1/*
2 * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_OOPS_SYMBOL_HPP
26#define SHARE_OOPS_SYMBOL_HPP
27
28#include "memory/allocation.hpp"
29#include "utilities/exceptions.hpp"
30#include "utilities/macros.hpp"
31
32// A Symbol is a canonicalized string.
33// All Symbols reside in global SymbolTable and are reference counted.
34
35// Reference counting
36//
37// All Symbols are allocated and added to the SymbolTable.
38// When a class is unloaded, the reference counts of the Symbol pointers in
39// the ConstantPool and in InstanceKlass (see release_C_heap_structures) are
40// decremented. When the reference count for a Symbol goes to 0, the garbage
41// collector can free the Symbol and remove it from the SymbolTable.
42//
43// 0) Symbols need to be reference counted when a pointer to the Symbol is
44// saved in persistent storage. This does not include the pointer
45// in the SymbolTable bucket (the _literal field in HashtableEntry)
46// that points to the Symbol. All other stores of a Symbol*
47// to a field of a persistent variable (e.g., the _name filed in
48// fieldDescriptor or _ptr in a CPSlot) is reference counted.
49//
50// 1) The lookup of a "name" in the SymbolTable either creates a Symbol F for
51// "name" and returns a pointer to F or finds a pre-existing Symbol F for
52// "name" and returns a pointer to it. In both cases the reference count for F
53// is incremented under the assumption that a pointer to F will be created from
54// the return value. Thus the increment of the reference count is on the lookup
55// and not on the assignment to the new Symbol*. That is
56// Symbol* G = lookup()
57// ^ increment on lookup()
58// and not
59// Symbol* G = lookup()
60// ^ increment on assignmnet
61// The reference count must be decremented manually when the copy of the
62// pointer G is destroyed.
63//
64// 2) For a local Symbol* A that is a copy of an existing Symbol* B, the
65// reference counting is elided when the scope of B is greater than the scope
66// of A. For example, in the code fragment
67// below "klass" is passed as a parameter to the method. Symbol* "kn"
68// is a copy of the name in "klass".
69//
70// Symbol* kn = klass->name();
71// unsigned int d_hash = dictionary()->compute_hash(kn, class_loader);
72//
73// The scope of "klass" is greater than the scope of "kn" so the reference
74// counting for "kn" is elided.
75//
76// Symbol* copied from ConstantPool entries are good candidates for reference
77// counting elision. The ConstantPool entries for a class C exist until C is
78// unloaded. If a Symbol* is copied out of the ConstantPool into Symbol* X,
79// the Symbol* in the ConstantPool will in general out live X so the reference
80// counting on X can be elided.
81//
82// For cases where the scope of A is not greater than the scope of B,
83// the reference counting is explicitly done. See ciSymbol,
84// ResolutionErrorEntry and ClassVerifier for examples.
85//
86// 3) When a Symbol K is created for temporary use, generally for substrings of
87// an existing symbol or to create a new symbol, assign it to a
88// TempNewSymbol. The SymbolTable methods new_symbol(), lookup()
89// and probe() all potentially return a pointer to a new Symbol.
90// The allocation (or lookup) of K increments the reference count for K
91// and the destructor decrements the reference count.
92//
93// This cannot be inherited from ResourceObj because it cannot have a vtable.
94// Since sometimes this is allocated from Metadata, pick a base allocation
95// type without virtual functions.
96class ClassLoaderData;
97
98// Set _refcount to PERM_REFCOUNT to prevent the Symbol from being freed.
99#ifndef PERM_REFCOUNT
100#define PERM_REFCOUNT ((1 << 16) - 1)
101#endif
102
103class Symbol : public MetaspaceObj {
104 friend class VMStructs;
105 friend class SymbolTable;
106
107 private:
108
109 // This is an int because it needs atomic operation on the refcount. Mask length
110 // in high half word. length is the number of UTF8 characters in the symbol
111 volatile uint32_t _length_and_refcount;
112 short _identity_hash;
113 u1 _body[2];
114
115 enum {
116 // max_symbol_length must fit into the top 16 bits of _length_and_refcount
117 max_symbol_length = (1 << 16) -1
118 };
119
120 static int byte_size(int length) {
121 // minimum number of natural words needed to hold these bits (no non-heap version)
122 return (int)(sizeof(Symbol) + (length > 2 ? length - 2 : 0));
123 }
124 static int size(int length) {
125 // minimum number of natural words needed to hold these bits (no non-heap version)
126 return (int)heap_word_size(byte_size(length));
127 }
128
129 void byte_at_put(int index, u1 value) {
130 assert(index >=0 && index < length(), "symbol index overflow");
131 _body[index] = value;
132 }
133
134 Symbol(const u1* name, int length, int refcount);
135 void* operator new(size_t size, int len) throw();
136 void* operator new(size_t size, int len, Arena* arena) throw();
137
138 void operator delete(void* p);
139
140 static int extract_length(uint32_t value) { return value >> 16; }
141 static int extract_refcount(uint32_t value) { return value & 0xffff; }
142 static uint32_t pack_length_and_refcount(int length, int refcount);
143
144 int length() const { return extract_length(_length_and_refcount); }
145
146 public:
147 // Low-level access (used with care, since not GC-safe)
148 const u1* base() const { return &_body[0]; }
149
150 int size() { return size(utf8_length()); }
151 int byte_size() { return byte_size(utf8_length()); }
152
153 // Symbols should be stored in the read-only region of CDS archive.
154 static bool is_read_only_by_default() { return true; }
155
156 // Returns the largest size symbol we can safely hold.
157 static int max_length() { return max_symbol_length; }
158 unsigned identity_hash() const {
159 unsigned addr_bits = (unsigned)((uintptr_t)this >> (LogMinObjAlignmentInBytes + 3));
160 return ((unsigned)_identity_hash & 0xffff) |
161 ((addr_bits ^ (length() << 8) ^ (( _body[0] << 8) | _body[1])) << 16);
162 }
163
164 // Reference counting. See comments above this class for when to use.
165 int refcount() const { return extract_refcount(_length_and_refcount); }
166 bool try_increment_refcount();
167 void increment_refcount();
168 void decrement_refcount();
169 bool is_permanent() {
170 return (refcount() == PERM_REFCOUNT);
171 }
172 void set_permanent();
173 void make_permanent();
174
175 // Function char_at() returns the Symbol's selected u1 byte as a char type.
176 //
177 // Note that all multi-byte chars have the sign bit set on all their bytes.
178 // No single byte chars have their sign bit set.
179 char char_at(int index) const {
180 assert(index >=0 && index < length(), "symbol index overflow");
181 return (char)base()[index];
182 }
183
184 const u1* bytes() const { return base(); }
185
186 int utf8_length() const { return length(); }
187
188 // Compares the symbol with a string.
189 bool equals(const char* str, int len) const {
190 int l = utf8_length();
191 if (l != len) return false;
192 while (l-- > 0) {
193 if (str[l] != char_at(l))
194 return false;
195 }
196 assert(l == -1, "we should be at the beginning");
197 return true;
198 }
199 bool equals(const char* str) const { return equals(str, (int) strlen(str)); }
200
201 // Tests if the symbol starts with the given prefix.
202 bool starts_with(const char* prefix, int len) const;
203 bool starts_with(const char* prefix) const {
204 return starts_with(prefix, (int) strlen(prefix));
205 }
206
207 // Tests if the symbol starts with the given prefix.
208 int index_of_at(int i, const char* str, int len) const;
209
210 // Three-way compare for sorting; returns -1/0/1 if receiver is </==/> than arg
211 // note that the ordering is not alfabetical
212 inline int fast_compare(const Symbol* other) const;
213
214 // Returns receiver converted to null-terminated UTF-8 string; string is
215 // allocated in resource area, or in the char buffer provided by caller.
216 char* as_C_string() const;
217 char* as_C_string(char* buf, int size) const;
218
219 // Returns an escaped form of a Java string.
220 char* as_quoted_ascii() const;
221
222 // Returns a null terminated utf8 string in a resource array
223 char* as_utf8() const { return as_C_string(); }
224
225 jchar* as_unicode(int& length) const;
226
227 // Treating this symbol as a class name, returns the Java name for the class.
228 // String is allocated in resource area if buffer is not provided.
229 // See Klass::external_name()
230 const char* as_klass_external_name() const;
231 const char* as_klass_external_name(char* buf, int size) const;
232
233 // Treating the symbol as a signature, print the return
234 // type to the outputStream. Prints external names as 'double' or
235 // 'java.lang.Object[][]'.
236 void print_as_signature_external_return_type(outputStream *os);
237 // Treating the symbol as a signature, print the parameter types
238 // seperated by ', ' to the outputStream. Prints external names as
239 // 'double' or 'java.lang.Object[][]'.
240 void print_as_signature_external_parameters(outputStream *os);
241
242 void metaspace_pointers_do(MetaspaceClosure* it);
243 MetaspaceObj::Type type() const { return SymbolType; }
244
245 // Printing
246 void print_symbol_on(outputStream* st = NULL) const;
247 void print_utf8_on(outputStream* st) const;
248 void print_on(outputStream* st) const; // First level print
249 void print_value_on(outputStream* st) const; // Second level print.
250
251 // printing on default output stream
252 void print() const;
253 void print_value() const;
254
255 static bool is_valid(Symbol* s);
256
257#ifndef PRODUCT
258 // Empty constructor to create a dummy symbol object on stack
259 // only for getting its vtable pointer.
260 Symbol() { }
261
262 static size_t _total_count;
263#endif
264};
265
266// Note: this comparison is used for vtable sorting only; it doesn't matter
267// what order it defines, as long as it is a total, time-invariant order
268// Since Symbol*s are in C_HEAP, their relative order in memory never changes,
269// so use address comparison for speed
270int Symbol::fast_compare(const Symbol* other) const {
271 return (((uintptr_t)this < (uintptr_t)other) ? -1
272 : ((uintptr_t)this == (uintptr_t) other) ? 0 : 1);
273}
274#endif // SHARE_OOPS_SYMBOL_HPP
275