1 | /* |
2 | * Copyright (c) 2018, Red Hat, Inc. All rights reserved. |
3 | * |
4 | * This code is free software; you can redistribute it and/or modify it |
5 | * under the terms of the GNU General Public License version 2 only, as |
6 | * published by the Free Software Foundation. |
7 | * |
8 | * This code is distributed in the hope that it will be useful, but WITHOUT |
9 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
10 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
11 | * version 2 for more details (a copy is included in the LICENSE file that |
12 | * accompanied this code). |
13 | * |
14 | * You should have received a copy of the GNU General Public License version |
15 | * 2 along with this work; if not, write to the Free Software Foundation, |
16 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
17 | * |
18 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
19 | * or visit www.oracle.com if you need additional information or have any |
20 | * questions. |
21 | * |
22 | */ |
23 | |
24 | #include "precompiled.hpp" |
25 | |
26 | #include "gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.hpp" |
27 | #include "gc/shenandoah/shenandoahCollectionSet.hpp" |
28 | #include "gc/shenandoah/shenandoahFreeSet.hpp" |
29 | #include "gc/shenandoah/shenandoahHeapRegion.hpp" |
30 | #include "logging/log.hpp" |
31 | #include "logging/logTag.hpp" |
32 | #include "utilities/quickSort.hpp" |
33 | |
34 | ShenandoahAdaptiveHeuristics::ShenandoahAdaptiveHeuristics() : |
35 | ShenandoahHeuristics(), |
36 | _cycle_gap_history(new TruncatedSeq(5)), |
37 | _conc_mark_duration_history(new TruncatedSeq(5)), |
38 | _conc_uprefs_duration_history(new TruncatedSeq(5)) { |
39 | |
40 | SHENANDOAH_ERGO_ENABLE_FLAG(ExplicitGCInvokesConcurrent); |
41 | SHENANDOAH_ERGO_ENABLE_FLAG(ShenandoahImplicitGCInvokesConcurrent); |
42 | |
43 | // Final configuration checks |
44 | SHENANDOAH_CHECK_FLAG_SET(ShenandoahLoadRefBarrier); |
45 | SHENANDOAH_CHECK_FLAG_SET(ShenandoahSATBBarrier); |
46 | SHENANDOAH_CHECK_FLAG_SET(ShenandoahKeepAliveBarrier); |
47 | SHENANDOAH_CHECK_FLAG_SET(ShenandoahCASBarrier); |
48 | SHENANDOAH_CHECK_FLAG_SET(ShenandoahCloneBarrier); |
49 | } |
50 | |
51 | ShenandoahAdaptiveHeuristics::~ShenandoahAdaptiveHeuristics() {} |
52 | |
53 | void ShenandoahAdaptiveHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset, |
54 | RegionData* data, size_t size, |
55 | size_t actual_free) { |
56 | size_t garbage_threshold = ShenandoahHeapRegion::region_size_bytes() * ShenandoahGarbageThreshold / 100; |
57 | |
58 | // The logic for cset selection in adaptive is as follows: |
59 | // |
60 | // 1. We cannot get cset larger than available free space. Otherwise we guarantee OOME |
61 | // during evacuation, and thus guarantee full GC. In practice, we also want to let |
62 | // application to allocate something. This is why we limit CSet to some fraction of |
63 | // available space. In non-overloaded heap, max_cset would contain all plausible candidates |
64 | // over garbage threshold. |
65 | // |
66 | // 2. We should not get cset too low so that free threshold would not be met right |
67 | // after the cycle. Otherwise we get back-to-back cycles for no reason if heap is |
68 | // too fragmented. In non-overloaded non-fragmented heap min_garbage would be around zero. |
69 | // |
70 | // Therefore, we start by sorting the regions by garbage. Then we unconditionally add the best candidates |
71 | // before we meet min_garbage. Then we add all candidates that fit with a garbage threshold before |
72 | // we hit max_cset. When max_cset is hit, we terminate the cset selection. Note that in this scheme, |
73 | // ShenandoahGarbageThreshold is the soft threshold which would be ignored until min_garbage is hit. |
74 | |
75 | size_t capacity = ShenandoahHeap::heap()->max_capacity(); |
76 | size_t free_target = capacity / 100 * ShenandoahMinFreeThreshold; |
77 | size_t min_garbage = free_target > actual_free ? (free_target - actual_free) : 0; |
78 | size_t max_cset = (size_t)((1.0 * capacity / 100 * ShenandoahEvacReserve) / ShenandoahEvacWaste); |
79 | |
80 | log_info(gc, ergo)("Adaptive CSet Selection. Target Free: " SIZE_FORMAT "M, Actual Free: " |
81 | SIZE_FORMAT "M, Max CSet: " SIZE_FORMAT "M, Min Garbage: " SIZE_FORMAT "M" , |
82 | free_target / M, actual_free / M, max_cset / M, min_garbage / M); |
83 | |
84 | // Better select garbage-first regions |
85 | QuickSort::sort<RegionData>(data, (int)size, compare_by_garbage, false); |
86 | |
87 | size_t cur_cset = 0; |
88 | size_t cur_garbage = 0; |
89 | _bytes_in_cset = 0; |
90 | |
91 | for (size_t idx = 0; idx < size; idx++) { |
92 | ShenandoahHeapRegion* r = data[idx]._region; |
93 | |
94 | size_t new_cset = cur_cset + r->get_live_data_bytes(); |
95 | size_t new_garbage = cur_garbage + r->garbage(); |
96 | |
97 | if (new_cset > max_cset) { |
98 | break; |
99 | } |
100 | |
101 | if ((new_garbage < min_garbage) || (r->garbage() > garbage_threshold)) { |
102 | cset->add_region(r); |
103 | _bytes_in_cset += r->used(); |
104 | cur_cset = new_cset; |
105 | cur_garbage = new_garbage; |
106 | } |
107 | } |
108 | } |
109 | |
110 | void ShenandoahAdaptiveHeuristics::record_cycle_start() { |
111 | ShenandoahHeuristics::record_cycle_start(); |
112 | double last_cycle_gap = (_cycle_start - _last_cycle_end); |
113 | _cycle_gap_history->add(last_cycle_gap); |
114 | } |
115 | |
116 | void ShenandoahAdaptiveHeuristics::record_phase_time(ShenandoahPhaseTimings::Phase phase, double secs) { |
117 | if (phase == ShenandoahPhaseTimings::conc_mark) { |
118 | _conc_mark_duration_history->add(secs); |
119 | } else if (phase == ShenandoahPhaseTimings::conc_update_refs) { |
120 | _conc_uprefs_duration_history->add(secs); |
121 | } // Else ignore |
122 | } |
123 | |
124 | bool ShenandoahAdaptiveHeuristics::should_start_normal_gc() const { |
125 | ShenandoahHeap* heap = ShenandoahHeap::heap(); |
126 | size_t capacity = heap->max_capacity(); |
127 | size_t available = heap->free_set()->available(); |
128 | |
129 | // Check if we are falling below the worst limit, time to trigger the GC, regardless of |
130 | // anything else. |
131 | size_t min_threshold = capacity / 100 * ShenandoahMinFreeThreshold; |
132 | if (available < min_threshold) { |
133 | log_info(gc)("Trigger: Free (" SIZE_FORMAT "M) is below minimum threshold (" SIZE_FORMAT "M)" , |
134 | available / M, min_threshold / M); |
135 | return true; |
136 | } |
137 | |
138 | // Check if are need to learn a bit about the application |
139 | const size_t max_learn = ShenandoahLearningSteps; |
140 | if (_gc_times_learned < max_learn) { |
141 | size_t init_threshold = capacity / 100 * ShenandoahInitFreeThreshold; |
142 | if (available < init_threshold) { |
143 | log_info(gc)("Trigger: Learning " SIZE_FORMAT " of " SIZE_FORMAT ". Free (" SIZE_FORMAT "M) is below initial threshold (" SIZE_FORMAT "M)" , |
144 | _gc_times_learned + 1, max_learn, available / M, init_threshold / M); |
145 | return true; |
146 | } |
147 | } |
148 | |
149 | // Check if allocation headroom is still okay. This also factors in: |
150 | // 1. Some space to absorb allocation spikes |
151 | // 2. Accumulated penalties from Degenerated and Full GC |
152 | |
153 | size_t allocation_headroom = available; |
154 | |
155 | size_t spike_headroom = capacity / 100 * ShenandoahAllocSpikeFactor; |
156 | size_t penalties = capacity / 100 * _gc_time_penalties; |
157 | |
158 | allocation_headroom -= MIN2(allocation_headroom, spike_headroom); |
159 | allocation_headroom -= MIN2(allocation_headroom, penalties); |
160 | |
161 | // TODO: Allocation rate is way too averaged to be useful during state changes |
162 | |
163 | double average_gc = _gc_time_history->avg(); |
164 | double time_since_last = time_since_last_gc(); |
165 | double allocation_rate = heap->bytes_allocated_since_gc_start() / time_since_last; |
166 | |
167 | if (average_gc > allocation_headroom / allocation_rate) { |
168 | log_info(gc)("Trigger: Average GC time (%.2f ms) is above the time for allocation rate (%.2f MB/s) to deplete free headroom (" SIZE_FORMAT "M)" , |
169 | average_gc * 1000, allocation_rate / M, allocation_headroom / M); |
170 | log_info(gc, ergo)("Free headroom: " SIZE_FORMAT "M (free) - " SIZE_FORMAT "M (spike) - " SIZE_FORMAT "M (penalties) = " SIZE_FORMAT "M" , |
171 | available / M, spike_headroom / M, penalties / M, allocation_headroom / M); |
172 | return true; |
173 | } |
174 | |
175 | return ShenandoahHeuristics::should_start_normal_gc(); |
176 | } |
177 | |
178 | bool ShenandoahAdaptiveHeuristics::should_start_update_refs() { |
179 | if (! _update_refs_adaptive) { |
180 | return _update_refs_early; |
181 | } |
182 | |
183 | double cycle_gap_avg = _cycle_gap_history->avg(); |
184 | double conc_mark_avg = _conc_mark_duration_history->avg(); |
185 | double conc_uprefs_avg = _conc_uprefs_duration_history->avg(); |
186 | |
187 | if (_update_refs_early) { |
188 | double threshold = ShenandoahMergeUpdateRefsMinGap / 100.0; |
189 | if (conc_mark_avg + conc_uprefs_avg > cycle_gap_avg * threshold) { |
190 | _update_refs_early = false; |
191 | } |
192 | } else { |
193 | double threshold = ShenandoahMergeUpdateRefsMaxGap / 100.0; |
194 | if (conc_mark_avg + conc_uprefs_avg < cycle_gap_avg * threshold) { |
195 | _update_refs_early = true; |
196 | } |
197 | } |
198 | return _update_refs_early; |
199 | } |
200 | |
201 | const char* ShenandoahAdaptiveHeuristics::name() { |
202 | return "adaptive" ; |
203 | } |
204 | |
205 | bool ShenandoahAdaptiveHeuristics::is_diagnostic() { |
206 | return false; |
207 | } |
208 | |
209 | bool ShenandoahAdaptiveHeuristics::is_experimental() { |
210 | return false; |
211 | } |
212 | |