1 | /* |
2 | * Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "c1/c1_Defs.hpp" |
27 | #include "c1/c1_LIRGenerator.hpp" |
28 | #include "gc/shared/c1/barrierSetC1.hpp" |
29 | #include "utilities/macros.hpp" |
30 | |
31 | #ifndef PATCHED_ADDR |
32 | #define PATCHED_ADDR (max_jint) |
33 | #endif |
34 | |
35 | #ifdef ASSERT |
36 | #define __ gen->lir(__FILE__, __LINE__)-> |
37 | #else |
38 | #define __ gen->lir()-> |
39 | #endif |
40 | |
41 | LIR_Opr BarrierSetC1::resolve_address(LIRAccess& access, bool resolve_in_register) { |
42 | DecoratorSet decorators = access.decorators(); |
43 | bool is_array = (decorators & IS_ARRAY) != 0; |
44 | bool needs_patching = (decorators & C1_NEEDS_PATCHING) != 0; |
45 | |
46 | LIRItem& base = access.base().item(); |
47 | LIR_Opr offset = access.offset().opr(); |
48 | LIRGenerator *gen = access.gen(); |
49 | |
50 | LIR_Opr addr_opr; |
51 | if (is_array) { |
52 | addr_opr = LIR_OprFact::address(gen->emit_array_address(base.result(), offset, access.type())); |
53 | } else if (needs_patching) { |
54 | // we need to patch the offset in the instruction so don't allow |
55 | // generate_address to try to be smart about emitting the -1. |
56 | // Otherwise the patching code won't know how to find the |
57 | // instruction to patch. |
58 | addr_opr = LIR_OprFact::address(new LIR_Address(base.result(), PATCHED_ADDR, access.type())); |
59 | } else { |
60 | addr_opr = LIR_OprFact::address(gen->generate_address(base.result(), offset, 0, 0, access.type())); |
61 | } |
62 | |
63 | if (resolve_in_register) { |
64 | LIR_Opr resolved_addr = gen->new_pointer_register(); |
65 | if (needs_patching) { |
66 | __ leal(addr_opr, resolved_addr, lir_patch_normal, access.patch_emit_info()); |
67 | access.clear_decorators(C1_NEEDS_PATCHING); |
68 | } else { |
69 | __ leal(addr_opr, resolved_addr); |
70 | } |
71 | return LIR_OprFact::address(new LIR_Address(resolved_addr, access.type())); |
72 | } else { |
73 | return addr_opr; |
74 | } |
75 | } |
76 | |
77 | void BarrierSetC1::store_at(LIRAccess& access, LIR_Opr value) { |
78 | DecoratorSet decorators = access.decorators(); |
79 | bool in_heap = (decorators & IN_HEAP) != 0; |
80 | assert(in_heap, "not supported yet" ); |
81 | |
82 | LIR_Opr resolved = resolve_address(access, false); |
83 | access.set_resolved_addr(resolved); |
84 | store_at_resolved(access, value); |
85 | } |
86 | |
87 | void BarrierSetC1::load_at(LIRAccess& access, LIR_Opr result) { |
88 | DecoratorSet decorators = access.decorators(); |
89 | bool in_heap = (decorators & IN_HEAP) != 0; |
90 | assert(in_heap, "not supported yet" ); |
91 | |
92 | LIR_Opr resolved = resolve_address(access, false); |
93 | access.set_resolved_addr(resolved); |
94 | load_at_resolved(access, result); |
95 | } |
96 | |
97 | void BarrierSetC1::load(LIRAccess& access, LIR_Opr result) { |
98 | DecoratorSet decorators = access.decorators(); |
99 | bool in_heap = (decorators & IN_HEAP) != 0; |
100 | assert(!in_heap, "consider using load_at" ); |
101 | load_at_resolved(access, result); |
102 | } |
103 | |
104 | LIR_Opr BarrierSetC1::atomic_cmpxchg_at(LIRAccess& access, LIRItem& cmp_value, LIRItem& new_value) { |
105 | DecoratorSet decorators = access.decorators(); |
106 | bool in_heap = (decorators & IN_HEAP) != 0; |
107 | assert(in_heap, "not supported yet" ); |
108 | |
109 | access.load_address(); |
110 | |
111 | LIR_Opr resolved = resolve_address(access, true); |
112 | access.set_resolved_addr(resolved); |
113 | return atomic_cmpxchg_at_resolved(access, cmp_value, new_value); |
114 | } |
115 | |
116 | LIR_Opr BarrierSetC1::atomic_xchg_at(LIRAccess& access, LIRItem& value) { |
117 | DecoratorSet decorators = access.decorators(); |
118 | bool in_heap = (decorators & IN_HEAP) != 0; |
119 | assert(in_heap, "not supported yet" ); |
120 | |
121 | access.load_address(); |
122 | |
123 | LIR_Opr resolved = resolve_address(access, true); |
124 | access.set_resolved_addr(resolved); |
125 | return atomic_xchg_at_resolved(access, value); |
126 | } |
127 | |
128 | LIR_Opr BarrierSetC1::atomic_add_at(LIRAccess& access, LIRItem& value) { |
129 | DecoratorSet decorators = access.decorators(); |
130 | bool in_heap = (decorators & IN_HEAP) != 0; |
131 | assert(in_heap, "not supported yet" ); |
132 | |
133 | access.load_address(); |
134 | |
135 | LIR_Opr resolved = resolve_address(access, true); |
136 | access.set_resolved_addr(resolved); |
137 | return atomic_add_at_resolved(access, value); |
138 | } |
139 | |
140 | void BarrierSetC1::store_at_resolved(LIRAccess& access, LIR_Opr value) { |
141 | DecoratorSet decorators = access.decorators(); |
142 | bool is_volatile = (((decorators & MO_SEQ_CST) != 0) || AlwaysAtomicAccesses); |
143 | bool needs_patching = (decorators & C1_NEEDS_PATCHING) != 0; |
144 | bool mask_boolean = (decorators & C1_MASK_BOOLEAN) != 0; |
145 | LIRGenerator* gen = access.gen(); |
146 | |
147 | if (mask_boolean) { |
148 | value = gen->mask_boolean(access.base().opr(), value, access.access_emit_info()); |
149 | } |
150 | |
151 | if (is_volatile) { |
152 | __ membar_release(); |
153 | } |
154 | |
155 | LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none; |
156 | if (is_volatile && !needs_patching) { |
157 | gen->volatile_field_store(value, access.resolved_addr()->as_address_ptr(), access.access_emit_info()); |
158 | } else { |
159 | __ store(value, access.resolved_addr()->as_address_ptr(), access.access_emit_info(), patch_code); |
160 | } |
161 | |
162 | if (is_volatile && !support_IRIW_for_not_multiple_copy_atomic_cpu) { |
163 | __ membar(); |
164 | } |
165 | } |
166 | |
167 | void BarrierSetC1::load_at_resolved(LIRAccess& access, LIR_Opr result) { |
168 | LIRGenerator *gen = access.gen(); |
169 | DecoratorSet decorators = access.decorators(); |
170 | bool is_volatile = (((decorators & MO_SEQ_CST) != 0) || AlwaysAtomicAccesses); |
171 | bool needs_patching = (decorators & C1_NEEDS_PATCHING) != 0; |
172 | bool mask_boolean = (decorators & C1_MASK_BOOLEAN) != 0; |
173 | bool in_native = (decorators & IN_NATIVE) != 0; |
174 | |
175 | if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile) { |
176 | __ membar(); |
177 | } |
178 | |
179 | LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none; |
180 | if (in_native) { |
181 | __ move_wide(access.resolved_addr()->as_address_ptr(), result); |
182 | } else if (is_volatile && !needs_patching) { |
183 | gen->volatile_field_load(access.resolved_addr()->as_address_ptr(), result, access.access_emit_info()); |
184 | } else { |
185 | __ load(access.resolved_addr()->as_address_ptr(), result, access.access_emit_info(), patch_code); |
186 | } |
187 | |
188 | if (is_volatile) { |
189 | __ membar_acquire(); |
190 | } |
191 | |
192 | /* Normalize boolean value returned by unsafe operation, i.e., value != 0 ? value = true : value false. */ |
193 | if (mask_boolean) { |
194 | LabelObj* equalZeroLabel = new LabelObj(); |
195 | __ cmp(lir_cond_equal, result, 0); |
196 | __ branch(lir_cond_equal, T_BOOLEAN, equalZeroLabel->label()); |
197 | __ move(LIR_OprFact::intConst(1), result); |
198 | __ branch_destination(equalZeroLabel->label()); |
199 | } |
200 | } |
201 | |
202 | LIR_Opr BarrierSetC1::atomic_cmpxchg_at_resolved(LIRAccess& access, LIRItem& cmp_value, LIRItem& new_value) { |
203 | LIRGenerator *gen = access.gen(); |
204 | return gen->atomic_cmpxchg(access.type(), access.resolved_addr(), cmp_value, new_value); |
205 | } |
206 | |
207 | LIR_Opr BarrierSetC1::atomic_xchg_at_resolved(LIRAccess& access, LIRItem& value) { |
208 | LIRGenerator *gen = access.gen(); |
209 | return gen->atomic_xchg(access.type(), access.resolved_addr(), value); |
210 | } |
211 | |
212 | LIR_Opr BarrierSetC1::atomic_add_at_resolved(LIRAccess& access, LIRItem& value) { |
213 | LIRGenerator *gen = access.gen(); |
214 | return gen->atomic_add(access.type(), access.resolved_addr(), value); |
215 | } |
216 | |
217 | void BarrierSetC1::generate_referent_check(LIRAccess& access, LabelObj* cont) { |
218 | // We might be reading the value of the referent field of a |
219 | // Reference object in order to attach it back to the live |
220 | // object graph. If G1 is enabled then we need to record |
221 | // the value that is being returned in an SATB log buffer. |
222 | // |
223 | // We need to generate code similar to the following... |
224 | // |
225 | // if (offset == java_lang_ref_Reference::referent_offset) { |
226 | // if (src != NULL) { |
227 | // if (klass(src)->reference_type() != REF_NONE) { |
228 | // pre_barrier(..., value, ...); |
229 | // } |
230 | // } |
231 | // } |
232 | |
233 | bool gen_pre_barrier = true; // Assume we need to generate pre_barrier. |
234 | bool gen_offset_check = true; // Assume we need to generate the offset guard. |
235 | bool gen_source_check = true; // Assume we need to check the src object for null. |
236 | bool gen_type_check = true; // Assume we need to check the reference_type. |
237 | |
238 | LIRGenerator *gen = access.gen(); |
239 | |
240 | LIRItem& base = access.base().item(); |
241 | LIR_Opr offset = access.offset().opr(); |
242 | |
243 | if (offset->is_constant()) { |
244 | LIR_Const* constant = offset->as_constant_ptr(); |
245 | jlong off_con = (constant->type() == T_INT ? |
246 | (jlong)constant->as_jint() : |
247 | constant->as_jlong()); |
248 | |
249 | |
250 | if (off_con != (jlong) java_lang_ref_Reference::referent_offset) { |
251 | // The constant offset is something other than referent_offset. |
252 | // We can skip generating/checking the remaining guards and |
253 | // skip generation of the code stub. |
254 | gen_pre_barrier = false; |
255 | } else { |
256 | // The constant offset is the same as referent_offset - |
257 | // we do not need to generate a runtime offset check. |
258 | gen_offset_check = false; |
259 | } |
260 | } |
261 | |
262 | // We don't need to generate stub if the source object is an array |
263 | if (gen_pre_barrier && base.type()->is_array()) { |
264 | gen_pre_barrier = false; |
265 | } |
266 | |
267 | if (gen_pre_barrier) { |
268 | // We still need to continue with the checks. |
269 | if (base.is_constant()) { |
270 | ciObject* src_con = base.get_jobject_constant(); |
271 | guarantee(src_con != NULL, "no source constant" ); |
272 | |
273 | if (src_con->is_null_object()) { |
274 | // The constant src object is null - We can skip |
275 | // generating the code stub. |
276 | gen_pre_barrier = false; |
277 | } else { |
278 | // Non-null constant source object. We still have to generate |
279 | // the slow stub - but we don't need to generate the runtime |
280 | // null object check. |
281 | gen_source_check = false; |
282 | } |
283 | } |
284 | } |
285 | if (gen_pre_barrier && !PatchALot) { |
286 | // Can the klass of object be statically determined to be |
287 | // a sub-class of Reference? |
288 | ciType* type = base.value()->declared_type(); |
289 | if ((type != NULL) && type->is_loaded()) { |
290 | if (type->is_subtype_of(gen->compilation()->env()->Reference_klass())) { |
291 | gen_type_check = false; |
292 | } else if (type->is_klass() && |
293 | !gen->compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) { |
294 | // Not Reference and not Object klass. |
295 | gen_pre_barrier = false; |
296 | } |
297 | } |
298 | } |
299 | |
300 | if (gen_pre_barrier) { |
301 | // We can have generate one runtime check here. Let's start with |
302 | // the offset check. |
303 | // Allocate temp register to base and load it here, otherwise |
304 | // control flow below may confuse register allocator. |
305 | LIR_Opr base_reg = gen->new_register(T_OBJECT); |
306 | __ move(base.result(), base_reg); |
307 | if (gen_offset_check) { |
308 | // if (offset != referent_offset) -> continue |
309 | // If offset is an int then we can do the comparison with the |
310 | // referent_offset constant; otherwise we need to move |
311 | // referent_offset into a temporary register and generate |
312 | // a reg-reg compare. |
313 | |
314 | LIR_Opr referent_off; |
315 | |
316 | if (offset->type() == T_INT) { |
317 | referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset); |
318 | } else { |
319 | assert(offset->type() == T_LONG, "what else?" ); |
320 | referent_off = gen->new_register(T_LONG); |
321 | __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off); |
322 | } |
323 | __ cmp(lir_cond_notEqual, offset, referent_off); |
324 | __ branch(lir_cond_notEqual, offset->type(), cont->label()); |
325 | } |
326 | if (gen_source_check) { |
327 | // offset is a const and equals referent offset |
328 | // if (source == null) -> continue |
329 | __ cmp(lir_cond_equal, base_reg, LIR_OprFact::oopConst(NULL)); |
330 | __ branch(lir_cond_equal, T_OBJECT, cont->label()); |
331 | } |
332 | LIR_Opr src_klass = gen->new_register(T_METADATA); |
333 | if (gen_type_check) { |
334 | // We have determined that offset == referent_offset && src != null. |
335 | // if (src->_klass->_reference_type == REF_NONE) -> continue |
336 | __ move(new LIR_Address(base_reg, oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass); |
337 | LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE); |
338 | LIR_Opr reference_type = gen->new_register(T_INT); |
339 | __ move(reference_type_addr, reference_type); |
340 | __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE)); |
341 | __ branch(lir_cond_equal, T_INT, cont->label()); |
342 | } |
343 | } |
344 | } |
345 | |
346 | LIR_Opr BarrierSetC1::resolve(LIRGenerator* gen, DecoratorSet decorators, LIR_Opr obj) { |
347 | return obj; |
348 | } |
349 | |