| 1 | /* | 
| 2 |  * Copyright (c) 2018, Red Hat, Inc. All rights reserved. | 
| 3 |  * | 
| 4 |  * This code is free software; you can redistribute it and/or modify it | 
| 5 |  * under the terms of the GNU General Public License version 2 only, as | 
| 6 |  * published by the Free Software Foundation. | 
| 7 |  * | 
| 8 |  * This code is distributed in the hope that it will be useful, but WITHOUT | 
| 9 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
| 10 |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
| 11 |  * version 2 for more details (a copy is included in the LICENSE file that | 
| 12 |  * accompanied this code). | 
| 13 |  * | 
| 14 |  * You should have received a copy of the GNU General Public License version | 
| 15 |  * 2 along with this work; if not, write to the Free Software Foundation, | 
| 16 |  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | 
| 17 |  * | 
| 18 |  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | 
| 19 |  * or visit www.oracle.com if you need additional information or have any | 
| 20 |  * questions. | 
| 21 |  * | 
| 22 |  */ | 
| 23 |  | 
| 24 | #include "precompiled.hpp" | 
| 25 |  | 
| 26 | #include "gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.hpp" | 
| 27 | #include "gc/shenandoah/shenandoahCollectionSet.hpp" | 
| 28 | #include "gc/shenandoah/shenandoahFreeSet.hpp" | 
| 29 | #include "gc/shenandoah/shenandoahHeapRegion.hpp" | 
| 30 | #include "logging/log.hpp" | 
| 31 | #include "logging/logTag.hpp" | 
| 32 | #include "utilities/quickSort.hpp" | 
| 33 |  | 
| 34 | ShenandoahAdaptiveHeuristics::ShenandoahAdaptiveHeuristics() : | 
| 35 |   ShenandoahHeuristics(), | 
| 36 |   _cycle_gap_history(new TruncatedSeq(5)), | 
| 37 |   _conc_mark_duration_history(new TruncatedSeq(5)), | 
| 38 |   _conc_uprefs_duration_history(new TruncatedSeq(5)) { | 
| 39 |  | 
| 40 |   SHENANDOAH_ERGO_ENABLE_FLAG(ExplicitGCInvokesConcurrent); | 
| 41 |   SHENANDOAH_ERGO_ENABLE_FLAG(ShenandoahImplicitGCInvokesConcurrent); | 
| 42 |  | 
| 43 |   // Final configuration checks | 
| 44 |   SHENANDOAH_CHECK_FLAG_SET(ShenandoahLoadRefBarrier); | 
| 45 |   SHENANDOAH_CHECK_FLAG_SET(ShenandoahSATBBarrier); | 
| 46 |   SHENANDOAH_CHECK_FLAG_SET(ShenandoahKeepAliveBarrier); | 
| 47 |   SHENANDOAH_CHECK_FLAG_SET(ShenandoahCASBarrier); | 
| 48 |   SHENANDOAH_CHECK_FLAG_SET(ShenandoahCloneBarrier); | 
| 49 | } | 
| 50 |  | 
| 51 | ShenandoahAdaptiveHeuristics::~ShenandoahAdaptiveHeuristics() {} | 
| 52 |  | 
| 53 | void ShenandoahAdaptiveHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset, | 
| 54 |                                                                          RegionData* data, size_t size, | 
| 55 |                                                                          size_t actual_free) { | 
| 56 |   size_t garbage_threshold = ShenandoahHeapRegion::region_size_bytes() * ShenandoahGarbageThreshold / 100; | 
| 57 |  | 
| 58 |   // The logic for cset selection in adaptive is as follows: | 
| 59 |   // | 
| 60 |   //   1. We cannot get cset larger than available free space. Otherwise we guarantee OOME | 
| 61 |   //      during evacuation, and thus guarantee full GC. In practice, we also want to let | 
| 62 |   //      application to allocate something. This is why we limit CSet to some fraction of | 
| 63 |   //      available space. In non-overloaded heap, max_cset would contain all plausible candidates | 
| 64 |   //      over garbage threshold. | 
| 65 |   // | 
| 66 |   //   2. We should not get cset too low so that free threshold would not be met right | 
| 67 |   //      after the cycle. Otherwise we get back-to-back cycles for no reason if heap is | 
| 68 |   //      too fragmented. In non-overloaded non-fragmented heap min_garbage would be around zero. | 
| 69 |   // | 
| 70 |   // Therefore, we start by sorting the regions by garbage. Then we unconditionally add the best candidates | 
| 71 |   // before we meet min_garbage. Then we add all candidates that fit with a garbage threshold before | 
| 72 |   // we hit max_cset. When max_cset is hit, we terminate the cset selection. Note that in this scheme, | 
| 73 |   // ShenandoahGarbageThreshold is the soft threshold which would be ignored until min_garbage is hit. | 
| 74 |  | 
| 75 |   size_t capacity    = ShenandoahHeap::heap()->max_capacity(); | 
| 76 |   size_t free_target = capacity / 100 * ShenandoahMinFreeThreshold; | 
| 77 |   size_t min_garbage = free_target > actual_free ? (free_target - actual_free) : 0; | 
| 78 |   size_t max_cset    = (size_t)((1.0 * capacity / 100 * ShenandoahEvacReserve) / ShenandoahEvacWaste); | 
| 79 |  | 
| 80 |   log_info(gc, ergo)("Adaptive CSet Selection. Target Free: "  SIZE_FORMAT "M, Actual Free: "  | 
| 81 |                      SIZE_FORMAT "M, Max CSet: "  SIZE_FORMAT "M, Min Garbage: "  SIZE_FORMAT "M" , | 
| 82 |                      free_target / M, actual_free / M, max_cset / M, min_garbage / M); | 
| 83 |  | 
| 84 |   // Better select garbage-first regions | 
| 85 |   QuickSort::sort<RegionData>(data, (int)size, compare_by_garbage, false); | 
| 86 |  | 
| 87 |   size_t cur_cset = 0; | 
| 88 |   size_t cur_garbage = 0; | 
| 89 |   _bytes_in_cset = 0; | 
| 90 |  | 
| 91 |   for (size_t idx = 0; idx < size; idx++) { | 
| 92 |     ShenandoahHeapRegion* r = data[idx]._region; | 
| 93 |  | 
| 94 |     size_t new_cset    = cur_cset + r->get_live_data_bytes(); | 
| 95 |     size_t new_garbage = cur_garbage + r->garbage(); | 
| 96 |  | 
| 97 |     if (new_cset > max_cset) { | 
| 98 |       break; | 
| 99 |     } | 
| 100 |  | 
| 101 |     if ((new_garbage < min_garbage) || (r->garbage() > garbage_threshold)) { | 
| 102 |       cset->add_region(r); | 
| 103 |       _bytes_in_cset += r->used(); | 
| 104 |       cur_cset = new_cset; | 
| 105 |       cur_garbage = new_garbage; | 
| 106 |     } | 
| 107 |   } | 
| 108 | } | 
| 109 |  | 
| 110 | void ShenandoahAdaptiveHeuristics::record_cycle_start() { | 
| 111 |   ShenandoahHeuristics::record_cycle_start(); | 
| 112 |   double last_cycle_gap = (_cycle_start - _last_cycle_end); | 
| 113 |   _cycle_gap_history->add(last_cycle_gap); | 
| 114 | } | 
| 115 |  | 
| 116 | void ShenandoahAdaptiveHeuristics::record_phase_time(ShenandoahPhaseTimings::Phase phase, double secs) { | 
| 117 |   if (phase == ShenandoahPhaseTimings::conc_mark) { | 
| 118 |     _conc_mark_duration_history->add(secs); | 
| 119 |   } else if (phase == ShenandoahPhaseTimings::conc_update_refs) { | 
| 120 |     _conc_uprefs_duration_history->add(secs); | 
| 121 |   } // Else ignore | 
| 122 | } | 
| 123 |  | 
| 124 | bool ShenandoahAdaptiveHeuristics::should_start_normal_gc() const { | 
| 125 |   ShenandoahHeap* heap = ShenandoahHeap::heap(); | 
| 126 |   size_t capacity = heap->max_capacity(); | 
| 127 |   size_t available = heap->free_set()->available(); | 
| 128 |  | 
| 129 |   // Check if we are falling below the worst limit, time to trigger the GC, regardless of | 
| 130 |   // anything else. | 
| 131 |   size_t min_threshold = capacity / 100 * ShenandoahMinFreeThreshold; | 
| 132 |   if (available < min_threshold) { | 
| 133 |     log_info(gc)("Trigger: Free ("  SIZE_FORMAT "M) is below minimum threshold ("  SIZE_FORMAT "M)" , | 
| 134 |                  available / M, min_threshold / M); | 
| 135 |     return true; | 
| 136 |   } | 
| 137 |  | 
| 138 |   // Check if are need to learn a bit about the application | 
| 139 |   const size_t max_learn = ShenandoahLearningSteps; | 
| 140 |   if (_gc_times_learned < max_learn) { | 
| 141 |     size_t init_threshold = capacity / 100 * ShenandoahInitFreeThreshold; | 
| 142 |     if (available < init_threshold) { | 
| 143 |       log_info(gc)("Trigger: Learning "  SIZE_FORMAT " of "  SIZE_FORMAT ". Free ("  SIZE_FORMAT "M) is below initial threshold ("  SIZE_FORMAT "M)" , | 
| 144 |                    _gc_times_learned + 1, max_learn, available / M, init_threshold / M); | 
| 145 |       return true; | 
| 146 |     } | 
| 147 |   } | 
| 148 |  | 
| 149 |   // Check if allocation headroom is still okay. This also factors in: | 
| 150 |   //   1. Some space to absorb allocation spikes | 
| 151 |   //   2. Accumulated penalties from Degenerated and Full GC | 
| 152 |  | 
| 153 |   size_t allocation_headroom = available; | 
| 154 |  | 
| 155 |   size_t spike_headroom = capacity / 100 * ShenandoahAllocSpikeFactor; | 
| 156 |   size_t penalties      = capacity / 100 * _gc_time_penalties; | 
| 157 |  | 
| 158 |   allocation_headroom -= MIN2(allocation_headroom, spike_headroom); | 
| 159 |   allocation_headroom -= MIN2(allocation_headroom, penalties); | 
| 160 |  | 
| 161 |   // TODO: Allocation rate is way too averaged to be useful during state changes | 
| 162 |  | 
| 163 |   double average_gc = _gc_time_history->avg(); | 
| 164 |   double time_since_last = time_since_last_gc(); | 
| 165 |   double allocation_rate = heap->bytes_allocated_since_gc_start() / time_since_last; | 
| 166 |  | 
| 167 |   if (average_gc > allocation_headroom / allocation_rate) { | 
| 168 |     log_info(gc)("Trigger: Average GC time (%.2f ms) is above the time for allocation rate (%.2f MB/s) to deplete free headroom ("  SIZE_FORMAT "M)" , | 
| 169 |                  average_gc * 1000, allocation_rate / M, allocation_headroom / M); | 
| 170 |     log_info(gc, ergo)("Free headroom: "  SIZE_FORMAT "M (free) - "  SIZE_FORMAT "M (spike) - "  SIZE_FORMAT "M (penalties) = "  SIZE_FORMAT "M" , | 
| 171 |                        available / M, spike_headroom / M, penalties / M, allocation_headroom / M); | 
| 172 |     return true; | 
| 173 |   } | 
| 174 |  | 
| 175 |   return ShenandoahHeuristics::should_start_normal_gc(); | 
| 176 | } | 
| 177 |  | 
| 178 | bool ShenandoahAdaptiveHeuristics::should_start_update_refs() { | 
| 179 |   if (! _update_refs_adaptive) { | 
| 180 |     return _update_refs_early; | 
| 181 |   } | 
| 182 |  | 
| 183 |   double cycle_gap_avg = _cycle_gap_history->avg(); | 
| 184 |   double conc_mark_avg = _conc_mark_duration_history->avg(); | 
| 185 |   double conc_uprefs_avg = _conc_uprefs_duration_history->avg(); | 
| 186 |  | 
| 187 |   if (_update_refs_early) { | 
| 188 |     double threshold = ShenandoahMergeUpdateRefsMinGap / 100.0; | 
| 189 |     if (conc_mark_avg + conc_uprefs_avg > cycle_gap_avg * threshold) { | 
| 190 |       _update_refs_early = false; | 
| 191 |     } | 
| 192 |   } else { | 
| 193 |     double threshold = ShenandoahMergeUpdateRefsMaxGap / 100.0; | 
| 194 |     if (conc_mark_avg + conc_uprefs_avg < cycle_gap_avg * threshold) { | 
| 195 |       _update_refs_early = true; | 
| 196 |     } | 
| 197 |   } | 
| 198 |   return _update_refs_early; | 
| 199 | } | 
| 200 |  | 
| 201 | const char* ShenandoahAdaptiveHeuristics::name() { | 
| 202 |   return "adaptive" ; | 
| 203 | } | 
| 204 |  | 
| 205 | bool ShenandoahAdaptiveHeuristics::is_diagnostic() { | 
| 206 |   return false; | 
| 207 | } | 
| 208 |  | 
| 209 | bool ShenandoahAdaptiveHeuristics::is_experimental() { | 
| 210 |   return false; | 
| 211 | } | 
| 212 |  |