| 1 | /* |
| 2 | * Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #ifndef SHARE_GC_SHARED_ADAPTIVESIZEPOLICY_HPP |
| 26 | #define SHARE_GC_SHARED_ADAPTIVESIZEPOLICY_HPP |
| 27 | |
| 28 | #include "gc/shared/gcCause.hpp" |
| 29 | #include "gc/shared/gcOverheadChecker.hpp" |
| 30 | #include "gc/shared/gcUtil.hpp" |
| 31 | #include "memory/allocation.hpp" |
| 32 | |
| 33 | // This class keeps statistical information and computes the |
| 34 | // size of the heap. |
| 35 | |
| 36 | // Forward decls |
| 37 | class elapsedTimer; |
| 38 | |
| 39 | class AdaptiveSizePolicy : public CHeapObj<mtGC> { |
| 40 | friend class GCAdaptivePolicyCounters; |
| 41 | friend class PSGCAdaptivePolicyCounters; |
| 42 | friend class CMSGCAdaptivePolicyCounters; |
| 43 | protected: |
| 44 | |
| 45 | enum GCPolicyKind { |
| 46 | _gc_adaptive_size_policy, |
| 47 | _gc_ps_adaptive_size_policy, |
| 48 | _gc_cms_adaptive_size_policy |
| 49 | }; |
| 50 | virtual GCPolicyKind kind() const { return _gc_adaptive_size_policy; } |
| 51 | |
| 52 | enum SizePolicyTrueValues { |
| 53 | decrease_old_gen_for_throughput_true = -7, |
| 54 | decrease_young_gen_for_througput_true = -6, |
| 55 | |
| 56 | increase_old_gen_for_min_pauses_true = -5, |
| 57 | decrease_old_gen_for_min_pauses_true = -4, |
| 58 | decrease_young_gen_for_maj_pauses_true = -3, |
| 59 | increase_young_gen_for_min_pauses_true = -2, |
| 60 | increase_old_gen_for_maj_pauses_true = -1, |
| 61 | |
| 62 | decrease_young_gen_for_min_pauses_true = 1, |
| 63 | decrease_old_gen_for_maj_pauses_true = 2, |
| 64 | increase_young_gen_for_maj_pauses_true = 3, |
| 65 | |
| 66 | increase_old_gen_for_throughput_true = 4, |
| 67 | increase_young_gen_for_througput_true = 5, |
| 68 | |
| 69 | = 6, |
| 70 | = 7, |
| 71 | decide_at_full_gc_true = 8 |
| 72 | }; |
| 73 | |
| 74 | // Goal for the fraction of the total time during which application |
| 75 | // threads run |
| 76 | const double _throughput_goal; |
| 77 | |
| 78 | // Last calculated sizes, in bytes, and aligned |
| 79 | size_t _eden_size; // calculated eden free space in bytes |
| 80 | size_t _promo_size; // calculated cms gen free space in bytes |
| 81 | |
| 82 | size_t _survivor_size; // calculated survivor size in bytes |
| 83 | |
| 84 | // Support for UseGCOverheadLimit |
| 85 | GCOverheadChecker _overhead_checker; |
| 86 | |
| 87 | // Minor collection timers used to determine both |
| 88 | // pause and interval times for collections |
| 89 | static elapsedTimer _minor_timer; |
| 90 | |
| 91 | // Major collection timers, used to determine both |
| 92 | // pause and interval times for collections |
| 93 | static elapsedTimer _major_timer; |
| 94 | |
| 95 | // Time statistics |
| 96 | AdaptivePaddedAverage* _avg_minor_pause; |
| 97 | AdaptiveWeightedAverage* _avg_minor_interval; |
| 98 | AdaptiveWeightedAverage* _avg_minor_gc_cost; |
| 99 | |
| 100 | AdaptiveWeightedAverage* _avg_major_interval; |
| 101 | AdaptiveWeightedAverage* _avg_major_gc_cost; |
| 102 | |
| 103 | // Footprint statistics |
| 104 | AdaptiveWeightedAverage* _avg_young_live; |
| 105 | AdaptiveWeightedAverage* _avg_eden_live; |
| 106 | AdaptiveWeightedAverage* _avg_old_live; |
| 107 | |
| 108 | // Statistics for survivor space calculation for young generation |
| 109 | AdaptivePaddedAverage* _avg_survived; |
| 110 | |
| 111 | // Objects that have been directly allocated in the old generation |
| 112 | AdaptivePaddedNoZeroDevAverage* _avg_pretenured; |
| 113 | |
| 114 | // Variable for estimating the major and minor pause times. |
| 115 | // These variables represent linear least-squares fits of |
| 116 | // the data. |
| 117 | // minor pause time vs. old gen size |
| 118 | LinearLeastSquareFit* _minor_pause_old_estimator; |
| 119 | // minor pause time vs. young gen size |
| 120 | LinearLeastSquareFit* _minor_pause_young_estimator; |
| 121 | |
| 122 | // Variables for estimating the major and minor collection costs |
| 123 | // minor collection time vs. young gen size |
| 124 | LinearLeastSquareFit* _minor_collection_estimator; |
| 125 | // major collection time vs. cms gen size |
| 126 | LinearLeastSquareFit* _major_collection_estimator; |
| 127 | |
| 128 | // These record the most recent collection times. They |
| 129 | // are available as an alternative to using the averages |
| 130 | // for making ergonomic decisions. |
| 131 | double _latest_minor_mutator_interval_seconds; |
| 132 | |
| 133 | // Allowed difference between major and minor GC times, used |
| 134 | // for computing tenuring_threshold |
| 135 | const double _threshold_tolerance_percent; |
| 136 | |
| 137 | const double _gc_pause_goal_sec; // Goal for maximum GC pause |
| 138 | |
| 139 | // Flag indicating that the adaptive policy is ready to use |
| 140 | bool _young_gen_policy_is_ready; |
| 141 | |
| 142 | // Decrease/increase the young generation for minor pause time |
| 143 | int _change_young_gen_for_min_pauses; |
| 144 | |
| 145 | // Decrease/increase the old generation for major pause time |
| 146 | int _change_old_gen_for_maj_pauses; |
| 147 | |
| 148 | // change old generation for throughput |
| 149 | int _change_old_gen_for_throughput; |
| 150 | |
| 151 | // change young generation for throughput |
| 152 | int _change_young_gen_for_throughput; |
| 153 | |
| 154 | // Flag indicating that the policy would |
| 155 | // increase the tenuring threshold because of the total major GC cost |
| 156 | // is greater than the total minor GC cost |
| 157 | bool _increment_tenuring_threshold_for_gc_cost; |
| 158 | // decrease the tenuring threshold because of the the total minor GC |
| 159 | // cost is greater than the total major GC cost |
| 160 | bool _decrement_tenuring_threshold_for_gc_cost; |
| 161 | // decrease due to survivor size limit |
| 162 | bool _decrement_tenuring_threshold_for_survivor_limit; |
| 163 | |
| 164 | // decrease generation sizes for footprint |
| 165 | int ; |
| 166 | |
| 167 | // Set if the ergonomic decisions were made at a full GC. |
| 168 | int _decide_at_full_gc; |
| 169 | |
| 170 | // Changing the generation sizing depends on the data that is |
| 171 | // gathered about the effects of changes on the pause times and |
| 172 | // throughput. These variable count the number of data points |
| 173 | // gathered. The policy may use these counters as a threshold |
| 174 | // for reliable data. |
| 175 | julong _young_gen_change_for_minor_throughput; |
| 176 | julong _old_gen_change_for_major_throughput; |
| 177 | |
| 178 | // Accessors |
| 179 | |
| 180 | double gc_pause_goal_sec() const { return _gc_pause_goal_sec; } |
| 181 | // The value returned is unitless: it's the proportion of time |
| 182 | // spent in a particular collection type. |
| 183 | // An interval time will be 0.0 if a collection type hasn't occurred yet. |
| 184 | // The 1.4.2 implementation put a floor on the values of major_gc_cost |
| 185 | // and minor_gc_cost. This was useful because of the way major_gc_cost |
| 186 | // and minor_gc_cost was used in calculating the sizes of the generations. |
| 187 | // Do not use a floor in this implementation because any finite value |
| 188 | // will put a limit on the throughput that can be achieved and any |
| 189 | // throughput goal above that limit will drive the generations sizes |
| 190 | // to extremes. |
| 191 | double major_gc_cost() const { |
| 192 | return MAX2(0.0F, _avg_major_gc_cost->average()); |
| 193 | } |
| 194 | |
| 195 | // The value returned is unitless: it's the proportion of time |
| 196 | // spent in a particular collection type. |
| 197 | // An interval time will be 0.0 if a collection type hasn't occurred yet. |
| 198 | // The 1.4.2 implementation put a floor on the values of major_gc_cost |
| 199 | // and minor_gc_cost. This was useful because of the way major_gc_cost |
| 200 | // and minor_gc_cost was used in calculating the sizes of the generations. |
| 201 | // Do not use a floor in this implementation because any finite value |
| 202 | // will put a limit on the throughput that can be achieved and any |
| 203 | // throughput goal above that limit will drive the generations sizes |
| 204 | // to extremes. |
| 205 | |
| 206 | double minor_gc_cost() const { |
| 207 | return MAX2(0.0F, _avg_minor_gc_cost->average()); |
| 208 | } |
| 209 | |
| 210 | // Because we're dealing with averages, gc_cost() can be |
| 211 | // larger than 1.0 if just the sum of the minor cost the |
| 212 | // the major cost is used. Worse than that is the |
| 213 | // fact that the minor cost and the major cost each |
| 214 | // tend toward 1.0 in the extreme of high GC costs. |
| 215 | // Limit the value of gc_cost to 1.0 so that the mutator |
| 216 | // cost stays non-negative. |
| 217 | virtual double gc_cost() const { |
| 218 | double result = MIN2(1.0, minor_gc_cost() + major_gc_cost()); |
| 219 | assert(result >= 0.0, "Both minor and major costs are non-negative" ); |
| 220 | return result; |
| 221 | } |
| 222 | |
| 223 | // Elapsed time since the last major collection. |
| 224 | virtual double time_since_major_gc() const; |
| 225 | |
| 226 | // Average interval between major collections to be used |
| 227 | // in calculating the decaying major GC cost. An overestimate |
| 228 | // of this time would be a conservative estimate because |
| 229 | // this time is used to decide if the major GC cost |
| 230 | // should be decayed (i.e., if the time since the last |
| 231 | // major GC is long compared to the time returned here, |
| 232 | // then the major GC cost will be decayed). See the |
| 233 | // implementations for the specifics. |
| 234 | virtual double major_gc_interval_average_for_decay() const { |
| 235 | return _avg_major_interval->average(); |
| 236 | } |
| 237 | |
| 238 | // Return the cost of the GC where the major GC cost |
| 239 | // has been decayed based on the time since the last |
| 240 | // major collection. |
| 241 | double decaying_gc_cost() const; |
| 242 | |
| 243 | // Decay the major GC cost. Use this only for decisions on |
| 244 | // whether to adjust, not to determine by how much to adjust. |
| 245 | // This approximation is crude and may not be good enough for the |
| 246 | // latter. |
| 247 | double decaying_major_gc_cost() const; |
| 248 | |
| 249 | // Return the mutator cost using the decayed |
| 250 | // GC cost. |
| 251 | double adjusted_mutator_cost() const { |
| 252 | double result = 1.0 - decaying_gc_cost(); |
| 253 | assert(result >= 0.0, "adjusted mutator cost calculation is incorrect" ); |
| 254 | return result; |
| 255 | } |
| 256 | |
| 257 | virtual double mutator_cost() const { |
| 258 | double result = 1.0 - gc_cost(); |
| 259 | assert(result >= 0.0, "mutator cost calculation is incorrect" ); |
| 260 | return result; |
| 261 | } |
| 262 | |
| 263 | |
| 264 | bool young_gen_policy_is_ready() { return _young_gen_policy_is_ready; } |
| 265 | |
| 266 | void update_minor_pause_young_estimator(double minor_pause_in_ms); |
| 267 | virtual void update_minor_pause_old_estimator(double minor_pause_in_ms) { |
| 268 | // This is not meaningful for all policies but needs to be present |
| 269 | // to use minor_collection_end() in its current form. |
| 270 | } |
| 271 | |
| 272 | virtual size_t eden_increment(size_t cur_eden); |
| 273 | virtual size_t eden_increment(size_t cur_eden, uint percent_change); |
| 274 | virtual size_t eden_decrement(size_t cur_eden); |
| 275 | virtual size_t promo_increment(size_t cur_eden); |
| 276 | virtual size_t promo_increment(size_t cur_eden, uint percent_change); |
| 277 | virtual size_t promo_decrement(size_t cur_eden); |
| 278 | |
| 279 | virtual void clear_generation_free_space_flags(); |
| 280 | |
| 281 | int change_old_gen_for_throughput() const { |
| 282 | return _change_old_gen_for_throughput; |
| 283 | } |
| 284 | void set_change_old_gen_for_throughput(int v) { |
| 285 | _change_old_gen_for_throughput = v; |
| 286 | } |
| 287 | int change_young_gen_for_throughput() const { |
| 288 | return _change_young_gen_for_throughput; |
| 289 | } |
| 290 | void set_change_young_gen_for_throughput(int v) { |
| 291 | _change_young_gen_for_throughput = v; |
| 292 | } |
| 293 | |
| 294 | int change_old_gen_for_maj_pauses() const { |
| 295 | return _change_old_gen_for_maj_pauses; |
| 296 | } |
| 297 | void set_change_old_gen_for_maj_pauses(int v) { |
| 298 | _change_old_gen_for_maj_pauses = v; |
| 299 | } |
| 300 | |
| 301 | bool decrement_tenuring_threshold_for_gc_cost() const { |
| 302 | return _decrement_tenuring_threshold_for_gc_cost; |
| 303 | } |
| 304 | void set_decrement_tenuring_threshold_for_gc_cost(bool v) { |
| 305 | _decrement_tenuring_threshold_for_gc_cost = v; |
| 306 | } |
| 307 | bool increment_tenuring_threshold_for_gc_cost() const { |
| 308 | return _increment_tenuring_threshold_for_gc_cost; |
| 309 | } |
| 310 | void set_increment_tenuring_threshold_for_gc_cost(bool v) { |
| 311 | _increment_tenuring_threshold_for_gc_cost = v; |
| 312 | } |
| 313 | bool decrement_tenuring_threshold_for_survivor_limit() const { |
| 314 | return _decrement_tenuring_threshold_for_survivor_limit; |
| 315 | } |
| 316 | void set_decrement_tenuring_threshold_for_survivor_limit(bool v) { |
| 317 | _decrement_tenuring_threshold_for_survivor_limit = v; |
| 318 | } |
| 319 | // Return true if the policy suggested a change. |
| 320 | bool tenuring_threshold_change() const; |
| 321 | |
| 322 | public: |
| 323 | AdaptiveSizePolicy(size_t init_eden_size, |
| 324 | size_t init_promo_size, |
| 325 | size_t init_survivor_size, |
| 326 | double gc_pause_goal_sec, |
| 327 | uint gc_cost_ratio); |
| 328 | |
| 329 | bool is_gc_cms_adaptive_size_policy() { |
| 330 | return kind() == _gc_cms_adaptive_size_policy; |
| 331 | } |
| 332 | bool is_gc_ps_adaptive_size_policy() { |
| 333 | return kind() == _gc_ps_adaptive_size_policy; |
| 334 | } |
| 335 | |
| 336 | AdaptivePaddedAverage* avg_minor_pause() const { return _avg_minor_pause; } |
| 337 | AdaptiveWeightedAverage* avg_minor_interval() const { |
| 338 | return _avg_minor_interval; |
| 339 | } |
| 340 | AdaptiveWeightedAverage* avg_minor_gc_cost() const { |
| 341 | return _avg_minor_gc_cost; |
| 342 | } |
| 343 | |
| 344 | AdaptiveWeightedAverage* avg_major_gc_cost() const { |
| 345 | return _avg_major_gc_cost; |
| 346 | } |
| 347 | |
| 348 | AdaptiveWeightedAverage* avg_young_live() const { return _avg_young_live; } |
| 349 | AdaptiveWeightedAverage* avg_eden_live() const { return _avg_eden_live; } |
| 350 | AdaptiveWeightedAverage* avg_old_live() const { return _avg_old_live; } |
| 351 | |
| 352 | AdaptivePaddedAverage* avg_survived() const { return _avg_survived; } |
| 353 | AdaptivePaddedNoZeroDevAverage* avg_pretenured() { return _avg_pretenured; } |
| 354 | |
| 355 | // Methods indicating events of interest to the adaptive size policy, |
| 356 | // called by GC algorithms. It is the responsibility of users of this |
| 357 | // policy to call these methods at the correct times! |
| 358 | virtual void minor_collection_begin(); |
| 359 | virtual void minor_collection_end(GCCause::Cause gc_cause); |
| 360 | virtual LinearLeastSquareFit* minor_pause_old_estimator() const { |
| 361 | return _minor_pause_old_estimator; |
| 362 | } |
| 363 | |
| 364 | LinearLeastSquareFit* minor_pause_young_estimator() { |
| 365 | return _minor_pause_young_estimator; |
| 366 | } |
| 367 | LinearLeastSquareFit* minor_collection_estimator() { |
| 368 | return _minor_collection_estimator; |
| 369 | } |
| 370 | |
| 371 | LinearLeastSquareFit* major_collection_estimator() { |
| 372 | return _major_collection_estimator; |
| 373 | } |
| 374 | |
| 375 | float minor_pause_young_slope() { |
| 376 | return _minor_pause_young_estimator->slope(); |
| 377 | } |
| 378 | |
| 379 | float minor_collection_slope() { return _minor_collection_estimator->slope();} |
| 380 | float major_collection_slope() { return _major_collection_estimator->slope();} |
| 381 | |
| 382 | float minor_pause_old_slope() { |
| 383 | return _minor_pause_old_estimator->slope(); |
| 384 | } |
| 385 | |
| 386 | void set_eden_size(size_t new_size) { |
| 387 | _eden_size = new_size; |
| 388 | } |
| 389 | void set_survivor_size(size_t new_size) { |
| 390 | _survivor_size = new_size; |
| 391 | } |
| 392 | |
| 393 | size_t calculated_eden_size_in_bytes() const { |
| 394 | return _eden_size; |
| 395 | } |
| 396 | |
| 397 | size_t calculated_promo_size_in_bytes() const { |
| 398 | return _promo_size; |
| 399 | } |
| 400 | |
| 401 | size_t calculated_survivor_size_in_bytes() const { |
| 402 | return _survivor_size; |
| 403 | } |
| 404 | |
| 405 | bool gc_overhead_limit_exceeded() { |
| 406 | return _overhead_checker.gc_overhead_limit_exceeded(); |
| 407 | } |
| 408 | void set_gc_overhead_limit_exceeded(bool v) { |
| 409 | _overhead_checker.set_gc_overhead_limit_exceeded(v); |
| 410 | } |
| 411 | |
| 412 | bool gc_overhead_limit_near() { |
| 413 | return _overhead_checker.gc_overhead_limit_near(); |
| 414 | } |
| 415 | |
| 416 | void reset_gc_overhead_limit_count() { |
| 417 | _overhead_checker.reset_gc_overhead_limit_count(); |
| 418 | } |
| 419 | // accessors for flags recording the decisions to resize the |
| 420 | // generations to meet the pause goal. |
| 421 | |
| 422 | int change_young_gen_for_min_pauses() const { |
| 423 | return _change_young_gen_for_min_pauses; |
| 424 | } |
| 425 | void set_change_young_gen_for_min_pauses(int v) { |
| 426 | _change_young_gen_for_min_pauses = v; |
| 427 | } |
| 428 | void (int v) { _decrease_for_footprint = v; } |
| 429 | int () const { return _decrease_for_footprint; } |
| 430 | int decide_at_full_gc() { return _decide_at_full_gc; } |
| 431 | void set_decide_at_full_gc(int v) { _decide_at_full_gc = v; } |
| 432 | |
| 433 | // Check the conditions for an out-of-memory due to excessive GC time. |
| 434 | // Set _gc_overhead_limit_exceeded if all the conditions have been met. |
| 435 | void check_gc_overhead_limit(size_t eden_live, |
| 436 | size_t max_old_gen_size, |
| 437 | size_t max_eden_size, |
| 438 | bool is_full_gc, |
| 439 | GCCause::Cause gc_cause, |
| 440 | SoftRefPolicy* soft_ref_policy); |
| 441 | |
| 442 | static bool should_update_promo_stats(GCCause::Cause cause) { |
| 443 | return ((GCCause::is_user_requested_gc(cause) && |
| 444 | UseAdaptiveSizePolicyWithSystemGC) || |
| 445 | GCCause::is_tenured_allocation_failure_gc(cause)); |
| 446 | } |
| 447 | |
| 448 | static bool should_update_eden_stats(GCCause::Cause cause) { |
| 449 | return ((GCCause::is_user_requested_gc(cause) && |
| 450 | UseAdaptiveSizePolicyWithSystemGC) || |
| 451 | GCCause::is_allocation_failure_gc(cause)); |
| 452 | } |
| 453 | |
| 454 | // Printing support |
| 455 | virtual bool print() const; |
| 456 | void print_tenuring_threshold(uint new_tenuring_threshold) const; |
| 457 | }; |
| 458 | |
| 459 | #endif // SHARE_GC_SHARED_ADAPTIVESIZEPOLICY_HPP |
| 460 | |