1/*
2 * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_MEMORY_ALLOCATION_HPP
26#define SHARE_MEMORY_ALLOCATION_HPP
27
28#include "runtime/globals.hpp"
29#include "utilities/globalDefinitions.hpp"
30#include "utilities/macros.hpp"
31
32#include <new>
33
34class Thread;
35
36class AllocFailStrategy {
37public:
38 enum AllocFailEnum { EXIT_OOM, RETURN_NULL };
39};
40typedef AllocFailStrategy::AllocFailEnum AllocFailType;
41
42// The virtual machine must never call one of the implicitly declared
43// global allocation or deletion functions. (Such calls may result in
44// link-time or run-time errors.) For convenience and documentation of
45// intended use, classes in the virtual machine may be derived from one
46// of the following allocation classes, some of which define allocation
47// and deletion functions.
48// Note: std::malloc and std::free should never called directly.
49
50//
51// For objects allocated in the resource area (see resourceArea.hpp).
52// - ResourceObj
53//
54// For objects allocated in the C-heap (managed by: free & malloc and tracked with NMT)
55// - CHeapObj
56//
57// For objects allocated on the stack.
58// - StackObj
59//
60// For classes used as name spaces.
61// - AllStatic
62//
63// For classes in Metaspace (class data)
64// - MetaspaceObj
65//
66// The printable subclasses are used for debugging and define virtual
67// member functions for printing. Classes that avoid allocating the
68// vtbl entries in the objects should therefore not be the printable
69// subclasses.
70//
71// The following macros and function should be used to allocate memory
72// directly in the resource area or in the C-heap, The _OBJ variants
73// of the NEW/FREE_C_HEAP macros are used for alloc/dealloc simple
74// objects which are not inherited from CHeapObj, note constructor and
75// destructor are not called. The preferable way to allocate objects
76// is using the new operator.
77//
78// WARNING: The array variant must only be used for a homogenous array
79// where all objects are of the exact type specified. If subtypes are
80// stored in the array then must pay attention to calling destructors
81// at needed.
82//
83// NEW_RESOURCE_ARRAY(type, size)
84// NEW_RESOURCE_OBJ(type)
85// NEW_C_HEAP_ARRAY(type, size)
86// NEW_C_HEAP_OBJ(type, memflags)
87// FREE_C_HEAP_ARRAY(type, old)
88// FREE_C_HEAP_OBJ(objname, type, memflags)
89// char* AllocateHeap(size_t size, const char* name);
90// void FreeHeap(void* p);
91//
92
93// In non product mode we introduce a super class for all allocation classes
94// that supports printing.
95// We avoid the superclass in product mode to save space.
96
97#ifdef PRODUCT
98#define ALLOCATION_SUPER_CLASS_SPEC
99#else
100#define ALLOCATION_SUPER_CLASS_SPEC : public AllocatedObj
101class AllocatedObj {
102 public:
103 // Printing support
104 void print() const;
105 void print_value() const;
106
107 virtual void print_on(outputStream* st) const;
108 virtual void print_value_on(outputStream* st) const;
109};
110#endif
111
112#define MEMORY_TYPES_DO(f) \
113 /* Memory type by sub systems. It occupies lower byte. */ \
114 f(mtJavaHeap, "Java Heap") /* Java heap */ \
115 f(mtClass, "Class") /* Java classes */ \
116 f(mtThread, "Thread") /* thread objects */ \
117 f(mtThreadStack, "Thread Stack") \
118 f(mtCode, "Code") /* generated code */ \
119 f(mtGC, "GC") \
120 f(mtCompiler, "Compiler") \
121 f(mtJVMCI, "JVMCI") \
122 f(mtInternal, "Internal") /* memory used by VM, but does not belong to */ \
123 /* any of above categories, and not used by */ \
124 /* NMT */ \
125 f(mtOther, "Other") /* memory not used by VM */ \
126 f(mtSymbol, "Symbol") \
127 f(mtNMT, "Native Memory Tracking") /* memory used by NMT */ \
128 f(mtClassShared, "Shared class space") /* class data sharing */ \
129 f(mtChunk, "Arena Chunk") /* chunk that holds content of arenas */ \
130 f(mtTest, "Test") /* Test type for verifying NMT */ \
131 f(mtTracing, "Tracing") \
132 f(mtLogging, "Logging") \
133 f(mtStatistics, "Statistics") \
134 f(mtArguments, "Arguments") \
135 f(mtModule, "Module") \
136 f(mtSafepoint, "Safepoint") \
137 f(mtSynchronizer, "Synchronization") \
138 f(mtNone, "Unknown") \
139 //end
140
141#define MEMORY_TYPE_DECLARE_ENUM(type, human_readable) \
142 type,
143
144/*
145 * Memory types
146 */
147enum MemoryType {
148 MEMORY_TYPES_DO(MEMORY_TYPE_DECLARE_ENUM)
149 mt_number_of_types // number of memory types (mtDontTrack
150 // is not included as validate type)
151};
152
153typedef MemoryType MEMFLAGS;
154
155
156#if INCLUDE_NMT
157
158extern bool NMT_track_callsite;
159
160#else
161
162const bool NMT_track_callsite = false;
163
164#endif // INCLUDE_NMT
165
166class NativeCallStack;
167
168
169char* AllocateHeap(size_t size,
170 MEMFLAGS flags,
171 const NativeCallStack& stack,
172 AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
173char* AllocateHeap(size_t size,
174 MEMFLAGS flags,
175 AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
176
177char* ReallocateHeap(char *old,
178 size_t size,
179 MEMFLAGS flag,
180 AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
181
182void FreeHeap(void* p);
183
184template <MEMFLAGS F> class CHeapObj ALLOCATION_SUPER_CLASS_SPEC {
185 public:
186 ALWAYSINLINE void* operator new(size_t size) throw() {
187 return (void*)AllocateHeap(size, F);
188 }
189
190 ALWAYSINLINE void* operator new(size_t size,
191 const NativeCallStack& stack) throw() {
192 return (void*)AllocateHeap(size, F, stack);
193 }
194
195 ALWAYSINLINE void* operator new(size_t size, const std::nothrow_t&,
196 const NativeCallStack& stack) throw() {
197 return (void*)AllocateHeap(size, F, stack, AllocFailStrategy::RETURN_NULL);
198 }
199
200 ALWAYSINLINE void* operator new(size_t size, const std::nothrow_t&) throw() {
201 return (void*)AllocateHeap(size, F, AllocFailStrategy::RETURN_NULL);
202 }
203
204 ALWAYSINLINE void* operator new[](size_t size) throw() {
205 return (void*)AllocateHeap(size, F);
206 }
207
208 ALWAYSINLINE void* operator new[](size_t size,
209 const NativeCallStack& stack) throw() {
210 return (void*)AllocateHeap(size, F, stack);
211 }
212
213 ALWAYSINLINE void* operator new[](size_t size, const std::nothrow_t&,
214 const NativeCallStack& stack) throw() {
215 return (void*)AllocateHeap(size, F, stack, AllocFailStrategy::RETURN_NULL);
216 }
217
218 ALWAYSINLINE void* operator new[](size_t size, const std::nothrow_t&) throw() {
219 return (void*)AllocateHeap(size, F, AllocFailStrategy::RETURN_NULL);
220 }
221
222 void operator delete(void* p) { FreeHeap(p); }
223 void operator delete [] (void* p) { FreeHeap(p); }
224};
225
226// Base class for objects allocated on the stack only.
227// Calling new or delete will result in fatal error.
228
229class StackObj ALLOCATION_SUPER_CLASS_SPEC {
230 private:
231 void* operator new(size_t size) throw();
232 void* operator new [](size_t size) throw();
233#ifdef __IBMCPP__
234 public:
235#endif
236 void operator delete(void* p);
237 void operator delete [](void* p);
238};
239
240// Base class for objects stored in Metaspace.
241// Calling delete will result in fatal error.
242//
243// Do not inherit from something with a vptr because this class does
244// not introduce one. This class is used to allocate both shared read-only
245// and shared read-write classes.
246//
247
248class ClassLoaderData;
249class MetaspaceClosure;
250
251class MetaspaceObj {
252 friend class VMStructs;
253 // When CDS is enabled, all shared metaspace objects are mapped
254 // into a single contiguous memory block, so we can use these
255 // two pointers to quickly determine if something is in the
256 // shared metaspace.
257 // When CDS is not enabled, both pointers are set to NULL.
258 static void* _shared_metaspace_base; // (inclusive) low address
259 static void* _shared_metaspace_top; // (exclusive) high address
260
261 public:
262
263 // Returns true if the pointer points to a valid MetaspaceObj. A valid
264 // MetaspaceObj is MetaWord-aligned and contained within either
265 // non-shared or shared metaspace.
266 static bool is_valid(const MetaspaceObj* p);
267
268 static bool is_shared(const MetaspaceObj* p) {
269 // If no shared metaspace regions are mapped, _shared_metaspace_{base,top} will
270 // both be NULL and all values of p will be rejected quickly.
271 return (((void*)p) < _shared_metaspace_top &&
272 ((void*)p) >= _shared_metaspace_base);
273 }
274 bool is_shared() const { return MetaspaceObj::is_shared(this); }
275
276 void print_address_on(outputStream* st) const; // nonvirtual address printing
277
278 static void set_shared_metaspace_range(void* base, void* top) {
279 _shared_metaspace_base = base;
280 _shared_metaspace_top = top;
281 }
282
283 static void expand_shared_metaspace_range(void* top) {
284 assert(top >= _shared_metaspace_top, "must be");
285 _shared_metaspace_top = top;
286 }
287
288 static void* shared_metaspace_base() { return _shared_metaspace_base; }
289 static void* shared_metaspace_top() { return _shared_metaspace_top; }
290
291#define METASPACE_OBJ_TYPES_DO(f) \
292 f(Class) \
293 f(Symbol) \
294 f(TypeArrayU1) \
295 f(TypeArrayU2) \
296 f(TypeArrayU4) \
297 f(TypeArrayU8) \
298 f(TypeArrayOther) \
299 f(Method) \
300 f(ConstMethod) \
301 f(MethodData) \
302 f(ConstantPool) \
303 f(ConstantPoolCache) \
304 f(Annotations) \
305 f(MethodCounters)
306
307#define METASPACE_OBJ_TYPE_DECLARE(name) name ## Type,
308#define METASPACE_OBJ_TYPE_NAME_CASE(name) case name ## Type: return #name;
309
310 enum Type {
311 // Types are MetaspaceObj::ClassType, MetaspaceObj::SymbolType, etc
312 METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_DECLARE)
313 _number_of_types
314 };
315
316 static const char * type_name(Type type) {
317 switch(type) {
318 METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_NAME_CASE)
319 default:
320 ShouldNotReachHere();
321 return NULL;
322 }
323 }
324
325 static MetaspaceObj::Type array_type(size_t elem_size) {
326 switch (elem_size) {
327 case 1: return TypeArrayU1Type;
328 case 2: return TypeArrayU2Type;
329 case 4: return TypeArrayU4Type;
330 case 8: return TypeArrayU8Type;
331 default:
332 return TypeArrayOtherType;
333 }
334 }
335
336 void* operator new(size_t size, ClassLoaderData* loader_data,
337 size_t word_size,
338 Type type, Thread* thread) throw();
339 // can't use TRAPS from this header file.
340 void operator delete(void* p) { ShouldNotCallThis(); }
341
342 // Declare a *static* method with the same signature in any subclass of MetaspaceObj
343 // that should be read-only by default. See symbol.hpp for an example. This function
344 // is used by the templates in metaspaceClosure.hpp
345 static bool is_read_only_by_default() { return false; }
346};
347
348// Base class for classes that constitute name spaces.
349
350class Arena;
351
352class AllStatic {
353 public:
354 AllStatic() { ShouldNotCallThis(); }
355 ~AllStatic() { ShouldNotCallThis(); }
356};
357
358
359extern char* resource_allocate_bytes(size_t size,
360 AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
361extern char* resource_allocate_bytes(Thread* thread, size_t size,
362 AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
363extern char* resource_reallocate_bytes( char *old, size_t old_size, size_t new_size,
364 AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
365extern void resource_free_bytes( char *old, size_t size );
366
367//----------------------------------------------------------------------
368// Base class for objects allocated in the resource area per default.
369// Optionally, objects may be allocated on the C heap with
370// new(ResourceObj::C_HEAP) Foo(...) or in an Arena with new (&arena)
371// ResourceObj's can be allocated within other objects, but don't use
372// new or delete (allocation_type is unknown). If new is used to allocate,
373// use delete to deallocate.
374class ResourceObj ALLOCATION_SUPER_CLASS_SPEC {
375 public:
376 enum allocation_type { STACK_OR_EMBEDDED = 0, RESOURCE_AREA, C_HEAP, ARENA, allocation_mask = 0x3 };
377 static void set_allocation_type(address res, allocation_type type) NOT_DEBUG_RETURN;
378#ifdef ASSERT
379 private:
380 // When this object is allocated on stack the new() operator is not
381 // called but garbage on stack may look like a valid allocation_type.
382 // Store negated 'this' pointer when new() is called to distinguish cases.
383 // Use second array's element for verification value to distinguish garbage.
384 uintptr_t _allocation_t[2];
385 bool is_type_set() const;
386 void initialize_allocation_info();
387 public:
388 allocation_type get_allocation_type() const;
389 bool allocated_on_stack() const { return get_allocation_type() == STACK_OR_EMBEDDED; }
390 bool allocated_on_res_area() const { return get_allocation_type() == RESOURCE_AREA; }
391 bool allocated_on_C_heap() const { return get_allocation_type() == C_HEAP; }
392 bool allocated_on_arena() const { return get_allocation_type() == ARENA; }
393protected:
394 ResourceObj(); // default constructor
395 ResourceObj(const ResourceObj& r); // default copy constructor
396 ResourceObj& operator=(const ResourceObj& r); // default copy assignment
397 ~ResourceObj();
398#endif // ASSERT
399
400 public:
401 void* operator new(size_t size, allocation_type type, MEMFLAGS flags) throw();
402 void* operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw();
403 void* operator new(size_t size, const std::nothrow_t& nothrow_constant,
404 allocation_type type, MEMFLAGS flags) throw();
405 void* operator new [](size_t size, const std::nothrow_t& nothrow_constant,
406 allocation_type type, MEMFLAGS flags) throw();
407
408 void* operator new(size_t size, Arena *arena) throw();
409
410 void* operator new [](size_t size, Arena *arena) throw();
411
412 void* operator new(size_t size) throw() {
413 address res = (address)resource_allocate_bytes(size);
414 DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
415 return res;
416 }
417
418 void* operator new(size_t size, const std::nothrow_t& nothrow_constant) throw() {
419 address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
420 DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
421 return res;
422 }
423
424 void* operator new [](size_t size) throw() {
425 address res = (address)resource_allocate_bytes(size);
426 DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
427 return res;
428 }
429
430 void* operator new [](size_t size, const std::nothrow_t& nothrow_constant) throw() {
431 address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
432 DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
433 return res;
434 }
435
436 void operator delete(void* p);
437 void operator delete [](void* p);
438};
439
440// One of the following macros must be used when allocating an array
441// or object to determine whether it should reside in the C heap on in
442// the resource area.
443
444#define NEW_RESOURCE_ARRAY(type, size)\
445 (type*) resource_allocate_bytes((size) * sizeof(type))
446
447#define NEW_RESOURCE_ARRAY_RETURN_NULL(type, size)\
448 (type*) resource_allocate_bytes((size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
449
450#define NEW_RESOURCE_ARRAY_IN_THREAD(thread, type, size)\
451 (type*) resource_allocate_bytes(thread, (size) * sizeof(type))
452
453#define NEW_RESOURCE_ARRAY_IN_THREAD_RETURN_NULL(thread, type, size)\
454 (type*) resource_allocate_bytes(thread, (size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
455
456#define REALLOC_RESOURCE_ARRAY(type, old, old_size, new_size)\
457 (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type))
458
459#define REALLOC_RESOURCE_ARRAY_RETURN_NULL(type, old, old_size, new_size)\
460 (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type),\
461 (new_size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
462
463#define FREE_RESOURCE_ARRAY(type, old, size)\
464 resource_free_bytes((char*)(old), (size) * sizeof(type))
465
466#define FREE_FAST(old)\
467 /* nop */
468
469#define NEW_RESOURCE_OBJ(type)\
470 NEW_RESOURCE_ARRAY(type, 1)
471
472#define NEW_RESOURCE_OBJ_RETURN_NULL(type)\
473 NEW_RESOURCE_ARRAY_RETURN_NULL(type, 1)
474
475#define NEW_C_HEAP_ARRAY3(type, size, memflags, pc, allocfail)\
476 (type*) AllocateHeap((size) * sizeof(type), memflags, pc, allocfail)
477
478#define NEW_C_HEAP_ARRAY2(type, size, memflags, pc)\
479 (type*) (AllocateHeap((size) * sizeof(type), memflags, pc))
480
481#define NEW_C_HEAP_ARRAY(type, size, memflags)\
482 (type*) (AllocateHeap((size) * sizeof(type), memflags))
483
484#define NEW_C_HEAP_ARRAY2_RETURN_NULL(type, size, memflags, pc)\
485 NEW_C_HEAP_ARRAY3(type, (size), memflags, pc, AllocFailStrategy::RETURN_NULL)
486
487#define NEW_C_HEAP_ARRAY_RETURN_NULL(type, size, memflags)\
488 NEW_C_HEAP_ARRAY3(type, (size), memflags, CURRENT_PC, AllocFailStrategy::RETURN_NULL)
489
490#define REALLOC_C_HEAP_ARRAY(type, old, size, memflags)\
491 (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags))
492
493#define REALLOC_C_HEAP_ARRAY_RETURN_NULL(type, old, size, memflags)\
494 (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags, AllocFailStrategy::RETURN_NULL))
495
496#define FREE_C_HEAP_ARRAY(type, old) \
497 FreeHeap((char*)(old))
498
499// allocate type in heap without calling ctor
500#define NEW_C_HEAP_OBJ(type, memflags)\
501 NEW_C_HEAP_ARRAY(type, 1, memflags)
502
503#define NEW_C_HEAP_OBJ_RETURN_NULL(type, memflags)\
504 NEW_C_HEAP_ARRAY_RETURN_NULL(type, 1, memflags)
505
506// deallocate obj of type in heap without calling dtor
507#define FREE_C_HEAP_OBJ(objname)\
508 FreeHeap((char*)objname);
509
510// for statistics
511#ifndef PRODUCT
512class AllocStats : StackObj {
513 julong start_mallocs, start_frees;
514 julong start_malloc_bytes, start_mfree_bytes, start_res_bytes;
515 public:
516 AllocStats();
517
518 julong num_mallocs(); // since creation of receiver
519 julong alloc_bytes();
520 julong num_frees();
521 julong free_bytes();
522 julong resource_bytes();
523 void print();
524};
525#endif
526
527
528//------------------------------ReallocMark---------------------------------
529// Code which uses REALLOC_RESOURCE_ARRAY should check an associated
530// ReallocMark, which is declared in the same scope as the reallocated
531// pointer. Any operation that could __potentially__ cause a reallocation
532// should check the ReallocMark.
533class ReallocMark: public StackObj {
534protected:
535 NOT_PRODUCT(int _nesting;)
536
537public:
538 ReallocMark() PRODUCT_RETURN;
539 void check() PRODUCT_RETURN;
540};
541
542// Helper class to allocate arrays that may become large.
543// Uses the OS malloc for allocations smaller than ArrayAllocatorMallocLimit
544// and uses mapped memory for larger allocations.
545// Most OS mallocs do something similar but Solaris malloc does not revert
546// to mapped memory for large allocations. By default ArrayAllocatorMallocLimit
547// is set so that we always use malloc except for Solaris where we set the
548// limit to get mapped memory.
549template <class E>
550class ArrayAllocator : public AllStatic {
551 private:
552 static bool should_use_malloc(size_t length);
553
554 static E* allocate_malloc(size_t length, MEMFLAGS flags);
555 static E* allocate_mmap(size_t length, MEMFLAGS flags);
556
557 static void free_malloc(E* addr, size_t length);
558 static void free_mmap(E* addr, size_t length);
559
560 public:
561 static E* allocate(size_t length, MEMFLAGS flags);
562 static E* reallocate(E* old_addr, size_t old_length, size_t new_length, MEMFLAGS flags);
563 static void free(E* addr, size_t length);
564};
565
566// Uses mmaped memory for all allocations. All allocations are initially
567// zero-filled. No pre-touching.
568template <class E>
569class MmapArrayAllocator : public AllStatic {
570 private:
571 static size_t size_for(size_t length);
572
573 public:
574 static E* allocate_or_null(size_t length, MEMFLAGS flags);
575 static E* allocate(size_t length, MEMFLAGS flags);
576 static void free(E* addr, size_t length);
577};
578
579// Uses malloc:ed memory for all allocations.
580template <class E>
581class MallocArrayAllocator : public AllStatic {
582 public:
583 static size_t size_for(size_t length);
584
585 static E* allocate(size_t length, MEMFLAGS flags);
586 static void free(E* addr);
587};
588
589#endif // SHARE_MEMORY_ALLOCATION_HPP
590