1 | /* |
2 | * Copyright (c) 2002, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #ifndef SHARE_GC_PARALLEL_PSADAPTIVESIZEPOLICY_HPP |
26 | #define SHARE_GC_PARALLEL_PSADAPTIVESIZEPOLICY_HPP |
27 | |
28 | #include "gc/shared/adaptiveSizePolicy.hpp" |
29 | #include "gc/shared/gcCause.hpp" |
30 | #include "gc/shared/gcStats.hpp" |
31 | #include "gc/shared/gcUtil.hpp" |
32 | #include "utilities/align.hpp" |
33 | |
34 | // This class keeps statistical information and computes the |
35 | // optimal free space for both the young and old generation |
36 | // based on current application characteristics (based on gc cost |
37 | // and application footprint). |
38 | // |
39 | // It also computes an optimal tenuring threshold between the young |
40 | // and old generations, so as to equalize the cost of collections |
41 | // of those generations, as well as optimal survivor space sizes |
42 | // for the young generation. |
43 | // |
44 | // While this class is specifically intended for a generational system |
45 | // consisting of a young gen (containing an Eden and two semi-spaces) |
46 | // and a tenured gen, as well as a perm gen for reflective data, it |
47 | // makes NO references to specific generations. |
48 | // |
49 | // 05/02/2003 Update |
50 | // The 1.5 policy makes use of data gathered for the costs of GC on |
51 | // specific generations. That data does reference specific |
52 | // generation. Also diagnostics specific to generations have |
53 | // been added. |
54 | |
55 | // Forward decls |
56 | class elapsedTimer; |
57 | |
58 | class PSAdaptiveSizePolicy : public AdaptiveSizePolicy { |
59 | friend class PSGCAdaptivePolicyCounters; |
60 | private: |
61 | // These values are used to record decisions made during the |
62 | // policy. For example, if the young generation was decreased |
63 | // to decrease the GC cost of minor collections the value |
64 | // decrease_young_gen_for_throughput_true is used. |
65 | |
66 | // Last calculated sizes, in bytes, and aligned |
67 | // NEEDS_CLEANUP should use sizes.hpp, but it works in ints, not size_t's |
68 | |
69 | // Time statistics |
70 | AdaptivePaddedAverage* _avg_major_pause; |
71 | |
72 | // Footprint statistics |
73 | AdaptiveWeightedAverage* ; |
74 | |
75 | // Statistical data gathered for GC |
76 | GCStats _gc_stats; |
77 | |
78 | const double _collection_cost_margin_fraction; |
79 | |
80 | // Variable for estimating the major and minor pause times. |
81 | // These variables represent linear least-squares fits of |
82 | // the data. |
83 | // major pause time vs. old gen size |
84 | LinearLeastSquareFit* _major_pause_old_estimator; |
85 | // major pause time vs. young gen size |
86 | LinearLeastSquareFit* _major_pause_young_estimator; |
87 | |
88 | |
89 | // These record the most recent collection times. They |
90 | // are available as an alternative to using the averages |
91 | // for making ergonomic decisions. |
92 | double _latest_major_mutator_interval_seconds; |
93 | |
94 | const size_t _space_alignment; // alignment for eden, survivors |
95 | |
96 | const double _gc_minor_pause_goal_sec; // goal for maximum minor gc pause |
97 | |
98 | // The amount of live data in the heap at the last full GC, used |
99 | // as a baseline to help us determine when we need to perform the |
100 | // next full GC. |
101 | size_t _live_at_last_full_gc; |
102 | |
103 | // decrease/increase the old generation for minor pause time |
104 | int _change_old_gen_for_min_pauses; |
105 | |
106 | // increase/decrease the young generation for major pause time |
107 | int _change_young_gen_for_maj_pauses; |
108 | |
109 | |
110 | // Flag indicating that the adaptive policy is ready to use |
111 | bool _old_gen_policy_is_ready; |
112 | |
113 | // To facilitate faster growth at start up, supplement the normal |
114 | // growth percentage for the young gen eden and the |
115 | // old gen space for promotion with these value which decay |
116 | // with increasing collections. |
117 | uint _young_gen_size_increment_supplement; |
118 | uint _old_gen_size_increment_supplement; |
119 | |
120 | // The number of bytes absorbed from eden into the old gen by moving the |
121 | // boundary over live data. |
122 | size_t _bytes_absorbed_from_eden; |
123 | |
124 | private: |
125 | |
126 | // Accessors |
127 | AdaptivePaddedAverage* avg_major_pause() const { return _avg_major_pause; } |
128 | double gc_minor_pause_goal_sec() const { return _gc_minor_pause_goal_sec; } |
129 | |
130 | void adjust_eden_for_minor_pause_time(bool is_full_gc, |
131 | size_t* desired_eden_size_ptr); |
132 | // Change the generation sizes to achieve a GC pause time goal |
133 | // Returned sizes are not necessarily aligned. |
134 | void adjust_promo_for_pause_time(bool is_full_gc, |
135 | size_t* desired_promo_size_ptr, |
136 | size_t* desired_eden_size_ptr); |
137 | void adjust_eden_for_pause_time(bool is_full_gc, |
138 | size_t* desired_promo_size_ptr, |
139 | size_t* desired_eden_size_ptr); |
140 | // Change the generation sizes to achieve an application throughput goal |
141 | // Returned sizes are not necessarily aligned. |
142 | void adjust_promo_for_throughput(bool is_full_gc, |
143 | size_t* desired_promo_size_ptr); |
144 | void adjust_eden_for_throughput(bool is_full_gc, |
145 | size_t* desired_eden_size_ptr); |
146 | // Change the generation sizes to achieve minimum footprint |
147 | // Returned sizes are not aligned. |
148 | size_t (size_t desired_promo_size, |
149 | size_t desired_total); |
150 | size_t (size_t desired_promo_size, |
151 | size_t desired_total); |
152 | |
153 | // Size in bytes for an increment or decrement of eden. |
154 | virtual size_t eden_increment(size_t cur_eden, uint percent_change); |
155 | virtual size_t eden_decrement(size_t cur_eden); |
156 | size_t eden_decrement_aligned_down(size_t cur_eden); |
157 | size_t eden_increment_with_supplement_aligned_up(size_t cur_eden); |
158 | |
159 | // Size in bytes for an increment or decrement of the promotion area |
160 | virtual size_t promo_increment(size_t cur_promo, uint percent_change); |
161 | virtual size_t promo_decrement(size_t cur_promo); |
162 | size_t promo_decrement_aligned_down(size_t cur_promo); |
163 | size_t promo_increment_with_supplement_aligned_up(size_t cur_promo); |
164 | |
165 | // Returns a change that has been scaled down. Result |
166 | // is not aligned. (If useful, move to some shared |
167 | // location.) |
168 | size_t scale_down(size_t change, double part, double total); |
169 | |
170 | protected: |
171 | // Time accessors |
172 | |
173 | // Footprint accessors |
174 | size_t live_space() const { |
175 | return (size_t)(avg_base_footprint()->average() + |
176 | avg_young_live()->average() + |
177 | avg_old_live()->average()); |
178 | } |
179 | size_t free_space() const { |
180 | return _eden_size + _promo_size; |
181 | } |
182 | |
183 | void set_promo_size(size_t new_size) { |
184 | _promo_size = new_size; |
185 | } |
186 | void set_survivor_size(size_t new_size) { |
187 | _survivor_size = new_size; |
188 | } |
189 | |
190 | // Update estimators |
191 | void update_minor_pause_old_estimator(double minor_pause_in_ms); |
192 | |
193 | virtual GCPolicyKind kind() const { return _gc_ps_adaptive_size_policy; } |
194 | |
195 | public: |
196 | // Use by ASPSYoungGen and ASPSOldGen to limit boundary moving. |
197 | size_t eden_increment_aligned_up(size_t cur_eden); |
198 | size_t eden_increment_aligned_down(size_t cur_eden); |
199 | size_t promo_increment_aligned_up(size_t cur_promo); |
200 | size_t promo_increment_aligned_down(size_t cur_promo); |
201 | |
202 | virtual size_t eden_increment(size_t cur_eden); |
203 | virtual size_t promo_increment(size_t cur_promo); |
204 | |
205 | // Accessors for use by performance counters |
206 | AdaptivePaddedNoZeroDevAverage* avg_promoted() const { |
207 | return _gc_stats.avg_promoted(); |
208 | } |
209 | AdaptiveWeightedAverage* () const { |
210 | return _avg_base_footprint; |
211 | } |
212 | |
213 | // Input arguments are initial free space sizes for young and old |
214 | // generations, the initial survivor space size, the |
215 | // alignment values and the pause & throughput goals. |
216 | // |
217 | // NEEDS_CLEANUP this is a singleton object |
218 | PSAdaptiveSizePolicy(size_t init_eden_size, |
219 | size_t init_promo_size, |
220 | size_t init_survivor_size, |
221 | size_t space_alignment, |
222 | double gc_pause_goal_sec, |
223 | double gc_minor_pause_goal_sec, |
224 | uint gc_time_ratio); |
225 | |
226 | // Methods indicating events of interest to the adaptive size policy, |
227 | // called by GC algorithms. It is the responsibility of users of this |
228 | // policy to call these methods at the correct times! |
229 | void major_collection_begin(); |
230 | void major_collection_end(size_t amount_live, GCCause::Cause gc_cause); |
231 | |
232 | void tenured_allocation(size_t size) { |
233 | _avg_pretenured->sample(size); |
234 | } |
235 | |
236 | // Accessors |
237 | // NEEDS_CLEANUP should use sizes.hpp |
238 | |
239 | static size_t calculate_free_based_on_live(size_t live, uintx ratio_as_percentage); |
240 | |
241 | size_t calculated_old_free_size_in_bytes() const; |
242 | |
243 | size_t average_old_live_in_bytes() const { |
244 | return (size_t) avg_old_live()->average(); |
245 | } |
246 | |
247 | size_t average_promoted_in_bytes() const { |
248 | return (size_t)avg_promoted()->average(); |
249 | } |
250 | |
251 | size_t padded_average_promoted_in_bytes() const { |
252 | return (size_t)avg_promoted()->padded_average(); |
253 | } |
254 | |
255 | int change_young_gen_for_maj_pauses() { |
256 | return _change_young_gen_for_maj_pauses; |
257 | } |
258 | void set_change_young_gen_for_maj_pauses(int v) { |
259 | _change_young_gen_for_maj_pauses = v; |
260 | } |
261 | |
262 | int change_old_gen_for_min_pauses() { |
263 | return _change_old_gen_for_min_pauses; |
264 | } |
265 | void set_change_old_gen_for_min_pauses(int v) { |
266 | _change_old_gen_for_min_pauses = v; |
267 | } |
268 | |
269 | // Return true if the old generation size was changed |
270 | // to try to reach a pause time goal. |
271 | bool old_gen_changed_for_pauses() { |
272 | bool result = _change_old_gen_for_maj_pauses != 0 || |
273 | _change_old_gen_for_min_pauses != 0; |
274 | return result; |
275 | } |
276 | |
277 | // Return true if the young generation size was changed |
278 | // to try to reach a pause time goal. |
279 | bool young_gen_changed_for_pauses() { |
280 | bool result = _change_young_gen_for_min_pauses != 0 || |
281 | _change_young_gen_for_maj_pauses != 0; |
282 | return result; |
283 | } |
284 | // end flags for pause goal |
285 | |
286 | // Return true if the old generation size was changed |
287 | // to try to reach a throughput goal. |
288 | bool old_gen_changed_for_throughput() { |
289 | bool result = _change_old_gen_for_throughput != 0; |
290 | return result; |
291 | } |
292 | |
293 | // Return true if the young generation size was changed |
294 | // to try to reach a throughput goal. |
295 | bool young_gen_changed_for_throughput() { |
296 | bool result = _change_young_gen_for_throughput != 0; |
297 | return result; |
298 | } |
299 | |
300 | int () { return _decrease_for_footprint; } |
301 | |
302 | |
303 | // Accessors for estimators. The slope of the linear fit is |
304 | // currently all that is used for making decisions. |
305 | |
306 | LinearLeastSquareFit* major_pause_old_estimator() { |
307 | return _major_pause_old_estimator; |
308 | } |
309 | |
310 | LinearLeastSquareFit* major_pause_young_estimator() { |
311 | return _major_pause_young_estimator; |
312 | } |
313 | |
314 | |
315 | virtual void clear_generation_free_space_flags(); |
316 | |
317 | float major_pause_old_slope() { return _major_pause_old_estimator->slope(); } |
318 | float major_pause_young_slope() { |
319 | return _major_pause_young_estimator->slope(); |
320 | } |
321 | float major_collection_slope() { return _major_collection_estimator->slope();} |
322 | |
323 | bool old_gen_policy_is_ready() { return _old_gen_policy_is_ready; } |
324 | |
325 | // Given the amount of live data in the heap, should we |
326 | // perform a Full GC? |
327 | bool should_full_GC(size_t live_in_old_gen); |
328 | |
329 | // Calculates optimal (free) space sizes for both the young and old |
330 | // generations. Stores results in _eden_size and _promo_size. |
331 | // Takes current used space in all generations as input, as well |
332 | // as an indication if a full gc has just been performed, for use |
333 | // in deciding if an OOM error should be thrown. |
334 | void compute_generations_free_space(size_t young_live, |
335 | size_t eden_live, |
336 | size_t old_live, |
337 | size_t cur_eden, // current eden in bytes |
338 | size_t max_old_gen_size, |
339 | size_t max_eden_size, |
340 | bool is_full_gc); |
341 | |
342 | void compute_eden_space_size(size_t young_live, |
343 | size_t eden_live, |
344 | size_t cur_eden, // current eden in bytes |
345 | size_t max_eden_size, |
346 | bool is_full_gc); |
347 | |
348 | void compute_old_gen_free_space(size_t old_live, |
349 | size_t cur_eden, // current eden in bytes |
350 | size_t max_old_gen_size, |
351 | bool is_full_gc); |
352 | |
353 | // Calculates new survivor space size; returns a new tenuring threshold |
354 | // value. Stores new survivor size in _survivor_size. |
355 | uint compute_survivor_space_size_and_threshold(bool is_survivor_overflow, |
356 | uint tenuring_threshold, |
357 | size_t survivor_limit); |
358 | |
359 | // Return the maximum size of a survivor space if the young generation were of |
360 | // size gen_size. |
361 | size_t max_survivor_size(size_t gen_size) { |
362 | // Never allow the target survivor size to grow more than MinSurvivorRatio |
363 | // of the young generation size. We cannot grow into a two semi-space |
364 | // system, with Eden zero sized. Even if the survivor space grows, from() |
365 | // might grow by moving the bottom boundary "down" -- so from space will |
366 | // remain almost full anyway (top() will be near end(), but there will be a |
367 | // large filler object at the bottom). |
368 | const size_t sz = gen_size / MinSurvivorRatio; |
369 | const size_t alignment = _space_alignment; |
370 | return sz > alignment ? align_down(sz, alignment) : alignment; |
371 | } |
372 | |
373 | size_t live_at_last_full_gc() { |
374 | return _live_at_last_full_gc; |
375 | } |
376 | |
377 | size_t bytes_absorbed_from_eden() const { return _bytes_absorbed_from_eden; } |
378 | void reset_bytes_absorbed_from_eden() { _bytes_absorbed_from_eden = 0; } |
379 | |
380 | void set_bytes_absorbed_from_eden(size_t val) { |
381 | _bytes_absorbed_from_eden = val; |
382 | } |
383 | |
384 | // Update averages that are always used (even |
385 | // if adaptive sizing is turned off). |
386 | void update_averages(bool is_survivor_overflow, |
387 | size_t survived, |
388 | size_t promoted); |
389 | |
390 | // Printing support |
391 | virtual bool print() const; |
392 | |
393 | // Decay the supplemental growth additive. |
394 | void decay_supplemental_growth(bool is_full_gc); |
395 | }; |
396 | |
397 | #endif // SHARE_GC_PARALLEL_PSADAPTIVESIZEPOLICY_HPP |
398 | |