| 1 | /* |
| 2 | * Copyright (c) 2018, Red Hat, Inc. All rights reserved. |
| 3 | * |
| 4 | * This code is free software; you can redistribute it and/or modify it |
| 5 | * under the terms of the GNU General Public License version 2 only, as |
| 6 | * published by the Free Software Foundation. |
| 7 | * |
| 8 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 9 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 10 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 11 | * version 2 for more details (a copy is included in the LICENSE file that |
| 12 | * accompanied this code). |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License version |
| 15 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 16 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 17 | * |
| 18 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 19 | * or visit www.oracle.com if you need additional information or have any |
| 20 | * questions. |
| 21 | * |
| 22 | */ |
| 23 | |
| 24 | #include "precompiled.hpp" |
| 25 | |
| 26 | #include "gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.hpp" |
| 27 | #include "gc/shenandoah/shenandoahCollectionSet.hpp" |
| 28 | #include "gc/shenandoah/shenandoahFreeSet.hpp" |
| 29 | #include "gc/shenandoah/shenandoahHeapRegion.hpp" |
| 30 | #include "logging/log.hpp" |
| 31 | #include "logging/logTag.hpp" |
| 32 | #include "utilities/quickSort.hpp" |
| 33 | |
| 34 | ShenandoahAdaptiveHeuristics::ShenandoahAdaptiveHeuristics() : |
| 35 | ShenandoahHeuristics(), |
| 36 | _cycle_gap_history(new TruncatedSeq(5)), |
| 37 | _conc_mark_duration_history(new TruncatedSeq(5)), |
| 38 | _conc_uprefs_duration_history(new TruncatedSeq(5)) { |
| 39 | |
| 40 | SHENANDOAH_ERGO_ENABLE_FLAG(ExplicitGCInvokesConcurrent); |
| 41 | SHENANDOAH_ERGO_ENABLE_FLAG(ShenandoahImplicitGCInvokesConcurrent); |
| 42 | |
| 43 | // Final configuration checks |
| 44 | SHENANDOAH_CHECK_FLAG_SET(ShenandoahLoadRefBarrier); |
| 45 | SHENANDOAH_CHECK_FLAG_SET(ShenandoahSATBBarrier); |
| 46 | SHENANDOAH_CHECK_FLAG_SET(ShenandoahKeepAliveBarrier); |
| 47 | SHENANDOAH_CHECK_FLAG_SET(ShenandoahCASBarrier); |
| 48 | SHENANDOAH_CHECK_FLAG_SET(ShenandoahCloneBarrier); |
| 49 | } |
| 50 | |
| 51 | ShenandoahAdaptiveHeuristics::~ShenandoahAdaptiveHeuristics() {} |
| 52 | |
| 53 | void ShenandoahAdaptiveHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset, |
| 54 | RegionData* data, size_t size, |
| 55 | size_t actual_free) { |
| 56 | size_t garbage_threshold = ShenandoahHeapRegion::region_size_bytes() * ShenandoahGarbageThreshold / 100; |
| 57 | |
| 58 | // The logic for cset selection in adaptive is as follows: |
| 59 | // |
| 60 | // 1. We cannot get cset larger than available free space. Otherwise we guarantee OOME |
| 61 | // during evacuation, and thus guarantee full GC. In practice, we also want to let |
| 62 | // application to allocate something. This is why we limit CSet to some fraction of |
| 63 | // available space. In non-overloaded heap, max_cset would contain all plausible candidates |
| 64 | // over garbage threshold. |
| 65 | // |
| 66 | // 2. We should not get cset too low so that free threshold would not be met right |
| 67 | // after the cycle. Otherwise we get back-to-back cycles for no reason if heap is |
| 68 | // too fragmented. In non-overloaded non-fragmented heap min_garbage would be around zero. |
| 69 | // |
| 70 | // Therefore, we start by sorting the regions by garbage. Then we unconditionally add the best candidates |
| 71 | // before we meet min_garbage. Then we add all candidates that fit with a garbage threshold before |
| 72 | // we hit max_cset. When max_cset is hit, we terminate the cset selection. Note that in this scheme, |
| 73 | // ShenandoahGarbageThreshold is the soft threshold which would be ignored until min_garbage is hit. |
| 74 | |
| 75 | size_t capacity = ShenandoahHeap::heap()->max_capacity(); |
| 76 | size_t free_target = capacity / 100 * ShenandoahMinFreeThreshold; |
| 77 | size_t min_garbage = free_target > actual_free ? (free_target - actual_free) : 0; |
| 78 | size_t max_cset = (size_t)((1.0 * capacity / 100 * ShenandoahEvacReserve) / ShenandoahEvacWaste); |
| 79 | |
| 80 | log_info(gc, ergo)("Adaptive CSet Selection. Target Free: " SIZE_FORMAT "M, Actual Free: " |
| 81 | SIZE_FORMAT "M, Max CSet: " SIZE_FORMAT "M, Min Garbage: " SIZE_FORMAT "M" , |
| 82 | free_target / M, actual_free / M, max_cset / M, min_garbage / M); |
| 83 | |
| 84 | // Better select garbage-first regions |
| 85 | QuickSort::sort<RegionData>(data, (int)size, compare_by_garbage, false); |
| 86 | |
| 87 | size_t cur_cset = 0; |
| 88 | size_t cur_garbage = 0; |
| 89 | _bytes_in_cset = 0; |
| 90 | |
| 91 | for (size_t idx = 0; idx < size; idx++) { |
| 92 | ShenandoahHeapRegion* r = data[idx]._region; |
| 93 | |
| 94 | size_t new_cset = cur_cset + r->get_live_data_bytes(); |
| 95 | size_t new_garbage = cur_garbage + r->garbage(); |
| 96 | |
| 97 | if (new_cset > max_cset) { |
| 98 | break; |
| 99 | } |
| 100 | |
| 101 | if ((new_garbage < min_garbage) || (r->garbage() > garbage_threshold)) { |
| 102 | cset->add_region(r); |
| 103 | _bytes_in_cset += r->used(); |
| 104 | cur_cset = new_cset; |
| 105 | cur_garbage = new_garbage; |
| 106 | } |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | void ShenandoahAdaptiveHeuristics::record_cycle_start() { |
| 111 | ShenandoahHeuristics::record_cycle_start(); |
| 112 | double last_cycle_gap = (_cycle_start - _last_cycle_end); |
| 113 | _cycle_gap_history->add(last_cycle_gap); |
| 114 | } |
| 115 | |
| 116 | void ShenandoahAdaptiveHeuristics::record_phase_time(ShenandoahPhaseTimings::Phase phase, double secs) { |
| 117 | if (phase == ShenandoahPhaseTimings::conc_mark) { |
| 118 | _conc_mark_duration_history->add(secs); |
| 119 | } else if (phase == ShenandoahPhaseTimings::conc_update_refs) { |
| 120 | _conc_uprefs_duration_history->add(secs); |
| 121 | } // Else ignore |
| 122 | } |
| 123 | |
| 124 | bool ShenandoahAdaptiveHeuristics::should_start_normal_gc() const { |
| 125 | ShenandoahHeap* heap = ShenandoahHeap::heap(); |
| 126 | size_t capacity = heap->max_capacity(); |
| 127 | size_t available = heap->free_set()->available(); |
| 128 | |
| 129 | // Check if we are falling below the worst limit, time to trigger the GC, regardless of |
| 130 | // anything else. |
| 131 | size_t min_threshold = capacity / 100 * ShenandoahMinFreeThreshold; |
| 132 | if (available < min_threshold) { |
| 133 | log_info(gc)("Trigger: Free (" SIZE_FORMAT "M) is below minimum threshold (" SIZE_FORMAT "M)" , |
| 134 | available / M, min_threshold / M); |
| 135 | return true; |
| 136 | } |
| 137 | |
| 138 | // Check if are need to learn a bit about the application |
| 139 | const size_t max_learn = ShenandoahLearningSteps; |
| 140 | if (_gc_times_learned < max_learn) { |
| 141 | size_t init_threshold = capacity / 100 * ShenandoahInitFreeThreshold; |
| 142 | if (available < init_threshold) { |
| 143 | log_info(gc)("Trigger: Learning " SIZE_FORMAT " of " SIZE_FORMAT ". Free (" SIZE_FORMAT "M) is below initial threshold (" SIZE_FORMAT "M)" , |
| 144 | _gc_times_learned + 1, max_learn, available / M, init_threshold / M); |
| 145 | return true; |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | // Check if allocation headroom is still okay. This also factors in: |
| 150 | // 1. Some space to absorb allocation spikes |
| 151 | // 2. Accumulated penalties from Degenerated and Full GC |
| 152 | |
| 153 | size_t allocation_headroom = available; |
| 154 | |
| 155 | size_t spike_headroom = capacity / 100 * ShenandoahAllocSpikeFactor; |
| 156 | size_t penalties = capacity / 100 * _gc_time_penalties; |
| 157 | |
| 158 | allocation_headroom -= MIN2(allocation_headroom, spike_headroom); |
| 159 | allocation_headroom -= MIN2(allocation_headroom, penalties); |
| 160 | |
| 161 | // TODO: Allocation rate is way too averaged to be useful during state changes |
| 162 | |
| 163 | double average_gc = _gc_time_history->avg(); |
| 164 | double time_since_last = time_since_last_gc(); |
| 165 | double allocation_rate = heap->bytes_allocated_since_gc_start() / time_since_last; |
| 166 | |
| 167 | if (average_gc > allocation_headroom / allocation_rate) { |
| 168 | log_info(gc)("Trigger: Average GC time (%.2f ms) is above the time for allocation rate (%.2f MB/s) to deplete free headroom (" SIZE_FORMAT "M)" , |
| 169 | average_gc * 1000, allocation_rate / M, allocation_headroom / M); |
| 170 | log_info(gc, ergo)("Free headroom: " SIZE_FORMAT "M (free) - " SIZE_FORMAT "M (spike) - " SIZE_FORMAT "M (penalties) = " SIZE_FORMAT "M" , |
| 171 | available / M, spike_headroom / M, penalties / M, allocation_headroom / M); |
| 172 | return true; |
| 173 | } |
| 174 | |
| 175 | return ShenandoahHeuristics::should_start_normal_gc(); |
| 176 | } |
| 177 | |
| 178 | bool ShenandoahAdaptiveHeuristics::should_start_update_refs() { |
| 179 | if (! _update_refs_adaptive) { |
| 180 | return _update_refs_early; |
| 181 | } |
| 182 | |
| 183 | double cycle_gap_avg = _cycle_gap_history->avg(); |
| 184 | double conc_mark_avg = _conc_mark_duration_history->avg(); |
| 185 | double conc_uprefs_avg = _conc_uprefs_duration_history->avg(); |
| 186 | |
| 187 | if (_update_refs_early) { |
| 188 | double threshold = ShenandoahMergeUpdateRefsMinGap / 100.0; |
| 189 | if (conc_mark_avg + conc_uprefs_avg > cycle_gap_avg * threshold) { |
| 190 | _update_refs_early = false; |
| 191 | } |
| 192 | } else { |
| 193 | double threshold = ShenandoahMergeUpdateRefsMaxGap / 100.0; |
| 194 | if (conc_mark_avg + conc_uprefs_avg < cycle_gap_avg * threshold) { |
| 195 | _update_refs_early = true; |
| 196 | } |
| 197 | } |
| 198 | return _update_refs_early; |
| 199 | } |
| 200 | |
| 201 | const char* ShenandoahAdaptiveHeuristics::name() { |
| 202 | return "adaptive" ; |
| 203 | } |
| 204 | |
| 205 | bool ShenandoahAdaptiveHeuristics::is_diagnostic() { |
| 206 | return false; |
| 207 | } |
| 208 | |
| 209 | bool ShenandoahAdaptiveHeuristics::is_experimental() { |
| 210 | return false; |
| 211 | } |
| 212 | |