| 1 | /* |
| 2 | * Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "gc/shared/oopStorage.inline.hpp" |
| 27 | #include "gc/shared/oopStorageParState.inline.hpp" |
| 28 | #include "logging/log.hpp" |
| 29 | #include "logging/logStream.hpp" |
| 30 | #include "memory/allocation.inline.hpp" |
| 31 | #include "runtime/atomic.hpp" |
| 32 | #include "runtime/globals.hpp" |
| 33 | #include "runtime/handles.inline.hpp" |
| 34 | #include "runtime/interfaceSupport.inline.hpp" |
| 35 | #include "runtime/mutex.hpp" |
| 36 | #include "runtime/mutexLocker.hpp" |
| 37 | #include "runtime/orderAccess.hpp" |
| 38 | #include "runtime/os.hpp" |
| 39 | #include "runtime/safepoint.hpp" |
| 40 | #include "runtime/stubRoutines.hpp" |
| 41 | #include "runtime/thread.hpp" |
| 42 | #include "utilities/align.hpp" |
| 43 | #include "utilities/count_trailing_zeros.hpp" |
| 44 | #include "utilities/debug.hpp" |
| 45 | #include "utilities/globalDefinitions.hpp" |
| 46 | #include "utilities/macros.hpp" |
| 47 | #include "utilities/ostream.hpp" |
| 48 | |
| 49 | OopStorage::AllocationListEntry::AllocationListEntry() : _prev(NULL), _next(NULL) {} |
| 50 | |
| 51 | OopStorage::AllocationListEntry::~AllocationListEntry() { |
| 52 | assert(_prev == NULL, "deleting attached block" ); |
| 53 | assert(_next == NULL, "deleting attached block" ); |
| 54 | } |
| 55 | |
| 56 | OopStorage::AllocationList::AllocationList() : _head(NULL), _tail(NULL) {} |
| 57 | |
| 58 | OopStorage::AllocationList::~AllocationList() { |
| 59 | // ~OopStorage() empties its lists before destroying them. |
| 60 | assert(_head == NULL, "deleting non-empty block list" ); |
| 61 | assert(_tail == NULL, "deleting non-empty block list" ); |
| 62 | } |
| 63 | |
| 64 | void OopStorage::AllocationList::push_front(const Block& block) { |
| 65 | const Block* old = _head; |
| 66 | if (old == NULL) { |
| 67 | assert(_tail == NULL, "invariant" ); |
| 68 | _head = _tail = █ |
| 69 | } else { |
| 70 | block.allocation_list_entry()._next = old; |
| 71 | old->allocation_list_entry()._prev = █ |
| 72 | _head = █ |
| 73 | } |
| 74 | } |
| 75 | |
| 76 | void OopStorage::AllocationList::push_back(const Block& block) { |
| 77 | const Block* old = _tail; |
| 78 | if (old == NULL) { |
| 79 | assert(_head == NULL, "invariant" ); |
| 80 | _head = _tail = █ |
| 81 | } else { |
| 82 | old->allocation_list_entry()._next = █ |
| 83 | block.allocation_list_entry()._prev = old; |
| 84 | _tail = █ |
| 85 | } |
| 86 | } |
| 87 | |
| 88 | void OopStorage::AllocationList::unlink(const Block& block) { |
| 89 | const AllocationListEntry& block_entry = block.allocation_list_entry(); |
| 90 | const Block* prev_blk = block_entry._prev; |
| 91 | const Block* next_blk = block_entry._next; |
| 92 | block_entry._prev = NULL; |
| 93 | block_entry._next = NULL; |
| 94 | if ((prev_blk == NULL) && (next_blk == NULL)) { |
| 95 | assert(_head == &block, "invariant" ); |
| 96 | assert(_tail == &block, "invariant" ); |
| 97 | _head = _tail = NULL; |
| 98 | } else if (prev_blk == NULL) { |
| 99 | assert(_head == &block, "invariant" ); |
| 100 | next_blk->allocation_list_entry()._prev = NULL; |
| 101 | _head = next_blk; |
| 102 | } else if (next_blk == NULL) { |
| 103 | assert(_tail == &block, "invariant" ); |
| 104 | prev_blk->allocation_list_entry()._next = NULL; |
| 105 | _tail = prev_blk; |
| 106 | } else { |
| 107 | next_blk->allocation_list_entry()._prev = prev_blk; |
| 108 | prev_blk->allocation_list_entry()._next = next_blk; |
| 109 | } |
| 110 | } |
| 111 | |
| 112 | OopStorage::ActiveArray::ActiveArray(size_t size) : |
| 113 | _size(size), |
| 114 | _block_count(0), |
| 115 | _refcount(0) |
| 116 | {} |
| 117 | |
| 118 | OopStorage::ActiveArray::~ActiveArray() { |
| 119 | assert(_refcount == 0, "precondition" ); |
| 120 | } |
| 121 | |
| 122 | OopStorage::ActiveArray* OopStorage::ActiveArray::create(size_t size, AllocFailType alloc_fail) { |
| 123 | size_t size_in_bytes = blocks_offset() + sizeof(Block*) * size; |
| 124 | void* mem = NEW_C_HEAP_ARRAY3(char, size_in_bytes, mtGC, CURRENT_PC, alloc_fail); |
| 125 | if (mem == NULL) return NULL; |
| 126 | return new (mem) ActiveArray(size); |
| 127 | } |
| 128 | |
| 129 | void OopStorage::ActiveArray::destroy(ActiveArray* ba) { |
| 130 | ba->~ActiveArray(); |
| 131 | FREE_C_HEAP_ARRAY(char, ba); |
| 132 | } |
| 133 | |
| 134 | size_t OopStorage::ActiveArray::size() const { |
| 135 | return _size; |
| 136 | } |
| 137 | |
| 138 | size_t OopStorage::ActiveArray::block_count() const { |
| 139 | return _block_count; |
| 140 | } |
| 141 | |
| 142 | size_t OopStorage::ActiveArray::block_count_acquire() const { |
| 143 | return OrderAccess::load_acquire(&_block_count); |
| 144 | } |
| 145 | |
| 146 | void OopStorage::ActiveArray::increment_refcount() const { |
| 147 | int new_value = Atomic::add(1, &_refcount); |
| 148 | assert(new_value >= 1, "negative refcount %d" , new_value - 1); |
| 149 | } |
| 150 | |
| 151 | bool OopStorage::ActiveArray::decrement_refcount() const { |
| 152 | int new_value = Atomic::sub(1, &_refcount); |
| 153 | assert(new_value >= 0, "negative refcount %d" , new_value); |
| 154 | return new_value == 0; |
| 155 | } |
| 156 | |
| 157 | bool OopStorage::ActiveArray::push(Block* block) { |
| 158 | size_t index = _block_count; |
| 159 | if (index < _size) { |
| 160 | block->set_active_index(index); |
| 161 | *block_ptr(index) = block; |
| 162 | // Use a release_store to ensure all the setup is complete before |
| 163 | // making the block visible. |
| 164 | OrderAccess::release_store(&_block_count, index + 1); |
| 165 | return true; |
| 166 | } else { |
| 167 | return false; |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | void OopStorage::ActiveArray::remove(Block* block) { |
| 172 | assert(_block_count > 0, "array is empty" ); |
| 173 | size_t index = block->active_index(); |
| 174 | assert(*block_ptr(index) == block, "block not present" ); |
| 175 | size_t last_index = _block_count - 1; |
| 176 | Block* last_block = *block_ptr(last_index); |
| 177 | last_block->set_active_index(index); |
| 178 | *block_ptr(index) = last_block; |
| 179 | _block_count = last_index; |
| 180 | } |
| 181 | |
| 182 | void OopStorage::ActiveArray::copy_from(const ActiveArray* from) { |
| 183 | assert(_block_count == 0, "array must be empty" ); |
| 184 | size_t count = from->_block_count; |
| 185 | assert(count <= _size, "precondition" ); |
| 186 | Block* const* from_ptr = from->block_ptr(0); |
| 187 | Block** to_ptr = block_ptr(0); |
| 188 | for (size_t i = 0; i < count; ++i) { |
| 189 | Block* block = *from_ptr++; |
| 190 | assert(block->active_index() == i, "invariant" ); |
| 191 | *to_ptr++ = block; |
| 192 | } |
| 193 | _block_count = count; |
| 194 | } |
| 195 | |
| 196 | // Blocks start with an array of BitsPerWord oop entries. That array |
| 197 | // is divided into conceptual BytesPerWord sections of BitsPerByte |
| 198 | // entries. Blocks are allocated aligned on section boundaries, for |
| 199 | // the convenience of mapping from an entry to the containing block; |
| 200 | // see block_for_ptr(). Aligning on section boundary rather than on |
| 201 | // the full _data wastes a lot less space, but makes for a bit more |
| 202 | // work in block_for_ptr(). |
| 203 | |
| 204 | const unsigned section_size = BitsPerByte; |
| 205 | const unsigned section_count = BytesPerWord; |
| 206 | const unsigned block_alignment = sizeof(oop) * section_size; |
| 207 | |
| 208 | OopStorage::Block::Block(const OopStorage* owner, void* memory) : |
| 209 | _data(), |
| 210 | _allocated_bitmask(0), |
| 211 | _owner(owner), |
| 212 | _memory(memory), |
| 213 | _active_index(0), |
| 214 | _allocation_list_entry(), |
| 215 | _deferred_updates_next(NULL), |
| 216 | _release_refcount(0) |
| 217 | { |
| 218 | STATIC_ASSERT(_data_pos == 0); |
| 219 | STATIC_ASSERT(section_size * section_count == ARRAY_SIZE(_data)); |
| 220 | assert(offset_of(Block, _data) == _data_pos, "invariant" ); |
| 221 | assert(owner != NULL, "NULL owner" ); |
| 222 | assert(is_aligned(this, block_alignment), "misaligned block" ); |
| 223 | } |
| 224 | |
| 225 | OopStorage::Block::~Block() { |
| 226 | assert(_release_refcount == 0, "deleting block while releasing" ); |
| 227 | assert(_deferred_updates_next == NULL, "deleting block with deferred update" ); |
| 228 | // Clear fields used by block_for_ptr and entry validation, which |
| 229 | // might help catch bugs. Volatile to prevent dead-store elimination. |
| 230 | const_cast<uintx volatile&>(_allocated_bitmask) = 0; |
| 231 | const_cast<OopStorage* volatile&>(_owner) = NULL; |
| 232 | } |
| 233 | |
| 234 | size_t OopStorage::Block::allocation_size() { |
| 235 | // _data must be first member, so aligning Block aligns _data. |
| 236 | STATIC_ASSERT(_data_pos == 0); |
| 237 | return sizeof(Block) + block_alignment - sizeof(void*); |
| 238 | } |
| 239 | |
| 240 | size_t OopStorage::Block::allocation_alignment_shift() { |
| 241 | return exact_log2(block_alignment); |
| 242 | } |
| 243 | |
| 244 | inline bool is_full_bitmask(uintx bitmask) { return ~bitmask == 0; } |
| 245 | inline bool is_empty_bitmask(uintx bitmask) { return bitmask == 0; } |
| 246 | |
| 247 | bool OopStorage::Block::is_full() const { |
| 248 | return is_full_bitmask(allocated_bitmask()); |
| 249 | } |
| 250 | |
| 251 | bool OopStorage::Block::is_empty() const { |
| 252 | return is_empty_bitmask(allocated_bitmask()); |
| 253 | } |
| 254 | |
| 255 | uintx OopStorage::Block::bitmask_for_entry(const oop* ptr) const { |
| 256 | return bitmask_for_index(get_index(ptr)); |
| 257 | } |
| 258 | |
| 259 | // An empty block is not yet deletable if either: |
| 260 | // (1) There is a release() operation currently operating on it. |
| 261 | // (2) It is in the deferred updates list. |
| 262 | // For interaction with release(), these must follow the empty check, |
| 263 | // and the order of these checks is important. |
| 264 | bool OopStorage::Block::is_safe_to_delete() const { |
| 265 | assert(is_empty(), "precondition" ); |
| 266 | OrderAccess::loadload(); |
| 267 | return (OrderAccess::load_acquire(&_release_refcount) == 0) && |
| 268 | (OrderAccess::load_acquire(&_deferred_updates_next) == NULL); |
| 269 | } |
| 270 | |
| 271 | OopStorage::Block* OopStorage::Block::deferred_updates_next() const { |
| 272 | return _deferred_updates_next; |
| 273 | } |
| 274 | |
| 275 | void OopStorage::Block::set_deferred_updates_next(Block* block) { |
| 276 | _deferred_updates_next = block; |
| 277 | } |
| 278 | |
| 279 | bool OopStorage::Block::contains(const oop* ptr) const { |
| 280 | const oop* base = get_pointer(0); |
| 281 | return (base <= ptr) && (ptr < (base + ARRAY_SIZE(_data))); |
| 282 | } |
| 283 | |
| 284 | size_t OopStorage::Block::active_index() const { |
| 285 | return _active_index; |
| 286 | } |
| 287 | |
| 288 | void OopStorage::Block::set_active_index(size_t index) { |
| 289 | _active_index = index; |
| 290 | } |
| 291 | |
| 292 | size_t OopStorage::Block::active_index_safe(const Block* block) { |
| 293 | STATIC_ASSERT(sizeof(intptr_t) == sizeof(block->_active_index)); |
| 294 | assert(CanUseSafeFetchN(), "precondition" ); |
| 295 | return SafeFetchN((intptr_t*)&block->_active_index, 0); |
| 296 | } |
| 297 | |
| 298 | unsigned OopStorage::Block::get_index(const oop* ptr) const { |
| 299 | assert(contains(ptr), PTR_FORMAT " not in block " PTR_FORMAT, p2i(ptr), p2i(this)); |
| 300 | return static_cast<unsigned>(ptr - get_pointer(0)); |
| 301 | } |
| 302 | |
| 303 | oop* OopStorage::Block::allocate() { |
| 304 | // Use CAS loop because release may change bitmask outside of lock. |
| 305 | uintx allocated = allocated_bitmask(); |
| 306 | while (true) { |
| 307 | assert(!is_full_bitmask(allocated), "attempt to allocate from full block" ); |
| 308 | unsigned index = count_trailing_zeros(~allocated); |
| 309 | uintx new_value = allocated | bitmask_for_index(index); |
| 310 | uintx fetched = Atomic::cmpxchg(new_value, &_allocated_bitmask, allocated); |
| 311 | if (fetched == allocated) { |
| 312 | return get_pointer(index); // CAS succeeded; return entry for index. |
| 313 | } |
| 314 | allocated = fetched; // CAS failed; retry with latest value. |
| 315 | } |
| 316 | } |
| 317 | |
| 318 | OopStorage::Block* OopStorage::Block::new_block(const OopStorage* owner) { |
| 319 | // _data must be first member: aligning block => aligning _data. |
| 320 | STATIC_ASSERT(_data_pos == 0); |
| 321 | size_t size_needed = allocation_size(); |
| 322 | void* memory = NEW_C_HEAP_ARRAY_RETURN_NULL(char, size_needed, mtGC); |
| 323 | if (memory == NULL) { |
| 324 | return NULL; |
| 325 | } |
| 326 | void* block_mem = align_up(memory, block_alignment); |
| 327 | assert(sizeof(Block) + pointer_delta(block_mem, memory, 1) <= size_needed, |
| 328 | "allocated insufficient space for aligned block" ); |
| 329 | return ::new (block_mem) Block(owner, memory); |
| 330 | } |
| 331 | |
| 332 | void OopStorage::Block::delete_block(const Block& block) { |
| 333 | void* memory = block._memory; |
| 334 | block.Block::~Block(); |
| 335 | FREE_C_HEAP_ARRAY(char, memory); |
| 336 | } |
| 337 | |
| 338 | // This can return a false positive if ptr is not contained by some |
| 339 | // block. For some uses, it is a precondition that ptr is valid, |
| 340 | // e.g. contained in some block in owner's _active_array. Other uses |
| 341 | // require additional validation of the result. |
| 342 | OopStorage::Block* |
| 343 | OopStorage::Block::block_for_ptr(const OopStorage* owner, const oop* ptr) { |
| 344 | assert(CanUseSafeFetchN(), "precondition" ); |
| 345 | STATIC_ASSERT(_data_pos == 0); |
| 346 | // Const-ness of ptr is not related to const-ness of containing block. |
| 347 | // Blocks are allocated section-aligned, so get the containing section. |
| 348 | oop* section_start = align_down(const_cast<oop*>(ptr), block_alignment); |
| 349 | // Start with a guess that the containing section is the last section, |
| 350 | // so the block starts section_count-1 sections earlier. |
| 351 | oop* section = section_start - (section_size * (section_count - 1)); |
| 352 | // Walk up through the potential block start positions, looking for |
| 353 | // the owner in the expected location. If we're below the actual block |
| 354 | // start position, the value at the owner position will be some oop |
| 355 | // (possibly NULL), which can never match the owner. |
| 356 | intptr_t owner_addr = reinterpret_cast<intptr_t>(owner); |
| 357 | for (unsigned i = 0; i < section_count; ++i, section += section_size) { |
| 358 | Block* candidate = reinterpret_cast<Block*>(section); |
| 359 | intptr_t* candidate_owner_addr |
| 360 | = reinterpret_cast<intptr_t*>(&candidate->_owner); |
| 361 | if (SafeFetchN(candidate_owner_addr, 0) == owner_addr) { |
| 362 | return candidate; |
| 363 | } |
| 364 | } |
| 365 | return NULL; |
| 366 | } |
| 367 | |
| 368 | ////////////////////////////////////////////////////////////////////////////// |
| 369 | // Allocation |
| 370 | // |
| 371 | // Allocation involves the _allocation_list, which contains a subset of the |
| 372 | // blocks owned by a storage object. This is a doubly-linked list, linked |
| 373 | // through dedicated fields in the blocks. Full blocks are removed from this |
| 374 | // list, though they are still present in the _active_array. Empty blocks are |
| 375 | // kept at the end of the _allocation_list, to make it easy for empty block |
| 376 | // deletion to find them. |
| 377 | // |
| 378 | // allocate(), and delete_empty_blocks() lock the |
| 379 | // _allocation_mutex while performing any list and array modifications. |
| 380 | // |
| 381 | // allocate() and release() update a block's _allocated_bitmask using CAS |
| 382 | // loops. This prevents loss of updates even though release() performs |
| 383 | // its updates without any locking. |
| 384 | // |
| 385 | // allocate() obtains the entry from the first block in the _allocation_list, |
| 386 | // and updates that block's _allocated_bitmask to indicate the entry is in |
| 387 | // use. If this makes the block full (all entries in use), the block is |
| 388 | // removed from the _allocation_list so it won't be considered by future |
| 389 | // allocations until some entries in it are released. |
| 390 | // |
| 391 | // release() is performed lock-free. (Note: This means it can't notify the |
| 392 | // service thread of pending cleanup work. It must be lock-free because |
| 393 | // it is called in all kinds of contexts where even quite low ranked locks |
| 394 | // may be held.) release() first looks up the block for |
| 395 | // the entry, using address alignment to find the enclosing block (thereby |
| 396 | // avoiding iteration over the _active_array). Once the block has been |
| 397 | // determined, its _allocated_bitmask needs to be updated, and its position in |
| 398 | // the _allocation_list may need to be updated. There are two cases: |
| 399 | // |
| 400 | // (a) If the block is neither full nor would become empty with the release of |
| 401 | // the entry, only its _allocated_bitmask needs to be updated. But if the CAS |
| 402 | // update fails, the applicable case may change for the retry. |
| 403 | // |
| 404 | // (b) Otherwise, the _allocation_list also needs to be modified. This requires |
| 405 | // locking the _allocation_mutex. To keep the release() operation lock-free, |
| 406 | // rather than updating the _allocation_list itself, it instead performs a |
| 407 | // lock-free push of the block onto the _deferred_updates list. Entries on |
| 408 | // that list are processed by allocate() and delete_empty_blocks(), while |
| 409 | // they already hold the necessary lock. That processing makes the block's |
| 410 | // list state consistent with its current _allocated_bitmask. The block is |
| 411 | // added to the _allocation_list if not already present and the bitmask is not |
| 412 | // full. The block is moved to the end of the _allocation_list if the bitmask |
| 413 | // is empty, for ease of empty block deletion processing. |
| 414 | |
| 415 | oop* OopStorage::allocate() { |
| 416 | MutexLocker ml(_allocation_mutex, Mutex::_no_safepoint_check_flag); |
| 417 | |
| 418 | Block* block = block_for_allocation(); |
| 419 | if (block == NULL) return NULL; // Block allocation failed. |
| 420 | assert(!block->is_full(), "invariant" ); |
| 421 | if (block->is_empty()) { |
| 422 | // Transitioning from empty to not empty. |
| 423 | log_debug(oopstorage, blocks)("%s: block not empty " PTR_FORMAT, name(), p2i(block)); |
| 424 | } |
| 425 | oop* result = block->allocate(); |
| 426 | assert(result != NULL, "allocation failed" ); |
| 427 | assert(!block->is_empty(), "postcondition" ); |
| 428 | Atomic::inc(&_allocation_count); // release updates outside lock. |
| 429 | if (block->is_full()) { |
| 430 | // Transitioning from not full to full. |
| 431 | // Remove full blocks from consideration by future allocates. |
| 432 | log_debug(oopstorage, blocks)("%s: block full " PTR_FORMAT, name(), p2i(block)); |
| 433 | _allocation_list.unlink(*block); |
| 434 | } |
| 435 | log_trace(oopstorage, ref)("%s: allocated " PTR_FORMAT, name(), p2i(result)); |
| 436 | return result; |
| 437 | } |
| 438 | |
| 439 | bool OopStorage::try_add_block() { |
| 440 | assert_lock_strong(_allocation_mutex); |
| 441 | Block* block; |
| 442 | { |
| 443 | MutexUnlocker ul(_allocation_mutex, Mutex::_no_safepoint_check_flag); |
| 444 | block = Block::new_block(this); |
| 445 | } |
| 446 | if (block == NULL) return false; |
| 447 | |
| 448 | // Add new block to the _active_array, growing if needed. |
| 449 | if (!_active_array->push(block)) { |
| 450 | if (expand_active_array()) { |
| 451 | guarantee(_active_array->push(block), "push failed after expansion" ); |
| 452 | } else { |
| 453 | log_debug(oopstorage, blocks)("%s: failed active array expand" , name()); |
| 454 | Block::delete_block(*block); |
| 455 | return false; |
| 456 | } |
| 457 | } |
| 458 | // Add to end of _allocation_list. The mutex release allowed other |
| 459 | // threads to add blocks to the _allocation_list. We prefer to |
| 460 | // allocate from non-empty blocks, to allow empty blocks to be |
| 461 | // deleted. But we don't bother notifying about the empty block |
| 462 | // because we're (probably) about to allocate an entry from it. |
| 463 | _allocation_list.push_back(*block); |
| 464 | log_debug(oopstorage, blocks)("%s: new block " PTR_FORMAT, name(), p2i(block)); |
| 465 | return true; |
| 466 | } |
| 467 | |
| 468 | OopStorage::Block* OopStorage::block_for_allocation() { |
| 469 | assert_lock_strong(_allocation_mutex); |
| 470 | while (true) { |
| 471 | // Use the first block in _allocation_list for the allocation. |
| 472 | Block* block = _allocation_list.head(); |
| 473 | if (block != NULL) { |
| 474 | return block; |
| 475 | } else if (reduce_deferred_updates()) { |
| 476 | // Might have added a block to the _allocation_list, so retry. |
| 477 | } else if (try_add_block()) { |
| 478 | // Successfully added a new block to the list, so retry. |
| 479 | assert(_allocation_list.chead() != NULL, "invariant" ); |
| 480 | } else if (_allocation_list.chead() != NULL) { |
| 481 | // Trying to add a block failed, but some other thread added to the |
| 482 | // list while we'd dropped the lock over the new block allocation. |
| 483 | } else if (!reduce_deferred_updates()) { // Once more before failure. |
| 484 | // Attempt to add a block failed, no other thread added a block, |
| 485 | // and no deferred updated added a block, then allocation failed. |
| 486 | log_debug(oopstorage, blocks)("%s: failed block allocation" , name()); |
| 487 | return NULL; |
| 488 | } |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | // Create a new, larger, active array with the same content as the |
| 493 | // current array, and then replace, relinquishing the old array. |
| 494 | // Return true if the array was successfully expanded, false to |
| 495 | // indicate allocation failure. |
| 496 | bool OopStorage::expand_active_array() { |
| 497 | assert_lock_strong(_allocation_mutex); |
| 498 | ActiveArray* old_array = _active_array; |
| 499 | size_t new_size = 2 * old_array->size(); |
| 500 | log_debug(oopstorage, blocks)("%s: expand active array " SIZE_FORMAT, |
| 501 | name(), new_size); |
| 502 | ActiveArray* new_array = ActiveArray::create(new_size, AllocFailStrategy::RETURN_NULL); |
| 503 | if (new_array == NULL) return false; |
| 504 | new_array->copy_from(old_array); |
| 505 | replace_active_array(new_array); |
| 506 | relinquish_block_array(old_array); |
| 507 | return true; |
| 508 | } |
| 509 | |
| 510 | // Make new_array the _active_array. Increments new_array's refcount |
| 511 | // to account for the new reference. The assignment is atomic wrto |
| 512 | // obtain_active_array; once this function returns, it is safe for the |
| 513 | // caller to relinquish the old array. |
| 514 | void OopStorage::replace_active_array(ActiveArray* new_array) { |
| 515 | // Caller has the old array that is the current value of _active_array. |
| 516 | // Update new_array refcount to account for the new reference. |
| 517 | new_array->increment_refcount(); |
| 518 | // Install new_array, ensuring its initialization is complete first. |
| 519 | OrderAccess::release_store(&_active_array, new_array); |
| 520 | // Wait for any readers that could read the old array from _active_array. |
| 521 | // Can't use GlobalCounter here, because this is called from allocate(), |
| 522 | // which may be called in the scope of a GlobalCounter critical section |
| 523 | // when inserting a StringTable entry. |
| 524 | _protect_active.synchronize(); |
| 525 | // All obtain critical sections that could see the old array have |
| 526 | // completed, having incremented the refcount of the old array. The |
| 527 | // caller can now safely relinquish the old array. |
| 528 | } |
| 529 | |
| 530 | // Atomically (wrto replace_active_array) get the active array and |
| 531 | // increment its refcount. This provides safe access to the array, |
| 532 | // even if an allocate operation expands and replaces the value of |
| 533 | // _active_array. The caller must relinquish the array when done |
| 534 | // using it. |
| 535 | OopStorage::ActiveArray* OopStorage::obtain_active_array() const { |
| 536 | SingleWriterSynchronizer::CriticalSection cs(&_protect_active); |
| 537 | ActiveArray* result = OrderAccess::load_acquire(&_active_array); |
| 538 | result->increment_refcount(); |
| 539 | return result; |
| 540 | } |
| 541 | |
| 542 | // Decrement refcount of array and destroy if refcount is zero. |
| 543 | void OopStorage::relinquish_block_array(ActiveArray* array) const { |
| 544 | if (array->decrement_refcount()) { |
| 545 | assert(array != _active_array, "invariant" ); |
| 546 | ActiveArray::destroy(array); |
| 547 | } |
| 548 | } |
| 549 | |
| 550 | class OopStorage::WithActiveArray : public StackObj { |
| 551 | const OopStorage* _storage; |
| 552 | ActiveArray* _active_array; |
| 553 | |
| 554 | public: |
| 555 | WithActiveArray(const OopStorage* storage) : |
| 556 | _storage(storage), |
| 557 | _active_array(storage->obtain_active_array()) |
| 558 | {} |
| 559 | |
| 560 | ~WithActiveArray() { |
| 561 | _storage->relinquish_block_array(_active_array); |
| 562 | } |
| 563 | |
| 564 | ActiveArray& active_array() const { |
| 565 | return *_active_array; |
| 566 | } |
| 567 | }; |
| 568 | |
| 569 | OopStorage::Block* OopStorage::find_block_or_null(const oop* ptr) const { |
| 570 | assert(ptr != NULL, "precondition" ); |
| 571 | return Block::block_for_ptr(this, ptr); |
| 572 | } |
| 573 | |
| 574 | static void log_release_transitions(uintx releasing, |
| 575 | uintx old_allocated, |
| 576 | const OopStorage* owner, |
| 577 | const void* block) { |
| 578 | Log(oopstorage, blocks) log; |
| 579 | LogStream ls(log.debug()); |
| 580 | if (is_full_bitmask(old_allocated)) { |
| 581 | ls.print_cr("%s: block not full " PTR_FORMAT, owner->name(), p2i(block)); |
| 582 | } |
| 583 | if (releasing == old_allocated) { |
| 584 | ls.print_cr("%s: block empty " PTR_FORMAT, owner->name(), p2i(block)); |
| 585 | } |
| 586 | } |
| 587 | |
| 588 | void OopStorage::Block::release_entries(uintx releasing, OopStorage* owner) { |
| 589 | assert(releasing != 0, "preconditon" ); |
| 590 | // Prevent empty block deletion when transitioning to empty. |
| 591 | Atomic::inc(&_release_refcount); |
| 592 | |
| 593 | // Atomically update allocated bitmask. |
| 594 | uintx old_allocated = _allocated_bitmask; |
| 595 | while (true) { |
| 596 | assert((releasing & ~old_allocated) == 0, "releasing unallocated entries" ); |
| 597 | uintx new_value = old_allocated ^ releasing; |
| 598 | uintx fetched = Atomic::cmpxchg(new_value, &_allocated_bitmask, old_allocated); |
| 599 | if (fetched == old_allocated) break; // Successful update. |
| 600 | old_allocated = fetched; // Retry with updated bitmask. |
| 601 | } |
| 602 | |
| 603 | // Now that the bitmask has been updated, if we have a state transition |
| 604 | // (updated bitmask is empty or old bitmask was full), atomically push |
| 605 | // this block onto the deferred updates list. Some future call to |
| 606 | // reduce_deferred_updates will make any needed changes related to this |
| 607 | // block and _allocation_list. This deferral avoids _allocation_list |
| 608 | // updates and the associated locking here. |
| 609 | if ((releasing == old_allocated) || is_full_bitmask(old_allocated)) { |
| 610 | // Log transitions. Both transitions are possible in a single update. |
| 611 | if (log_is_enabled(Debug, oopstorage, blocks)) { |
| 612 | log_release_transitions(releasing, old_allocated, _owner, this); |
| 613 | } |
| 614 | // Attempt to claim responsibility for adding this block to the deferred |
| 615 | // list, by setting the link to non-NULL by self-looping. If this fails, |
| 616 | // then someone else has made such a claim and the deferred update has not |
| 617 | // yet been processed and will include our change, so we don't need to do |
| 618 | // anything further. |
| 619 | if (Atomic::replace_if_null(this, &_deferred_updates_next)) { |
| 620 | // Successfully claimed. Push, with self-loop for end-of-list. |
| 621 | Block* head = owner->_deferred_updates; |
| 622 | while (true) { |
| 623 | _deferred_updates_next = (head == NULL) ? this : head; |
| 624 | Block* fetched = Atomic::cmpxchg(this, &owner->_deferred_updates, head); |
| 625 | if (fetched == head) break; // Successful update. |
| 626 | head = fetched; // Retry with updated head. |
| 627 | } |
| 628 | // Only request cleanup for to-empty transitions, not for from-full. |
| 629 | // There isn't any rush to process from-full transitions. Allocation |
| 630 | // will reduce deferrals before allocating new blocks, so may process |
| 631 | // some. And the service thread will drain the entire deferred list |
| 632 | // if there are any pending to-empty transitions. |
| 633 | if (releasing == old_allocated) { |
| 634 | owner->record_needs_cleanup(); |
| 635 | } |
| 636 | log_debug(oopstorage, blocks)("%s: deferred update " PTR_FORMAT, |
| 637 | _owner->name(), p2i(this)); |
| 638 | } |
| 639 | } |
| 640 | // Release hold on empty block deletion. |
| 641 | Atomic::dec(&_release_refcount); |
| 642 | } |
| 643 | |
| 644 | // Process one available deferred update. Returns true if one was processed. |
| 645 | bool OopStorage::reduce_deferred_updates() { |
| 646 | assert_lock_strong(_allocation_mutex); |
| 647 | // Atomically pop a block off the list, if any available. |
| 648 | // No ABA issue because this is only called by one thread at a time. |
| 649 | // The atomicity is wrto pushes by release(). |
| 650 | Block* block = OrderAccess::load_acquire(&_deferred_updates); |
| 651 | while (true) { |
| 652 | if (block == NULL) return false; |
| 653 | // Try atomic pop of block from list. |
| 654 | Block* tail = block->deferred_updates_next(); |
| 655 | if (block == tail) tail = NULL; // Handle self-loop end marker. |
| 656 | Block* fetched = Atomic::cmpxchg(tail, &_deferred_updates, block); |
| 657 | if (fetched == block) break; // Update successful. |
| 658 | block = fetched; // Retry with updated block. |
| 659 | } |
| 660 | block->set_deferred_updates_next(NULL); // Clear tail after updating head. |
| 661 | // Ensure bitmask read after pop is complete, including clearing tail, for |
| 662 | // ordering with release(). Without this, we may be processing a stale |
| 663 | // bitmask state here while blocking a release() operation from recording |
| 664 | // the deferred update needed for its bitmask change. |
| 665 | OrderAccess::fence(); |
| 666 | // Process popped block. |
| 667 | uintx allocated = block->allocated_bitmask(); |
| 668 | |
| 669 | // Make membership in list consistent with bitmask state. |
| 670 | if ((_allocation_list.ctail() != NULL) && |
| 671 | ((_allocation_list.ctail() == block) || |
| 672 | (_allocation_list.next(*block) != NULL))) { |
| 673 | // Block is in the _allocation_list. |
| 674 | assert(!is_full_bitmask(allocated), "invariant" ); |
| 675 | } else if (!is_full_bitmask(allocated)) { |
| 676 | // Block is not in the _allocation_list, but now should be. |
| 677 | _allocation_list.push_front(*block); |
| 678 | } // Else block is full and not in list, which is correct. |
| 679 | |
| 680 | // Move empty block to end of list, for possible deletion. |
| 681 | if (is_empty_bitmask(allocated)) { |
| 682 | _allocation_list.unlink(*block); |
| 683 | _allocation_list.push_back(*block); |
| 684 | } |
| 685 | |
| 686 | log_debug(oopstorage, blocks)("%s: processed deferred update " PTR_FORMAT, |
| 687 | name(), p2i(block)); |
| 688 | return true; // Processed one pending update. |
| 689 | } |
| 690 | |
| 691 | inline void check_release_entry(const oop* entry) { |
| 692 | assert(entry != NULL, "Releasing NULL" ); |
| 693 | assert(*entry == NULL, "Releasing uncleared entry: " PTR_FORMAT, p2i(entry)); |
| 694 | } |
| 695 | |
| 696 | void OopStorage::release(const oop* ptr) { |
| 697 | check_release_entry(ptr); |
| 698 | Block* block = find_block_or_null(ptr); |
| 699 | assert(block != NULL, "%s: invalid release " PTR_FORMAT, name(), p2i(ptr)); |
| 700 | log_trace(oopstorage, ref)("%s: released " PTR_FORMAT, name(), p2i(ptr)); |
| 701 | block->release_entries(block->bitmask_for_entry(ptr), this); |
| 702 | Atomic::dec(&_allocation_count); |
| 703 | } |
| 704 | |
| 705 | void OopStorage::release(const oop* const* ptrs, size_t size) { |
| 706 | size_t i = 0; |
| 707 | while (i < size) { |
| 708 | check_release_entry(ptrs[i]); |
| 709 | Block* block = find_block_or_null(ptrs[i]); |
| 710 | assert(block != NULL, "%s: invalid release " PTR_FORMAT, name(), p2i(ptrs[i])); |
| 711 | log_trace(oopstorage, ref)("%s: released " PTR_FORMAT, name(), p2i(ptrs[i])); |
| 712 | size_t count = 0; |
| 713 | uintx releasing = 0; |
| 714 | for ( ; i < size; ++i) { |
| 715 | const oop* entry = ptrs[i]; |
| 716 | check_release_entry(entry); |
| 717 | // If entry not in block, finish block and resume outer loop with entry. |
| 718 | if (!block->contains(entry)) break; |
| 719 | // Add entry to releasing bitmap. |
| 720 | log_trace(oopstorage, ref)("%s: released " PTR_FORMAT, name(), p2i(entry)); |
| 721 | uintx entry_bitmask = block->bitmask_for_entry(entry); |
| 722 | assert((releasing & entry_bitmask) == 0, |
| 723 | "Duplicate entry: " PTR_FORMAT, p2i(entry)); |
| 724 | releasing |= entry_bitmask; |
| 725 | ++count; |
| 726 | } |
| 727 | // Release the contiguous entries that are in block. |
| 728 | block->release_entries(releasing, this); |
| 729 | Atomic::sub(count, &_allocation_count); |
| 730 | } |
| 731 | } |
| 732 | |
| 733 | const char* dup_name(const char* name) { |
| 734 | char* dup = NEW_C_HEAP_ARRAY(char, strlen(name) + 1, mtGC); |
| 735 | strcpy(dup, name); |
| 736 | return dup; |
| 737 | } |
| 738 | |
| 739 | const size_t initial_active_array_size = 8; |
| 740 | |
| 741 | OopStorage::OopStorage(const char* name, |
| 742 | Mutex* allocation_mutex, |
| 743 | Mutex* active_mutex) : |
| 744 | _name(dup_name(name)), |
| 745 | _active_array(ActiveArray::create(initial_active_array_size)), |
| 746 | _allocation_list(), |
| 747 | _deferred_updates(NULL), |
| 748 | _allocation_mutex(allocation_mutex), |
| 749 | _active_mutex(active_mutex), |
| 750 | _allocation_count(0), |
| 751 | _concurrent_iteration_count(0), |
| 752 | _needs_cleanup(false) |
| 753 | { |
| 754 | _active_array->increment_refcount(); |
| 755 | assert(_active_mutex->rank() < _allocation_mutex->rank(), |
| 756 | "%s: active_mutex must have lower rank than allocation_mutex" , _name); |
| 757 | assert(Service_lock->rank() < _active_mutex->rank(), |
| 758 | "%s: active_mutex must have higher rank than Service_lock" , _name); |
| 759 | assert(_active_mutex->_safepoint_check_required == Mutex::_safepoint_check_never, |
| 760 | "%s: active mutex requires never safepoint check" , _name); |
| 761 | assert(_allocation_mutex->_safepoint_check_required == Mutex::_safepoint_check_never, |
| 762 | "%s: allocation mutex requires never safepoint check" , _name); |
| 763 | } |
| 764 | |
| 765 | void OopStorage::delete_empty_block(const Block& block) { |
| 766 | assert(block.is_empty(), "discarding non-empty block" ); |
| 767 | log_debug(oopstorage, blocks)("%s: delete empty block " PTR_FORMAT, name(), p2i(&block)); |
| 768 | Block::delete_block(block); |
| 769 | } |
| 770 | |
| 771 | OopStorage::~OopStorage() { |
| 772 | Block* block; |
| 773 | while ((block = _deferred_updates) != NULL) { |
| 774 | _deferred_updates = block->deferred_updates_next(); |
| 775 | block->set_deferred_updates_next(NULL); |
| 776 | } |
| 777 | while ((block = _allocation_list.head()) != NULL) { |
| 778 | _allocation_list.unlink(*block); |
| 779 | } |
| 780 | bool unreferenced = _active_array->decrement_refcount(); |
| 781 | assert(unreferenced, "deleting storage while _active_array is referenced" ); |
| 782 | for (size_t i = _active_array->block_count(); 0 < i; ) { |
| 783 | block = _active_array->at(--i); |
| 784 | Block::delete_block(*block); |
| 785 | } |
| 786 | ActiveArray::destroy(_active_array); |
| 787 | FREE_C_HEAP_ARRAY(char, _name); |
| 788 | } |
| 789 | |
| 790 | // Managing service thread notifications. |
| 791 | // |
| 792 | // We don't want cleanup work to linger indefinitely, but we also don't want |
| 793 | // to run the service thread too often. We're also very limited in what we |
| 794 | // can do in a release operation, where cleanup work is created. |
| 795 | // |
| 796 | // When a release operation changes a block's state to empty, it records the |
| 797 | // need for cleanup in both the associated storage object and in the global |
| 798 | // request state. A safepoint cleanup task notifies the service thread when |
| 799 | // there may be cleanup work for any storage object, based on the global |
| 800 | // request state. But that notification is deferred if the service thread |
| 801 | // has run recently, and we also avoid duplicate notifications. The service |
| 802 | // thread updates the timestamp and resets the state flags on every iteration. |
| 803 | |
| 804 | // Global cleanup request state. |
| 805 | static volatile bool needs_cleanup_requested = false; |
| 806 | |
| 807 | // Flag for avoiding duplicate notifications. |
| 808 | static bool needs_cleanup_triggered = false; |
| 809 | |
| 810 | // Time after which a notification can be made. |
| 811 | static jlong cleanup_trigger_permit_time = 0; |
| 812 | |
| 813 | // Minimum time since last service thread check before notification is |
| 814 | // permitted. The value of 500ms was an arbitrary choice; frequent, but not |
| 815 | // too frequent. |
| 816 | const jlong cleanup_trigger_defer_period = 500 * NANOSECS_PER_MILLISEC; |
| 817 | |
| 818 | void OopStorage::trigger_cleanup_if_needed() { |
| 819 | MonitorLocker ml(Service_lock, Monitor::_no_safepoint_check_flag); |
| 820 | if (Atomic::load(&needs_cleanup_requested) && |
| 821 | !needs_cleanup_triggered && |
| 822 | (os::javaTimeNanos() > cleanup_trigger_permit_time)) { |
| 823 | needs_cleanup_triggered = true; |
| 824 | ml.notify_all(); |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | bool OopStorage::has_cleanup_work_and_reset() { |
| 829 | assert_lock_strong(Service_lock); |
| 830 | cleanup_trigger_permit_time = |
| 831 | os::javaTimeNanos() + cleanup_trigger_defer_period; |
| 832 | needs_cleanup_triggered = false; |
| 833 | // Set the request flag false and return its old value. |
| 834 | // Needs to be atomic to avoid dropping a concurrent request. |
| 835 | // Can't use Atomic::xchg, which may not support bool. |
| 836 | return Atomic::cmpxchg(false, &needs_cleanup_requested, true); |
| 837 | } |
| 838 | |
| 839 | // Record that cleanup is needed, without notifying the Service thread. |
| 840 | // Used by release(), where we can't lock even Service_lock. |
| 841 | void OopStorage::record_needs_cleanup() { |
| 842 | // Set local flag first, else service thread could wake up and miss |
| 843 | // the request. This order may instead (rarely) unnecessarily notify. |
| 844 | OrderAccess::release_store(&_needs_cleanup, true); |
| 845 | OrderAccess::release_store_fence(&needs_cleanup_requested, true); |
| 846 | } |
| 847 | |
| 848 | bool OopStorage::delete_empty_blocks() { |
| 849 | // Service thread might have oopstorage work, but not for this object. |
| 850 | // Check for deferred updates even though that's not a service thread |
| 851 | // trigger; since we're here, we might as well process them. |
| 852 | if (!OrderAccess::load_acquire(&_needs_cleanup) && |
| 853 | (OrderAccess::load_acquire(&_deferred_updates) == NULL)) { |
| 854 | return false; |
| 855 | } |
| 856 | |
| 857 | MutexLocker ml(_allocation_mutex, Mutex::_no_safepoint_check_flag); |
| 858 | |
| 859 | // Clear the request before processing. |
| 860 | OrderAccess::release_store_fence(&_needs_cleanup, false); |
| 861 | |
| 862 | // Other threads could be adding to the empty block count or the |
| 863 | // deferred update list while we're working. Set an upper bound on |
| 864 | // how many updates we'll process and blocks we'll try to release, |
| 865 | // so other threads can't cause an unbounded stay in this function. |
| 866 | // We add a bit of slop because the reduce_deferred_updates clause |
| 867 | // can cause blocks to be double counted. If there are few blocks |
| 868 | // and many of them are deferred and empty, we might hit the limit |
| 869 | // and spin the caller without doing very much work. Otherwise, |
| 870 | // we don't normally hit the limit anyway, instead running out of |
| 871 | // work to do. |
| 872 | size_t limit = block_count() + 10; |
| 873 | |
| 874 | for (size_t i = 0; i < limit; ++i) { |
| 875 | // Process deferred updates, which might make empty blocks available. |
| 876 | // Continue checking once deletion starts, since additional updates |
| 877 | // might become available while we're working. |
| 878 | if (reduce_deferred_updates()) { |
| 879 | // Be safepoint-polite while looping. |
| 880 | MutexUnlocker ul(_allocation_mutex, Mutex::_no_safepoint_check_flag); |
| 881 | ThreadBlockInVM tbiv(JavaThread::current()); |
| 882 | } else { |
| 883 | Block* block = _allocation_list.tail(); |
| 884 | if ((block == NULL) || !block->is_empty()) { |
| 885 | return false; |
| 886 | } else if (!block->is_safe_to_delete()) { |
| 887 | // Look for other work while waiting for block to be deletable. |
| 888 | break; |
| 889 | } |
| 890 | |
| 891 | // Try to delete the block. First, try to remove from _active_array. |
| 892 | { |
| 893 | MutexLocker aml(_active_mutex, Mutex::_no_safepoint_check_flag); |
| 894 | // Don't interfere with an active concurrent iteration. |
| 895 | // Instead, give up immediately. There is more work to do, |
| 896 | // but don't re-notify, to avoid useless spinning of the |
| 897 | // service thread. Instead, iteration completion notifies. |
| 898 | if (_concurrent_iteration_count > 0) return true; |
| 899 | _active_array->remove(block); |
| 900 | } |
| 901 | // Remove block from _allocation_list and delete it. |
| 902 | _allocation_list.unlink(*block); |
| 903 | // Be safepoint-polite while deleting and looping. |
| 904 | MutexUnlocker ul(_allocation_mutex, Mutex::_no_safepoint_check_flag); |
| 905 | delete_empty_block(*block); |
| 906 | ThreadBlockInVM tbiv(JavaThread::current()); |
| 907 | } |
| 908 | } |
| 909 | // Exceeded work limit or can't delete last block. This will |
| 910 | // cause the service thread to loop, giving other subtasks an |
| 911 | // opportunity to run too. There's no need for a notification, |
| 912 | // because we are part of the service thread (unless gtesting). |
| 913 | record_needs_cleanup(); |
| 914 | return true; |
| 915 | } |
| 916 | |
| 917 | OopStorage::EntryStatus OopStorage::allocation_status(const oop* ptr) const { |
| 918 | const Block* block = find_block_or_null(ptr); |
| 919 | if (block != NULL) { |
| 920 | // Prevent block deletion and _active_array modification. |
| 921 | MutexLocker ml(_allocation_mutex, Mutex::_no_safepoint_check_flag); |
| 922 | // Block could be a false positive, so get index carefully. |
| 923 | size_t index = Block::active_index_safe(block); |
| 924 | if ((index < _active_array->block_count()) && |
| 925 | (block == _active_array->at(index)) && |
| 926 | block->contains(ptr)) { |
| 927 | if ((block->allocated_bitmask() & block->bitmask_for_entry(ptr)) != 0) { |
| 928 | return ALLOCATED_ENTRY; |
| 929 | } else { |
| 930 | return UNALLOCATED_ENTRY; |
| 931 | } |
| 932 | } |
| 933 | } |
| 934 | return INVALID_ENTRY; |
| 935 | } |
| 936 | |
| 937 | size_t OopStorage::allocation_count() const { |
| 938 | return _allocation_count; |
| 939 | } |
| 940 | |
| 941 | size_t OopStorage::block_count() const { |
| 942 | WithActiveArray wab(this); |
| 943 | // Count access is racy, but don't care. |
| 944 | return wab.active_array().block_count(); |
| 945 | } |
| 946 | |
| 947 | size_t OopStorage::total_memory_usage() const { |
| 948 | size_t total_size = sizeof(OopStorage); |
| 949 | total_size += strlen(name()) + 1; |
| 950 | total_size += sizeof(ActiveArray); |
| 951 | WithActiveArray wab(this); |
| 952 | const ActiveArray& blocks = wab.active_array(); |
| 953 | // Count access is racy, but don't care. |
| 954 | total_size += blocks.block_count() * Block::allocation_size(); |
| 955 | total_size += blocks.size() * sizeof(Block*); |
| 956 | return total_size; |
| 957 | } |
| 958 | |
| 959 | // Parallel iteration support |
| 960 | |
| 961 | uint OopStorage::BasicParState::default_estimated_thread_count(bool concurrent) { |
| 962 | uint configured = concurrent ? ConcGCThreads : ParallelGCThreads; |
| 963 | return MAX2(1u, configured); // Never estimate zero threads. |
| 964 | } |
| 965 | |
| 966 | OopStorage::BasicParState::BasicParState(const OopStorage* storage, |
| 967 | uint estimated_thread_count, |
| 968 | bool concurrent) : |
| 969 | _storage(storage), |
| 970 | _active_array(_storage->obtain_active_array()), |
| 971 | _block_count(0), // initialized properly below |
| 972 | _next_block(0), |
| 973 | _estimated_thread_count(estimated_thread_count), |
| 974 | _concurrent(concurrent) |
| 975 | { |
| 976 | assert(estimated_thread_count > 0, "estimated thread count must be positive" ); |
| 977 | update_concurrent_iteration_count(1); |
| 978 | // Get the block count *after* iteration state updated, so concurrent |
| 979 | // empty block deletion is suppressed and can't reduce the count. But |
| 980 | // ensure the count we use was written after the block with that count |
| 981 | // was fully initialized; see ActiveArray::push. |
| 982 | _block_count = _active_array->block_count_acquire(); |
| 983 | } |
| 984 | |
| 985 | OopStorage::BasicParState::~BasicParState() { |
| 986 | _storage->relinquish_block_array(_active_array); |
| 987 | update_concurrent_iteration_count(-1); |
| 988 | if (_concurrent) { |
| 989 | // We may have deferred some cleanup work. |
| 990 | const_cast<OopStorage*>(_storage)->record_needs_cleanup(); |
| 991 | } |
| 992 | } |
| 993 | |
| 994 | void OopStorage::BasicParState::update_concurrent_iteration_count(int value) { |
| 995 | if (_concurrent) { |
| 996 | MutexLocker ml(_storage->_active_mutex, Mutex::_no_safepoint_check_flag); |
| 997 | _storage->_concurrent_iteration_count += value; |
| 998 | assert(_storage->_concurrent_iteration_count >= 0, "invariant" ); |
| 999 | } |
| 1000 | } |
| 1001 | |
| 1002 | bool OopStorage::BasicParState::claim_next_segment(IterationData* data) { |
| 1003 | data->_processed += data->_segment_end - data->_segment_start; |
| 1004 | size_t start = OrderAccess::load_acquire(&_next_block); |
| 1005 | if (start >= _block_count) { |
| 1006 | return finish_iteration(data); // No more blocks available. |
| 1007 | } |
| 1008 | // Try to claim several at a time, but not *too* many. We want to |
| 1009 | // avoid deciding there are many available and selecting a large |
| 1010 | // quantity, get delayed, and then end up claiming most or all of |
| 1011 | // the remaining largish amount of work, leaving nothing for other |
| 1012 | // threads to do. But too small a step can lead to contention |
| 1013 | // over _next_block, esp. when the work per block is small. |
| 1014 | size_t max_step = 10; |
| 1015 | size_t remaining = _block_count - start; |
| 1016 | size_t step = MIN2(max_step, 1 + (remaining / _estimated_thread_count)); |
| 1017 | // Atomic::add with possible overshoot. This can perform better |
| 1018 | // than a CAS loop on some platforms when there is contention. |
| 1019 | // We can cope with the uncertainty by recomputing start/end from |
| 1020 | // the result of the add, and dealing with potential overshoot. |
| 1021 | size_t end = Atomic::add(step, &_next_block); |
| 1022 | // _next_block may have changed, so recompute start from result of add. |
| 1023 | start = end - step; |
| 1024 | // _next_block may have changed so much that end has overshot. |
| 1025 | end = MIN2(end, _block_count); |
| 1026 | // _next_block may have changed so much that even start has overshot. |
| 1027 | if (start < _block_count) { |
| 1028 | // Record claimed segment for iteration. |
| 1029 | data->_segment_start = start; |
| 1030 | data->_segment_end = end; |
| 1031 | return true; // Success. |
| 1032 | } else { |
| 1033 | // No more blocks to claim. |
| 1034 | return finish_iteration(data); |
| 1035 | } |
| 1036 | } |
| 1037 | |
| 1038 | bool OopStorage::BasicParState::finish_iteration(const IterationData* data) const { |
| 1039 | log_info(oopstorage, blocks, stats) |
| 1040 | ("Parallel iteration on %s: blocks = " SIZE_FORMAT |
| 1041 | ", processed = " SIZE_FORMAT " (%2.f%%)" , |
| 1042 | _storage->name(), _block_count, data->_processed, |
| 1043 | percent_of(data->_processed, _block_count)); |
| 1044 | return false; |
| 1045 | } |
| 1046 | |
| 1047 | const char* OopStorage::name() const { return _name; } |
| 1048 | |
| 1049 | #ifndef PRODUCT |
| 1050 | |
| 1051 | void OopStorage::print_on(outputStream* st) const { |
| 1052 | size_t allocations = _allocation_count; |
| 1053 | size_t blocks = _active_array->block_count(); |
| 1054 | |
| 1055 | double data_size = section_size * section_count; |
| 1056 | double alloc_percentage = percent_of((double)allocations, blocks * data_size); |
| 1057 | |
| 1058 | st->print("%s: " SIZE_FORMAT " entries in " SIZE_FORMAT " blocks (%.F%%), " SIZE_FORMAT " bytes" , |
| 1059 | name(), allocations, blocks, alloc_percentage, total_memory_usage()); |
| 1060 | if (_concurrent_iteration_count > 0) { |
| 1061 | st->print(", concurrent iteration active" ); |
| 1062 | } |
| 1063 | } |
| 1064 | |
| 1065 | #endif // !PRODUCT |
| 1066 | |