
581 | size_t res_size = heap->max_capacity(); |
582 | seg_size = heap->segment_size(); |
583 | log2_seg_size = seg_size == 0 ? 0 : exact_log2(seg_size); // This is a global static value. |
584 | |
585 | if (seg_size == 0) { |
586 | printBox(ast, '-', "Heap not fully initialized yet, segment size is zero for segment " , heapName); |
587 | BUFFEREDSTREAM_FLUSH("" ) |
588 | return; |
589 | } |
590 | |
591 | if (!CodeCache_lock->owned_by_self()) { |
592 | printBox(ast, '-', "aggregate function called without holding the CodeCache_lock for " , heapName); |
593 | BUFFEREDSTREAM_FLUSH("" ) |
594 | return; |
595 | } |
596 | |
597 | // Calculate granularity of analysis (and output). |
598 | // The CodeHeap is managed (allocated) in segments (units) of CodeCacheSegmentSize. |
599 | // The CodeHeap can become fairly large, in particular in productive real-life systems. |
600 | // |
601 | // It is often neither feasible nor desirable to aggregate the data with the highest possible |
602 | // level of detail, i.e. inspecting and printing each segment on its own. |
603 | // |
604 | // The granularity parameter allows to specify the level of detail available in the analysis. |
605 | // It must be a positive multiple of the segment size and should be selected such that enough |
606 | // detail is provided while, at the same time, the printed output does not explode. |
607 | // |
608 | // By manipulating the granularity value, we enforce that at least min_granules units |
609 | // of analysis are available. We also enforce an upper limit of max_granules units to |
610 | // keep the amount of allocated storage in check. |
611 | // |
612 | // Finally, we adjust the granularity such that each granule covers at most 64k-1 segments. |
613 | // This is necessary to prevent an unsigned short overflow while accumulating space information. |
614 | // |
615 | assert(granularity > 0, "granularity should be positive." ); |
616 | |
617 | if (granularity > size) { |
618 | granularity = size; |
619 | } |
620 | if (size/granularity < min_granules) { |
621 | granularity = size/min_granules; // at least min_granules granules |
622 | } |
623 | granularity = granularity & (~(seg_size - 1)); // must be multiple of seg_size |
624 | if (granularity < seg_size) { |
625 | granularity = seg_size; // must be at least seg_size |
626 | } |
627 | if (size/granularity > max_granules) { |
628 | granularity = size/max_granules; // at most max_granules granules |
629 | } |
630 | granularity = granularity & (~(seg_size - 1)); // must be multiple of seg_size |
631 | if (granularity>>log2_seg_size >= (1L<<sizeof(unsigned short)*8)) { |
632 | granularity = ((1L<<(sizeof(unsigned short)*8))-1)<<log2_seg_size; // Limit: (64k-1) * seg_size |
633 | } |
634 | segment_granules = granularity == seg_size; |
635 | size_t granules = (size + (granularity-1))/granularity; |
636 | |
637 | printBox(ast, '=', "C O D E H E A P A N A L Y S I S (used blocks) for segment " , heapName); |
638 | ast->print_cr(" The aggregate step takes an aggregated snapshot of the CodeHeap.\n" |
639 | " Subsequent print functions create their output based on this snapshot.\n" |
640 | " The CodeHeap is a living thing, and every effort has been made for the\n" |
641 | " collected data to be consistent. Only the method names and signatures\n" |
642 | " are retrieved at print time. That may lead to rare cases where the\n" |
643 | " name of a method is no longer available, e.g. because it was unloaded.\n" ); |
644 | ast->print_cr(" CodeHeap committed size " SIZE_FORMAT "K (" SIZE_FORMAT "M), reserved size " SIZE_FORMAT "K (" SIZE_FORMAT "M), %d%% occupied." , |
645 | size/(size_t)K, size/(size_t)M, res_size/(size_t)K, res_size/(size_t)M, (unsigned int)(100.0*size/res_size)); |
646 | ast->print_cr(" CodeHeap allocation segment size is " SIZE_FORMAT " bytes. This is the smallest possible granularity." , seg_size); |
647 | ast->print_cr(" CodeHeap (committed part) is mapped to " SIZE_FORMAT " granules of size " SIZE_FORMAT " bytes." , granules, granularity); |
648 | ast->print_cr(" Each granule takes " SIZE_FORMAT " bytes of C heap, that is " SIZE_FORMAT "K in total for statistics data." , sizeof(StatElement), (sizeof(StatElement)*granules)/(size_t)K); |
649 | ast->print_cr(" The number of granules is limited to %dk, requiring a granules size of at least %d bytes for a 1GB heap." , (unsigned int)(max_granules/K), (unsigned int)(G/max_granules)); |
650 | BUFFEREDSTREAM_FLUSH("\n" ) |
651 | |
652 | |
653 | while (!done) { |
654 | //---< reset counters with every aggregation >--- |
655 | nBlocks_t1 = 0; |
656 | nBlocks_t2 = 0; |
657 | nBlocks_alive = 0; |
658 | nBlocks_dead = 0; |
659 | nBlocks_inconstr = 0; |
660 | nBlocks_unloaded = 0; |
661 | nBlocks_stub = 0; |
662 | |
663 | nBlocks_free = 0; |
664 | nBlocks_used = 0; |
665 | nBlocks_zomb = 0; |
666 | nBlocks_disconn = 0; |
667 | nBlocks_notentr = 0; |
668 | |
669 | //---< discard old arrays if size does not match >--- |
670 | if (granules != alloc_granules) { |
671 | discard_StatArray(out); |
672 | discard_TopSizeArray(out); |
673 | } |
674 | |
675 | //---< allocate arrays if they don't yet exist, initialize >--- |
676 | prepare_StatArray(out, granules, granularity, heapName); |
677 | if (StatArray == NULL) { |
678 | set_HeapStatGlobals(out, heapName); |
679 | return; |
680 | } |
681 | prepare_TopSizeArray(out, maxTopSizeBlocks, heapName); |
682 | prepare_SizeDistArray(out, nSizeDistElements, heapName); |
683 | |
684 | latest_compilation_id = CompileBroker::get_compilation_id(); |
685 | unsigned int highest_compilation_id = 0; |
686 | size_t usedSpace = 0; |
687 | size_t t1Space = 0; |
688 | size_t t2Space = 0; |
689 | size_t aliveSpace = 0; |
690 | size_t disconnSpace = 0; |
691 | size_t notentrSpace = 0; |
692 | size_t deadSpace = 0; |
693 | size_t inconstrSpace = 0; |
694 | size_t unloadedSpace = 0; |
695 | size_t stubSpace = 0; |
696 | size_t freeSpace = 0; |
697 | size_t maxFreeSize = 0; |
698 | HeapBlock* maxFreeBlock = NULL; |
699 | bool insane = false; |
700 | |
701 | int64_t hotnessAccumulator = 0; |
702 | unsigned int n_methods = 0; |
703 | avgTemp = 0; |
704 | minTemp = (int)(res_size > M ? (res_size/M)*2 : 1); |
705 | maxTemp = -minTemp; |
706 | |
707 | for (HeapBlock *h = heap->first_block(); h != NULL && !insane; h = heap->next_block(h)) { |
708 | unsigned int hb_len = (unsigned int)h->length(); // despite being size_t, length can never overflow an unsigned int. |
709 | size_t hb_bytelen = ((size_t)hb_len)<<log2_seg_size; |
710 | unsigned int ix_beg = (unsigned int)(((char*)h-low_bound)/granule_size); |
711 | unsigned int ix_end = (unsigned int)(((char*)h-low_bound+(hb_bytelen-1))/granule_size); |
712 | unsigned int compile_id = 0; |
713 | CompLevel comp_lvl = CompLevel_none; |
714 | compType cType = noComp; |
715 | blobType cbType = noType; |
716 | |
717 | //---< some sanity checks >--- |
718 | // Do not assert here, just check, print error message and return. |
719 | // This is a diagnostic function. It is not supposed to tear down the VM. |
720 | if ((char*)h < low_bound) { |
721 | insane = true; ast->print_cr("Sanity check: HeapBlock @%p below low bound (%p)" , (char*)h, low_bound); |
722 | } |
723 | if ((char*)h > (low_bound + res_size)) { |
724 | insane = true; ast->print_cr("Sanity check: HeapBlock @%p outside reserved range (%p)" , (char*)h, low_bound + res_size); |
725 | } |
726 | if ((char*)h > (low_bound + size)) { |
727 | insane = true; ast->print_cr("Sanity check: HeapBlock @%p outside used range (%p)" , (char*)h, low_bound + size); |
728 | } |
729 | if (ix_end >= granules) { |
730 | insane = true; ast->print_cr("Sanity check: end index (%d) out of bounds (" SIZE_FORMAT ")" , ix_end, granules); |
731 | } |
732 | if (size != heap->capacity()) { |
733 | insane = true; ast->print_cr("Sanity check: code heap capacity has changed (" SIZE_FORMAT "K to " SIZE_FORMAT "K)" , size/(size_t)K, heap->capacity()/(size_t)K); |
734 | } |
735 | if (ix_beg > ix_end) { |
736 | insane = true; ast->print_cr("Sanity check: end index (%d) lower than begin index (%d)" , ix_end, ix_beg); |
737 | } |
738 | if (insane) { |
739 | BUFFEREDSTREAM_FLUSH("" ) |
740 | continue; |
741 | } |
742 | |
743 | if (h->free()) { |
744 | nBlocks_free++; |
745 | freeSpace += hb_bytelen; |
746 | if (hb_bytelen > maxFreeSize) { |
747 | maxFreeSize = hb_bytelen; |
748 | maxFreeBlock = h; |
749 | } |
750 | } else { |
751 | update_SizeDistArray(out, hb_len); |
752 | nBlocks_used++; |
753 | usedSpace += hb_bytelen; |
754 | CodeBlob* cb = (CodeBlob*)heap->find_start(h); |
755 | if (cb != NULL) { |
756 | cbType = get_cbType(cb); |
757 | if (cb->is_nmethod()) { |
758 | compile_id = ((nmethod*)cb)->compile_id(); |
759 | comp_lvl = (CompLevel)((nmethod*)cb)->comp_level(); |
760 | if (((nmethod*)cb)->is_compiled_by_c1()) { |
761 | cType = c1; |
762 | } |
763 | if (((nmethod*)cb)->is_compiled_by_c2()) { |
764 | cType = c2; |
765 | } |
766 | if (((nmethod*)cb)->is_compiled_by_jvmci()) { |
767 | cType = jvmci; |
768 | } |
769 | switch (cbType) { |
770 | case nMethod_inuse: { // only for executable methods!!! |
771 | // space for these cbs is accounted for later. |
772 | int temperature = ((nmethod*)cb)->hotness_counter(); |
773 | hotnessAccumulator += temperature; |
774 | n_methods++; |
775 | maxTemp = (temperature > maxTemp) ? temperature : maxTemp; |
776 | minTemp = (temperature < minTemp) ? temperature : minTemp; |
777 | break; |
778 | } |
779 | case nMethod_notused: |
780 | nBlocks_alive++; |
781 | nBlocks_disconn++; |
782 | aliveSpace += hb_bytelen; |
783 | disconnSpace += hb_bytelen; |
784 | break; |
785 | case nMethod_notentrant: // equivalent to nMethod_alive |
786 | nBlocks_alive++; |
787 | nBlocks_notentr++; |
788 | aliveSpace += hb_bytelen; |
789 | notentrSpace += hb_bytelen; |
790 | break; |
791 | case nMethod_unloaded: |
792 | nBlocks_unloaded++; |
793 | unloadedSpace += hb_bytelen; |
794 | break; |
795 | case nMethod_dead: |
796 | nBlocks_dead++; |
797 | deadSpace += hb_bytelen; |
798 | break; |
799 | case nMethod_inconstruction: |
800 | nBlocks_inconstr++; |
801 | inconstrSpace += hb_bytelen; |
802 | break; |
803 | default: |
804 | break; |
805 | } |
806 | } |
807 | |
808 | //------------------------------------------ |
809 | //---< register block in TopSizeArray >--- |
810 | //------------------------------------------ |
811 | if (alloc_topSizeBlocks > 0) { |
812 | if (used_topSizeBlocks == 0) { |
813 | TopSizeArray[0].start = h; |
814 | TopSizeArray[0].len = hb_len; |
815 | TopSizeArray[0].index = tsbStopper; |
816 | TopSizeArray[0].compiler = cType; |
817 | TopSizeArray[0].level = comp_lvl; |
818 | TopSizeArray[0].type = cbType; |
819 | currMax = hb_len; |
820 | currMin = hb_len; |
821 | currMin_ix = 0; |
822 | used_topSizeBlocks++; |
823 | // This check roughly cuts 5000 iterations (JVM98, mixed, dbg, termination stats): |
824 | } else if ((used_topSizeBlocks < alloc_topSizeBlocks) && (hb_len < currMin)) { |
825 | //---< all blocks in list are larger, but there is room left in array >--- |
826 | TopSizeArray[currMin_ix].index = used_topSizeBlocks; |
827 | TopSizeArray[used_topSizeBlocks].start = h; |
828 | TopSizeArray[used_topSizeBlocks].len = hb_len; |
829 | TopSizeArray[used_topSizeBlocks].index = tsbStopper; |
830 | TopSizeArray[used_topSizeBlocks].compiler = cType; |
831 | TopSizeArray[used_topSizeBlocks].level = comp_lvl; |
832 | TopSizeArray[used_topSizeBlocks].type = cbType; |
833 | currMin = hb_len; |
834 | currMin_ix = used_topSizeBlocks; |
835 | used_topSizeBlocks++; |
836 | } else { |
837 | // This check cuts total_iterations by a factor of 6 (JVM98, mixed, dbg, termination stats): |
838 | // We don't need to search the list if we know beforehand that the current block size is |
839 | // smaller than the currently recorded minimum and there is no free entry left in the list. |
840 | if (!((used_topSizeBlocks == alloc_topSizeBlocks) && (hb_len <= currMin))) { |
841 | if (currMax < hb_len) { |
842 | currMax = hb_len; |
843 | } |
844 | unsigned int i; |
845 | unsigned int prev_i = tsbStopper; |
846 | unsigned int limit_i = 0; |
847 | for (i = 0; i != tsbStopper; i = TopSizeArray[i].index) { |
848 | if (limit_i++ >= alloc_topSizeBlocks) { |
849 | insane = true; break; // emergency exit |
850 | } |
851 | if (i >= used_topSizeBlocks) { |
852 | insane = true; break; // emergency exit |
853 | } |
854 | total_iterations++; |
855 | if (TopSizeArray[i].len < hb_len) { |
856 | //---< We want to insert here, element <i> is smaller than the current one >--- |
857 | if (used_topSizeBlocks < alloc_topSizeBlocks) { // still room for a new entry to insert |
858 | // old entry gets moved to the next free element of the array. |
859 | // That's necessary to keep the entry for the largest block at index 0. |
860 | // This move might cause the current minimum to be moved to another place |
861 | if (i == currMin_ix) { |
862 | assert(TopSizeArray[i].len == currMin, "sort error" ); |
863 | currMin_ix = used_topSizeBlocks; |
864 | } |
865 | memcpy((void*)&TopSizeArray[used_topSizeBlocks], (void*)&TopSizeArray[i], sizeof(TopSizeBlk)); |
866 | TopSizeArray[i].start = h; |
867 | TopSizeArray[i].len = hb_len; |
868 | TopSizeArray[i].index = used_topSizeBlocks; |
869 | TopSizeArray[i].compiler = cType; |
870 | TopSizeArray[i].level = comp_lvl; |
871 | TopSizeArray[i].type = cbType; |
872 | used_topSizeBlocks++; |
873 | } else { // no room for new entries, current block replaces entry for smallest block |
874 | //---< Find last entry (entry for smallest remembered block) >--- |
875 | unsigned int j = i; |
876 | unsigned int prev_j = tsbStopper; |
877 | unsigned int limit_j = 0; |
878 | while (TopSizeArray[j].index != tsbStopper) { |
879 | if (limit_j++ >= alloc_topSizeBlocks) { |
880 | insane = true; break; // emergency exit |
881 | } |
882 | if (j >= used_topSizeBlocks) { |
883 | insane = true; break; // emergency exit |
884 | } |
885 | total_iterations++; |
886 | prev_j = j; |
887 | j = TopSizeArray[j].index; |
888 | } |
889 | if (!insane) { |
890 | if (prev_j == tsbStopper) { |
891 | //---< Above while loop did not iterate, we already are the min entry >--- |
892 | //---< We have to just replace the smallest entry >--- |
893 | currMin = hb_len; |
894 | currMin_ix = j; |
895 | TopSizeArray[j].start = h; |
896 | TopSizeArray[j].len = hb_len; |
897 | TopSizeArray[j].index = tsbStopper; // already set!! |
898 | TopSizeArray[j].compiler = cType; |
899 | TopSizeArray[j].level = comp_lvl; |
900 | TopSizeArray[j].type = cbType; |
901 | } else { |
902 | //---< second-smallest entry is now smallest >--- |
903 | TopSizeArray[prev_j].index = tsbStopper; |
904 | currMin = TopSizeArray[prev_j].len; |
905 | currMin_ix = prev_j; |
906 | //---< smallest entry gets overwritten >--- |
907 | memcpy((void*)&TopSizeArray[j], (void*)&TopSizeArray[i], sizeof(TopSizeBlk)); |
908 | TopSizeArray[i].start = h; |
909 | TopSizeArray[i].len = hb_len; |
910 | TopSizeArray[i].index = j; |
911 | TopSizeArray[i].compiler = cType; |
912 | TopSizeArray[i].level = comp_lvl; |
913 | TopSizeArray[i].type = cbType; |
914 | } |
915 | } // insane |
916 | } |
917 | break; |
918 | } |
919 | prev_i = i; |
920 | } |
921 | if (insane) { |
922 | // Note: regular analysis could probably continue by resetting "insane" flag. |
923 | out->print_cr("Possible loop in TopSizeBlocks list detected. Analysis aborted." ); |
924 | discard_TopSizeArray(out); |
925 | } |
926 | } |
927 | } |
928 | } |
929 | //---------------------------------------------- |
930 | //---< END register block in TopSizeArray >--- |
931 | //---------------------------------------------- |
932 | } else { |
933 | nBlocks_zomb++; |
934 | } |
935 | |
936 | if (ix_beg == ix_end) { |
937 | StatArray[ix_beg].type = cbType; |
938 | switch (cbType) { |
939 | case nMethod_inuse: |
940 | highest_compilation_id = (highest_compilation_id >= compile_id) ? highest_compilation_id : compile_id; |
941 | if (comp_lvl < CompLevel_full_optimization) { |
942 | nBlocks_t1++; |
943 | t1Space += hb_bytelen; |
944 | StatArray[ix_beg].t1_count++; |
945 | StatArray[ix_beg].t1_space += (unsigned short)hb_len; |
946 | StatArray[ix_beg].t1_age = StatArray[ix_beg].t1_age < compile_id ? compile_id : StatArray[ix_beg].t1_age; |
947 | } else { |
948 | nBlocks_t2++; |
949 | t2Space += hb_bytelen; |
950 | StatArray[ix_beg].t2_count++; |
951 | StatArray[ix_beg].t2_space += (unsigned short)hb_len; |
952 | StatArray[ix_beg].t2_age = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age; |
953 | } |
954 | StatArray[ix_beg].level = comp_lvl; |
955 | StatArray[ix_beg].compiler = cType; |
956 | break; |
957 | case nMethod_inconstruction: // let's count "in construction" nmethods here. |
958 | case nMethod_alive: |
959 | StatArray[ix_beg].tx_count++; |
960 | StatArray[ix_beg].tx_space += (unsigned short)hb_len; |
961 | StatArray[ix_beg].tx_age = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age; |
962 | StatArray[ix_beg].level = comp_lvl; |
963 | StatArray[ix_beg].compiler = cType; |
964 | break; |
965 | case nMethod_dead: |
966 | case nMethod_unloaded: |
967 | StatArray[ix_beg].dead_count++; |
968 | StatArray[ix_beg].dead_space += (unsigned short)hb_len; |
969 | break; |
970 | default: |
971 | // must be a stub, if it's not a dead or alive nMethod |
972 | nBlocks_stub++; |
973 | stubSpace += hb_bytelen; |
974 | StatArray[ix_beg].stub_count++; |
975 | StatArray[ix_beg].stub_space += (unsigned short)hb_len; |
976 | break; |
977 | } |
978 | } else { |
979 | unsigned int beg_space = (unsigned int)(granule_size - ((char*)h - low_bound - ix_beg*granule_size)); |
980 | unsigned int end_space = (unsigned int)(hb_bytelen - beg_space - (ix_end-ix_beg-1)*granule_size); |
981 | beg_space = beg_space>>log2_seg_size; // store in units of _segment_size |
982 | end_space = end_space>>log2_seg_size; // store in units of _segment_size |
983 | StatArray[ix_beg].type = cbType; |
984 | StatArray[ix_end].type = cbType; |
985 | switch (cbType) { |
986 | case nMethod_inuse: |
987 | highest_compilation_id = (highest_compilation_id >= compile_id) ? highest_compilation_id : compile_id; |
988 | if (comp_lvl < CompLevel_full_optimization) { |
989 | nBlocks_t1++; |
990 | t1Space += hb_bytelen; |
991 | StatArray[ix_beg].t1_count++; |
992 | StatArray[ix_beg].t1_space += (unsigned short)beg_space; |
993 | StatArray[ix_beg].t1_age = StatArray[ix_beg].t1_age < compile_id ? compile_id : StatArray[ix_beg].t1_age; |
994 | |
995 | StatArray[ix_end].t1_count++; |
996 | StatArray[ix_end].t1_space += (unsigned short)end_space; |
997 | StatArray[ix_end].t1_age = StatArray[ix_end].t1_age < compile_id ? compile_id : StatArray[ix_end].t1_age; |
998 | } else { |
999 | nBlocks_t2++; |
1000 | t2Space += hb_bytelen; |
1001 | StatArray[ix_beg].t2_count++; |
1002 | StatArray[ix_beg].t2_space += (unsigned short)beg_space; |
1003 | StatArray[ix_beg].t2_age = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age; |
1004 | |
1005 | StatArray[ix_end].t2_count++; |
1006 | StatArray[ix_end].t2_space += (unsigned short)end_space; |
1007 | StatArray[ix_end].t2_age = StatArray[ix_end].t2_age < compile_id ? compile_id : StatArray[ix_end].t2_age; |
1008 | } |
1009 | StatArray[ix_beg].level = comp_lvl; |
1010 | StatArray[ix_beg].compiler = cType; |
1011 | StatArray[ix_end].level = comp_lvl; |
1012 | StatArray[ix_end].compiler = cType; |
1013 | break; |
1014 | case nMethod_inconstruction: // let's count "in construction" nmethods here. |
1015 | case nMethod_alive: |
1016 | StatArray[ix_beg].tx_count++; |
1017 | StatArray[ix_beg].tx_space += (unsigned short)beg_space; |
1018 | StatArray[ix_beg].tx_age = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age; |
1019 | |
1020 | StatArray[ix_end].tx_count++; |
1021 | StatArray[ix_end].tx_space += (unsigned short)end_space; |
1022 | StatArray[ix_end].tx_age = StatArray[ix_end].tx_age < compile_id ? compile_id : StatArray[ix_end].tx_age; |
1023 | |
1024 | StatArray[ix_beg].level = comp_lvl; |
1025 | StatArray[ix_beg].compiler = cType; |
1026 | StatArray[ix_end].level = comp_lvl; |
1027 | StatArray[ix_end].compiler = cType; |
1028 | break; |
1029 | case nMethod_dead: |
1030 | case nMethod_unloaded: |
1031 | StatArray[ix_beg].dead_count++; |
1032 | StatArray[ix_beg].dead_space += (unsigned short)beg_space; |
1033 | StatArray[ix_end].dead_count++; |
1034 | StatArray[ix_end].dead_space += (unsigned short)end_space; |
1035 | break; |
1036 | default: |
1037 | // must be a stub, if it's not a dead or alive nMethod |
1038 | nBlocks_stub++; |
1039 | stubSpace += hb_bytelen; |
1040 | StatArray[ix_beg].stub_count++; |
1041 | StatArray[ix_beg].stub_space += (unsigned short)beg_space; |
1042 | StatArray[ix_end].stub_count++; |
1043 | StatArray[ix_end].stub_space += (unsigned short)end_space; |
1044 | break; |
1045 | } |
1046 | for (unsigned int ix = ix_beg+1; ix < ix_end; ix++) { |
1047 | StatArray[ix].type = cbType; |
1048 | switch (cbType) { |
1049 | case nMethod_inuse: |
1050 | if (comp_lvl < CompLevel_full_optimization) { |
1051 | StatArray[ix].t1_count++; |
1052 | StatArray[ix].t1_space += (unsigned short)(granule_size>>log2_seg_size); |
1053 | StatArray[ix].t1_age = StatArray[ix].t1_age < compile_id ? compile_id : StatArray[ix].t1_age; |
1054 | } else { |
1055 | StatArray[ix].t2_count++; |
1056 | StatArray[ix].t2_space += (unsigned short)(granule_size>>log2_seg_size); |
1057 | StatArray[ix].t2_age = StatArray[ix].t2_age < compile_id ? compile_id : StatArray[ix].t2_age; |
1058 | } |
1059 | StatArray[ix].level = comp_lvl; |
1060 | StatArray[ix].compiler = cType; |
1061 | break; |
1062 | case nMethod_inconstruction: // let's count "in construction" nmethods here. |
1063 | case nMethod_alive: |
1064 | StatArray[ix].tx_count++; |
1065 | StatArray[ix].tx_space += (unsigned short)(granule_size>>log2_seg_size); |
1066 | StatArray[ix].tx_age = StatArray[ix].tx_age < compile_id ? compile_id : StatArray[ix].tx_age; |
1067 | StatArray[ix].level = comp_lvl; |
1068 | StatArray[ix].compiler = cType; |
1069 | break; |
1070 | case nMethod_dead: |
1071 | case nMethod_unloaded: |
1072 | StatArray[ix].dead_count++; |
1073 | StatArray[ix].dead_space += (unsigned short)(granule_size>>log2_seg_size); |
1074 | break; |
1075 | default: |
1076 | // must be a stub, if it's not a dead or alive nMethod |
1077 | StatArray[ix].stub_count++; |
1078 | StatArray[ix].stub_space += (unsigned short)(granule_size>>log2_seg_size); |
1079 | break; |
1080 | } |
1081 | } |
1082 | } |
1083 | } |
1084 | } |
1085 | done = true; |
1086 | |
1087 | if (!insane) { |
1088 | // There is a risk for this block (because it contains many print statements) to get |
1089 | // interspersed with print data from other threads. We take this risk intentionally. |
1090 | // Getting stalled waiting for tty_lock while holding the CodeCache_lock is not desirable. |
1091 | printBox(ast, '-', "Global CodeHeap statistics for segment " , heapName); |
1092 | ast->print_cr("freeSpace = " SIZE_FORMAT_W(8) "k, nBlocks_free = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity" , freeSpace/(size_t)K, nBlocks_free, (100.0*freeSpace)/size, (100.0*freeSpace)/res_size); |
1093 | ast->print_cr("usedSpace = " SIZE_FORMAT_W(8) "k, nBlocks_used = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity" , usedSpace/(size_t)K, nBlocks_used, (100.0*usedSpace)/size, (100.0*usedSpace)/res_size); |
1094 | ast->print_cr(" Tier1 Space = " SIZE_FORMAT_W(8) "k, nBlocks_t1 = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity" , t1Space/(size_t)K, nBlocks_t1, (100.0*t1Space)/size, (100.0*t1Space)/res_size); |
1095 | ast->print_cr(" Tier2 Space = " SIZE_FORMAT_W(8) "k, nBlocks_t2 = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity" , t2Space/(size_t)K, nBlocks_t2, (100.0*t2Space)/size, (100.0*t2Space)/res_size); |
1096 | ast->print_cr(" Alive Space = " SIZE_FORMAT_W(8) "k, nBlocks_alive = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity" , aliveSpace/(size_t)K, nBlocks_alive, (100.0*aliveSpace)/size, (100.0*aliveSpace)/res_size); |
1097 | ast->print_cr(" disconnected = " SIZE_FORMAT_W(8) "k, nBlocks_disconn = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity" , disconnSpace/(size_t)K, nBlocks_disconn, (100.0*disconnSpace)/size, (100.0*disconnSpace)/res_size); |
1098 | ast->print_cr(" not entrant = " SIZE_FORMAT_W(8) "k, nBlocks_notentr = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity" , notentrSpace/(size_t)K, nBlocks_notentr, (100.0*notentrSpace)/size, (100.0*notentrSpace)/res_size); |
1099 | ast->print_cr(" inconstrSpace = " SIZE_FORMAT_W(8) "k, nBlocks_inconstr = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity" , inconstrSpace/(size_t)K, nBlocks_inconstr, (100.0*inconstrSpace)/size, (100.0*inconstrSpace)/res_size); |
1100 | ast->print_cr(" unloadedSpace = " SIZE_FORMAT_W(8) "k, nBlocks_unloaded = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity" , unloadedSpace/(size_t)K, nBlocks_unloaded, (100.0*unloadedSpace)/size, (100.0*unloadedSpace)/res_size); |
1101 | ast->print_cr(" deadSpace = " SIZE_FORMAT_W(8) "k, nBlocks_dead = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity" , deadSpace/(size_t)K, nBlocks_dead, (100.0*deadSpace)/size, (100.0*deadSpace)/res_size); |
1102 | ast->print_cr(" stubSpace = " SIZE_FORMAT_W(8) "k, nBlocks_stub = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity" , stubSpace/(size_t)K, nBlocks_stub, (100.0*stubSpace)/size, (100.0*stubSpace)/res_size); |
1103 | ast->print_cr("ZombieBlocks = %8d. These are HeapBlocks which could not be identified as CodeBlobs." , nBlocks_zomb); |
1104 | ast->cr(); |
1105 | ast->print_cr("Segment start = " INTPTR_FORMAT ", used space = " SIZE_FORMAT_W(8)"k" , p2i(low_bound), size/K); |
1106 | ast->print_cr("Segment end (used) = " INTPTR_FORMAT ", remaining space = " SIZE_FORMAT_W(8)"k" , p2i(low_bound) + size, (res_size - size)/K); |
1107 | ast->print_cr("Segment end (reserved) = " INTPTR_FORMAT ", reserved space = " SIZE_FORMAT_W(8)"k" , p2i(low_bound) + res_size, res_size/K); |
1108 | ast->cr(); |
1109 | ast->print_cr("latest allocated compilation id = %d" , latest_compilation_id); |
1110 | ast->print_cr("highest observed compilation id = %d" , highest_compilation_id); |
1111 | ast->print_cr("Building TopSizeList iterations = %ld" , total_iterations); |
1112 | ast->cr(); |
1113 | |
1114 | int reset_val = NMethodSweeper::hotness_counter_reset_val(); |
1115 | double reverse_free_ratio = (res_size > size) ? (double)res_size/(double)(res_size-size) : (double)res_size; |
1116 | printBox(ast, '-', "Method hotness information at time of this analysis" , NULL); |
1117 | ast->print_cr("Highest possible method temperature: %12d" , reset_val); |
1118 | ast->print_cr("Threshold for method to be considered 'cold': %12.3f" , -reset_val + reverse_free_ratio * NmethodSweepActivity); |
1119 | if (n_methods > 0) { |
1120 | avgTemp = hotnessAccumulator/n_methods; |
1121 | ast->print_cr("min. hotness = %6d" , minTemp); |
1122 | ast->print_cr("avg. hotness = %6d" , avgTemp); |
1123 | ast->print_cr("max. hotness = %6d" , maxTemp); |
1124 | } else { |
1125 | avgTemp = 0; |
1126 | ast->print_cr("No hotness data available" ); |
1127 | } |
1128 | BUFFEREDSTREAM_FLUSH("\n" ) |
1129 | |
1130 | // This loop is intentionally printing directly to "out". |
1131 | // It should not print anything, anyway. |
1132 | out->print("Verifying collected data..." ); |
1133 | size_t granule_segs = granule_size>>log2_seg_size; |
1134 | for (unsigned int ix = 0; ix < granules; ix++) { |
1135 | if (StatArray[ix].t1_count > granule_segs) { |
1136 | out->print_cr("t1_count[%d] = %d" , ix, StatArray[ix].t1_count); |
1137 | } |
1138 | if (StatArray[ix].t2_count > granule_segs) { |
1139 | out->print_cr("t2_count[%d] = %d" , ix, StatArray[ix].t2_count); |
1140 | } |
1141 | if (StatArray[ix].tx_count > granule_segs) { |
1142 | out->print_cr("tx_count[%d] = %d" , ix, StatArray[ix].tx_count); |
1143 | } |
1144 | if (StatArray[ix].stub_count > granule_segs) { |
1145 | out->print_cr("stub_count[%d] = %d" , ix, StatArray[ix].stub_count); |
1146 | } |
1147 | if (StatArray[ix].dead_count > granule_segs) { |
1148 | out->print_cr("dead_count[%d] = %d" , ix, StatArray[ix].dead_count); |
1149 | } |
1150 | if (StatArray[ix].t1_space > granule_segs) { |
1151 | out->print_cr("t1_space[%d] = %d" , ix, StatArray[ix].t1_space); |
1152 | } |
1153 | if (StatArray[ix].t2_space > granule_segs) { |
1154 | out->print_cr("t2_space[%d] = %d" , ix, StatArray[ix].t2_space); |
1155 | } |
1156 | if (StatArray[ix].tx_space > granule_segs) { |
1157 | out->print_cr("tx_space[%d] = %d" , ix, StatArray[ix].tx_space); |
1158 | } |
1159 | if (StatArray[ix].stub_space > granule_segs) { |
1160 | out->print_cr("stub_space[%d] = %d" , ix, StatArray[ix].stub_space); |
1161 | } |
1162 | if (StatArray[ix].dead_space > granule_segs) { |
1163 | out->print_cr("dead_space[%d] = %d" , ix, StatArray[ix].dead_space); |
1164 | } |
1165 | // this cast is awful! I need it because NT/Intel reports a signed/unsigned mismatch. |
1166 | if ((size_t)(StatArray[ix].t1_count+StatArray[ix].t2_count+StatArray[ix].tx_count+StatArray[ix].stub_count+StatArray[ix].dead_count) > granule_segs) { |
1167 | out->print_cr("t1_count[%d] = %d, t2_count[%d] = %d, tx_count[%d] = %d, stub_count[%d] = %d" , ix, StatArray[ix].t1_count, ix, StatArray[ix].t2_count, ix, StatArray[ix].tx_count, ix, StatArray[ix].stub_count); |
1168 | } |
1169 | if ((size_t)(StatArray[ix].t1_space+StatArray[ix].t2_space+StatArray[ix].tx_space+StatArray[ix].stub_space+StatArray[ix].dead_space) > granule_segs) { |
1170 | out->print_cr("t1_space[%d] = %d, t2_space[%d] = %d, tx_space[%d] = %d, stub_space[%d] = %d" , ix, StatArray[ix].t1_space, ix, StatArray[ix].t2_space, ix, StatArray[ix].tx_space, ix, StatArray[ix].stub_space); |
1171 | } |
1172 | } |
1173 | |
1174 | // This loop is intentionally printing directly to "out". |
1175 | // It should not print anything, anyway. |
1176 | if (used_topSizeBlocks > 0) { |
1177 | unsigned int j = 0; |
1178 | if (TopSizeArray[0].len != currMax) { |
1179 | out->print_cr("currMax(%d) differs from TopSizeArray[0].len(%d)" , currMax, TopSizeArray[0].len); |
1180 | } |
1181 | for (unsigned int i = 0; (TopSizeArray[i].index != tsbStopper) && (j++ < alloc_topSizeBlocks); i = TopSizeArray[i].index) { |
1182 | if (TopSizeArray[i].len < TopSizeArray[TopSizeArray[i].index].len) { |
1183 | out->print_cr("sort error at index %d: %d !>= %d" , i, TopSizeArray[i].len, TopSizeArray[TopSizeArray[i].index].len); |
1184 | } |
1185 | } |
1186 | if (j >= alloc_topSizeBlocks) { |
1187 | out->print_cr("Possible loop in TopSizeArray chaining!\n allocBlocks = %d, usedBlocks = %d" , alloc_topSizeBlocks, used_topSizeBlocks); |
1188 | for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) { |
1189 | out->print_cr(" TopSizeArray[%d].index = %d, len = %d" , i, TopSizeArray[i].index, TopSizeArray[i].len); |
1190 | } |
1191 | } |
1192 | } |
1193 | out->print_cr("...done\n\n" ); |
1194 | } else { |
1195 | // insane heap state detected. Analysis data incomplete. Just throw it away. |
1196 | discard_StatArray(out); |
1197 | discard_TopSizeArray(out); |
1198 | } |
1199 | } |
1200 | |
1201 | |
1202 | done = false; |
1203 | while (!done && (nBlocks_free > 0)) { |
1204 | |
1205 | printBox(ast, '=', "C O D E H E A P A N A L Y S I S (free blocks) for segment " , heapName); |
1206 | ast->print_cr(" The aggregate step collects information about all free blocks in CodeHeap.\n" |
1207 | " Subsequent print functions create their output based on this snapshot.\n" ); |
1208 | ast->print_cr(" Free space in %s is distributed over %d free blocks." , heapName, nBlocks_free); |
1209 | ast->print_cr(" Each free block takes " SIZE_FORMAT " bytes of C heap for statistics data, that is " SIZE_FORMAT "K in total." , sizeof(FreeBlk), (sizeof(FreeBlk)*nBlocks_free)/K); |
1210 | BUFFEREDSTREAM_FLUSH("\n" ) |
1211 | |
1212 | //---------------------------------------- |
1213 | //-- Prepare the FreeArray of FreeBlks -- |
1214 | //---------------------------------------- |
1215 | |
1216 | //---< discard old array if size does not match >--- |
1217 | if (nBlocks_free != alloc_freeBlocks) { |
1218 | discard_FreeArray(out); |
1219 | } |
1220 | |
1221 | prepare_FreeArray(out, nBlocks_free, heapName); |
1222 | if (FreeArray == NULL) { |
1223 | done = true; |
1224 | continue; |
1225 | } |
1226 | |
1227 | //---------------------------------------- |
1228 | //-- Collect all FreeBlks in FreeArray -- |
1229 | //---------------------------------------- |
1230 | |
1231 | unsigned int ix = 0; |
1232 | FreeBlock* cur = heap->freelist(); |
1233 | |
1234 | while (cur != NULL) { |
1235 | if (ix < alloc_freeBlocks) { // don't index out of bounds if _freelist has more blocks than anticipated |
1236 | FreeArray[ix].start = cur; |
1237 | FreeArray[ix].len = (unsigned int)(cur->length()<<log2_seg_size); |
1238 | FreeArray[ix].index = ix; |
1239 | } |
1240 | cur = cur->link(); |
1241 | ix++; |
1242 | } |
1243 | if (ix != alloc_freeBlocks) { |
1244 | ast->print_cr("Free block count mismatch. Expected %d free blocks, but found %d." , alloc_freeBlocks, ix); |
1245 | ast->print_cr("I will update the counter and retry data collection" ); |
1246 | BUFFEREDSTREAM_FLUSH("\n" ) |
1247 | nBlocks_free = ix; |
1248 | continue; |
1249 | } |
1250 | done = true; |
1251 | } |
1252 | |
1253 | if (!done || (nBlocks_free == 0)) { |
1254 | if (nBlocks_free == 0) { |
1255 | printBox(ast, '-', "no free blocks found in " , heapName); |
1256 | } else if (!done) { |
1257 | ast->print_cr("Free block count mismatch could not be resolved." ); |
1258 | ast->print_cr("Try to run \"aggregate\" function to update counters" ); |
1259 | } |
1260 | BUFFEREDSTREAM_FLUSH("" ) |
1261 | |
1262 | //---< discard old array and update global values >--- |
1263 | discard_FreeArray(out); |
1264 | set_HeapStatGlobals(out, heapName); |
1265 | return; |
1266 | } |
1267 | |
1268 | //---< calculate and fill remaining fields >--- |
1269 | if (FreeArray != NULL) { |
1270 | // This loop is intentionally printing directly to "out". |
1271 | // It should not print anything, anyway. |
1272 | for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) { |
1273 | size_t lenSum = 0; |
1274 | FreeArray[ix].gap = (unsigned int)((address)FreeArray[ix+1].start - ((address)FreeArray[ix].start + FreeArray[ix].len)); |
1275 | for (HeapBlock *h = heap->next_block(FreeArray[ix].start); (h != NULL) && (h != FreeArray[ix+1].start); h = heap->next_block(h)) { |
1276 | CodeBlob *cb = (CodeBlob*)(heap->find_start(h)); |
1277 | if ((cb != NULL) && !cb->is_nmethod()) { |
1278 | FreeArray[ix].stubs_in_gap = true; |
1279 | } |
1280 | FreeArray[ix].n_gapBlocks++; |
1281 | lenSum += h->length()<<log2_seg_size; |
1282 | if (((address)h < ((address)FreeArray[ix].start+FreeArray[ix].len)) || (h >= FreeArray[ix+1].start)) { |
1283 | out->print_cr("unsorted occupied CodeHeap block found @ %p, gap interval [%p, %p)" , h, (address)FreeArray[ix].start+FreeArray[ix].len, FreeArray[ix+1].start); |
1284 | } |
1285 | } |
1286 | if (lenSum != FreeArray[ix].gap) { |
1287 | out->print_cr("Length mismatch for gap between FreeBlk[%d] and FreeBlk[%d]. Calculated: %d, accumulated: %d." , ix, ix+1, FreeArray[ix].gap, (unsigned int)lenSum); |
1288 | } |
1289 | } |
1290 | } |
1291 | set_HeapStatGlobals(out, heapName); |
1292 | |
1293 | printBox(ast, '=', "C O D E H E A P A N A L Y S I S C O M P L E T E for segment " , heapName); |
1294 | BUFFEREDSTREAM_FLUSH("\n" ) |
1295 | } |
1296 | |
1297 | |
1298 | void CodeHeapState::print_usedSpace(outputStream* out, CodeHeap* heap) { |
1299 | if (!initialization_complete) { |
1300 | return; |
1301 | } |
1302 | |
1303 | const char* heapName = get_heapName(heap); |
1304 | get_HeapStatGlobals(out, heapName); |
1305 | |
1306 | if ((StatArray == NULL) || (TopSizeArray == NULL) || (used_topSizeBlocks == 0)) { |
1307 | return; |
1308 | } |
1309 | BUFFEREDSTREAM_DECL(ast, out) |
1310 | |
1311 | { |
1312 | printBox(ast, '=', "U S E D S P A C E S T A T I S T I C S for " , heapName); |
1313 | ast->print_cr("Note: The Top%d list of the largest used blocks associates method names\n" |
1314 | " and other identifying information with the block size data.\n" |
1315 | "\n" |
1316 | " Method names are dynamically retrieved from the code cache at print time.\n" |
1317 | " Due to the living nature of the code cache and because the CodeCache_lock\n" |
1318 | " is not continuously held, the displayed name might be wrong or no name\n" |
1319 | " might be found at all. The likelihood for that to happen increases\n" |
1320 | " over time passed between analysis and print step.\n" , used_topSizeBlocks); |
1321 | BUFFEREDSTREAM_FLUSH_LOCKED("\n" ) |
1322 | } |
1323 | |
1324 | //---------------------------- |
1325 | //-- Print Top Used Blocks -- |
1326 | //---------------------------- |
1327 | { |
1328 | char* low_bound = heap->low_boundary(); |
1329 | bool have_CodeCache_lock = CodeCache_lock->owned_by_self(); |
1330 | |
1331 | printBox(ast, '-', "Largest Used Blocks in " , heapName); |
1332 | print_blobType_legend(ast); |
1333 | |
1334 | ast->fill_to(51); |
1335 | ast->print("%4s" , "blob" ); |
1336 | ast->fill_to(56); |
1337 | ast->print("%9s" , "compiler" ); |
1338 | ast->fill_to(66); |
1339 | ast->print_cr("%6s" , "method" ); |
1340 | ast->print_cr("%18s %13s %17s %4s %9s %5s %s" , "Addr(module) " , "offset" , "size" , "type" , " type lvl" , " temp" , "Name" ); |
1341 | BUFFEREDSTREAM_FLUSH_LOCKED("" ) |
1342 | |
1343 | //---< print Top Ten Used Blocks >--- |
1344 | if (used_topSizeBlocks > 0) { |
1345 | unsigned int printed_topSizeBlocks = 0; |
1346 | for (unsigned int i = 0; i != tsbStopper; i = TopSizeArray[i].index) { |
1347 | printed_topSizeBlocks++; |
1348 | nmethod* nm = NULL; |
1349 | const char* blob_name = "unnamed blob or blob name unavailable" ; |
1350 | // heap->find_start() is safe. Only works on _segmap. |
1351 | // Returns NULL or void*. Returned CodeBlob may be uninitialized. |
1352 | HeapBlock* heapBlock = TopSizeArray[i].start; |
1353 | CodeBlob* this_blob = (CodeBlob*)(heap->find_start(heapBlock)); |
1354 | bool blob_is_safe = blob_access_is_safe(this_blob, NULL); |
1355 | if (blob_is_safe) { |
1356 | //---< access these fields only if we own the CodeCache_lock >--- |
1357 | if (have_CodeCache_lock) { |
1358 | blob_name = this_blob->name(); |
1359 | nm = this_blob->as_nmethod_or_null(); |
1360 | } |
1361 | //---< blob address >--- |
1362 | ast->print(INTPTR_FORMAT, p2i(this_blob)); |
1363 | ast->fill_to(19); |
1364 | //---< blob offset from CodeHeap begin >--- |
1365 | ast->print("(+" PTR32_FORMAT ")" , (unsigned int)((char*)this_blob-low_bound)); |
1366 | ast->fill_to(33); |
1367 | } else { |
1368 | //---< block address >--- |
1369 | ast->print(INTPTR_FORMAT, p2i(TopSizeArray[i].start)); |
1370 | ast->fill_to(19); |
1371 | //---< block offset from CodeHeap begin >--- |
1372 | ast->print("(+" PTR32_FORMAT ")" , (unsigned int)((char*)TopSizeArray[i].start-low_bound)); |
1373 | ast->fill_to(33); |
1374 | } |
1375 | |
1376 | //---< print size, name, and signature (for nMethods) >--- |
1377 | // access nmethod and Method fields only if we own the CodeCache_lock. |
1378 | // This fact is implicitly transported via nm != NULL. |
1379 | if (CompiledMethod::nmethod_access_is_safe(nm)) { |
1380 | ResourceMark rm; |
1381 | Method* method = nm->method(); |
1382 | if (nm->is_in_use()) { |
1383 | blob_name = method->name_and_sig_as_C_string(); |
1384 | } |
1385 | if (nm->is_not_entrant()) { |
1386 | blob_name = method->name_and_sig_as_C_string(); |
1387 | } |
1388 | //---< nMethod size in hex >--- |
1389 | unsigned int total_size = nm->total_size(); |
1390 | ast->print(PTR32_FORMAT, total_size); |
1391 | ast->print("(" SIZE_FORMAT_W(4) "K)" , total_size/K); |
1392 | ast->fill_to(51); |
1393 | ast->print(" %c" , blobTypeChar[TopSizeArray[i].type]); |
1394 | //---< compiler information >--- |
1395 | ast->fill_to(56); |
1396 | ast->print("%5s %3d" , compTypeName[TopSizeArray[i].compiler], TopSizeArray[i].level); |
1397 | //---< method temperature >--- |
1398 | ast->fill_to(67); |
1399 | ast->print("%5d" , nm->hotness_counter()); |
1400 | //---< name and signature >--- |
1401 | ast->fill_to(67+6); |
1402 | if (nm->is_not_installed()) { |
1403 | ast->print(" not (yet) installed method " ); |
1404 | } |
1405 | if (nm->is_zombie()) { |
1406 | ast->print(" zombie method " ); |
1407 | } |
1408 | ast->print("%s" , blob_name); |
1409 | } else { |
1410 | //---< block size in hex >--- |
1411 | ast->print(PTR32_FORMAT, (unsigned int)(TopSizeArray[i].len<<log2_seg_size)); |
1412 | ast->print("(" SIZE_FORMAT_W(4) "K)" , (TopSizeArray[i].len<<log2_seg_size)/K); |
1413 | //---< no compiler information >--- |
1414 | ast->fill_to(56); |
1415 | //---< name and signature >--- |
1416 | ast->fill_to(67+6); |
1417 | ast->print("%s" , blob_name); |
1418 | } |
1419 | ast->cr(); |
1420 | BUFFEREDSTREAM_FLUSH_AUTO("" ) |
1421 | } |
1422 | if (used_topSizeBlocks != printed_topSizeBlocks) { |
1423 | ast->print_cr("used blocks: %d, printed blocks: %d" , used_topSizeBlocks, printed_topSizeBlocks); |
1424 | for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) { |
1425 | ast->print_cr(" TopSizeArray[%d].index = %d, len = %d" , i, TopSizeArray[i].index, TopSizeArray[i].len); |
1426 | BUFFEREDSTREAM_FLUSH_AUTO("" ) |
1427 | } |
1428 | } |
1429 | BUFFEREDSTREAM_FLUSH("\n\n" ) |
1430 | } |
1431 | } |
1432 | |
1433 | //----------------------------- |
1434 | //-- Print Usage Histogram -- |
1435 | //----------------------------- |
1436 | |
1437 | if (SizeDistributionArray != NULL) { |
1438 | unsigned long total_count = 0; |
1439 | unsigned long total_size = 0; |
1440 | const unsigned long pctFactor = 200; |
1441 | |
1442 | for (unsigned int i = 0; i < nSizeDistElements; i++) { |
1443 | total_count += SizeDistributionArray[i].count; |
1444 | total_size += SizeDistributionArray[i].lenSum; |
1445 | } |
1446 | |
1447 | if ((total_count > 0) && (total_size > 0)) { |
1448 | printBox(ast, '-', "Block count histogram for " , heapName); |
1449 | ast->print_cr("Note: The histogram indicates how many blocks (as a percentage\n" |
1450 | " of all blocks) have a size in the given range.\n" |
1451 | " %ld characters are printed per percentage point.\n" , pctFactor/100); |
1452 | ast->print_cr("total size of all blocks: %7ldM" , (total_size<<log2_seg_size)/M); |
1453 | ast->print_cr("total number of all blocks: %7ld\n" , total_count); |
1454 | BUFFEREDSTREAM_FLUSH_LOCKED("" ) |
1455 | |
1456 | ast->print_cr("[Size Range)------avg.-size-+----count-+" ); |
1457 | for (unsigned int i = 0; i < nSizeDistElements; i++) { |
1458 | if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) { |
1459 | ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): " |
1460 | ,(size_t)(SizeDistributionArray[i].rangeStart<<log2_seg_size) |
1461 | ,(size_t)(SizeDistributionArray[i].rangeEnd<<log2_seg_size) |
1462 | ); |
1463 | } else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) { |
1464 | ast->print("[" SIZE_FORMAT_W(5) "K.." SIZE_FORMAT_W(5) "K): " |
1465 | ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K |
1466 | ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K |
1467 | ); |
1468 | } else { |
1469 | ast->print("[" SIZE_FORMAT_W(5) "M.." SIZE_FORMAT_W(5) "M): " |
1470 | ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M |
1471 | ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M |
1472 | ); |
1473 | } |
1474 | ast->print(" %8d | %8d |" , |
1475 | SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0, |
1476 | SizeDistributionArray[i].count); |
1477 | |
1478 | unsigned int percent = pctFactor*SizeDistributionArray[i].count/total_count; |
1479 | for (unsigned int j = 1; j <= percent; j++) { |
1480 | ast->print("%c" , (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*'); |
1481 | } |
1482 | ast->cr(); |
1483 | BUFFEREDSTREAM_FLUSH_AUTO("" ) |
1484 | } |
1485 | ast->print_cr("----------------------------+----------+" ); |
1486 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
1487 | |
1488 | printBox(ast, '-', "Contribution per size range to total size for " , heapName); |
1489 | ast->print_cr("Note: The histogram indicates how much space (as a percentage of all\n" |
1490 | " occupied space) is used by the blocks in the given size range.\n" |
1491 | " %ld characters are printed per percentage point.\n" , pctFactor/100); |
1492 | ast->print_cr("total size of all blocks: %7ldM" , (total_size<<log2_seg_size)/M); |
1493 | ast->print_cr("total number of all blocks: %7ld\n" , total_count); |
1494 | BUFFEREDSTREAM_FLUSH_LOCKED("" ) |
1495 | |
1496 | ast->print_cr("[Size Range)------avg.-size-+----count-+" ); |
1497 | for (unsigned int i = 0; i < nSizeDistElements; i++) { |
1498 | if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) { |
1499 | ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): " |
1500 | ,(size_t)(SizeDistributionArray[i].rangeStart<<log2_seg_size) |
1501 | ,(size_t)(SizeDistributionArray[i].rangeEnd<<log2_seg_size) |
1502 | ); |
1503 | } else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) { |
1504 | ast->print("[" SIZE_FORMAT_W(5) "K.." SIZE_FORMAT_W(5) "K): " |
1505 | ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K |
1506 | ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K |
1507 | ); |
1508 | } else { |
1509 | ast->print("[" SIZE_FORMAT_W(5) "M.." SIZE_FORMAT_W(5) "M): " |
1510 | ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M |
1511 | ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M |
1512 | ); |
1513 | } |
1514 | ast->print(" %8d | %8d |" , |
1515 | SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0, |
1516 | SizeDistributionArray[i].count); |
1517 | |
1518 | unsigned int percent = pctFactor*(unsigned long)SizeDistributionArray[i].lenSum/total_size; |
1519 | for (unsigned int j = 1; j <= percent; j++) { |
1520 | ast->print("%c" , (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*'); |
1521 | } |
1522 | ast->cr(); |
1523 | BUFFEREDSTREAM_FLUSH_AUTO("" ) |
1524 | } |
1525 | ast->print_cr("----------------------------+----------+" ); |
1526 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
1527 | } |
1528 | } |
1529 | } |
1530 | |
1531 | |
1532 | void CodeHeapState::print_freeSpace(outputStream* out, CodeHeap* heap) { |
1533 | if (!initialization_complete) { |
1534 | return; |
1535 | } |
1536 | |
1537 | const char* heapName = get_heapName(heap); |
1538 | get_HeapStatGlobals(out, heapName); |
1539 | |
1540 | if ((StatArray == NULL) || (FreeArray == NULL) || (alloc_granules == 0)) { |
1541 | return; |
1542 | } |
1543 | BUFFEREDSTREAM_DECL(ast, out) |
1544 | |
1545 | { |
1546 | printBox(ast, '=', "F R E E S P A C E S T A T I S T I C S for " , heapName); |
1547 | ast->print_cr("Note: in this context, a gap is the occupied space between two free blocks.\n" |
1548 | " Those gaps are of interest if there is a chance that they become\n" |
1549 | " unoccupied, e.g. by class unloading. Then, the two adjacent free\n" |
1550 | " blocks, together with the now unoccupied space, form a new, large\n" |
1551 | " free block." ); |
1552 | BUFFEREDSTREAM_FLUSH_LOCKED("\n" ) |
1553 | } |
1554 | |
1555 | { |
1556 | printBox(ast, '-', "List of all Free Blocks in " , heapName); |
1557 | |
1558 | unsigned int ix = 0; |
1559 | for (ix = 0; ix < alloc_freeBlocks-1; ix++) { |
1560 | ast->print(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT "," , p2i(FreeArray[ix].start), ix, FreeArray[ix].len); |
1561 | ast->fill_to(38); |
1562 | ast->print("Gap[%4d..%4d]: " HEX32_FORMAT " bytes," , ix, ix+1, FreeArray[ix].gap); |
1563 | ast->fill_to(71); |
1564 | ast->print("block count: %6d" , FreeArray[ix].n_gapBlocks); |
1565 | if (FreeArray[ix].stubs_in_gap) { |
1566 | ast->print(" !! permanent gap, contains stubs and/or blobs !!" ); |
1567 | } |
1568 | ast->cr(); |
1569 | BUFFEREDSTREAM_FLUSH_AUTO("" ) |
1570 | } |
1571 | ast->print_cr(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT, p2i(FreeArray[ix].start), ix, FreeArray[ix].len); |
1572 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n" ) |
1573 | } |
1574 | |
1575 | |
1576 | //----------------------------------------- |
1577 | //-- Find and Print Top Ten Free Blocks -- |
1578 | //----------------------------------------- |
1579 | |
1580 | //---< find Top Ten Free Blocks >--- |
1581 | const unsigned int nTop = 10; |
1582 | unsigned int currMax10 = 0; |
1583 | struct FreeBlk* FreeTopTen[nTop]; |
1584 | memset(FreeTopTen, 0, sizeof(FreeTopTen)); |
1585 | |
1586 | for (unsigned int ix = 0; ix < alloc_freeBlocks; ix++) { |
1587 | if (FreeArray[ix].len > currMax10) { // larger than the ten largest found so far |
1588 | unsigned int currSize = FreeArray[ix].len; |
1589 | |
1590 | unsigned int iy; |
1591 | for (iy = 0; iy < nTop && FreeTopTen[iy] != NULL; iy++) { |
1592 | if (FreeTopTen[iy]->len < currSize) { |
1593 | for (unsigned int iz = nTop-1; iz > iy; iz--) { // make room to insert new free block |
1594 | FreeTopTen[iz] = FreeTopTen[iz-1]; |
1595 | } |
1596 | FreeTopTen[iy] = &FreeArray[ix]; // insert new free block |
1597 | if (FreeTopTen[nTop-1] != NULL) { |
1598 | currMax10 = FreeTopTen[nTop-1]->len; |
1599 | } |
1600 | break; // done with this, check next free block |
1601 | } |
1602 | } |
1603 | if (iy >= nTop) { |
1604 | ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d" , |
1605 | currSize, currMax10); |
1606 | continue; |
1607 | } |
1608 | if (FreeTopTen[iy] == NULL) { |
1609 | FreeTopTen[iy] = &FreeArray[ix]; |
1610 | if (iy == (nTop-1)) { |
1611 | currMax10 = currSize; |
1612 | } |
1613 | } |
1614 | } |
1615 | } |
1616 | BUFFEREDSTREAM_FLUSH_AUTO("" ) |
1617 | |
1618 | { |
1619 | printBox(ast, '-', "Top Ten Free Blocks in " , heapName); |
1620 | |
1621 | //---< print Top Ten Free Blocks >--- |
1622 | for (unsigned int iy = 0; (iy < nTop) && (FreeTopTen[iy] != NULL); iy++) { |
1623 | ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT "," , iy+1, FreeTopTen[iy]->index, FreeTopTen[iy]->len); |
1624 | ast->fill_to(39); |
1625 | if (FreeTopTen[iy]->index == (alloc_freeBlocks-1)) { |
1626 | ast->print("last free block in list." ); |
1627 | } else { |
1628 | ast->print("Gap (to next) " HEX32_FORMAT "," , FreeTopTen[iy]->gap); |
1629 | ast->fill_to(63); |
1630 | ast->print("#blocks (in gap) %d" , FreeTopTen[iy]->n_gapBlocks); |
1631 | } |
1632 | ast->cr(); |
1633 | BUFFEREDSTREAM_FLUSH_AUTO("" ) |
1634 | } |
1635 | } |
1636 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n" ) |
1637 | |
1638 | |
1639 | //-------------------------------------------------------- |
1640 | //-- Find and Print Top Ten Free-Occupied-Free Triples -- |
1641 | //-------------------------------------------------------- |
1642 | |
1643 | //---< find and print Top Ten Triples (Free-Occupied-Free) >--- |
1644 | currMax10 = 0; |
1645 | struct FreeBlk *FreeTopTenTriple[nTop]; |
1646 | memset(FreeTopTenTriple, 0, sizeof(FreeTopTenTriple)); |
1647 | |
1648 | for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) { |
1649 | // If there are stubs in the gap, this gap will never become completely free. |
1650 | // The triple will thus never merge to one free block. |
1651 | unsigned int lenTriple = FreeArray[ix].len + (FreeArray[ix].stubs_in_gap ? 0 : FreeArray[ix].gap + FreeArray[ix+1].len); |
1652 | FreeArray[ix].len = lenTriple; |
1653 | if (lenTriple > currMax10) { // larger than the ten largest found so far |
1654 | |
1655 | unsigned int iy; |
1656 | for (iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) { |
1657 | if (FreeTopTenTriple[iy]->len < lenTriple) { |
1658 | for (unsigned int iz = nTop-1; iz > iy; iz--) { |
1659 | FreeTopTenTriple[iz] = FreeTopTenTriple[iz-1]; |
1660 | } |
1661 | FreeTopTenTriple[iy] = &FreeArray[ix]; |
1662 | if (FreeTopTenTriple[nTop-1] != NULL) { |
1663 | currMax10 = FreeTopTenTriple[nTop-1]->len; |
1664 | } |
1665 | break; |
1666 | } |
1667 | } |
1668 | if (iy == nTop) { |
1669 | ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d" , |
1670 | lenTriple, currMax10); |
1671 | continue; |
1672 | } |
1673 | if (FreeTopTenTriple[iy] == NULL) { |
1674 | FreeTopTenTriple[iy] = &FreeArray[ix]; |
1675 | if (iy == (nTop-1)) { |
1676 | currMax10 = lenTriple; |
1677 | } |
1678 | } |
1679 | } |
1680 | } |
1681 | BUFFEREDSTREAM_FLUSH_AUTO("" ) |
1682 | |
1683 | { |
1684 | printBox(ast, '-', "Top Ten Free-Occupied-Free Triples in " , heapName); |
1685 | ast->print_cr(" Use this information to judge how likely it is that a large(r) free block\n" |
1686 | " might get created by code cache sweeping.\n" |
1687 | " If all the occupied blocks can be swept, the three free blocks will be\n" |
1688 | " merged into one (much larger) free block. That would reduce free space\n" |
1689 | " fragmentation.\n" ); |
1690 | |
1691 | //---< print Top Ten Free-Occupied-Free Triples >--- |
1692 | for (unsigned int iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) { |
1693 | ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT "," , iy+1, FreeTopTenTriple[iy]->index, FreeTopTenTriple[iy]->len); |
1694 | ast->fill_to(39); |
1695 | ast->print("Gap (to next) " HEX32_FORMAT "," , FreeTopTenTriple[iy]->gap); |
1696 | ast->fill_to(63); |
1697 | ast->print("#blocks (in gap) %d" , FreeTopTenTriple[iy]->n_gapBlocks); |
1698 | ast->cr(); |
1699 | BUFFEREDSTREAM_FLUSH_AUTO("" ) |
1700 | } |
1701 | } |
1702 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n" ) |
1703 | } |
1704 | |
1705 | |
1706 | void CodeHeapState::print_count(outputStream* out, CodeHeap* heap) { |
1707 | if (!initialization_complete) { |
1708 | return; |
1709 | } |
1710 | |
1711 | const char* heapName = get_heapName(heap); |
1712 | get_HeapStatGlobals(out, heapName); |
1713 | |
1714 | if ((StatArray == NULL) || (alloc_granules == 0)) { |
1715 | return; |
1716 | } |
1717 | BUFFEREDSTREAM_DECL(ast, out) |
1718 | |
1719 | unsigned int granules_per_line = 32; |
1720 | char* low_bound = heap->low_boundary(); |
1721 | |
1722 | { |
1723 | printBox(ast, '=', "B L O C K C O U N T S for " , heapName); |
1724 | ast->print_cr(" Each granule contains an individual number of heap blocks. Large blocks\n" |
1725 | " may span multiple granules and are counted for each granule they touch.\n" ); |
1726 | if (segment_granules) { |
1727 | ast->print_cr(" You have selected granule size to be as small as segment size.\n" |
1728 | " As a result, each granule contains exactly one block (or a part of one block)\n" |
1729 | " or is displayed as empty (' ') if it's BlobType does not match the selection.\n" |
1730 | " Occupied granules show their BlobType character, see legend.\n" ); |
1731 | print_blobType_legend(ast); |
1732 | } |
1733 | BUFFEREDSTREAM_FLUSH_LOCKED("" ) |
1734 | } |
1735 | |
1736 | { |
1737 | if (segment_granules) { |
1738 | printBox(ast, '-', "Total (all types) count for granule size == segment size" , NULL); |
1739 | |
1740 | granules_per_line = 128; |
1741 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
1742 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
1743 | print_blobType_single(ast, StatArray[ix].type); |
1744 | } |
1745 | } else { |
1746 | printBox(ast, '-', "Total (all tiers) count, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty" , NULL); |
1747 | |
1748 | granules_per_line = 128; |
1749 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
1750 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
1751 | unsigned int count = StatArray[ix].t1_count + StatArray[ix].t2_count + StatArray[ix].tx_count |
1752 | + StatArray[ix].stub_count + StatArray[ix].dead_count; |
1753 | print_count_single(ast, count); |
1754 | } |
1755 | } |
1756 | BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n" ) |
1757 | } |
1758 | |
1759 | { |
1760 | if (nBlocks_t1 > 0) { |
1761 | printBox(ast, '-', "Tier1 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty" , NULL); |
1762 | |
1763 | granules_per_line = 128; |
1764 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
1765 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
1766 | if (segment_granules && StatArray[ix].t1_count > 0) { |
1767 | print_blobType_single(ast, StatArray[ix].type); |
1768 | } else { |
1769 | print_count_single(ast, StatArray[ix].t1_count); |
1770 | } |
1771 | } |
1772 | ast->print("|" ); |
1773 | } else { |
1774 | ast->print("No Tier1 nMethods found in CodeHeap." ); |
1775 | } |
1776 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
1777 | } |
1778 | |
1779 | { |
1780 | if (nBlocks_t2 > 0) { |
1781 | printBox(ast, '-', "Tier2 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty" , NULL); |
1782 | |
1783 | granules_per_line = 128; |
1784 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
1785 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
1786 | if (segment_granules && StatArray[ix].t2_count > 0) { |
1787 | print_blobType_single(ast, StatArray[ix].type); |
1788 | } else { |
1789 | print_count_single(ast, StatArray[ix].t2_count); |
1790 | } |
1791 | } |
1792 | ast->print("|" ); |
1793 | } else { |
1794 | ast->print("No Tier2 nMethods found in CodeHeap." ); |
1795 | } |
1796 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
1797 | } |
1798 | |
1799 | { |
1800 | if (nBlocks_alive > 0) { |
1801 | printBox(ast, '-', "not_used/not_entrant/not_installed nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty" , NULL); |
1802 | |
1803 | granules_per_line = 128; |
1804 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
1805 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
1806 | if (segment_granules && StatArray[ix].tx_count > 0) { |
1807 | print_blobType_single(ast, StatArray[ix].type); |
1808 | } else { |
1809 | print_count_single(ast, StatArray[ix].tx_count); |
1810 | } |
1811 | } |
1812 | ast->print("|" ); |
1813 | } else { |
1814 | ast->print("No not_used/not_entrant nMethods found in CodeHeap." ); |
1815 | } |
1816 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
1817 | } |
1818 | |
1819 | { |
1820 | if (nBlocks_stub > 0) { |
1821 | printBox(ast, '-', "Stub & Blob count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty" , NULL); |
1822 | |
1823 | granules_per_line = 128; |
1824 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
1825 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
1826 | if (segment_granules && StatArray[ix].stub_count > 0) { |
1827 | print_blobType_single(ast, StatArray[ix].type); |
1828 | } else { |
1829 | print_count_single(ast, StatArray[ix].stub_count); |
1830 | } |
1831 | } |
1832 | ast->print("|" ); |
1833 | } else { |
1834 | ast->print("No Stubs and Blobs found in CodeHeap." ); |
1835 | } |
1836 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
1837 | } |
1838 | |
1839 | { |
1840 | if (nBlocks_dead > 0) { |
1841 | printBox(ast, '-', "Dead nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty" , NULL); |
1842 | |
1843 | granules_per_line = 128; |
1844 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
1845 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
1846 | if (segment_granules && StatArray[ix].dead_count > 0) { |
1847 | print_blobType_single(ast, StatArray[ix].type); |
1848 | } else { |
1849 | print_count_single(ast, StatArray[ix].dead_count); |
1850 | } |
1851 | } |
1852 | ast->print("|" ); |
1853 | } else { |
1854 | ast->print("No dead nMethods found in CodeHeap." ); |
1855 | } |
1856 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
1857 | } |
1858 | |
1859 | { |
1860 | if (!segment_granules) { // Prevent totally redundant printouts |
1861 | printBox(ast, '-', "Count by tier (combined, no dead blocks): <#t1>:<#t2>:<#s>, 0x0..0xf. '*' indicates >= 16 blocks" , NULL); |
1862 | |
1863 | granules_per_line = 24; |
1864 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
1865 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
1866 | |
1867 | print_count_single(ast, StatArray[ix].t1_count); |
1868 | ast->print(":" ); |
1869 | print_count_single(ast, StatArray[ix].t2_count); |
1870 | ast->print(":" ); |
1871 | if (segment_granules && StatArray[ix].stub_count > 0) { |
1872 | print_blobType_single(ast, StatArray[ix].type); |
1873 | } else { |
1874 | print_count_single(ast, StatArray[ix].stub_count); |
1875 | } |
1876 | ast->print(" " ); |
1877 | } |
1878 | BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n" ) |
1879 | } |
1880 | } |
1881 | } |
1882 | |
1883 | |
1884 | void CodeHeapState::print_space(outputStream* out, CodeHeap* heap) { |
1885 | if (!initialization_complete) { |
1886 | return; |
1887 | } |
1888 | |
1889 | const char* heapName = get_heapName(heap); |
1890 | get_HeapStatGlobals(out, heapName); |
1891 | |
1892 | if ((StatArray == NULL) || (alloc_granules == 0)) { |
1893 | return; |
1894 | } |
1895 | BUFFEREDSTREAM_DECL(ast, out) |
1896 | |
1897 | unsigned int granules_per_line = 32; |
1898 | char* low_bound = heap->low_boundary(); |
1899 | |
1900 | { |
1901 | printBox(ast, '=', "S P A C E U S A G E & F R A G M E N T A T I O N for " , heapName); |
1902 | ast->print_cr(" The heap space covered by one granule is occupied to a various extend.\n" |
1903 | " The granule occupancy is displayed by one decimal digit per granule.\n" ); |
1904 | if (segment_granules) { |
1905 | ast->print_cr(" You have selected granule size to be as small as segment size.\n" |
1906 | " As a result, each granule contains exactly one block (or a part of one block)\n" |
1907 | " or is displayed as empty (' ') if it's BlobType does not match the selection.\n" |
1908 | " Occupied granules show their BlobType character, see legend.\n" ); |
1909 | print_blobType_legend(ast); |
1910 | } else { |
1911 | ast->print_cr(" These digits represent a fill percentage range (see legend).\n" ); |
1912 | print_space_legend(ast); |
1913 | } |
1914 | BUFFEREDSTREAM_FLUSH_LOCKED("" ) |
1915 | } |
1916 | |
1917 | { |
1918 | if (segment_granules) { |
1919 | printBox(ast, '-', "Total (all types) space consumption for granule size == segment size" , NULL); |
1920 | |
1921 | granules_per_line = 128; |
1922 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
1923 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
1924 | print_blobType_single(ast, StatArray[ix].type); |
1925 | } |
1926 | } else { |
1927 | printBox(ast, '-', "Total (all types) space consumption. ' ' indicates empty, '*' indicates full." , NULL); |
1928 | |
1929 | granules_per_line = 128; |
1930 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
1931 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
1932 | unsigned int space = StatArray[ix].t1_space + StatArray[ix].t2_space + StatArray[ix].tx_space |
1933 | + StatArray[ix].stub_space + StatArray[ix].dead_space; |
1934 | print_space_single(ast, space); |
1935 | } |
1936 | } |
1937 | BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n" ) |
1938 | } |
1939 | |
1940 | { |
1941 | if (nBlocks_t1 > 0) { |
1942 | printBox(ast, '-', "Tier1 space consumption. ' ' indicates empty, '*' indicates full" , NULL); |
1943 | |
1944 | granules_per_line = 128; |
1945 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
1946 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
1947 | if (segment_granules && StatArray[ix].t1_space > 0) { |
1948 | print_blobType_single(ast, StatArray[ix].type); |
1949 | } else { |
1950 | print_space_single(ast, StatArray[ix].t1_space); |
1951 | } |
1952 | } |
1953 | ast->print("|" ); |
1954 | } else { |
1955 | ast->print("No Tier1 nMethods found in CodeHeap." ); |
1956 | } |
1957 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
1958 | } |
1959 | |
1960 | { |
1961 | if (nBlocks_t2 > 0) { |
1962 | printBox(ast, '-', "Tier2 space consumption. ' ' indicates empty, '*' indicates full" , NULL); |
1963 | |
1964 | granules_per_line = 128; |
1965 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
1966 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
1967 | if (segment_granules && StatArray[ix].t2_space > 0) { |
1968 | print_blobType_single(ast, StatArray[ix].type); |
1969 | } else { |
1970 | print_space_single(ast, StatArray[ix].t2_space); |
1971 | } |
1972 | } |
1973 | ast->print("|" ); |
1974 | } else { |
1975 | ast->print("No Tier2 nMethods found in CodeHeap." ); |
1976 | } |
1977 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
1978 | } |
1979 | |
1980 | { |
1981 | if (nBlocks_alive > 0) { |
1982 | printBox(ast, '-', "not_used/not_entrant/not_installed space consumption. ' ' indicates empty, '*' indicates full" , NULL); |
1983 | |
1984 | granules_per_line = 128; |
1985 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
1986 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
1987 | if (segment_granules && StatArray[ix].tx_space > 0) { |
1988 | print_blobType_single(ast, StatArray[ix].type); |
1989 | } else { |
1990 | print_space_single(ast, StatArray[ix].tx_space); |
1991 | } |
1992 | } |
1993 | ast->print("|" ); |
1994 | } else { |
1995 | ast->print("No Tier2 nMethods found in CodeHeap." ); |
1996 | } |
1997 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
1998 | } |
1999 | |
2000 | { |
2001 | if (nBlocks_stub > 0) { |
2002 | printBox(ast, '-', "Stub and Blob space consumption. ' ' indicates empty, '*' indicates full" , NULL); |
2003 | |
2004 | granules_per_line = 128; |
2005 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
2006 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
2007 | if (segment_granules && StatArray[ix].stub_space > 0) { |
2008 | print_blobType_single(ast, StatArray[ix].type); |
2009 | } else { |
2010 | print_space_single(ast, StatArray[ix].stub_space); |
2011 | } |
2012 | } |
2013 | ast->print("|" ); |
2014 | } else { |
2015 | ast->print("No Stubs and Blobs found in CodeHeap." ); |
2016 | } |
2017 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
2018 | } |
2019 | |
2020 | { |
2021 | if (nBlocks_dead > 0) { |
2022 | printBox(ast, '-', "Dead space consumption. ' ' indicates empty, '*' indicates full" , NULL); |
2023 | |
2024 | granules_per_line = 128; |
2025 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
2026 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
2027 | print_space_single(ast, StatArray[ix].dead_space); |
2028 | } |
2029 | ast->print("|" ); |
2030 | } else { |
2031 | ast->print("No dead nMethods found in CodeHeap." ); |
2032 | } |
2033 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
2034 | } |
2035 | |
2036 | { |
2037 | if (!segment_granules) { // Prevent totally redundant printouts |
2038 | printBox(ast, '-', "Space consumption by tier (combined): <t1%>:<t2%>:<s%>. ' ' indicates empty, '*' indicates full" , NULL); |
2039 | |
2040 | granules_per_line = 24; |
2041 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
2042 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
2043 | |
2044 | if (segment_granules && StatArray[ix].t1_space > 0) { |
2045 | print_blobType_single(ast, StatArray[ix].type); |
2046 | } else { |
2047 | print_space_single(ast, StatArray[ix].t1_space); |
2048 | } |
2049 | ast->print(":" ); |
2050 | if (segment_granules && StatArray[ix].t2_space > 0) { |
2051 | print_blobType_single(ast, StatArray[ix].type); |
2052 | } else { |
2053 | print_space_single(ast, StatArray[ix].t2_space); |
2054 | } |
2055 | ast->print(":" ); |
2056 | if (segment_granules && StatArray[ix].stub_space > 0) { |
2057 | print_blobType_single(ast, StatArray[ix].type); |
2058 | } else { |
2059 | print_space_single(ast, StatArray[ix].stub_space); |
2060 | } |
2061 | ast->print(" " ); |
2062 | } |
2063 | ast->print("|" ); |
2064 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
2065 | } |
2066 | } |
2067 | } |
2068 | |
2069 | void CodeHeapState::print_age(outputStream* out, CodeHeap* heap) { |
2070 | if (!initialization_complete) { |
2071 | return; |
2072 | } |
2073 | |
2074 | const char* heapName = get_heapName(heap); |
2075 | get_HeapStatGlobals(out, heapName); |
2076 | |
2077 | if ((StatArray == NULL) || (alloc_granules == 0)) { |
2078 | return; |
2079 | } |
2080 | BUFFEREDSTREAM_DECL(ast, out) |
2081 | |
2082 | unsigned int granules_per_line = 32; |
2083 | char* low_bound = heap->low_boundary(); |
2084 | |
2085 | { |
2086 | printBox(ast, '=', "M E T H O D A G E by CompileID for " , heapName); |
2087 | ast->print_cr(" The age of a compiled method in the CodeHeap is not available as a\n" |
2088 | " time stamp. Instead, a relative age is deducted from the method's compilation ID.\n" |
2089 | " Age information is available for tier1 and tier2 methods only. There is no\n" |
2090 | " age information for stubs and blobs, because they have no compilation ID assigned.\n" |
2091 | " Information for the youngest method (highest ID) in the granule is printed.\n" |
2092 | " Refer to the legend to learn how method age is mapped to the displayed digit." ); |
2093 | print_age_legend(ast); |
2094 | BUFFEREDSTREAM_FLUSH_LOCKED("" ) |
2095 | } |
2096 | |
2097 | { |
2098 | printBox(ast, '-', "Age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information" , NULL); |
2099 | |
2100 | granules_per_line = 128; |
2101 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
2102 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
2103 | unsigned int age1 = StatArray[ix].t1_age; |
2104 | unsigned int age2 = StatArray[ix].t2_age; |
2105 | unsigned int agex = StatArray[ix].tx_age; |
2106 | unsigned int age = age1 > age2 ? age1 : age2; |
2107 | age = age > agex ? age : agex; |
2108 | print_age_single(ast, age); |
2109 | } |
2110 | ast->print("|" ); |
2111 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
2112 | } |
2113 | |
2114 | { |
2115 | if (nBlocks_t1 > 0) { |
2116 | printBox(ast, '-', "Tier1 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information" , NULL); |
2117 | |
2118 | granules_per_line = 128; |
2119 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
2120 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
2121 | print_age_single(ast, StatArray[ix].t1_age); |
2122 | } |
2123 | ast->print("|" ); |
2124 | } else { |
2125 | ast->print("No Tier1 nMethods found in CodeHeap." ); |
2126 | } |
2127 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
2128 | } |
2129 | |
2130 | { |
2131 | if (nBlocks_t2 > 0) { |
2132 | printBox(ast, '-', "Tier2 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information" , NULL); |
2133 | |
2134 | granules_per_line = 128; |
2135 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
2136 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
2137 | print_age_single(ast, StatArray[ix].t2_age); |
2138 | } |
2139 | ast->print("|" ); |
2140 | } else { |
2141 | ast->print("No Tier2 nMethods found in CodeHeap." ); |
2142 | } |
2143 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
2144 | } |
2145 | |
2146 | { |
2147 | if (nBlocks_alive > 0) { |
2148 | printBox(ast, '-', "not_used/not_entrant/not_installed age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information" , NULL); |
2149 | |
2150 | granules_per_line = 128; |
2151 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
2152 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
2153 | print_age_single(ast, StatArray[ix].tx_age); |
2154 | } |
2155 | ast->print("|" ); |
2156 | } else { |
2157 | ast->print("No Tier2 nMethods found in CodeHeap." ); |
2158 | } |
2159 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
2160 | } |
2161 | |
2162 | { |
2163 | if (!segment_granules) { // Prevent totally redundant printouts |
2164 | printBox(ast, '-', "age distribution by tier <a1>:<a2>. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information" , NULL); |
2165 | |
2166 | granules_per_line = 32; |
2167 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
2168 | print_line_delim(out, ast, low_bound, ix, granules_per_line); |
2169 | print_age_single(ast, StatArray[ix].t1_age); |
2170 | ast->print(":" ); |
2171 | print_age_single(ast, StatArray[ix].t2_age); |
2172 | ast->print(" " ); |
2173 | } |
2174 | ast->print("|" ); |
2175 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n" ) |
2176 | } |
2177 | } |
2178 | } |
2179 | |
2180 | |
2181 | void CodeHeapState::print_names(outputStream* out, CodeHeap* heap) { |
2182 | if (!initialization_complete) { |
2183 | return; |
2184 | } |
2185 | |
2186 | const char* heapName = get_heapName(heap); |
2187 | get_HeapStatGlobals(out, heapName); |
2188 | |
2189 | if ((StatArray == NULL) || (alloc_granules == 0)) { |
2190 | return; |
2191 | } |
2192 | BUFFEREDSTREAM_DECL(ast, out) |
2193 | |
2194 | unsigned int granules_per_line = 128; |
2195 | char* low_bound = heap->low_boundary(); |
2196 | CodeBlob* last_blob = NULL; |
2197 | bool name_in_addr_range = true; |
2198 | bool have_CodeCache_lock = CodeCache_lock->owned_by_self(); |
2199 | |
2200 | //---< print at least 128K per block (i.e. between headers) >--- |
2201 | if (granules_per_line*granule_size < 128*K) { |
2202 | granules_per_line = (unsigned int)((128*K)/granule_size); |
2203 | } |
2204 | |
2205 | printBox(ast, '=', "M E T H O D N A M E S for " , heapName); |
2206 | ast->print_cr(" Method names are dynamically retrieved from the code cache at print time.\n" |
2207 | " Due to the living nature of the code heap and because the CodeCache_lock\n" |
2208 | " is not continuously held, the displayed name might be wrong or no name\n" |
2209 | " might be found at all. The likelihood for that to happen increases\n" |
2210 | " over time passed between aggregtion and print steps.\n" ); |
2211 | BUFFEREDSTREAM_FLUSH_LOCKED("" ) |
2212 | |
2213 | for (unsigned int ix = 0; ix < alloc_granules; ix++) { |
2214 | //---< print a new blob on a new line >--- |
2215 | if (ix%granules_per_line == 0) { |
2216 | if (!name_in_addr_range) { |
2217 | ast->print_cr("No methods, blobs, or stubs found in this address range" ); |
2218 | } |
2219 | name_in_addr_range = false; |
2220 | |
2221 | size_t end_ix = (ix+granules_per_line <= alloc_granules) ? ix+granules_per_line : alloc_granules; |
2222 | ast->cr(); |
2223 | ast->print_cr("--------------------------------------------------------------------" ); |
2224 | ast->print_cr("Address range [" INTPTR_FORMAT "," INTPTR_FORMAT "), " SIZE_FORMAT "k" , p2i(low_bound+ix*granule_size), p2i(low_bound + end_ix*granule_size), (end_ix - ix)*granule_size/(size_t)K); |
2225 | ast->print_cr("--------------------------------------------------------------------" ); |
2226 | BUFFEREDSTREAM_FLUSH_AUTO("" ) |
2227 | } |
2228 | // Only check granule if it contains at least one blob. |
2229 | unsigned int nBlobs = StatArray[ix].t1_count + StatArray[ix].t2_count + StatArray[ix].tx_count + |
2230 | StatArray[ix].stub_count + StatArray[ix].dead_count; |
2231 | if (nBlobs > 0 ) { |
2232 | for (unsigned int is = 0; is < granule_size; is+=(unsigned int)seg_size) { |
2233 | // heap->find_start() is safe. Only works on _segmap. |
2234 | // Returns NULL or void*. Returned CodeBlob may be uninitialized. |
2235 | char* this_seg = low_bound + ix*granule_size + is; |
2236 | CodeBlob* this_blob = (CodeBlob*)(heap->find_start(this_seg)); |
2237 | bool blob_is_safe = blob_access_is_safe(this_blob, NULL); |
2238 | // blob could have been flushed, freed, and merged. |
2239 | // this_blob < last_blob is an indicator for that. |
2240 | if (blob_is_safe && (this_blob > last_blob)) { |
2241 | last_blob = this_blob; |
2242 | |
2243 | //---< get type and name >--- |
2244 | blobType cbType = noType; |
2245 | if (segment_granules) { |
2246 | cbType = (blobType)StatArray[ix].type; |
2247 | } else { |
2248 | //---< access these fields only if we own the CodeCache_lock >--- |
2249 | if (have_CodeCache_lock) { |
2250 | cbType = get_cbType(this_blob); |
2251 | } |
2252 | } |
2253 | |
2254 | //---< access these fields only if we own the CodeCache_lock >--- |
2255 | const char* blob_name = "<unavailable>" ; |
2256 | nmethod* nm = NULL; |
2257 | if (have_CodeCache_lock) { |
2258 | blob_name = this_blob->name(); |
2259 | nm = this_blob->as_nmethod_or_null(); |
2260 | // this_blob->name() could return NULL if no name was given to CTOR. Inlined, maybe invisible on stack |
2261 | if ((blob_name == NULL) || !os::is_readable_pointer(blob_name)) { |
2262 | blob_name = "<unavailable>" ; |
2263 | } |
2264 | } |
2265 | |
2266 | //---< print table header for new print range >--- |
2267 | if (!name_in_addr_range) { |
2268 | name_in_addr_range = true; |
2269 | ast->fill_to(51); |
2270 | ast->print("%9s" , "compiler" ); |
2271 | ast->fill_to(61); |
2272 | ast->print_cr("%6s" , "method" ); |
2273 | ast->print_cr("%18s %13s %17s %9s %5s %18s %s" , "Addr(module) " , "offset" , "size" , " type lvl" , " temp" , "blobType " , "Name" ); |
2274 | BUFFEREDSTREAM_FLUSH_AUTO("" ) |
2275 | } |
2276 | |
2277 | //---< print line prefix (address and offset from CodeHeap start) >--- |
2278 | ast->print(INTPTR_FORMAT, p2i(this_blob)); |
2279 | ast->fill_to(19); |
2280 | ast->print("(+" PTR32_FORMAT ")" , (unsigned int)((char*)this_blob-low_bound)); |
2281 | ast->fill_to(33); |
2282 | |
2283 | // access nmethod and Method fields only if we own the CodeCache_lock. |
2284 | // This fact is implicitly transported via nm != NULL. |
2285 | if (CompiledMethod::nmethod_access_is_safe(nm)) { |
2286 | Method* method = nm->method(); |
2287 | ResourceMark rm; |
2288 | //---< collect all data to locals as quickly as possible >--- |
2289 | unsigned int total_size = nm->total_size(); |
2290 | int hotness = nm->hotness_counter(); |
2291 | bool get_name = (cbType == nMethod_inuse) || (cbType == nMethod_notused); |
2292 | //---< nMethod size in hex >--- |
2293 | ast->print(PTR32_FORMAT, total_size); |
2294 | ast->print("(" SIZE_FORMAT_W(4) "K)" , total_size/K); |
2295 | //---< compiler information >--- |
2296 | ast->fill_to(51); |
2297 | ast->print("%5s %3d" , compTypeName[StatArray[ix].compiler], StatArray[ix].level); |
2298 | //---< method temperature >--- |
2299 | ast->fill_to(62); |
2300 | ast->print("%5d" , hotness); |
2301 | //---< name and signature >--- |
2302 | ast->fill_to(62+6); |
2303 | ast->print("%s" , blobTypeName[cbType]); |
2304 | ast->fill_to(82+6); |
2305 | if (cbType == nMethod_dead) { |
2306 | ast->print("%14s" , " zombie method" ); |
2307 | } |
2308 | |
2309 | if (get_name) { |
2310 | Symbol* methName = method->name(); |
2311 | const char* methNameS = (methName == NULL) ? NULL : methName->as_C_string(); |
2312 | methNameS = (methNameS == NULL) ? "<method name unavailable>" : methNameS; |
2313 | Symbol* methSig = method->signature(); |
2314 | const char* methSigS = (methSig == NULL) ? NULL : methSig->as_C_string(); |
2315 | methSigS = (methSigS == NULL) ? "<method signature unavailable>" : methSigS; |
2316 | ast->print("%s" , methNameS); |
2317 | ast->print("%s" , methSigS); |
2318 | } else { |
2319 | ast->print("%s" , blob_name); |
2320 | } |
2321 | } else if (blob_is_safe) { |
2322 | ast->fill_to(62+6); |
2323 | ast->print("%s" , blobTypeName[cbType]); |
2324 | ast->fill_to(82+6); |
2325 | ast->print("%s" , blob_name); |
2326 | } else { |
2327 | ast->fill_to(62+6); |
2328 | ast->print("<stale blob>" ); |
2329 | } |
2330 | ast->cr(); |
2331 | BUFFEREDSTREAM_FLUSH_AUTO("" ) |
2332 | } else if (!blob_is_safe && (this_blob != last_blob) && (this_blob != NULL)) { |
2333 | last_blob = this_blob; |
2334 | } |
2335 | } |
2336 | } // nBlobs > 0 |
2337 | } |
2338 | BUFFEREDSTREAM_FLUSH_LOCKED("\n\n" ) |
2339 | } |
2340 | |
2341 | |
2342 | void CodeHeapState::printBox(outputStream* ast, const char border, const char* text1, const char* text2) { |
2343 | unsigned int lineLen = 1 + 2 + 2 + 1; |
2344 | char edge, frame; |
2345 | |
2346 | if (text1 != NULL) { |
2347 | lineLen += (unsigned int)strlen(text1); // text1 is much shorter than MAX_INT chars. |
2348 | } |
2349 | if (text2 != NULL) { |
2350 | lineLen += (unsigned int)strlen(text2); // text2 is much shorter than MAX_INT chars. |
2351 | } |
2352 | if (border == '-') { |
2353 | edge = '+'; |
2354 | frame = '|'; |
2355 | } else { |
2356 | edge = border; |
2357 | frame = border; |
2358 | } |
2359 | |
2360 | ast->print("%c" , edge); |
2361 | for (unsigned int i = 0; i < lineLen-2; i++) { |
2362 | ast->print("%c" , border); |
2363 | } |
2364 | ast->print_cr("%c" , edge); |
2365 | |
2366 | ast->print("%c " , frame); |
2367 | if (text1 != NULL) { |
2368 | ast->print("%s" , text1); |
2369 | } |
2370 | if (text2 != NULL) { |
2371 | ast->print("%s" , text2); |
2372 | } |
2373 | ast->print_cr(" %c" , frame); |
2374 | |
2375 | ast->print("%c" , edge); |
2376 | for (unsigned int i = 0; i < lineLen-2; i++) { |
2377 | ast->print("%c" , border); |
2378 | } |
2379 | ast->print_cr("%c" , edge); |
2380 | } |
2381 | |
2382 | void CodeHeapState::print_blobType_legend(outputStream* out) { |
2383 | out->cr(); |
2384 | printBox(out, '-', "Block types used in the following CodeHeap dump" , NULL); |
2385 | for (int type = noType; type < lastType; type += 1) { |
2386 | out->print_cr(" %c - %s" , blobTypeChar[type], blobTypeName[type]); |
2387 | } |
2388 | out->print_cr(" -----------------------------------------------------" ); |
2389 | out->cr(); |
2390 | } |
2391 | |
2392 | void CodeHeapState::print_space_legend(outputStream* out) { |
2393 | unsigned int indicator = 0; |
2394 | unsigned int age_range = 256; |
2395 | unsigned int range_beg = latest_compilation_id; |
2396 | out->cr(); |
2397 | printBox(out, '-', "Space ranges, based on granule occupancy" , NULL); |
2398 | out->print_cr(" - 0%% == occupancy" ); |
2399 | for (int i=0; i<=9; i++) { |
2400 | out->print_cr(" %d - %3d%% < occupancy < %3d%%" , i, 10*i, 10*(i+1)); |
2401 | } |
2402 | out->print_cr(" * - 100%% == occupancy" ); |
2403 | out->print_cr(" ----------------------------------------------" ); |
2404 | out->cr(); |
2405 | } |
2406 | |
2407 | void CodeHeapState::print_age_legend(outputStream* out) { |
2408 | unsigned int indicator = 0; |
2409 | unsigned int age_range = 256; |
2410 | unsigned int range_beg = latest_compilation_id; |
2411 | out->cr(); |
2412 | printBox(out, '-', "Age ranges, based on compilation id" , NULL); |
2413 | while (age_range > 0) { |
2414 | out->print_cr(" %d - %6d to %6d" , indicator, range_beg, latest_compilation_id - latest_compilation_id/age_range); |
2415 | range_beg = latest_compilation_id - latest_compilation_id/age_range; |
2416 | age_range /= 2; |
2417 | indicator += 1; |
2418 | } |
2419 | out->print_cr(" -----------------------------------------" ); |
2420 | out->cr(); |
2421 | } |
2422 | |
2423 | void CodeHeapState::print_blobType_single(outputStream* out, u2 /* blobType */ type) { |
2424 | out->print("%c" , blobTypeChar[type]); |
2425 | } |
2426 | |
2427 | void CodeHeapState::print_count_single(outputStream* out, unsigned short count) { |
2428 | if (count >= 16) out->print("*" ); |
2429 | else if (count > 0) out->print("%1.1x" , count); |
2430 | else out->print(" " ); |
2431 | } |
2432 | |
2433 | void CodeHeapState::print_space_single(outputStream* out, unsigned short space) { |
2434 | size_t space_in_bytes = ((unsigned int)space)<<log2_seg_size; |
2435 | char fraction = (space == 0) ? ' ' : (space_in_bytes >= granule_size-1) ? '*' : char('0'+10*space_in_bytes/granule_size); |
2436 | out->print("%c" , fraction); |
2437 | } |
2438 | |
2439 | void CodeHeapState::print_age_single(outputStream* out, unsigned int age) { |
2440 | unsigned int indicator = 0; |
2441 | unsigned int age_range = 256; |
2442 | if (age > 0) { |
2443 | while ((age_range > 0) && (latest_compilation_id-age > latest_compilation_id/age_range)) { |
2444 | age_range /= 2; |
2445 | indicator += 1; |
2446 | } |
2447 | out->print("%c" , char('0'+indicator)); |
2448 | } else { |
2449 | out->print(" " ); |
2450 | } |
2451 | } |
2452 | |
2453 | void CodeHeapState::print_line_delim(outputStream* out, outputStream* ast, char* low_bound, unsigned int ix, unsigned int gpl) { |
2454 | if (ix % gpl == 0) { |
2455 | if (ix > 0) { |
2456 | ast->print("|" ); |
2457 | } |
2458 | ast->cr(); |
2459 | assert(out == ast, "must use the same stream!" ); |
2460 | |
2461 | ast->print(INTPTR_FORMAT, p2i(low_bound + ix*granule_size)); |
2462 | ast->fill_to(19); |
2463 | ast->print("(+" PTR32_FORMAT "): |" , (unsigned int)(ix*granule_size)); |
2464 | } |
2465 | } |
2466 | |
2467 | void CodeHeapState::print_line_delim(outputStream* out, bufferedStream* ast, char* low_bound, unsigned int ix, unsigned int gpl) { |
2468 | assert(out != ast, "must not use the same stream!" ); |
2469 | if (ix % gpl == 0) { |
2470 | if (ix > 0) { |
2471 | ast->print("|" ); |
2472 | } |
2473 | ast->cr(); |
2474 | |
2475 | // can't use BUFFEREDSTREAM_FLUSH_IF("", 512) here. |
2476 | // can't use this expression. bufferedStream::capacity() does not exist. |
2477 | // if ((ast->capacity() - ast->size()) < 512) { |
2478 | // Assume instead that default bufferedStream capacity (4K) was used. |
2479 | if (ast->size() > 3*K) { |
2480 | ttyLocker ttyl; |
2481 | out->print("%s" , ast->as_string()); |
2482 | ast->reset(); |
2483 | } |
2484 | |
2485 | ast->print(INTPTR_FORMAT, p2i(low_bound + ix*granule_size)); |
2486 | ast->fill_to(19); |
2487 | ast->print("(+" PTR32_FORMAT "): |" , (unsigned int)(ix*granule_size)); |
2488 | } |
2489 | } |
2490 | |
2491 | CodeHeapState::blobType CodeHeapState::get_cbType(CodeBlob* cb) { |
2492 | if ((cb != NULL) && os::is_readable_pointer(cb)) { |
2493 | if (cb->is_runtime_stub()) return runtimeStub; |
2494 | if (cb->is_deoptimization_stub()) return deoptimizationStub; |
2495 | if (cb->is_uncommon_trap_stub()) return uncommonTrapStub; |
2496 | if (cb->is_exception_stub()) return exceptionStub; |
2497 | if (cb->is_safepoint_stub()) return safepointStub; |
2498 | if (cb->is_adapter_blob()) return adapterBlob; |
2499 | if (cb->is_method_handles_adapter_blob()) return mh_adapterBlob; |
2500 | if (cb->is_buffer_blob()) return bufferBlob; |
2501 | |
2502 | //---< access these fields only if we own the CodeCache_lock >--- |
2503 | // Should be ensured by caller. aggregate() amd print_names() do that. |
2504 | if (CodeCache_lock->owned_by_self()) { |
2505 | nmethod* nm = cb->as_nmethod_or_null(); |
2506 | if (nm != NULL) { // no is_readable check required, nm = (nmethod*)cb. |
2507 | if (nm->is_not_installed()) return nMethod_inconstruction; |
2508 | if (nm->is_zombie()) return nMethod_dead; |
2509 | if (nm->is_unloaded()) return nMethod_unloaded; |
2510 | if (nm->is_in_use()) return nMethod_inuse; |
2511 | if (nm->is_alive() && !(nm->is_not_entrant())) return nMethod_notused; |
2512 | if (nm->is_alive()) return nMethod_alive; |
2513 | return nMethod_dead; |
2514 | } |
2515 | } |
2516 | } |
2517 | return noType; |
2518 | } |
2519 | |
2520 | bool CodeHeapState::blob_access_is_safe(CodeBlob* this_blob, CodeBlob* prev_blob) { |
2521 | return (this_blob != NULL) && // a blob must have been found, obviously |
2522 | ((this_blob == prev_blob) || (prev_blob == NULL)) && // when re-checking, the same blob must have been found |
2523 | (this_blob->header_size() >= 0) && |
2524 | (this_blob->relocation_size() >= 0) && |
2525 | ((address)this_blob + this_blob->header_size() == (address)(this_blob->relocation_begin())) && |
2526 | ((address)this_blob + CodeBlob::align_code_offset(this_blob->header_size() + this_blob->relocation_size()) == (address)(this_blob->content_begin())) && |
2527 | os::is_readable_pointer((address)(this_blob->relocation_begin())) && |
2528 | os::is_readable_pointer(this_blob->content_begin()); |
2529 | } |
2530 | |