| 1 | /* |
| 2 | * Copyright (c) 2002, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #ifndef SHARE_GC_PARALLEL_PSADAPTIVESIZEPOLICY_HPP |
| 26 | #define SHARE_GC_PARALLEL_PSADAPTIVESIZEPOLICY_HPP |
| 27 | |
| 28 | #include "gc/shared/adaptiveSizePolicy.hpp" |
| 29 | #include "gc/shared/gcCause.hpp" |
| 30 | #include "gc/shared/gcStats.hpp" |
| 31 | #include "gc/shared/gcUtil.hpp" |
| 32 | #include "utilities/align.hpp" |
| 33 | |
| 34 | // This class keeps statistical information and computes the |
| 35 | // optimal free space for both the young and old generation |
| 36 | // based on current application characteristics (based on gc cost |
| 37 | // and application footprint). |
| 38 | // |
| 39 | // It also computes an optimal tenuring threshold between the young |
| 40 | // and old generations, so as to equalize the cost of collections |
| 41 | // of those generations, as well as optimal survivor space sizes |
| 42 | // for the young generation. |
| 43 | // |
| 44 | // While this class is specifically intended for a generational system |
| 45 | // consisting of a young gen (containing an Eden and two semi-spaces) |
| 46 | // and a tenured gen, as well as a perm gen for reflective data, it |
| 47 | // makes NO references to specific generations. |
| 48 | // |
| 49 | // 05/02/2003 Update |
| 50 | // The 1.5 policy makes use of data gathered for the costs of GC on |
| 51 | // specific generations. That data does reference specific |
| 52 | // generation. Also diagnostics specific to generations have |
| 53 | // been added. |
| 54 | |
| 55 | // Forward decls |
| 56 | class elapsedTimer; |
| 57 | |
| 58 | class PSAdaptiveSizePolicy : public AdaptiveSizePolicy { |
| 59 | friend class PSGCAdaptivePolicyCounters; |
| 60 | private: |
| 61 | // These values are used to record decisions made during the |
| 62 | // policy. For example, if the young generation was decreased |
| 63 | // to decrease the GC cost of minor collections the value |
| 64 | // decrease_young_gen_for_throughput_true is used. |
| 65 | |
| 66 | // Last calculated sizes, in bytes, and aligned |
| 67 | // NEEDS_CLEANUP should use sizes.hpp, but it works in ints, not size_t's |
| 68 | |
| 69 | // Time statistics |
| 70 | AdaptivePaddedAverage* _avg_major_pause; |
| 71 | |
| 72 | // Footprint statistics |
| 73 | AdaptiveWeightedAverage* ; |
| 74 | |
| 75 | // Statistical data gathered for GC |
| 76 | GCStats _gc_stats; |
| 77 | |
| 78 | const double _collection_cost_margin_fraction; |
| 79 | |
| 80 | // Variable for estimating the major and minor pause times. |
| 81 | // These variables represent linear least-squares fits of |
| 82 | // the data. |
| 83 | // major pause time vs. old gen size |
| 84 | LinearLeastSquareFit* _major_pause_old_estimator; |
| 85 | // major pause time vs. young gen size |
| 86 | LinearLeastSquareFit* _major_pause_young_estimator; |
| 87 | |
| 88 | |
| 89 | // These record the most recent collection times. They |
| 90 | // are available as an alternative to using the averages |
| 91 | // for making ergonomic decisions. |
| 92 | double _latest_major_mutator_interval_seconds; |
| 93 | |
| 94 | const size_t _space_alignment; // alignment for eden, survivors |
| 95 | |
| 96 | const double _gc_minor_pause_goal_sec; // goal for maximum minor gc pause |
| 97 | |
| 98 | // The amount of live data in the heap at the last full GC, used |
| 99 | // as a baseline to help us determine when we need to perform the |
| 100 | // next full GC. |
| 101 | size_t _live_at_last_full_gc; |
| 102 | |
| 103 | // decrease/increase the old generation for minor pause time |
| 104 | int _change_old_gen_for_min_pauses; |
| 105 | |
| 106 | // increase/decrease the young generation for major pause time |
| 107 | int _change_young_gen_for_maj_pauses; |
| 108 | |
| 109 | |
| 110 | // Flag indicating that the adaptive policy is ready to use |
| 111 | bool _old_gen_policy_is_ready; |
| 112 | |
| 113 | // To facilitate faster growth at start up, supplement the normal |
| 114 | // growth percentage for the young gen eden and the |
| 115 | // old gen space for promotion with these value which decay |
| 116 | // with increasing collections. |
| 117 | uint _young_gen_size_increment_supplement; |
| 118 | uint _old_gen_size_increment_supplement; |
| 119 | |
| 120 | // The number of bytes absorbed from eden into the old gen by moving the |
| 121 | // boundary over live data. |
| 122 | size_t _bytes_absorbed_from_eden; |
| 123 | |
| 124 | private: |
| 125 | |
| 126 | // Accessors |
| 127 | AdaptivePaddedAverage* avg_major_pause() const { return _avg_major_pause; } |
| 128 | double gc_minor_pause_goal_sec() const { return _gc_minor_pause_goal_sec; } |
| 129 | |
| 130 | void adjust_eden_for_minor_pause_time(bool is_full_gc, |
| 131 | size_t* desired_eden_size_ptr); |
| 132 | // Change the generation sizes to achieve a GC pause time goal |
| 133 | // Returned sizes are not necessarily aligned. |
| 134 | void adjust_promo_for_pause_time(bool is_full_gc, |
| 135 | size_t* desired_promo_size_ptr, |
| 136 | size_t* desired_eden_size_ptr); |
| 137 | void adjust_eden_for_pause_time(bool is_full_gc, |
| 138 | size_t* desired_promo_size_ptr, |
| 139 | size_t* desired_eden_size_ptr); |
| 140 | // Change the generation sizes to achieve an application throughput goal |
| 141 | // Returned sizes are not necessarily aligned. |
| 142 | void adjust_promo_for_throughput(bool is_full_gc, |
| 143 | size_t* desired_promo_size_ptr); |
| 144 | void adjust_eden_for_throughput(bool is_full_gc, |
| 145 | size_t* desired_eden_size_ptr); |
| 146 | // Change the generation sizes to achieve minimum footprint |
| 147 | // Returned sizes are not aligned. |
| 148 | size_t (size_t desired_promo_size, |
| 149 | size_t desired_total); |
| 150 | size_t (size_t desired_promo_size, |
| 151 | size_t desired_total); |
| 152 | |
| 153 | // Size in bytes for an increment or decrement of eden. |
| 154 | virtual size_t eden_increment(size_t cur_eden, uint percent_change); |
| 155 | virtual size_t eden_decrement(size_t cur_eden); |
| 156 | size_t eden_decrement_aligned_down(size_t cur_eden); |
| 157 | size_t eden_increment_with_supplement_aligned_up(size_t cur_eden); |
| 158 | |
| 159 | // Size in bytes for an increment or decrement of the promotion area |
| 160 | virtual size_t promo_increment(size_t cur_promo, uint percent_change); |
| 161 | virtual size_t promo_decrement(size_t cur_promo); |
| 162 | size_t promo_decrement_aligned_down(size_t cur_promo); |
| 163 | size_t promo_increment_with_supplement_aligned_up(size_t cur_promo); |
| 164 | |
| 165 | // Returns a change that has been scaled down. Result |
| 166 | // is not aligned. (If useful, move to some shared |
| 167 | // location.) |
| 168 | size_t scale_down(size_t change, double part, double total); |
| 169 | |
| 170 | protected: |
| 171 | // Time accessors |
| 172 | |
| 173 | // Footprint accessors |
| 174 | size_t live_space() const { |
| 175 | return (size_t)(avg_base_footprint()->average() + |
| 176 | avg_young_live()->average() + |
| 177 | avg_old_live()->average()); |
| 178 | } |
| 179 | size_t free_space() const { |
| 180 | return _eden_size + _promo_size; |
| 181 | } |
| 182 | |
| 183 | void set_promo_size(size_t new_size) { |
| 184 | _promo_size = new_size; |
| 185 | } |
| 186 | void set_survivor_size(size_t new_size) { |
| 187 | _survivor_size = new_size; |
| 188 | } |
| 189 | |
| 190 | // Update estimators |
| 191 | void update_minor_pause_old_estimator(double minor_pause_in_ms); |
| 192 | |
| 193 | virtual GCPolicyKind kind() const { return _gc_ps_adaptive_size_policy; } |
| 194 | |
| 195 | public: |
| 196 | // Use by ASPSYoungGen and ASPSOldGen to limit boundary moving. |
| 197 | size_t eden_increment_aligned_up(size_t cur_eden); |
| 198 | size_t eden_increment_aligned_down(size_t cur_eden); |
| 199 | size_t promo_increment_aligned_up(size_t cur_promo); |
| 200 | size_t promo_increment_aligned_down(size_t cur_promo); |
| 201 | |
| 202 | virtual size_t eden_increment(size_t cur_eden); |
| 203 | virtual size_t promo_increment(size_t cur_promo); |
| 204 | |
| 205 | // Accessors for use by performance counters |
| 206 | AdaptivePaddedNoZeroDevAverage* avg_promoted() const { |
| 207 | return _gc_stats.avg_promoted(); |
| 208 | } |
| 209 | AdaptiveWeightedAverage* () const { |
| 210 | return _avg_base_footprint; |
| 211 | } |
| 212 | |
| 213 | // Input arguments are initial free space sizes for young and old |
| 214 | // generations, the initial survivor space size, the |
| 215 | // alignment values and the pause & throughput goals. |
| 216 | // |
| 217 | // NEEDS_CLEANUP this is a singleton object |
| 218 | PSAdaptiveSizePolicy(size_t init_eden_size, |
| 219 | size_t init_promo_size, |
| 220 | size_t init_survivor_size, |
| 221 | size_t space_alignment, |
| 222 | double gc_pause_goal_sec, |
| 223 | double gc_minor_pause_goal_sec, |
| 224 | uint gc_time_ratio); |
| 225 | |
| 226 | // Methods indicating events of interest to the adaptive size policy, |
| 227 | // called by GC algorithms. It is the responsibility of users of this |
| 228 | // policy to call these methods at the correct times! |
| 229 | void major_collection_begin(); |
| 230 | void major_collection_end(size_t amount_live, GCCause::Cause gc_cause); |
| 231 | |
| 232 | void tenured_allocation(size_t size) { |
| 233 | _avg_pretenured->sample(size); |
| 234 | } |
| 235 | |
| 236 | // Accessors |
| 237 | // NEEDS_CLEANUP should use sizes.hpp |
| 238 | |
| 239 | static size_t calculate_free_based_on_live(size_t live, uintx ratio_as_percentage); |
| 240 | |
| 241 | size_t calculated_old_free_size_in_bytes() const; |
| 242 | |
| 243 | size_t average_old_live_in_bytes() const { |
| 244 | return (size_t) avg_old_live()->average(); |
| 245 | } |
| 246 | |
| 247 | size_t average_promoted_in_bytes() const { |
| 248 | return (size_t)avg_promoted()->average(); |
| 249 | } |
| 250 | |
| 251 | size_t padded_average_promoted_in_bytes() const { |
| 252 | return (size_t)avg_promoted()->padded_average(); |
| 253 | } |
| 254 | |
| 255 | int change_young_gen_for_maj_pauses() { |
| 256 | return _change_young_gen_for_maj_pauses; |
| 257 | } |
| 258 | void set_change_young_gen_for_maj_pauses(int v) { |
| 259 | _change_young_gen_for_maj_pauses = v; |
| 260 | } |
| 261 | |
| 262 | int change_old_gen_for_min_pauses() { |
| 263 | return _change_old_gen_for_min_pauses; |
| 264 | } |
| 265 | void set_change_old_gen_for_min_pauses(int v) { |
| 266 | _change_old_gen_for_min_pauses = v; |
| 267 | } |
| 268 | |
| 269 | // Return true if the old generation size was changed |
| 270 | // to try to reach a pause time goal. |
| 271 | bool old_gen_changed_for_pauses() { |
| 272 | bool result = _change_old_gen_for_maj_pauses != 0 || |
| 273 | _change_old_gen_for_min_pauses != 0; |
| 274 | return result; |
| 275 | } |
| 276 | |
| 277 | // Return true if the young generation size was changed |
| 278 | // to try to reach a pause time goal. |
| 279 | bool young_gen_changed_for_pauses() { |
| 280 | bool result = _change_young_gen_for_min_pauses != 0 || |
| 281 | _change_young_gen_for_maj_pauses != 0; |
| 282 | return result; |
| 283 | } |
| 284 | // end flags for pause goal |
| 285 | |
| 286 | // Return true if the old generation size was changed |
| 287 | // to try to reach a throughput goal. |
| 288 | bool old_gen_changed_for_throughput() { |
| 289 | bool result = _change_old_gen_for_throughput != 0; |
| 290 | return result; |
| 291 | } |
| 292 | |
| 293 | // Return true if the young generation size was changed |
| 294 | // to try to reach a throughput goal. |
| 295 | bool young_gen_changed_for_throughput() { |
| 296 | bool result = _change_young_gen_for_throughput != 0; |
| 297 | return result; |
| 298 | } |
| 299 | |
| 300 | int () { return _decrease_for_footprint; } |
| 301 | |
| 302 | |
| 303 | // Accessors for estimators. The slope of the linear fit is |
| 304 | // currently all that is used for making decisions. |
| 305 | |
| 306 | LinearLeastSquareFit* major_pause_old_estimator() { |
| 307 | return _major_pause_old_estimator; |
| 308 | } |
| 309 | |
| 310 | LinearLeastSquareFit* major_pause_young_estimator() { |
| 311 | return _major_pause_young_estimator; |
| 312 | } |
| 313 | |
| 314 | |
| 315 | virtual void clear_generation_free_space_flags(); |
| 316 | |
| 317 | float major_pause_old_slope() { return _major_pause_old_estimator->slope(); } |
| 318 | float major_pause_young_slope() { |
| 319 | return _major_pause_young_estimator->slope(); |
| 320 | } |
| 321 | float major_collection_slope() { return _major_collection_estimator->slope();} |
| 322 | |
| 323 | bool old_gen_policy_is_ready() { return _old_gen_policy_is_ready; } |
| 324 | |
| 325 | // Given the amount of live data in the heap, should we |
| 326 | // perform a Full GC? |
| 327 | bool should_full_GC(size_t live_in_old_gen); |
| 328 | |
| 329 | // Calculates optimal (free) space sizes for both the young and old |
| 330 | // generations. Stores results in _eden_size and _promo_size. |
| 331 | // Takes current used space in all generations as input, as well |
| 332 | // as an indication if a full gc has just been performed, for use |
| 333 | // in deciding if an OOM error should be thrown. |
| 334 | void compute_generations_free_space(size_t young_live, |
| 335 | size_t eden_live, |
| 336 | size_t old_live, |
| 337 | size_t cur_eden, // current eden in bytes |
| 338 | size_t max_old_gen_size, |
| 339 | size_t max_eden_size, |
| 340 | bool is_full_gc); |
| 341 | |
| 342 | void compute_eden_space_size(size_t young_live, |
| 343 | size_t eden_live, |
| 344 | size_t cur_eden, // current eden in bytes |
| 345 | size_t max_eden_size, |
| 346 | bool is_full_gc); |
| 347 | |
| 348 | void compute_old_gen_free_space(size_t old_live, |
| 349 | size_t cur_eden, // current eden in bytes |
| 350 | size_t max_old_gen_size, |
| 351 | bool is_full_gc); |
| 352 | |
| 353 | // Calculates new survivor space size; returns a new tenuring threshold |
| 354 | // value. Stores new survivor size in _survivor_size. |
| 355 | uint compute_survivor_space_size_and_threshold(bool is_survivor_overflow, |
| 356 | uint tenuring_threshold, |
| 357 | size_t survivor_limit); |
| 358 | |
| 359 | // Return the maximum size of a survivor space if the young generation were of |
| 360 | // size gen_size. |
| 361 | size_t max_survivor_size(size_t gen_size) { |
| 362 | // Never allow the target survivor size to grow more than MinSurvivorRatio |
| 363 | // of the young generation size. We cannot grow into a two semi-space |
| 364 | // system, with Eden zero sized. Even if the survivor space grows, from() |
| 365 | // might grow by moving the bottom boundary "down" -- so from space will |
| 366 | // remain almost full anyway (top() will be near end(), but there will be a |
| 367 | // large filler object at the bottom). |
| 368 | const size_t sz = gen_size / MinSurvivorRatio; |
| 369 | const size_t alignment = _space_alignment; |
| 370 | return sz > alignment ? align_down(sz, alignment) : alignment; |
| 371 | } |
| 372 | |
| 373 | size_t live_at_last_full_gc() { |
| 374 | return _live_at_last_full_gc; |
| 375 | } |
| 376 | |
| 377 | size_t bytes_absorbed_from_eden() const { return _bytes_absorbed_from_eden; } |
| 378 | void reset_bytes_absorbed_from_eden() { _bytes_absorbed_from_eden = 0; } |
| 379 | |
| 380 | void set_bytes_absorbed_from_eden(size_t val) { |
| 381 | _bytes_absorbed_from_eden = val; |
| 382 | } |
| 383 | |
| 384 | // Update averages that are always used (even |
| 385 | // if adaptive sizing is turned off). |
| 386 | void update_averages(bool is_survivor_overflow, |
| 387 | size_t survived, |
| 388 | size_t promoted); |
| 389 | |
| 390 | // Printing support |
| 391 | virtual bool print() const; |
| 392 | |
| 393 | // Decay the supplemental growth additive. |
| 394 | void decay_supplemental_growth(bool is_full_gc); |
| 395 | }; |
| 396 | |
| 397 | #endif // SHARE_GC_PARALLEL_PSADAPTIVESIZEPOLICY_HPP |
| 398 | |