1 | /* |
2 | * Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "gc/shared/oopStorage.inline.hpp" |
27 | #include "gc/shared/oopStorageParState.inline.hpp" |
28 | #include "logging/log.hpp" |
29 | #include "logging/logStream.hpp" |
30 | #include "memory/allocation.inline.hpp" |
31 | #include "runtime/atomic.hpp" |
32 | #include "runtime/globals.hpp" |
33 | #include "runtime/handles.inline.hpp" |
34 | #include "runtime/interfaceSupport.inline.hpp" |
35 | #include "runtime/mutex.hpp" |
36 | #include "runtime/mutexLocker.hpp" |
37 | #include "runtime/orderAccess.hpp" |
38 | #include "runtime/os.hpp" |
39 | #include "runtime/safepoint.hpp" |
40 | #include "runtime/stubRoutines.hpp" |
41 | #include "runtime/thread.hpp" |
42 | #include "utilities/align.hpp" |
43 | #include "utilities/count_trailing_zeros.hpp" |
44 | #include "utilities/debug.hpp" |
45 | #include "utilities/globalDefinitions.hpp" |
46 | #include "utilities/macros.hpp" |
47 | #include "utilities/ostream.hpp" |
48 | |
49 | OopStorage::AllocationListEntry::AllocationListEntry() : _prev(NULL), _next(NULL) {} |
50 | |
51 | OopStorage::AllocationListEntry::~AllocationListEntry() { |
52 | assert(_prev == NULL, "deleting attached block" ); |
53 | assert(_next == NULL, "deleting attached block" ); |
54 | } |
55 | |
56 | OopStorage::AllocationList::AllocationList() : _head(NULL), _tail(NULL) {} |
57 | |
58 | OopStorage::AllocationList::~AllocationList() { |
59 | // ~OopStorage() empties its lists before destroying them. |
60 | assert(_head == NULL, "deleting non-empty block list" ); |
61 | assert(_tail == NULL, "deleting non-empty block list" ); |
62 | } |
63 | |
64 | void OopStorage::AllocationList::push_front(const Block& block) { |
65 | const Block* old = _head; |
66 | if (old == NULL) { |
67 | assert(_tail == NULL, "invariant" ); |
68 | _head = _tail = █ |
69 | } else { |
70 | block.allocation_list_entry()._next = old; |
71 | old->allocation_list_entry()._prev = █ |
72 | _head = █ |
73 | } |
74 | } |
75 | |
76 | void OopStorage::AllocationList::push_back(const Block& block) { |
77 | const Block* old = _tail; |
78 | if (old == NULL) { |
79 | assert(_head == NULL, "invariant" ); |
80 | _head = _tail = █ |
81 | } else { |
82 | old->allocation_list_entry()._next = █ |
83 | block.allocation_list_entry()._prev = old; |
84 | _tail = █ |
85 | } |
86 | } |
87 | |
88 | void OopStorage::AllocationList::unlink(const Block& block) { |
89 | const AllocationListEntry& block_entry = block.allocation_list_entry(); |
90 | const Block* prev_blk = block_entry._prev; |
91 | const Block* next_blk = block_entry._next; |
92 | block_entry._prev = NULL; |
93 | block_entry._next = NULL; |
94 | if ((prev_blk == NULL) && (next_blk == NULL)) { |
95 | assert(_head == &block, "invariant" ); |
96 | assert(_tail == &block, "invariant" ); |
97 | _head = _tail = NULL; |
98 | } else if (prev_blk == NULL) { |
99 | assert(_head == &block, "invariant" ); |
100 | next_blk->allocation_list_entry()._prev = NULL; |
101 | _head = next_blk; |
102 | } else if (next_blk == NULL) { |
103 | assert(_tail == &block, "invariant" ); |
104 | prev_blk->allocation_list_entry()._next = NULL; |
105 | _tail = prev_blk; |
106 | } else { |
107 | next_blk->allocation_list_entry()._prev = prev_blk; |
108 | prev_blk->allocation_list_entry()._next = next_blk; |
109 | } |
110 | } |
111 | |
112 | OopStorage::ActiveArray::ActiveArray(size_t size) : |
113 | _size(size), |
114 | _block_count(0), |
115 | _refcount(0) |
116 | {} |
117 | |
118 | OopStorage::ActiveArray::~ActiveArray() { |
119 | assert(_refcount == 0, "precondition" ); |
120 | } |
121 | |
122 | OopStorage::ActiveArray* OopStorage::ActiveArray::create(size_t size, AllocFailType alloc_fail) { |
123 | size_t size_in_bytes = blocks_offset() + sizeof(Block*) * size; |
124 | void* mem = NEW_C_HEAP_ARRAY3(char, size_in_bytes, mtGC, CURRENT_PC, alloc_fail); |
125 | if (mem == NULL) return NULL; |
126 | return new (mem) ActiveArray(size); |
127 | } |
128 | |
129 | void OopStorage::ActiveArray::destroy(ActiveArray* ba) { |
130 | ba->~ActiveArray(); |
131 | FREE_C_HEAP_ARRAY(char, ba); |
132 | } |
133 | |
134 | size_t OopStorage::ActiveArray::size() const { |
135 | return _size; |
136 | } |
137 | |
138 | size_t OopStorage::ActiveArray::block_count() const { |
139 | return _block_count; |
140 | } |
141 | |
142 | size_t OopStorage::ActiveArray::block_count_acquire() const { |
143 | return OrderAccess::load_acquire(&_block_count); |
144 | } |
145 | |
146 | void OopStorage::ActiveArray::increment_refcount() const { |
147 | int new_value = Atomic::add(1, &_refcount); |
148 | assert(new_value >= 1, "negative refcount %d" , new_value - 1); |
149 | } |
150 | |
151 | bool OopStorage::ActiveArray::decrement_refcount() const { |
152 | int new_value = Atomic::sub(1, &_refcount); |
153 | assert(new_value >= 0, "negative refcount %d" , new_value); |
154 | return new_value == 0; |
155 | } |
156 | |
157 | bool OopStorage::ActiveArray::push(Block* block) { |
158 | size_t index = _block_count; |
159 | if (index < _size) { |
160 | block->set_active_index(index); |
161 | *block_ptr(index) = block; |
162 | // Use a release_store to ensure all the setup is complete before |
163 | // making the block visible. |
164 | OrderAccess::release_store(&_block_count, index + 1); |
165 | return true; |
166 | } else { |
167 | return false; |
168 | } |
169 | } |
170 | |
171 | void OopStorage::ActiveArray::remove(Block* block) { |
172 | assert(_block_count > 0, "array is empty" ); |
173 | size_t index = block->active_index(); |
174 | assert(*block_ptr(index) == block, "block not present" ); |
175 | size_t last_index = _block_count - 1; |
176 | Block* last_block = *block_ptr(last_index); |
177 | last_block->set_active_index(index); |
178 | *block_ptr(index) = last_block; |
179 | _block_count = last_index; |
180 | } |
181 | |
182 | void OopStorage::ActiveArray::copy_from(const ActiveArray* from) { |
183 | assert(_block_count == 0, "array must be empty" ); |
184 | size_t count = from->_block_count; |
185 | assert(count <= _size, "precondition" ); |
186 | Block* const* from_ptr = from->block_ptr(0); |
187 | Block** to_ptr = block_ptr(0); |
188 | for (size_t i = 0; i < count; ++i) { |
189 | Block* block = *from_ptr++; |
190 | assert(block->active_index() == i, "invariant" ); |
191 | *to_ptr++ = block; |
192 | } |
193 | _block_count = count; |
194 | } |
195 | |
196 | // Blocks start with an array of BitsPerWord oop entries. That array |
197 | // is divided into conceptual BytesPerWord sections of BitsPerByte |
198 | // entries. Blocks are allocated aligned on section boundaries, for |
199 | // the convenience of mapping from an entry to the containing block; |
200 | // see block_for_ptr(). Aligning on section boundary rather than on |
201 | // the full _data wastes a lot less space, but makes for a bit more |
202 | // work in block_for_ptr(). |
203 | |
204 | const unsigned section_size = BitsPerByte; |
205 | const unsigned section_count = BytesPerWord; |
206 | const unsigned block_alignment = sizeof(oop) * section_size; |
207 | |
208 | OopStorage::Block::Block(const OopStorage* owner, void* memory) : |
209 | _data(), |
210 | _allocated_bitmask(0), |
211 | _owner(owner), |
212 | _memory(memory), |
213 | _active_index(0), |
214 | _allocation_list_entry(), |
215 | _deferred_updates_next(NULL), |
216 | _release_refcount(0) |
217 | { |
218 | STATIC_ASSERT(_data_pos == 0); |
219 | STATIC_ASSERT(section_size * section_count == ARRAY_SIZE(_data)); |
220 | assert(offset_of(Block, _data) == _data_pos, "invariant" ); |
221 | assert(owner != NULL, "NULL owner" ); |
222 | assert(is_aligned(this, block_alignment), "misaligned block" ); |
223 | } |
224 | |
225 | OopStorage::Block::~Block() { |
226 | assert(_release_refcount == 0, "deleting block while releasing" ); |
227 | assert(_deferred_updates_next == NULL, "deleting block with deferred update" ); |
228 | // Clear fields used by block_for_ptr and entry validation, which |
229 | // might help catch bugs. Volatile to prevent dead-store elimination. |
230 | const_cast<uintx volatile&>(_allocated_bitmask) = 0; |
231 | const_cast<OopStorage* volatile&>(_owner) = NULL; |
232 | } |
233 | |
234 | size_t OopStorage::Block::allocation_size() { |
235 | // _data must be first member, so aligning Block aligns _data. |
236 | STATIC_ASSERT(_data_pos == 0); |
237 | return sizeof(Block) + block_alignment - sizeof(void*); |
238 | } |
239 | |
240 | size_t OopStorage::Block::allocation_alignment_shift() { |
241 | return exact_log2(block_alignment); |
242 | } |
243 | |
244 | inline bool is_full_bitmask(uintx bitmask) { return ~bitmask == 0; } |
245 | inline bool is_empty_bitmask(uintx bitmask) { return bitmask == 0; } |
246 | |
247 | bool OopStorage::Block::is_full() const { |
248 | return is_full_bitmask(allocated_bitmask()); |
249 | } |
250 | |
251 | bool OopStorage::Block::is_empty() const { |
252 | return is_empty_bitmask(allocated_bitmask()); |
253 | } |
254 | |
255 | uintx OopStorage::Block::bitmask_for_entry(const oop* ptr) const { |
256 | return bitmask_for_index(get_index(ptr)); |
257 | } |
258 | |
259 | // An empty block is not yet deletable if either: |
260 | // (1) There is a release() operation currently operating on it. |
261 | // (2) It is in the deferred updates list. |
262 | // For interaction with release(), these must follow the empty check, |
263 | // and the order of these checks is important. |
264 | bool OopStorage::Block::is_safe_to_delete() const { |
265 | assert(is_empty(), "precondition" ); |
266 | OrderAccess::loadload(); |
267 | return (OrderAccess::load_acquire(&_release_refcount) == 0) && |
268 | (OrderAccess::load_acquire(&_deferred_updates_next) == NULL); |
269 | } |
270 | |
271 | OopStorage::Block* OopStorage::Block::deferred_updates_next() const { |
272 | return _deferred_updates_next; |
273 | } |
274 | |
275 | void OopStorage::Block::set_deferred_updates_next(Block* block) { |
276 | _deferred_updates_next = block; |
277 | } |
278 | |
279 | bool OopStorage::Block::contains(const oop* ptr) const { |
280 | const oop* base = get_pointer(0); |
281 | return (base <= ptr) && (ptr < (base + ARRAY_SIZE(_data))); |
282 | } |
283 | |
284 | size_t OopStorage::Block::active_index() const { |
285 | return _active_index; |
286 | } |
287 | |
288 | void OopStorage::Block::set_active_index(size_t index) { |
289 | _active_index = index; |
290 | } |
291 | |
292 | size_t OopStorage::Block::active_index_safe(const Block* block) { |
293 | STATIC_ASSERT(sizeof(intptr_t) == sizeof(block->_active_index)); |
294 | assert(CanUseSafeFetchN(), "precondition" ); |
295 | return SafeFetchN((intptr_t*)&block->_active_index, 0); |
296 | } |
297 | |
298 | unsigned OopStorage::Block::get_index(const oop* ptr) const { |
299 | assert(contains(ptr), PTR_FORMAT " not in block " PTR_FORMAT, p2i(ptr), p2i(this)); |
300 | return static_cast<unsigned>(ptr - get_pointer(0)); |
301 | } |
302 | |
303 | oop* OopStorage::Block::allocate() { |
304 | // Use CAS loop because release may change bitmask outside of lock. |
305 | uintx allocated = allocated_bitmask(); |
306 | while (true) { |
307 | assert(!is_full_bitmask(allocated), "attempt to allocate from full block" ); |
308 | unsigned index = count_trailing_zeros(~allocated); |
309 | uintx new_value = allocated | bitmask_for_index(index); |
310 | uintx fetched = Atomic::cmpxchg(new_value, &_allocated_bitmask, allocated); |
311 | if (fetched == allocated) { |
312 | return get_pointer(index); // CAS succeeded; return entry for index. |
313 | } |
314 | allocated = fetched; // CAS failed; retry with latest value. |
315 | } |
316 | } |
317 | |
318 | OopStorage::Block* OopStorage::Block::new_block(const OopStorage* owner) { |
319 | // _data must be first member: aligning block => aligning _data. |
320 | STATIC_ASSERT(_data_pos == 0); |
321 | size_t size_needed = allocation_size(); |
322 | void* memory = NEW_C_HEAP_ARRAY_RETURN_NULL(char, size_needed, mtGC); |
323 | if (memory == NULL) { |
324 | return NULL; |
325 | } |
326 | void* block_mem = align_up(memory, block_alignment); |
327 | assert(sizeof(Block) + pointer_delta(block_mem, memory, 1) <= size_needed, |
328 | "allocated insufficient space for aligned block" ); |
329 | return ::new (block_mem) Block(owner, memory); |
330 | } |
331 | |
332 | void OopStorage::Block::delete_block(const Block& block) { |
333 | void* memory = block._memory; |
334 | block.Block::~Block(); |
335 | FREE_C_HEAP_ARRAY(char, memory); |
336 | } |
337 | |
338 | // This can return a false positive if ptr is not contained by some |
339 | // block. For some uses, it is a precondition that ptr is valid, |
340 | // e.g. contained in some block in owner's _active_array. Other uses |
341 | // require additional validation of the result. |
342 | OopStorage::Block* |
343 | OopStorage::Block::block_for_ptr(const OopStorage* owner, const oop* ptr) { |
344 | assert(CanUseSafeFetchN(), "precondition" ); |
345 | STATIC_ASSERT(_data_pos == 0); |
346 | // Const-ness of ptr is not related to const-ness of containing block. |
347 | // Blocks are allocated section-aligned, so get the containing section. |
348 | oop* section_start = align_down(const_cast<oop*>(ptr), block_alignment); |
349 | // Start with a guess that the containing section is the last section, |
350 | // so the block starts section_count-1 sections earlier. |
351 | oop* section = section_start - (section_size * (section_count - 1)); |
352 | // Walk up through the potential block start positions, looking for |
353 | // the owner in the expected location. If we're below the actual block |
354 | // start position, the value at the owner position will be some oop |
355 | // (possibly NULL), which can never match the owner. |
356 | intptr_t owner_addr = reinterpret_cast<intptr_t>(owner); |
357 | for (unsigned i = 0; i < section_count; ++i, section += section_size) { |
358 | Block* candidate = reinterpret_cast<Block*>(section); |
359 | intptr_t* candidate_owner_addr |
360 | = reinterpret_cast<intptr_t*>(&candidate->_owner); |
361 | if (SafeFetchN(candidate_owner_addr, 0) == owner_addr) { |
362 | return candidate; |
363 | } |
364 | } |
365 | return NULL; |
366 | } |
367 | |
368 | ////////////////////////////////////////////////////////////////////////////// |
369 | // Allocation |
370 | // |
371 | // Allocation involves the _allocation_list, which contains a subset of the |
372 | // blocks owned by a storage object. This is a doubly-linked list, linked |
373 | // through dedicated fields in the blocks. Full blocks are removed from this |
374 | // list, though they are still present in the _active_array. Empty blocks are |
375 | // kept at the end of the _allocation_list, to make it easy for empty block |
376 | // deletion to find them. |
377 | // |
378 | // allocate(), and delete_empty_blocks() lock the |
379 | // _allocation_mutex while performing any list and array modifications. |
380 | // |
381 | // allocate() and release() update a block's _allocated_bitmask using CAS |
382 | // loops. This prevents loss of updates even though release() performs |
383 | // its updates without any locking. |
384 | // |
385 | // allocate() obtains the entry from the first block in the _allocation_list, |
386 | // and updates that block's _allocated_bitmask to indicate the entry is in |
387 | // use. If this makes the block full (all entries in use), the block is |
388 | // removed from the _allocation_list so it won't be considered by future |
389 | // allocations until some entries in it are released. |
390 | // |
391 | // release() is performed lock-free. (Note: This means it can't notify the |
392 | // service thread of pending cleanup work. It must be lock-free because |
393 | // it is called in all kinds of contexts where even quite low ranked locks |
394 | // may be held.) release() first looks up the block for |
395 | // the entry, using address alignment to find the enclosing block (thereby |
396 | // avoiding iteration over the _active_array). Once the block has been |
397 | // determined, its _allocated_bitmask needs to be updated, and its position in |
398 | // the _allocation_list may need to be updated. There are two cases: |
399 | // |
400 | // (a) If the block is neither full nor would become empty with the release of |
401 | // the entry, only its _allocated_bitmask needs to be updated. But if the CAS |
402 | // update fails, the applicable case may change for the retry. |
403 | // |
404 | // (b) Otherwise, the _allocation_list also needs to be modified. This requires |
405 | // locking the _allocation_mutex. To keep the release() operation lock-free, |
406 | // rather than updating the _allocation_list itself, it instead performs a |
407 | // lock-free push of the block onto the _deferred_updates list. Entries on |
408 | // that list are processed by allocate() and delete_empty_blocks(), while |
409 | // they already hold the necessary lock. That processing makes the block's |
410 | // list state consistent with its current _allocated_bitmask. The block is |
411 | // added to the _allocation_list if not already present and the bitmask is not |
412 | // full. The block is moved to the end of the _allocation_list if the bitmask |
413 | // is empty, for ease of empty block deletion processing. |
414 | |
415 | oop* OopStorage::allocate() { |
416 | MutexLocker ml(_allocation_mutex, Mutex::_no_safepoint_check_flag); |
417 | |
418 | Block* block = block_for_allocation(); |
419 | if (block == NULL) return NULL; // Block allocation failed. |
420 | assert(!block->is_full(), "invariant" ); |
421 | if (block->is_empty()) { |
422 | // Transitioning from empty to not empty. |
423 | log_debug(oopstorage, blocks)("%s: block not empty " PTR_FORMAT, name(), p2i(block)); |
424 | } |
425 | oop* result = block->allocate(); |
426 | assert(result != NULL, "allocation failed" ); |
427 | assert(!block->is_empty(), "postcondition" ); |
428 | Atomic::inc(&_allocation_count); // release updates outside lock. |
429 | if (block->is_full()) { |
430 | // Transitioning from not full to full. |
431 | // Remove full blocks from consideration by future allocates. |
432 | log_debug(oopstorage, blocks)("%s: block full " PTR_FORMAT, name(), p2i(block)); |
433 | _allocation_list.unlink(*block); |
434 | } |
435 | log_trace(oopstorage, ref)("%s: allocated " PTR_FORMAT, name(), p2i(result)); |
436 | return result; |
437 | } |
438 | |
439 | bool OopStorage::try_add_block() { |
440 | assert_lock_strong(_allocation_mutex); |
441 | Block* block; |
442 | { |
443 | MutexUnlocker ul(_allocation_mutex, Mutex::_no_safepoint_check_flag); |
444 | block = Block::new_block(this); |
445 | } |
446 | if (block == NULL) return false; |
447 | |
448 | // Add new block to the _active_array, growing if needed. |
449 | if (!_active_array->push(block)) { |
450 | if (expand_active_array()) { |
451 | guarantee(_active_array->push(block), "push failed after expansion" ); |
452 | } else { |
453 | log_debug(oopstorage, blocks)("%s: failed active array expand" , name()); |
454 | Block::delete_block(*block); |
455 | return false; |
456 | } |
457 | } |
458 | // Add to end of _allocation_list. The mutex release allowed other |
459 | // threads to add blocks to the _allocation_list. We prefer to |
460 | // allocate from non-empty blocks, to allow empty blocks to be |
461 | // deleted. But we don't bother notifying about the empty block |
462 | // because we're (probably) about to allocate an entry from it. |
463 | _allocation_list.push_back(*block); |
464 | log_debug(oopstorage, blocks)("%s: new block " PTR_FORMAT, name(), p2i(block)); |
465 | return true; |
466 | } |
467 | |
468 | OopStorage::Block* OopStorage::block_for_allocation() { |
469 | assert_lock_strong(_allocation_mutex); |
470 | while (true) { |
471 | // Use the first block in _allocation_list for the allocation. |
472 | Block* block = _allocation_list.head(); |
473 | if (block != NULL) { |
474 | return block; |
475 | } else if (reduce_deferred_updates()) { |
476 | // Might have added a block to the _allocation_list, so retry. |
477 | } else if (try_add_block()) { |
478 | // Successfully added a new block to the list, so retry. |
479 | assert(_allocation_list.chead() != NULL, "invariant" ); |
480 | } else if (_allocation_list.chead() != NULL) { |
481 | // Trying to add a block failed, but some other thread added to the |
482 | // list while we'd dropped the lock over the new block allocation. |
483 | } else if (!reduce_deferred_updates()) { // Once more before failure. |
484 | // Attempt to add a block failed, no other thread added a block, |
485 | // and no deferred updated added a block, then allocation failed. |
486 | log_debug(oopstorage, blocks)("%s: failed block allocation" , name()); |
487 | return NULL; |
488 | } |
489 | } |
490 | } |
491 | |
492 | // Create a new, larger, active array with the same content as the |
493 | // current array, and then replace, relinquishing the old array. |
494 | // Return true if the array was successfully expanded, false to |
495 | // indicate allocation failure. |
496 | bool OopStorage::expand_active_array() { |
497 | assert_lock_strong(_allocation_mutex); |
498 | ActiveArray* old_array = _active_array; |
499 | size_t new_size = 2 * old_array->size(); |
500 | log_debug(oopstorage, blocks)("%s: expand active array " SIZE_FORMAT, |
501 | name(), new_size); |
502 | ActiveArray* new_array = ActiveArray::create(new_size, AllocFailStrategy::RETURN_NULL); |
503 | if (new_array == NULL) return false; |
504 | new_array->copy_from(old_array); |
505 | replace_active_array(new_array); |
506 | relinquish_block_array(old_array); |
507 | return true; |
508 | } |
509 | |
510 | // Make new_array the _active_array. Increments new_array's refcount |
511 | // to account for the new reference. The assignment is atomic wrto |
512 | // obtain_active_array; once this function returns, it is safe for the |
513 | // caller to relinquish the old array. |
514 | void OopStorage::replace_active_array(ActiveArray* new_array) { |
515 | // Caller has the old array that is the current value of _active_array. |
516 | // Update new_array refcount to account for the new reference. |
517 | new_array->increment_refcount(); |
518 | // Install new_array, ensuring its initialization is complete first. |
519 | OrderAccess::release_store(&_active_array, new_array); |
520 | // Wait for any readers that could read the old array from _active_array. |
521 | // Can't use GlobalCounter here, because this is called from allocate(), |
522 | // which may be called in the scope of a GlobalCounter critical section |
523 | // when inserting a StringTable entry. |
524 | _protect_active.synchronize(); |
525 | // All obtain critical sections that could see the old array have |
526 | // completed, having incremented the refcount of the old array. The |
527 | // caller can now safely relinquish the old array. |
528 | } |
529 | |
530 | // Atomically (wrto replace_active_array) get the active array and |
531 | // increment its refcount. This provides safe access to the array, |
532 | // even if an allocate operation expands and replaces the value of |
533 | // _active_array. The caller must relinquish the array when done |
534 | // using it. |
535 | OopStorage::ActiveArray* OopStorage::obtain_active_array() const { |
536 | SingleWriterSynchronizer::CriticalSection cs(&_protect_active); |
537 | ActiveArray* result = OrderAccess::load_acquire(&_active_array); |
538 | result->increment_refcount(); |
539 | return result; |
540 | } |
541 | |
542 | // Decrement refcount of array and destroy if refcount is zero. |
543 | void OopStorage::relinquish_block_array(ActiveArray* array) const { |
544 | if (array->decrement_refcount()) { |
545 | assert(array != _active_array, "invariant" ); |
546 | ActiveArray::destroy(array); |
547 | } |
548 | } |
549 | |
550 | class OopStorage::WithActiveArray : public StackObj { |
551 | const OopStorage* _storage; |
552 | ActiveArray* _active_array; |
553 | |
554 | public: |
555 | WithActiveArray(const OopStorage* storage) : |
556 | _storage(storage), |
557 | _active_array(storage->obtain_active_array()) |
558 | {} |
559 | |
560 | ~WithActiveArray() { |
561 | _storage->relinquish_block_array(_active_array); |
562 | } |
563 | |
564 | ActiveArray& active_array() const { |
565 | return *_active_array; |
566 | } |
567 | }; |
568 | |
569 | OopStorage::Block* OopStorage::find_block_or_null(const oop* ptr) const { |
570 | assert(ptr != NULL, "precondition" ); |
571 | return Block::block_for_ptr(this, ptr); |
572 | } |
573 | |
574 | static void log_release_transitions(uintx releasing, |
575 | uintx old_allocated, |
576 | const OopStorage* owner, |
577 | const void* block) { |
578 | Log(oopstorage, blocks) log; |
579 | LogStream ls(log.debug()); |
580 | if (is_full_bitmask(old_allocated)) { |
581 | ls.print_cr("%s: block not full " PTR_FORMAT, owner->name(), p2i(block)); |
582 | } |
583 | if (releasing == old_allocated) { |
584 | ls.print_cr("%s: block empty " PTR_FORMAT, owner->name(), p2i(block)); |
585 | } |
586 | } |
587 | |
588 | void OopStorage::Block::release_entries(uintx releasing, OopStorage* owner) { |
589 | assert(releasing != 0, "preconditon" ); |
590 | // Prevent empty block deletion when transitioning to empty. |
591 | Atomic::inc(&_release_refcount); |
592 | |
593 | // Atomically update allocated bitmask. |
594 | uintx old_allocated = _allocated_bitmask; |
595 | while (true) { |
596 | assert((releasing & ~old_allocated) == 0, "releasing unallocated entries" ); |
597 | uintx new_value = old_allocated ^ releasing; |
598 | uintx fetched = Atomic::cmpxchg(new_value, &_allocated_bitmask, old_allocated); |
599 | if (fetched == old_allocated) break; // Successful update. |
600 | old_allocated = fetched; // Retry with updated bitmask. |
601 | } |
602 | |
603 | // Now that the bitmask has been updated, if we have a state transition |
604 | // (updated bitmask is empty or old bitmask was full), atomically push |
605 | // this block onto the deferred updates list. Some future call to |
606 | // reduce_deferred_updates will make any needed changes related to this |
607 | // block and _allocation_list. This deferral avoids _allocation_list |
608 | // updates and the associated locking here. |
609 | if ((releasing == old_allocated) || is_full_bitmask(old_allocated)) { |
610 | // Log transitions. Both transitions are possible in a single update. |
611 | if (log_is_enabled(Debug, oopstorage, blocks)) { |
612 | log_release_transitions(releasing, old_allocated, _owner, this); |
613 | } |
614 | // Attempt to claim responsibility for adding this block to the deferred |
615 | // list, by setting the link to non-NULL by self-looping. If this fails, |
616 | // then someone else has made such a claim and the deferred update has not |
617 | // yet been processed and will include our change, so we don't need to do |
618 | // anything further. |
619 | if (Atomic::replace_if_null(this, &_deferred_updates_next)) { |
620 | // Successfully claimed. Push, with self-loop for end-of-list. |
621 | Block* head = owner->_deferred_updates; |
622 | while (true) { |
623 | _deferred_updates_next = (head == NULL) ? this : head; |
624 | Block* fetched = Atomic::cmpxchg(this, &owner->_deferred_updates, head); |
625 | if (fetched == head) break; // Successful update. |
626 | head = fetched; // Retry with updated head. |
627 | } |
628 | // Only request cleanup for to-empty transitions, not for from-full. |
629 | // There isn't any rush to process from-full transitions. Allocation |
630 | // will reduce deferrals before allocating new blocks, so may process |
631 | // some. And the service thread will drain the entire deferred list |
632 | // if there are any pending to-empty transitions. |
633 | if (releasing == old_allocated) { |
634 | owner->record_needs_cleanup(); |
635 | } |
636 | log_debug(oopstorage, blocks)("%s: deferred update " PTR_FORMAT, |
637 | _owner->name(), p2i(this)); |
638 | } |
639 | } |
640 | // Release hold on empty block deletion. |
641 | Atomic::dec(&_release_refcount); |
642 | } |
643 | |
644 | // Process one available deferred update. Returns true if one was processed. |
645 | bool OopStorage::reduce_deferred_updates() { |
646 | assert_lock_strong(_allocation_mutex); |
647 | // Atomically pop a block off the list, if any available. |
648 | // No ABA issue because this is only called by one thread at a time. |
649 | // The atomicity is wrto pushes by release(). |
650 | Block* block = OrderAccess::load_acquire(&_deferred_updates); |
651 | while (true) { |
652 | if (block == NULL) return false; |
653 | // Try atomic pop of block from list. |
654 | Block* tail = block->deferred_updates_next(); |
655 | if (block == tail) tail = NULL; // Handle self-loop end marker. |
656 | Block* fetched = Atomic::cmpxchg(tail, &_deferred_updates, block); |
657 | if (fetched == block) break; // Update successful. |
658 | block = fetched; // Retry with updated block. |
659 | } |
660 | block->set_deferred_updates_next(NULL); // Clear tail after updating head. |
661 | // Ensure bitmask read after pop is complete, including clearing tail, for |
662 | // ordering with release(). Without this, we may be processing a stale |
663 | // bitmask state here while blocking a release() operation from recording |
664 | // the deferred update needed for its bitmask change. |
665 | OrderAccess::fence(); |
666 | // Process popped block. |
667 | uintx allocated = block->allocated_bitmask(); |
668 | |
669 | // Make membership in list consistent with bitmask state. |
670 | if ((_allocation_list.ctail() != NULL) && |
671 | ((_allocation_list.ctail() == block) || |
672 | (_allocation_list.next(*block) != NULL))) { |
673 | // Block is in the _allocation_list. |
674 | assert(!is_full_bitmask(allocated), "invariant" ); |
675 | } else if (!is_full_bitmask(allocated)) { |
676 | // Block is not in the _allocation_list, but now should be. |
677 | _allocation_list.push_front(*block); |
678 | } // Else block is full and not in list, which is correct. |
679 | |
680 | // Move empty block to end of list, for possible deletion. |
681 | if (is_empty_bitmask(allocated)) { |
682 | _allocation_list.unlink(*block); |
683 | _allocation_list.push_back(*block); |
684 | } |
685 | |
686 | log_debug(oopstorage, blocks)("%s: processed deferred update " PTR_FORMAT, |
687 | name(), p2i(block)); |
688 | return true; // Processed one pending update. |
689 | } |
690 | |
691 | inline void check_release_entry(const oop* entry) { |
692 | assert(entry != NULL, "Releasing NULL" ); |
693 | assert(*entry == NULL, "Releasing uncleared entry: " PTR_FORMAT, p2i(entry)); |
694 | } |
695 | |
696 | void OopStorage::release(const oop* ptr) { |
697 | check_release_entry(ptr); |
698 | Block* block = find_block_or_null(ptr); |
699 | assert(block != NULL, "%s: invalid release " PTR_FORMAT, name(), p2i(ptr)); |
700 | log_trace(oopstorage, ref)("%s: released " PTR_FORMAT, name(), p2i(ptr)); |
701 | block->release_entries(block->bitmask_for_entry(ptr), this); |
702 | Atomic::dec(&_allocation_count); |
703 | } |
704 | |
705 | void OopStorage::release(const oop* const* ptrs, size_t size) { |
706 | size_t i = 0; |
707 | while (i < size) { |
708 | check_release_entry(ptrs[i]); |
709 | Block* block = find_block_or_null(ptrs[i]); |
710 | assert(block != NULL, "%s: invalid release " PTR_FORMAT, name(), p2i(ptrs[i])); |
711 | log_trace(oopstorage, ref)("%s: released " PTR_FORMAT, name(), p2i(ptrs[i])); |
712 | size_t count = 0; |
713 | uintx releasing = 0; |
714 | for ( ; i < size; ++i) { |
715 | const oop* entry = ptrs[i]; |
716 | check_release_entry(entry); |
717 | // If entry not in block, finish block and resume outer loop with entry. |
718 | if (!block->contains(entry)) break; |
719 | // Add entry to releasing bitmap. |
720 | log_trace(oopstorage, ref)("%s: released " PTR_FORMAT, name(), p2i(entry)); |
721 | uintx entry_bitmask = block->bitmask_for_entry(entry); |
722 | assert((releasing & entry_bitmask) == 0, |
723 | "Duplicate entry: " PTR_FORMAT, p2i(entry)); |
724 | releasing |= entry_bitmask; |
725 | ++count; |
726 | } |
727 | // Release the contiguous entries that are in block. |
728 | block->release_entries(releasing, this); |
729 | Atomic::sub(count, &_allocation_count); |
730 | } |
731 | } |
732 | |
733 | const char* dup_name(const char* name) { |
734 | char* dup = NEW_C_HEAP_ARRAY(char, strlen(name) + 1, mtGC); |
735 | strcpy(dup, name); |
736 | return dup; |
737 | } |
738 | |
739 | const size_t initial_active_array_size = 8; |
740 | |
741 | OopStorage::OopStorage(const char* name, |
742 | Mutex* allocation_mutex, |
743 | Mutex* active_mutex) : |
744 | _name(dup_name(name)), |
745 | _active_array(ActiveArray::create(initial_active_array_size)), |
746 | _allocation_list(), |
747 | _deferred_updates(NULL), |
748 | _allocation_mutex(allocation_mutex), |
749 | _active_mutex(active_mutex), |
750 | _allocation_count(0), |
751 | _concurrent_iteration_count(0), |
752 | _needs_cleanup(false) |
753 | { |
754 | _active_array->increment_refcount(); |
755 | assert(_active_mutex->rank() < _allocation_mutex->rank(), |
756 | "%s: active_mutex must have lower rank than allocation_mutex" , _name); |
757 | assert(Service_lock->rank() < _active_mutex->rank(), |
758 | "%s: active_mutex must have higher rank than Service_lock" , _name); |
759 | assert(_active_mutex->_safepoint_check_required == Mutex::_safepoint_check_never, |
760 | "%s: active mutex requires never safepoint check" , _name); |
761 | assert(_allocation_mutex->_safepoint_check_required == Mutex::_safepoint_check_never, |
762 | "%s: allocation mutex requires never safepoint check" , _name); |
763 | } |
764 | |
765 | void OopStorage::delete_empty_block(const Block& block) { |
766 | assert(block.is_empty(), "discarding non-empty block" ); |
767 | log_debug(oopstorage, blocks)("%s: delete empty block " PTR_FORMAT, name(), p2i(&block)); |
768 | Block::delete_block(block); |
769 | } |
770 | |
771 | OopStorage::~OopStorage() { |
772 | Block* block; |
773 | while ((block = _deferred_updates) != NULL) { |
774 | _deferred_updates = block->deferred_updates_next(); |
775 | block->set_deferred_updates_next(NULL); |
776 | } |
777 | while ((block = _allocation_list.head()) != NULL) { |
778 | _allocation_list.unlink(*block); |
779 | } |
780 | bool unreferenced = _active_array->decrement_refcount(); |
781 | assert(unreferenced, "deleting storage while _active_array is referenced" ); |
782 | for (size_t i = _active_array->block_count(); 0 < i; ) { |
783 | block = _active_array->at(--i); |
784 | Block::delete_block(*block); |
785 | } |
786 | ActiveArray::destroy(_active_array); |
787 | FREE_C_HEAP_ARRAY(char, _name); |
788 | } |
789 | |
790 | // Managing service thread notifications. |
791 | // |
792 | // We don't want cleanup work to linger indefinitely, but we also don't want |
793 | // to run the service thread too often. We're also very limited in what we |
794 | // can do in a release operation, where cleanup work is created. |
795 | // |
796 | // When a release operation changes a block's state to empty, it records the |
797 | // need for cleanup in both the associated storage object and in the global |
798 | // request state. A safepoint cleanup task notifies the service thread when |
799 | // there may be cleanup work for any storage object, based on the global |
800 | // request state. But that notification is deferred if the service thread |
801 | // has run recently, and we also avoid duplicate notifications. The service |
802 | // thread updates the timestamp and resets the state flags on every iteration. |
803 | |
804 | // Global cleanup request state. |
805 | static volatile bool needs_cleanup_requested = false; |
806 | |
807 | // Flag for avoiding duplicate notifications. |
808 | static bool needs_cleanup_triggered = false; |
809 | |
810 | // Time after which a notification can be made. |
811 | static jlong cleanup_trigger_permit_time = 0; |
812 | |
813 | // Minimum time since last service thread check before notification is |
814 | // permitted. The value of 500ms was an arbitrary choice; frequent, but not |
815 | // too frequent. |
816 | const jlong cleanup_trigger_defer_period = 500 * NANOSECS_PER_MILLISEC; |
817 | |
818 | void OopStorage::trigger_cleanup_if_needed() { |
819 | MonitorLocker ml(Service_lock, Monitor::_no_safepoint_check_flag); |
820 | if (Atomic::load(&needs_cleanup_requested) && |
821 | !needs_cleanup_triggered && |
822 | (os::javaTimeNanos() > cleanup_trigger_permit_time)) { |
823 | needs_cleanup_triggered = true; |
824 | ml.notify_all(); |
825 | } |
826 | } |
827 | |
828 | bool OopStorage::has_cleanup_work_and_reset() { |
829 | assert_lock_strong(Service_lock); |
830 | cleanup_trigger_permit_time = |
831 | os::javaTimeNanos() + cleanup_trigger_defer_period; |
832 | needs_cleanup_triggered = false; |
833 | // Set the request flag false and return its old value. |
834 | // Needs to be atomic to avoid dropping a concurrent request. |
835 | // Can't use Atomic::xchg, which may not support bool. |
836 | return Atomic::cmpxchg(false, &needs_cleanup_requested, true); |
837 | } |
838 | |
839 | // Record that cleanup is needed, without notifying the Service thread. |
840 | // Used by release(), where we can't lock even Service_lock. |
841 | void OopStorage::record_needs_cleanup() { |
842 | // Set local flag first, else service thread could wake up and miss |
843 | // the request. This order may instead (rarely) unnecessarily notify. |
844 | OrderAccess::release_store(&_needs_cleanup, true); |
845 | OrderAccess::release_store_fence(&needs_cleanup_requested, true); |
846 | } |
847 | |
848 | bool OopStorage::delete_empty_blocks() { |
849 | // Service thread might have oopstorage work, but not for this object. |
850 | // Check for deferred updates even though that's not a service thread |
851 | // trigger; since we're here, we might as well process them. |
852 | if (!OrderAccess::load_acquire(&_needs_cleanup) && |
853 | (OrderAccess::load_acquire(&_deferred_updates) == NULL)) { |
854 | return false; |
855 | } |
856 | |
857 | MutexLocker ml(_allocation_mutex, Mutex::_no_safepoint_check_flag); |
858 | |
859 | // Clear the request before processing. |
860 | OrderAccess::release_store_fence(&_needs_cleanup, false); |
861 | |
862 | // Other threads could be adding to the empty block count or the |
863 | // deferred update list while we're working. Set an upper bound on |
864 | // how many updates we'll process and blocks we'll try to release, |
865 | // so other threads can't cause an unbounded stay in this function. |
866 | // We add a bit of slop because the reduce_deferred_updates clause |
867 | // can cause blocks to be double counted. If there are few blocks |
868 | // and many of them are deferred and empty, we might hit the limit |
869 | // and spin the caller without doing very much work. Otherwise, |
870 | // we don't normally hit the limit anyway, instead running out of |
871 | // work to do. |
872 | size_t limit = block_count() + 10; |
873 | |
874 | for (size_t i = 0; i < limit; ++i) { |
875 | // Process deferred updates, which might make empty blocks available. |
876 | // Continue checking once deletion starts, since additional updates |
877 | // might become available while we're working. |
878 | if (reduce_deferred_updates()) { |
879 | // Be safepoint-polite while looping. |
880 | MutexUnlocker ul(_allocation_mutex, Mutex::_no_safepoint_check_flag); |
881 | ThreadBlockInVM tbiv(JavaThread::current()); |
882 | } else { |
883 | Block* block = _allocation_list.tail(); |
884 | if ((block == NULL) || !block->is_empty()) { |
885 | return false; |
886 | } else if (!block->is_safe_to_delete()) { |
887 | // Look for other work while waiting for block to be deletable. |
888 | break; |
889 | } |
890 | |
891 | // Try to delete the block. First, try to remove from _active_array. |
892 | { |
893 | MutexLocker aml(_active_mutex, Mutex::_no_safepoint_check_flag); |
894 | // Don't interfere with an active concurrent iteration. |
895 | // Instead, give up immediately. There is more work to do, |
896 | // but don't re-notify, to avoid useless spinning of the |
897 | // service thread. Instead, iteration completion notifies. |
898 | if (_concurrent_iteration_count > 0) return true; |
899 | _active_array->remove(block); |
900 | } |
901 | // Remove block from _allocation_list and delete it. |
902 | _allocation_list.unlink(*block); |
903 | // Be safepoint-polite while deleting and looping. |
904 | MutexUnlocker ul(_allocation_mutex, Mutex::_no_safepoint_check_flag); |
905 | delete_empty_block(*block); |
906 | ThreadBlockInVM tbiv(JavaThread::current()); |
907 | } |
908 | } |
909 | // Exceeded work limit or can't delete last block. This will |
910 | // cause the service thread to loop, giving other subtasks an |
911 | // opportunity to run too. There's no need for a notification, |
912 | // because we are part of the service thread (unless gtesting). |
913 | record_needs_cleanup(); |
914 | return true; |
915 | } |
916 | |
917 | OopStorage::EntryStatus OopStorage::allocation_status(const oop* ptr) const { |
918 | const Block* block = find_block_or_null(ptr); |
919 | if (block != NULL) { |
920 | // Prevent block deletion and _active_array modification. |
921 | MutexLocker ml(_allocation_mutex, Mutex::_no_safepoint_check_flag); |
922 | // Block could be a false positive, so get index carefully. |
923 | size_t index = Block::active_index_safe(block); |
924 | if ((index < _active_array->block_count()) && |
925 | (block == _active_array->at(index)) && |
926 | block->contains(ptr)) { |
927 | if ((block->allocated_bitmask() & block->bitmask_for_entry(ptr)) != 0) { |
928 | return ALLOCATED_ENTRY; |
929 | } else { |
930 | return UNALLOCATED_ENTRY; |
931 | } |
932 | } |
933 | } |
934 | return INVALID_ENTRY; |
935 | } |
936 | |
937 | size_t OopStorage::allocation_count() const { |
938 | return _allocation_count; |
939 | } |
940 | |
941 | size_t OopStorage::block_count() const { |
942 | WithActiveArray wab(this); |
943 | // Count access is racy, but don't care. |
944 | return wab.active_array().block_count(); |
945 | } |
946 | |
947 | size_t OopStorage::total_memory_usage() const { |
948 | size_t total_size = sizeof(OopStorage); |
949 | total_size += strlen(name()) + 1; |
950 | total_size += sizeof(ActiveArray); |
951 | WithActiveArray wab(this); |
952 | const ActiveArray& blocks = wab.active_array(); |
953 | // Count access is racy, but don't care. |
954 | total_size += blocks.block_count() * Block::allocation_size(); |
955 | total_size += blocks.size() * sizeof(Block*); |
956 | return total_size; |
957 | } |
958 | |
959 | // Parallel iteration support |
960 | |
961 | uint OopStorage::BasicParState::default_estimated_thread_count(bool concurrent) { |
962 | uint configured = concurrent ? ConcGCThreads : ParallelGCThreads; |
963 | return MAX2(1u, configured); // Never estimate zero threads. |
964 | } |
965 | |
966 | OopStorage::BasicParState::BasicParState(const OopStorage* storage, |
967 | uint estimated_thread_count, |
968 | bool concurrent) : |
969 | _storage(storage), |
970 | _active_array(_storage->obtain_active_array()), |
971 | _block_count(0), // initialized properly below |
972 | _next_block(0), |
973 | _estimated_thread_count(estimated_thread_count), |
974 | _concurrent(concurrent) |
975 | { |
976 | assert(estimated_thread_count > 0, "estimated thread count must be positive" ); |
977 | update_concurrent_iteration_count(1); |
978 | // Get the block count *after* iteration state updated, so concurrent |
979 | // empty block deletion is suppressed and can't reduce the count. But |
980 | // ensure the count we use was written after the block with that count |
981 | // was fully initialized; see ActiveArray::push. |
982 | _block_count = _active_array->block_count_acquire(); |
983 | } |
984 | |
985 | OopStorage::BasicParState::~BasicParState() { |
986 | _storage->relinquish_block_array(_active_array); |
987 | update_concurrent_iteration_count(-1); |
988 | if (_concurrent) { |
989 | // We may have deferred some cleanup work. |
990 | const_cast<OopStorage*>(_storage)->record_needs_cleanup(); |
991 | } |
992 | } |
993 | |
994 | void OopStorage::BasicParState::update_concurrent_iteration_count(int value) { |
995 | if (_concurrent) { |
996 | MutexLocker ml(_storage->_active_mutex, Mutex::_no_safepoint_check_flag); |
997 | _storage->_concurrent_iteration_count += value; |
998 | assert(_storage->_concurrent_iteration_count >= 0, "invariant" ); |
999 | } |
1000 | } |
1001 | |
1002 | bool OopStorage::BasicParState::claim_next_segment(IterationData* data) { |
1003 | data->_processed += data->_segment_end - data->_segment_start; |
1004 | size_t start = OrderAccess::load_acquire(&_next_block); |
1005 | if (start >= _block_count) { |
1006 | return finish_iteration(data); // No more blocks available. |
1007 | } |
1008 | // Try to claim several at a time, but not *too* many. We want to |
1009 | // avoid deciding there are many available and selecting a large |
1010 | // quantity, get delayed, and then end up claiming most or all of |
1011 | // the remaining largish amount of work, leaving nothing for other |
1012 | // threads to do. But too small a step can lead to contention |
1013 | // over _next_block, esp. when the work per block is small. |
1014 | size_t max_step = 10; |
1015 | size_t remaining = _block_count - start; |
1016 | size_t step = MIN2(max_step, 1 + (remaining / _estimated_thread_count)); |
1017 | // Atomic::add with possible overshoot. This can perform better |
1018 | // than a CAS loop on some platforms when there is contention. |
1019 | // We can cope with the uncertainty by recomputing start/end from |
1020 | // the result of the add, and dealing with potential overshoot. |
1021 | size_t end = Atomic::add(step, &_next_block); |
1022 | // _next_block may have changed, so recompute start from result of add. |
1023 | start = end - step; |
1024 | // _next_block may have changed so much that end has overshot. |
1025 | end = MIN2(end, _block_count); |
1026 | // _next_block may have changed so much that even start has overshot. |
1027 | if (start < _block_count) { |
1028 | // Record claimed segment for iteration. |
1029 | data->_segment_start = start; |
1030 | data->_segment_end = end; |
1031 | return true; // Success. |
1032 | } else { |
1033 | // No more blocks to claim. |
1034 | return finish_iteration(data); |
1035 | } |
1036 | } |
1037 | |
1038 | bool OopStorage::BasicParState::finish_iteration(const IterationData* data) const { |
1039 | log_info(oopstorage, blocks, stats) |
1040 | ("Parallel iteration on %s: blocks = " SIZE_FORMAT |
1041 | ", processed = " SIZE_FORMAT " (%2.f%%)" , |
1042 | _storage->name(), _block_count, data->_processed, |
1043 | percent_of(data->_processed, _block_count)); |
1044 | return false; |
1045 | } |
1046 | |
1047 | const char* OopStorage::name() const { return _name; } |
1048 | |
1049 | #ifndef PRODUCT |
1050 | |
1051 | void OopStorage::print_on(outputStream* st) const { |
1052 | size_t allocations = _allocation_count; |
1053 | size_t blocks = _active_array->block_count(); |
1054 | |
1055 | double data_size = section_size * section_count; |
1056 | double alloc_percentage = percent_of((double)allocations, blocks * data_size); |
1057 | |
1058 | st->print("%s: " SIZE_FORMAT " entries in " SIZE_FORMAT " blocks (%.F%%), " SIZE_FORMAT " bytes" , |
1059 | name(), allocations, blocks, alloc_percentage, total_memory_usage()); |
1060 | if (_concurrent_iteration_count > 0) { |
1061 | st->print(", concurrent iteration active" ); |
1062 | } |
1063 | } |
1064 | |
1065 | #endif // !PRODUCT |
1066 | |