1 | /* |
2 | * Copyright (c) 2018, Red Hat, Inc. All rights reserved. |
3 | * |
4 | * This code is free software; you can redistribute it and/or modify it |
5 | * under the terms of the GNU General Public License version 2 only, as |
6 | * published by the Free Software Foundation. |
7 | * |
8 | * This code is distributed in the hope that it will be useful, but WITHOUT |
9 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
10 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
11 | * version 2 for more details (a copy is included in the LICENSE file that |
12 | * accompanied this code). |
13 | * |
14 | * You should have received a copy of the GNU General Public License version |
15 | * 2 along with this work; if not, write to the Free Software Foundation, |
16 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
17 | * |
18 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
19 | * or visit www.oracle.com if you need additional information or have any |
20 | * questions. |
21 | * |
22 | */ |
23 | |
24 | #include "precompiled.hpp" |
25 | |
26 | #include "gc/shenandoah/shenandoahNumberSeq.hpp" |
27 | #include "runtime/atomic.hpp" |
28 | |
29 | HdrSeq::HdrSeq() { |
30 | _hdr = NEW_C_HEAP_ARRAY(int*, MagBuckets, mtInternal); |
31 | for (int c = 0; c < MagBuckets; c++) { |
32 | _hdr[c] = NULL; |
33 | } |
34 | } |
35 | |
36 | HdrSeq::~HdrSeq() { |
37 | for (int c = 0; c < MagBuckets; c++) { |
38 | int* sub = _hdr[c]; |
39 | if (sub != NULL) { |
40 | FREE_C_HEAP_ARRAY(int, sub); |
41 | } |
42 | } |
43 | FREE_C_HEAP_ARRAY(int*, _hdr); |
44 | } |
45 | |
46 | void HdrSeq::add(double val) { |
47 | if (val < 0) { |
48 | assert (false, "value (%8.2f) is not negative" , val); |
49 | val = 0; |
50 | } |
51 | |
52 | NumberSeq::add(val); |
53 | |
54 | double v = val; |
55 | int mag; |
56 | if (v > 0) { |
57 | mag = 0; |
58 | while (v > 1) { |
59 | mag++; |
60 | v /= 10; |
61 | } |
62 | while (v < 0.1) { |
63 | mag--; |
64 | v *= 10; |
65 | } |
66 | } else { |
67 | mag = MagMinimum; |
68 | } |
69 | |
70 | int bucket = -MagMinimum + mag; |
71 | int sub_bucket = (int) (v * ValBuckets); |
72 | |
73 | // Defensively saturate for product bits: |
74 | if (bucket < 0) { |
75 | assert (false, "bucket index (%d) underflow for value (%8.2f)" , bucket, val); |
76 | bucket = 0; |
77 | } |
78 | |
79 | if (bucket >= MagBuckets) { |
80 | assert (false, "bucket index (%d) overflow for value (%8.2f)" , bucket, val); |
81 | bucket = MagBuckets - 1; |
82 | } |
83 | |
84 | if (sub_bucket < 0) { |
85 | assert (false, "sub-bucket index (%d) underflow for value (%8.2f)" , sub_bucket, val); |
86 | sub_bucket = 0; |
87 | } |
88 | |
89 | if (sub_bucket >= ValBuckets) { |
90 | assert (false, "sub-bucket index (%d) overflow for value (%8.2f)" , sub_bucket, val); |
91 | sub_bucket = ValBuckets - 1; |
92 | } |
93 | |
94 | int* b = _hdr[bucket]; |
95 | if (b == NULL) { |
96 | b = NEW_C_HEAP_ARRAY(int, ValBuckets, mtInternal); |
97 | for (int c = 0; c < ValBuckets; c++) { |
98 | b[c] = 0; |
99 | } |
100 | _hdr[bucket] = b; |
101 | } |
102 | b[sub_bucket]++; |
103 | } |
104 | |
105 | double HdrSeq::percentile(double level) const { |
106 | // target should be non-zero to find the first sample |
107 | int target = MAX2(1, (int) (level * num() / 100)); |
108 | int cnt = 0; |
109 | for (int mag = 0; mag < MagBuckets; mag++) { |
110 | if (_hdr[mag] != NULL) { |
111 | for (int val = 0; val < ValBuckets; val++) { |
112 | cnt += _hdr[mag][val]; |
113 | if (cnt >= target) { |
114 | return pow(10.0, MagMinimum + mag) * val / ValBuckets; |
115 | } |
116 | } |
117 | } |
118 | } |
119 | return maximum(); |
120 | } |
121 | |
122 | BinaryMagnitudeSeq::BinaryMagnitudeSeq() { |
123 | _mags = NEW_C_HEAP_ARRAY(size_t, BitsPerSize_t, mtInternal); |
124 | for (int c = 0; c < BitsPerSize_t; c++) { |
125 | _mags[c] = 0; |
126 | } |
127 | _sum = 0; |
128 | } |
129 | |
130 | BinaryMagnitudeSeq::~BinaryMagnitudeSeq() { |
131 | FREE_C_HEAP_ARRAY(size_t, _mags); |
132 | } |
133 | |
134 | void BinaryMagnitudeSeq::add(size_t val) { |
135 | Atomic::add(val, &_sum); |
136 | |
137 | int mag = log2_intptr(val) + 1; |
138 | |
139 | // Defensively saturate for product bits: |
140 | if (mag < 0) { |
141 | assert (false, "bucket index (%d) underflow for value (" SIZE_FORMAT ")" , mag, val); |
142 | mag = 0; |
143 | } |
144 | |
145 | if (mag >= BitsPerSize_t) { |
146 | assert (false, "bucket index (%d) overflow for value (" SIZE_FORMAT ")" , mag, val); |
147 | mag = BitsPerSize_t - 1; |
148 | } |
149 | |
150 | Atomic::add((size_t)1, &_mags[mag]); |
151 | } |
152 | |
153 | size_t BinaryMagnitudeSeq::level(int level) const { |
154 | if (0 <= level && level < BitsPerSize_t) { |
155 | return _mags[level]; |
156 | } else { |
157 | return 0; |
158 | } |
159 | } |
160 | |
161 | size_t BinaryMagnitudeSeq::num() const { |
162 | size_t r = 0; |
163 | for (int c = 0; c < BitsPerSize_t; c++) { |
164 | r += _mags[c]; |
165 | } |
166 | return r; |
167 | } |
168 | |
169 | size_t BinaryMagnitudeSeq::sum() const { |
170 | return _sum; |
171 | } |
172 | |
173 | int BinaryMagnitudeSeq::min_level() const { |
174 | for (int c = 0; c < BitsPerSize_t; c++) { |
175 | if (_mags[c] != 0) { |
176 | return c; |
177 | } |
178 | } |
179 | return BitsPerSize_t - 1; |
180 | } |
181 | |
182 | int BinaryMagnitudeSeq::max_level() const { |
183 | for (int c = BitsPerSize_t - 1; c > 0; c--) { |
184 | if (_mags[c] != 0) { |
185 | return c; |
186 | } |
187 | } |
188 | return 0; |
189 | } |
190 | |