| 1 | /* |
| 2 | * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "gc/shared/cardTable.hpp" |
| 27 | #include "gc/shared/collectedHeap.hpp" |
| 28 | #include "gc/shared/space.inline.hpp" |
| 29 | #include "logging/log.hpp" |
| 30 | #include "memory/virtualspace.hpp" |
| 31 | #include "runtime/java.hpp" |
| 32 | #include "runtime/os.hpp" |
| 33 | #include "services/memTracker.hpp" |
| 34 | #include "utilities/align.hpp" |
| 35 | |
| 36 | size_t CardTable::compute_byte_map_size() { |
| 37 | assert(_guard_index == cards_required(_whole_heap.word_size()) - 1, |
| 38 | "uninitialized, check declaration order" ); |
| 39 | assert(_page_size != 0, "uninitialized, check declaration order" ); |
| 40 | const size_t granularity = os::vm_allocation_granularity(); |
| 41 | return align_up(_guard_index + 1, MAX2(_page_size, granularity)); |
| 42 | } |
| 43 | |
| 44 | CardTable::CardTable(MemRegion whole_heap, bool conc_scan) : |
| 45 | _scanned_concurrently(conc_scan), |
| 46 | _whole_heap(whole_heap), |
| 47 | _guard_index(0), |
| 48 | _last_valid_index(0), |
| 49 | _page_size(os::vm_page_size()), |
| 50 | _byte_map_size(0), |
| 51 | _byte_map(NULL), |
| 52 | _byte_map_base(NULL), |
| 53 | _cur_covered_regions(0), |
| 54 | _covered(NULL), |
| 55 | _committed(NULL), |
| 56 | _guard_region() |
| 57 | { |
| 58 | assert((uintptr_t(_whole_heap.start()) & (card_size - 1)) == 0, "heap must start at card boundary" ); |
| 59 | assert((uintptr_t(_whole_heap.end()) & (card_size - 1)) == 0, "heap must end at card boundary" ); |
| 60 | |
| 61 | assert(card_size <= 512, "card_size must be less than 512" ); // why? |
| 62 | |
| 63 | _covered = new MemRegion[_max_covered_regions]; |
| 64 | if (_covered == NULL) { |
| 65 | vm_exit_during_initialization("Could not allocate card table covered region set." ); |
| 66 | } |
| 67 | } |
| 68 | |
| 69 | CardTable::~CardTable() { |
| 70 | if (_covered) { |
| 71 | delete[] _covered; |
| 72 | _covered = NULL; |
| 73 | } |
| 74 | if (_committed) { |
| 75 | delete[] _committed; |
| 76 | _committed = NULL; |
| 77 | } |
| 78 | } |
| 79 | |
| 80 | void CardTable::initialize() { |
| 81 | _guard_index = cards_required(_whole_heap.word_size()) - 1; |
| 82 | _last_valid_index = _guard_index - 1; |
| 83 | |
| 84 | _byte_map_size = compute_byte_map_size(); |
| 85 | |
| 86 | HeapWord* low_bound = _whole_heap.start(); |
| 87 | HeapWord* high_bound = _whole_heap.end(); |
| 88 | |
| 89 | _cur_covered_regions = 0; |
| 90 | _committed = new MemRegion[_max_covered_regions]; |
| 91 | if (_committed == NULL) { |
| 92 | vm_exit_during_initialization("Could not allocate card table committed region set." ); |
| 93 | } |
| 94 | |
| 95 | const size_t rs_align = _page_size == (size_t) os::vm_page_size() ? 0 : |
| 96 | MAX2(_page_size, (size_t) os::vm_allocation_granularity()); |
| 97 | ReservedSpace heap_rs(_byte_map_size, rs_align, false); |
| 98 | |
| 99 | MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtGC); |
| 100 | |
| 101 | os::trace_page_sizes("Card Table" , _guard_index + 1, _guard_index + 1, |
| 102 | _page_size, heap_rs.base(), heap_rs.size()); |
| 103 | if (!heap_rs.is_reserved()) { |
| 104 | vm_exit_during_initialization("Could not reserve enough space for the " |
| 105 | "card marking array" ); |
| 106 | } |
| 107 | |
| 108 | // The assembler store_check code will do an unsigned shift of the oop, |
| 109 | // then add it to _byte_map_base, i.e. |
| 110 | // |
| 111 | // _byte_map = _byte_map_base + (uintptr_t(low_bound) >> card_shift) |
| 112 | _byte_map = (CardValue*) heap_rs.base(); |
| 113 | _byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift); |
| 114 | assert(byte_for(low_bound) == &_byte_map[0], "Checking start of map" ); |
| 115 | assert(byte_for(high_bound-1) <= &_byte_map[_last_valid_index], "Checking end of map" ); |
| 116 | |
| 117 | CardValue* guard_card = &_byte_map[_guard_index]; |
| 118 | HeapWord* guard_page = align_down((HeapWord*)guard_card, _page_size); |
| 119 | _guard_region = MemRegion(guard_page, _page_size); |
| 120 | os::commit_memory_or_exit((char*)guard_page, _page_size, _page_size, |
| 121 | !ExecMem, "card table last card" ); |
| 122 | *guard_card = last_card; |
| 123 | |
| 124 | log_trace(gc, barrier)("CardTable::CardTable: " ); |
| 125 | log_trace(gc, barrier)(" &_byte_map[0]: " INTPTR_FORMAT " &_byte_map[_last_valid_index]: " INTPTR_FORMAT, |
| 126 | p2i(&_byte_map[0]), p2i(&_byte_map[_last_valid_index])); |
| 127 | log_trace(gc, barrier)(" _byte_map_base: " INTPTR_FORMAT, p2i(_byte_map_base)); |
| 128 | } |
| 129 | |
| 130 | int CardTable::find_covering_region_by_base(HeapWord* base) { |
| 131 | int i; |
| 132 | for (i = 0; i < _cur_covered_regions; i++) { |
| 133 | if (_covered[i].start() == base) return i; |
| 134 | if (_covered[i].start() > base) break; |
| 135 | } |
| 136 | // If we didn't find it, create a new one. |
| 137 | assert(_cur_covered_regions < _max_covered_regions, |
| 138 | "too many covered regions" ); |
| 139 | // Move the ones above up, to maintain sorted order. |
| 140 | for (int j = _cur_covered_regions; j > i; j--) { |
| 141 | _covered[j] = _covered[j-1]; |
| 142 | _committed[j] = _committed[j-1]; |
| 143 | } |
| 144 | int res = i; |
| 145 | _cur_covered_regions++; |
| 146 | _covered[res].set_start(base); |
| 147 | _covered[res].set_word_size(0); |
| 148 | CardValue* ct_start = byte_for(base); |
| 149 | HeapWord* ct_start_aligned = align_down((HeapWord*)ct_start, _page_size); |
| 150 | _committed[res].set_start(ct_start_aligned); |
| 151 | _committed[res].set_word_size(0); |
| 152 | return res; |
| 153 | } |
| 154 | |
| 155 | int CardTable::find_covering_region_containing(HeapWord* addr) { |
| 156 | for (int i = 0; i < _cur_covered_regions; i++) { |
| 157 | if (_covered[i].contains(addr)) { |
| 158 | return i; |
| 159 | } |
| 160 | } |
| 161 | assert(0, "address outside of heap?" ); |
| 162 | return -1; |
| 163 | } |
| 164 | |
| 165 | HeapWord* CardTable::largest_prev_committed_end(int ind) const { |
| 166 | HeapWord* max_end = NULL; |
| 167 | for (int j = 0; j < ind; j++) { |
| 168 | HeapWord* this_end = _committed[j].end(); |
| 169 | if (this_end > max_end) max_end = this_end; |
| 170 | } |
| 171 | return max_end; |
| 172 | } |
| 173 | |
| 174 | MemRegion CardTable::committed_unique_to_self(int self, MemRegion mr) const { |
| 175 | MemRegion result = mr; |
| 176 | for (int r = 0; r < _cur_covered_regions; r += 1) { |
| 177 | if (r != self) { |
| 178 | result = result.minus(_committed[r]); |
| 179 | } |
| 180 | } |
| 181 | // Never include the guard page. |
| 182 | result = result.minus(_guard_region); |
| 183 | return result; |
| 184 | } |
| 185 | |
| 186 | void CardTable::resize_covered_region(MemRegion new_region) { |
| 187 | // We don't change the start of a region, only the end. |
| 188 | assert(_whole_heap.contains(new_region), |
| 189 | "attempt to cover area not in reserved area" ); |
| 190 | debug_only(verify_guard();) |
| 191 | // collided is true if the expansion would push into another committed region |
| 192 | debug_only(bool collided = false;) |
| 193 | int const ind = find_covering_region_by_base(new_region.start()); |
| 194 | MemRegion const old_region = _covered[ind]; |
| 195 | assert(old_region.start() == new_region.start(), "just checking" ); |
| 196 | if (new_region.word_size() != old_region.word_size()) { |
| 197 | // Commit new or uncommit old pages, if necessary. |
| 198 | MemRegion cur_committed = _committed[ind]; |
| 199 | // Extend the end of this _committed region |
| 200 | // to cover the end of any lower _committed regions. |
| 201 | // This forms overlapping regions, but never interior regions. |
| 202 | HeapWord* const max_prev_end = largest_prev_committed_end(ind); |
| 203 | if (max_prev_end > cur_committed.end()) { |
| 204 | cur_committed.set_end(max_prev_end); |
| 205 | } |
| 206 | // Align the end up to a page size (starts are already aligned). |
| 207 | HeapWord* new_end = (HeapWord*) byte_after(new_region.last()); |
| 208 | HeapWord* new_end_aligned = align_up(new_end, _page_size); |
| 209 | assert(new_end_aligned >= new_end, "align up, but less" ); |
| 210 | // Check the other regions (excludes "ind") to ensure that |
| 211 | // the new_end_aligned does not intrude onto the committed |
| 212 | // space of another region. |
| 213 | int ri = 0; |
| 214 | for (ri = ind + 1; ri < _cur_covered_regions; ri++) { |
| 215 | if (new_end_aligned > _committed[ri].start()) { |
| 216 | assert(new_end_aligned <= _committed[ri].end(), |
| 217 | "An earlier committed region can't cover a later committed region" ); |
| 218 | // Any region containing the new end |
| 219 | // should start at or beyond the region found (ind) |
| 220 | // for the new end (committed regions are not expected to |
| 221 | // be proper subsets of other committed regions). |
| 222 | assert(_committed[ri].start() >= _committed[ind].start(), |
| 223 | "New end of committed region is inconsistent" ); |
| 224 | new_end_aligned = _committed[ri].start(); |
| 225 | // new_end_aligned can be equal to the start of its |
| 226 | // committed region (i.e., of "ind") if a second |
| 227 | // region following "ind" also start at the same location |
| 228 | // as "ind". |
| 229 | assert(new_end_aligned >= _committed[ind].start(), |
| 230 | "New end of committed region is before start" ); |
| 231 | debug_only(collided = true;) |
| 232 | // Should only collide with 1 region |
| 233 | break; |
| 234 | } |
| 235 | } |
| 236 | #ifdef ASSERT |
| 237 | for (++ri; ri < _cur_covered_regions; ri++) { |
| 238 | assert(!_committed[ri].contains(new_end_aligned), |
| 239 | "New end of committed region is in a second committed region" ); |
| 240 | } |
| 241 | #endif |
| 242 | // The guard page is always committed and should not be committed over. |
| 243 | // "guarded" is used for assertion checking below and recalls the fact |
| 244 | // that the would-be end of the new committed region would have |
| 245 | // penetrated the guard page. |
| 246 | HeapWord* new_end_for_commit = new_end_aligned; |
| 247 | |
| 248 | DEBUG_ONLY(bool guarded = false;) |
| 249 | if (new_end_for_commit > _guard_region.start()) { |
| 250 | new_end_for_commit = _guard_region.start(); |
| 251 | DEBUG_ONLY(guarded = true;) |
| 252 | } |
| 253 | |
| 254 | if (new_end_for_commit > cur_committed.end()) { |
| 255 | // Must commit new pages. |
| 256 | MemRegion const new_committed = |
| 257 | MemRegion(cur_committed.end(), new_end_for_commit); |
| 258 | |
| 259 | assert(!new_committed.is_empty(), "Region should not be empty here" ); |
| 260 | os::commit_memory_or_exit((char*)new_committed.start(), |
| 261 | new_committed.byte_size(), _page_size, |
| 262 | !ExecMem, "card table expansion" ); |
| 263 | // Use new_end_aligned (as opposed to new_end_for_commit) because |
| 264 | // the cur_committed region may include the guard region. |
| 265 | } else if (new_end_aligned < cur_committed.end()) { |
| 266 | // Must uncommit pages. |
| 267 | MemRegion const uncommit_region = |
| 268 | committed_unique_to_self(ind, MemRegion(new_end_aligned, |
| 269 | cur_committed.end())); |
| 270 | if (!uncommit_region.is_empty()) { |
| 271 | // It is not safe to uncommit cards if the boundary between |
| 272 | // the generations is moving. A shrink can uncommit cards |
| 273 | // owned by generation A but being used by generation B. |
| 274 | if (!UseAdaptiveGCBoundary) { |
| 275 | if (!os::uncommit_memory((char*)uncommit_region.start(), |
| 276 | uncommit_region.byte_size())) { |
| 277 | assert(false, "Card table contraction failed" ); |
| 278 | // The call failed so don't change the end of the |
| 279 | // committed region. This is better than taking the |
| 280 | // VM down. |
| 281 | new_end_aligned = _committed[ind].end(); |
| 282 | } |
| 283 | } else { |
| 284 | new_end_aligned = _committed[ind].end(); |
| 285 | } |
| 286 | } |
| 287 | } |
| 288 | // In any case, we can reset the end of the current committed entry. |
| 289 | _committed[ind].set_end(new_end_aligned); |
| 290 | |
| 291 | #ifdef ASSERT |
| 292 | // Check that the last card in the new region is committed according |
| 293 | // to the tables. |
| 294 | bool covered = false; |
| 295 | for (int cr = 0; cr < _cur_covered_regions; cr++) { |
| 296 | if (_committed[cr].contains(new_end - 1)) { |
| 297 | covered = true; |
| 298 | break; |
| 299 | } |
| 300 | } |
| 301 | assert(covered, "Card for end of new region not committed" ); |
| 302 | #endif |
| 303 | |
| 304 | // The default of 0 is not necessarily clean cards. |
| 305 | CardValue* entry; |
| 306 | if (old_region.last() < _whole_heap.start()) { |
| 307 | entry = byte_for(_whole_heap.start()); |
| 308 | } else { |
| 309 | entry = byte_after(old_region.last()); |
| 310 | } |
| 311 | assert(index_for(new_region.last()) < _guard_index, |
| 312 | "The guard card will be overwritten" ); |
| 313 | // This line commented out cleans the newly expanded region and |
| 314 | // not the aligned up expanded region. |
| 315 | // CardValue* const end = byte_after(new_region.last()); |
| 316 | CardValue* const end = (CardValue*) new_end_for_commit; |
| 317 | assert((end >= byte_after(new_region.last())) || collided || guarded, |
| 318 | "Expect to be beyond new region unless impacting another region" ); |
| 319 | // do nothing if we resized downward. |
| 320 | #ifdef ASSERT |
| 321 | for (int ri = 0; ri < _cur_covered_regions; ri++) { |
| 322 | if (ri != ind) { |
| 323 | // The end of the new committed region should not |
| 324 | // be in any existing region unless it matches |
| 325 | // the start of the next region. |
| 326 | assert(!_committed[ri].contains(end) || |
| 327 | (_committed[ri].start() == (HeapWord*) end), |
| 328 | "Overlapping committed regions" ); |
| 329 | } |
| 330 | } |
| 331 | #endif |
| 332 | if (entry < end) { |
| 333 | memset(entry, clean_card, pointer_delta(end, entry, sizeof(CardValue))); |
| 334 | } |
| 335 | } |
| 336 | // In any case, the covered size changes. |
| 337 | _covered[ind].set_word_size(new_region.word_size()); |
| 338 | |
| 339 | log_trace(gc, barrier)("CardTable::resize_covered_region: " ); |
| 340 | log_trace(gc, barrier)(" _covered[%d].start(): " INTPTR_FORMAT " _covered[%d].last(): " INTPTR_FORMAT, |
| 341 | ind, p2i(_covered[ind].start()), ind, p2i(_covered[ind].last())); |
| 342 | log_trace(gc, barrier)(" _committed[%d].start(): " INTPTR_FORMAT " _committed[%d].last(): " INTPTR_FORMAT, |
| 343 | ind, p2i(_committed[ind].start()), ind, p2i(_committed[ind].last())); |
| 344 | log_trace(gc, barrier)(" byte_for(start): " INTPTR_FORMAT " byte_for(last): " INTPTR_FORMAT, |
| 345 | p2i(byte_for(_covered[ind].start())), p2i(byte_for(_covered[ind].last()))); |
| 346 | log_trace(gc, barrier)(" addr_for(start): " INTPTR_FORMAT " addr_for(last): " INTPTR_FORMAT, |
| 347 | p2i(addr_for((CardValue*) _committed[ind].start())), p2i(addr_for((CardValue*) _committed[ind].last()))); |
| 348 | |
| 349 | // Touch the last card of the covered region to show that it |
| 350 | // is committed (or SEGV). |
| 351 | debug_only((void) (*byte_for(_covered[ind].last()));) |
| 352 | debug_only(verify_guard();) |
| 353 | } |
| 354 | |
| 355 | // Note that these versions are precise! The scanning code has to handle the |
| 356 | // fact that the write barrier may be either precise or imprecise. |
| 357 | void CardTable::dirty_MemRegion(MemRegion mr) { |
| 358 | assert(align_down(mr.start(), HeapWordSize) == mr.start(), "Unaligned start" ); |
| 359 | assert(align_up (mr.end(), HeapWordSize) == mr.end(), "Unaligned end" ); |
| 360 | CardValue* cur = byte_for(mr.start()); |
| 361 | CardValue* last = byte_after(mr.last()); |
| 362 | while (cur < last) { |
| 363 | *cur = dirty_card; |
| 364 | cur++; |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | void CardTable::clear_MemRegion(MemRegion mr) { |
| 369 | // Be conservative: only clean cards entirely contained within the |
| 370 | // region. |
| 371 | CardValue* cur; |
| 372 | if (mr.start() == _whole_heap.start()) { |
| 373 | cur = byte_for(mr.start()); |
| 374 | } else { |
| 375 | assert(mr.start() > _whole_heap.start(), "mr is not covered." ); |
| 376 | cur = byte_after(mr.start() - 1); |
| 377 | } |
| 378 | CardValue* last = byte_after(mr.last()); |
| 379 | memset(cur, clean_card, pointer_delta(last, cur, sizeof(CardValue))); |
| 380 | } |
| 381 | |
| 382 | void CardTable::clear(MemRegion mr) { |
| 383 | for (int i = 0; i < _cur_covered_regions; i++) { |
| 384 | MemRegion mri = mr.intersection(_covered[i]); |
| 385 | if (!mri.is_empty()) clear_MemRegion(mri); |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | void CardTable::dirty(MemRegion mr) { |
| 390 | CardValue* first = byte_for(mr.start()); |
| 391 | CardValue* last = byte_after(mr.last()); |
| 392 | memset(first, dirty_card, last-first); |
| 393 | } |
| 394 | |
| 395 | // Unlike several other card table methods, dirty_card_iterate() |
| 396 | // iterates over dirty cards ranges in increasing address order. |
| 397 | void CardTable::dirty_card_iterate(MemRegion mr, MemRegionClosure* cl) { |
| 398 | for (int i = 0; i < _cur_covered_regions; i++) { |
| 399 | MemRegion mri = mr.intersection(_covered[i]); |
| 400 | if (!mri.is_empty()) { |
| 401 | CardValue *cur_entry, *next_entry, *limit; |
| 402 | for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last()); |
| 403 | cur_entry <= limit; |
| 404 | cur_entry = next_entry) { |
| 405 | next_entry = cur_entry + 1; |
| 406 | if (*cur_entry == dirty_card) { |
| 407 | size_t dirty_cards; |
| 408 | // Accumulate maximal dirty card range, starting at cur_entry |
| 409 | for (dirty_cards = 1; |
| 410 | next_entry <= limit && *next_entry == dirty_card; |
| 411 | dirty_cards++, next_entry++); |
| 412 | MemRegion cur_cards(addr_for(cur_entry), |
| 413 | dirty_cards*card_size_in_words); |
| 414 | cl->do_MemRegion(cur_cards); |
| 415 | } |
| 416 | } |
| 417 | } |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | MemRegion CardTable::dirty_card_range_after_reset(MemRegion mr, |
| 422 | bool reset, |
| 423 | int reset_val) { |
| 424 | for (int i = 0; i < _cur_covered_regions; i++) { |
| 425 | MemRegion mri = mr.intersection(_covered[i]); |
| 426 | if (!mri.is_empty()) { |
| 427 | CardValue* cur_entry, *next_entry, *limit; |
| 428 | for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last()); |
| 429 | cur_entry <= limit; |
| 430 | cur_entry = next_entry) { |
| 431 | next_entry = cur_entry + 1; |
| 432 | if (*cur_entry == dirty_card) { |
| 433 | size_t dirty_cards; |
| 434 | // Accumulate maximal dirty card range, starting at cur_entry |
| 435 | for (dirty_cards = 1; |
| 436 | next_entry <= limit && *next_entry == dirty_card; |
| 437 | dirty_cards++, next_entry++); |
| 438 | MemRegion cur_cards(addr_for(cur_entry), |
| 439 | dirty_cards*card_size_in_words); |
| 440 | if (reset) { |
| 441 | for (size_t i = 0; i < dirty_cards; i++) { |
| 442 | cur_entry[i] = reset_val; |
| 443 | } |
| 444 | } |
| 445 | return cur_cards; |
| 446 | } |
| 447 | } |
| 448 | } |
| 449 | } |
| 450 | return MemRegion(mr.end(), mr.end()); |
| 451 | } |
| 452 | |
| 453 | uintx CardTable::ct_max_alignment_constraint() { |
| 454 | return card_size * os::vm_page_size(); |
| 455 | } |
| 456 | |
| 457 | void CardTable::verify_guard() { |
| 458 | // For product build verification |
| 459 | guarantee(_byte_map[_guard_index] == last_card, |
| 460 | "card table guard has been modified" ); |
| 461 | } |
| 462 | |
| 463 | void CardTable::invalidate(MemRegion mr) { |
| 464 | assert(align_down(mr.start(), HeapWordSize) == mr.start(), "Unaligned start" ); |
| 465 | assert(align_up (mr.end(), HeapWordSize) == mr.end(), "Unaligned end" ); |
| 466 | for (int i = 0; i < _cur_covered_regions; i++) { |
| 467 | MemRegion mri = mr.intersection(_covered[i]); |
| 468 | if (!mri.is_empty()) dirty_MemRegion(mri); |
| 469 | } |
| 470 | } |
| 471 | |
| 472 | void CardTable::verify() { |
| 473 | verify_guard(); |
| 474 | } |
| 475 | |
| 476 | #ifndef PRODUCT |
| 477 | void CardTable::verify_region(MemRegion mr, CardValue val, bool val_equals) { |
| 478 | CardValue* start = byte_for(mr.start()); |
| 479 | CardValue* end = byte_for(mr.last()); |
| 480 | bool failures = false; |
| 481 | for (CardValue* curr = start; curr <= end; ++curr) { |
| 482 | CardValue curr_val = *curr; |
| 483 | bool failed = (val_equals) ? (curr_val != val) : (curr_val == val); |
| 484 | if (failed) { |
| 485 | if (!failures) { |
| 486 | log_error(gc, verify)("== CT verification failed: [" INTPTR_FORMAT "," INTPTR_FORMAT "]" , p2i(start), p2i(end)); |
| 487 | log_error(gc, verify)("== %sexpecting value: %d" , (val_equals) ? "" : "not " , val); |
| 488 | failures = true; |
| 489 | } |
| 490 | log_error(gc, verify)("== card " PTR_FORMAT " [" PTR_FORMAT "," PTR_FORMAT "], val: %d" , |
| 491 | p2i(curr), p2i(addr_for(curr)), |
| 492 | p2i((HeapWord*) (((size_t) addr_for(curr)) + card_size)), |
| 493 | (int) curr_val); |
| 494 | } |
| 495 | } |
| 496 | guarantee(!failures, "there should not have been any failures" ); |
| 497 | } |
| 498 | |
| 499 | void CardTable::verify_not_dirty_region(MemRegion mr) { |
| 500 | verify_region(mr, dirty_card, false /* val_equals */); |
| 501 | } |
| 502 | |
| 503 | void CardTable::verify_dirty_region(MemRegion mr) { |
| 504 | verify_region(mr, dirty_card, true /* val_equals */); |
| 505 | } |
| 506 | #endif |
| 507 | |
| 508 | void CardTable::print_on(outputStream* st) const { |
| 509 | st->print_cr("Card table byte_map: [" INTPTR_FORMAT "," INTPTR_FORMAT "] _byte_map_base: " INTPTR_FORMAT, |
| 510 | p2i(_byte_map), p2i(_byte_map + _byte_map_size), p2i(_byte_map_base)); |
| 511 | } |
| 512 | |