1 | /* |
2 | * Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #ifndef SHARE_GC_SHARED_ADAPTIVESIZEPOLICY_HPP |
26 | #define SHARE_GC_SHARED_ADAPTIVESIZEPOLICY_HPP |
27 | |
28 | #include "gc/shared/gcCause.hpp" |
29 | #include "gc/shared/gcOverheadChecker.hpp" |
30 | #include "gc/shared/gcUtil.hpp" |
31 | #include "memory/allocation.hpp" |
32 | |
33 | // This class keeps statistical information and computes the |
34 | // size of the heap. |
35 | |
36 | // Forward decls |
37 | class elapsedTimer; |
38 | |
39 | class AdaptiveSizePolicy : public CHeapObj<mtGC> { |
40 | friend class GCAdaptivePolicyCounters; |
41 | friend class PSGCAdaptivePolicyCounters; |
42 | friend class CMSGCAdaptivePolicyCounters; |
43 | protected: |
44 | |
45 | enum GCPolicyKind { |
46 | _gc_adaptive_size_policy, |
47 | _gc_ps_adaptive_size_policy, |
48 | _gc_cms_adaptive_size_policy |
49 | }; |
50 | virtual GCPolicyKind kind() const { return _gc_adaptive_size_policy; } |
51 | |
52 | enum SizePolicyTrueValues { |
53 | decrease_old_gen_for_throughput_true = -7, |
54 | decrease_young_gen_for_througput_true = -6, |
55 | |
56 | increase_old_gen_for_min_pauses_true = -5, |
57 | decrease_old_gen_for_min_pauses_true = -4, |
58 | decrease_young_gen_for_maj_pauses_true = -3, |
59 | increase_young_gen_for_min_pauses_true = -2, |
60 | increase_old_gen_for_maj_pauses_true = -1, |
61 | |
62 | decrease_young_gen_for_min_pauses_true = 1, |
63 | decrease_old_gen_for_maj_pauses_true = 2, |
64 | increase_young_gen_for_maj_pauses_true = 3, |
65 | |
66 | increase_old_gen_for_throughput_true = 4, |
67 | increase_young_gen_for_througput_true = 5, |
68 | |
69 | = 6, |
70 | = 7, |
71 | decide_at_full_gc_true = 8 |
72 | }; |
73 | |
74 | // Goal for the fraction of the total time during which application |
75 | // threads run |
76 | const double _throughput_goal; |
77 | |
78 | // Last calculated sizes, in bytes, and aligned |
79 | size_t _eden_size; // calculated eden free space in bytes |
80 | size_t _promo_size; // calculated cms gen free space in bytes |
81 | |
82 | size_t _survivor_size; // calculated survivor size in bytes |
83 | |
84 | // Support for UseGCOverheadLimit |
85 | GCOverheadChecker _overhead_checker; |
86 | |
87 | // Minor collection timers used to determine both |
88 | // pause and interval times for collections |
89 | static elapsedTimer _minor_timer; |
90 | |
91 | // Major collection timers, used to determine both |
92 | // pause and interval times for collections |
93 | static elapsedTimer _major_timer; |
94 | |
95 | // Time statistics |
96 | AdaptivePaddedAverage* _avg_minor_pause; |
97 | AdaptiveWeightedAverage* _avg_minor_interval; |
98 | AdaptiveWeightedAverage* _avg_minor_gc_cost; |
99 | |
100 | AdaptiveWeightedAverage* _avg_major_interval; |
101 | AdaptiveWeightedAverage* _avg_major_gc_cost; |
102 | |
103 | // Footprint statistics |
104 | AdaptiveWeightedAverage* _avg_young_live; |
105 | AdaptiveWeightedAverage* _avg_eden_live; |
106 | AdaptiveWeightedAverage* _avg_old_live; |
107 | |
108 | // Statistics for survivor space calculation for young generation |
109 | AdaptivePaddedAverage* _avg_survived; |
110 | |
111 | // Objects that have been directly allocated in the old generation |
112 | AdaptivePaddedNoZeroDevAverage* _avg_pretenured; |
113 | |
114 | // Variable for estimating the major and minor pause times. |
115 | // These variables represent linear least-squares fits of |
116 | // the data. |
117 | // minor pause time vs. old gen size |
118 | LinearLeastSquareFit* _minor_pause_old_estimator; |
119 | // minor pause time vs. young gen size |
120 | LinearLeastSquareFit* _minor_pause_young_estimator; |
121 | |
122 | // Variables for estimating the major and minor collection costs |
123 | // minor collection time vs. young gen size |
124 | LinearLeastSquareFit* _minor_collection_estimator; |
125 | // major collection time vs. cms gen size |
126 | LinearLeastSquareFit* _major_collection_estimator; |
127 | |
128 | // These record the most recent collection times. They |
129 | // are available as an alternative to using the averages |
130 | // for making ergonomic decisions. |
131 | double _latest_minor_mutator_interval_seconds; |
132 | |
133 | // Allowed difference between major and minor GC times, used |
134 | // for computing tenuring_threshold |
135 | const double _threshold_tolerance_percent; |
136 | |
137 | const double _gc_pause_goal_sec; // Goal for maximum GC pause |
138 | |
139 | // Flag indicating that the adaptive policy is ready to use |
140 | bool _young_gen_policy_is_ready; |
141 | |
142 | // Decrease/increase the young generation for minor pause time |
143 | int _change_young_gen_for_min_pauses; |
144 | |
145 | // Decrease/increase the old generation for major pause time |
146 | int _change_old_gen_for_maj_pauses; |
147 | |
148 | // change old generation for throughput |
149 | int _change_old_gen_for_throughput; |
150 | |
151 | // change young generation for throughput |
152 | int _change_young_gen_for_throughput; |
153 | |
154 | // Flag indicating that the policy would |
155 | // increase the tenuring threshold because of the total major GC cost |
156 | // is greater than the total minor GC cost |
157 | bool _increment_tenuring_threshold_for_gc_cost; |
158 | // decrease the tenuring threshold because of the the total minor GC |
159 | // cost is greater than the total major GC cost |
160 | bool _decrement_tenuring_threshold_for_gc_cost; |
161 | // decrease due to survivor size limit |
162 | bool _decrement_tenuring_threshold_for_survivor_limit; |
163 | |
164 | // decrease generation sizes for footprint |
165 | int ; |
166 | |
167 | // Set if the ergonomic decisions were made at a full GC. |
168 | int _decide_at_full_gc; |
169 | |
170 | // Changing the generation sizing depends on the data that is |
171 | // gathered about the effects of changes on the pause times and |
172 | // throughput. These variable count the number of data points |
173 | // gathered. The policy may use these counters as a threshold |
174 | // for reliable data. |
175 | julong _young_gen_change_for_minor_throughput; |
176 | julong _old_gen_change_for_major_throughput; |
177 | |
178 | // Accessors |
179 | |
180 | double gc_pause_goal_sec() const { return _gc_pause_goal_sec; } |
181 | // The value returned is unitless: it's the proportion of time |
182 | // spent in a particular collection type. |
183 | // An interval time will be 0.0 if a collection type hasn't occurred yet. |
184 | // The 1.4.2 implementation put a floor on the values of major_gc_cost |
185 | // and minor_gc_cost. This was useful because of the way major_gc_cost |
186 | // and minor_gc_cost was used in calculating the sizes of the generations. |
187 | // Do not use a floor in this implementation because any finite value |
188 | // will put a limit on the throughput that can be achieved and any |
189 | // throughput goal above that limit will drive the generations sizes |
190 | // to extremes. |
191 | double major_gc_cost() const { |
192 | return MAX2(0.0F, _avg_major_gc_cost->average()); |
193 | } |
194 | |
195 | // The value returned is unitless: it's the proportion of time |
196 | // spent in a particular collection type. |
197 | // An interval time will be 0.0 if a collection type hasn't occurred yet. |
198 | // The 1.4.2 implementation put a floor on the values of major_gc_cost |
199 | // and minor_gc_cost. This was useful because of the way major_gc_cost |
200 | // and minor_gc_cost was used in calculating the sizes of the generations. |
201 | // Do not use a floor in this implementation because any finite value |
202 | // will put a limit on the throughput that can be achieved and any |
203 | // throughput goal above that limit will drive the generations sizes |
204 | // to extremes. |
205 | |
206 | double minor_gc_cost() const { |
207 | return MAX2(0.0F, _avg_minor_gc_cost->average()); |
208 | } |
209 | |
210 | // Because we're dealing with averages, gc_cost() can be |
211 | // larger than 1.0 if just the sum of the minor cost the |
212 | // the major cost is used. Worse than that is the |
213 | // fact that the minor cost and the major cost each |
214 | // tend toward 1.0 in the extreme of high GC costs. |
215 | // Limit the value of gc_cost to 1.0 so that the mutator |
216 | // cost stays non-negative. |
217 | virtual double gc_cost() const { |
218 | double result = MIN2(1.0, minor_gc_cost() + major_gc_cost()); |
219 | assert(result >= 0.0, "Both minor and major costs are non-negative" ); |
220 | return result; |
221 | } |
222 | |
223 | // Elapsed time since the last major collection. |
224 | virtual double time_since_major_gc() const; |
225 | |
226 | // Average interval between major collections to be used |
227 | // in calculating the decaying major GC cost. An overestimate |
228 | // of this time would be a conservative estimate because |
229 | // this time is used to decide if the major GC cost |
230 | // should be decayed (i.e., if the time since the last |
231 | // major GC is long compared to the time returned here, |
232 | // then the major GC cost will be decayed). See the |
233 | // implementations for the specifics. |
234 | virtual double major_gc_interval_average_for_decay() const { |
235 | return _avg_major_interval->average(); |
236 | } |
237 | |
238 | // Return the cost of the GC where the major GC cost |
239 | // has been decayed based on the time since the last |
240 | // major collection. |
241 | double decaying_gc_cost() const; |
242 | |
243 | // Decay the major GC cost. Use this only for decisions on |
244 | // whether to adjust, not to determine by how much to adjust. |
245 | // This approximation is crude and may not be good enough for the |
246 | // latter. |
247 | double decaying_major_gc_cost() const; |
248 | |
249 | // Return the mutator cost using the decayed |
250 | // GC cost. |
251 | double adjusted_mutator_cost() const { |
252 | double result = 1.0 - decaying_gc_cost(); |
253 | assert(result >= 0.0, "adjusted mutator cost calculation is incorrect" ); |
254 | return result; |
255 | } |
256 | |
257 | virtual double mutator_cost() const { |
258 | double result = 1.0 - gc_cost(); |
259 | assert(result >= 0.0, "mutator cost calculation is incorrect" ); |
260 | return result; |
261 | } |
262 | |
263 | |
264 | bool young_gen_policy_is_ready() { return _young_gen_policy_is_ready; } |
265 | |
266 | void update_minor_pause_young_estimator(double minor_pause_in_ms); |
267 | virtual void update_minor_pause_old_estimator(double minor_pause_in_ms) { |
268 | // This is not meaningful for all policies but needs to be present |
269 | // to use minor_collection_end() in its current form. |
270 | } |
271 | |
272 | virtual size_t eden_increment(size_t cur_eden); |
273 | virtual size_t eden_increment(size_t cur_eden, uint percent_change); |
274 | virtual size_t eden_decrement(size_t cur_eden); |
275 | virtual size_t promo_increment(size_t cur_eden); |
276 | virtual size_t promo_increment(size_t cur_eden, uint percent_change); |
277 | virtual size_t promo_decrement(size_t cur_eden); |
278 | |
279 | virtual void clear_generation_free_space_flags(); |
280 | |
281 | int change_old_gen_for_throughput() const { |
282 | return _change_old_gen_for_throughput; |
283 | } |
284 | void set_change_old_gen_for_throughput(int v) { |
285 | _change_old_gen_for_throughput = v; |
286 | } |
287 | int change_young_gen_for_throughput() const { |
288 | return _change_young_gen_for_throughput; |
289 | } |
290 | void set_change_young_gen_for_throughput(int v) { |
291 | _change_young_gen_for_throughput = v; |
292 | } |
293 | |
294 | int change_old_gen_for_maj_pauses() const { |
295 | return _change_old_gen_for_maj_pauses; |
296 | } |
297 | void set_change_old_gen_for_maj_pauses(int v) { |
298 | _change_old_gen_for_maj_pauses = v; |
299 | } |
300 | |
301 | bool decrement_tenuring_threshold_for_gc_cost() const { |
302 | return _decrement_tenuring_threshold_for_gc_cost; |
303 | } |
304 | void set_decrement_tenuring_threshold_for_gc_cost(bool v) { |
305 | _decrement_tenuring_threshold_for_gc_cost = v; |
306 | } |
307 | bool increment_tenuring_threshold_for_gc_cost() const { |
308 | return _increment_tenuring_threshold_for_gc_cost; |
309 | } |
310 | void set_increment_tenuring_threshold_for_gc_cost(bool v) { |
311 | _increment_tenuring_threshold_for_gc_cost = v; |
312 | } |
313 | bool decrement_tenuring_threshold_for_survivor_limit() const { |
314 | return _decrement_tenuring_threshold_for_survivor_limit; |
315 | } |
316 | void set_decrement_tenuring_threshold_for_survivor_limit(bool v) { |
317 | _decrement_tenuring_threshold_for_survivor_limit = v; |
318 | } |
319 | // Return true if the policy suggested a change. |
320 | bool tenuring_threshold_change() const; |
321 | |
322 | public: |
323 | AdaptiveSizePolicy(size_t init_eden_size, |
324 | size_t init_promo_size, |
325 | size_t init_survivor_size, |
326 | double gc_pause_goal_sec, |
327 | uint gc_cost_ratio); |
328 | |
329 | bool is_gc_cms_adaptive_size_policy() { |
330 | return kind() == _gc_cms_adaptive_size_policy; |
331 | } |
332 | bool is_gc_ps_adaptive_size_policy() { |
333 | return kind() == _gc_ps_adaptive_size_policy; |
334 | } |
335 | |
336 | AdaptivePaddedAverage* avg_minor_pause() const { return _avg_minor_pause; } |
337 | AdaptiveWeightedAverage* avg_minor_interval() const { |
338 | return _avg_minor_interval; |
339 | } |
340 | AdaptiveWeightedAverage* avg_minor_gc_cost() const { |
341 | return _avg_minor_gc_cost; |
342 | } |
343 | |
344 | AdaptiveWeightedAverage* avg_major_gc_cost() const { |
345 | return _avg_major_gc_cost; |
346 | } |
347 | |
348 | AdaptiveWeightedAverage* avg_young_live() const { return _avg_young_live; } |
349 | AdaptiveWeightedAverage* avg_eden_live() const { return _avg_eden_live; } |
350 | AdaptiveWeightedAverage* avg_old_live() const { return _avg_old_live; } |
351 | |
352 | AdaptivePaddedAverage* avg_survived() const { return _avg_survived; } |
353 | AdaptivePaddedNoZeroDevAverage* avg_pretenured() { return _avg_pretenured; } |
354 | |
355 | // Methods indicating events of interest to the adaptive size policy, |
356 | // called by GC algorithms. It is the responsibility of users of this |
357 | // policy to call these methods at the correct times! |
358 | virtual void minor_collection_begin(); |
359 | virtual void minor_collection_end(GCCause::Cause gc_cause); |
360 | virtual LinearLeastSquareFit* minor_pause_old_estimator() const { |
361 | return _minor_pause_old_estimator; |
362 | } |
363 | |
364 | LinearLeastSquareFit* minor_pause_young_estimator() { |
365 | return _minor_pause_young_estimator; |
366 | } |
367 | LinearLeastSquareFit* minor_collection_estimator() { |
368 | return _minor_collection_estimator; |
369 | } |
370 | |
371 | LinearLeastSquareFit* major_collection_estimator() { |
372 | return _major_collection_estimator; |
373 | } |
374 | |
375 | float minor_pause_young_slope() { |
376 | return _minor_pause_young_estimator->slope(); |
377 | } |
378 | |
379 | float minor_collection_slope() { return _minor_collection_estimator->slope();} |
380 | float major_collection_slope() { return _major_collection_estimator->slope();} |
381 | |
382 | float minor_pause_old_slope() { |
383 | return _minor_pause_old_estimator->slope(); |
384 | } |
385 | |
386 | void set_eden_size(size_t new_size) { |
387 | _eden_size = new_size; |
388 | } |
389 | void set_survivor_size(size_t new_size) { |
390 | _survivor_size = new_size; |
391 | } |
392 | |
393 | size_t calculated_eden_size_in_bytes() const { |
394 | return _eden_size; |
395 | } |
396 | |
397 | size_t calculated_promo_size_in_bytes() const { |
398 | return _promo_size; |
399 | } |
400 | |
401 | size_t calculated_survivor_size_in_bytes() const { |
402 | return _survivor_size; |
403 | } |
404 | |
405 | bool gc_overhead_limit_exceeded() { |
406 | return _overhead_checker.gc_overhead_limit_exceeded(); |
407 | } |
408 | void set_gc_overhead_limit_exceeded(bool v) { |
409 | _overhead_checker.set_gc_overhead_limit_exceeded(v); |
410 | } |
411 | |
412 | bool gc_overhead_limit_near() { |
413 | return _overhead_checker.gc_overhead_limit_near(); |
414 | } |
415 | |
416 | void reset_gc_overhead_limit_count() { |
417 | _overhead_checker.reset_gc_overhead_limit_count(); |
418 | } |
419 | // accessors for flags recording the decisions to resize the |
420 | // generations to meet the pause goal. |
421 | |
422 | int change_young_gen_for_min_pauses() const { |
423 | return _change_young_gen_for_min_pauses; |
424 | } |
425 | void set_change_young_gen_for_min_pauses(int v) { |
426 | _change_young_gen_for_min_pauses = v; |
427 | } |
428 | void (int v) { _decrease_for_footprint = v; } |
429 | int () const { return _decrease_for_footprint; } |
430 | int decide_at_full_gc() { return _decide_at_full_gc; } |
431 | void set_decide_at_full_gc(int v) { _decide_at_full_gc = v; } |
432 | |
433 | // Check the conditions for an out-of-memory due to excessive GC time. |
434 | // Set _gc_overhead_limit_exceeded if all the conditions have been met. |
435 | void check_gc_overhead_limit(size_t eden_live, |
436 | size_t max_old_gen_size, |
437 | size_t max_eden_size, |
438 | bool is_full_gc, |
439 | GCCause::Cause gc_cause, |
440 | SoftRefPolicy* soft_ref_policy); |
441 | |
442 | static bool should_update_promo_stats(GCCause::Cause cause) { |
443 | return ((GCCause::is_user_requested_gc(cause) && |
444 | UseAdaptiveSizePolicyWithSystemGC) || |
445 | GCCause::is_tenured_allocation_failure_gc(cause)); |
446 | } |
447 | |
448 | static bool should_update_eden_stats(GCCause::Cause cause) { |
449 | return ((GCCause::is_user_requested_gc(cause) && |
450 | UseAdaptiveSizePolicyWithSystemGC) || |
451 | GCCause::is_allocation_failure_gc(cause)); |
452 | } |
453 | |
454 | // Printing support |
455 | virtual bool print() const; |
456 | void print_tenuring_threshold(uint new_tenuring_threshold) const; |
457 | }; |
458 | |
459 | #endif // SHARE_GC_SHARED_ADAPTIVESIZEPOLICY_HPP |
460 | |