| 1 | /* |
| 2 | * Copyright (c) 2015, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | */ |
| 23 | |
| 24 | #include "precompiled.hpp" |
| 25 | #include "gc/shared/suspendibleThreadSet.hpp" |
| 26 | #include "gc/z/zAddress.inline.hpp" |
| 27 | #include "gc/z/zCollectedHeap.hpp" |
| 28 | #include "gc/z/zFuture.inline.hpp" |
| 29 | #include "gc/z/zGlobals.hpp" |
| 30 | #include "gc/z/zLock.inline.hpp" |
| 31 | #include "gc/z/zPage.inline.hpp" |
| 32 | #include "gc/z/zPageAllocator.hpp" |
| 33 | #include "gc/z/zPageCache.inline.hpp" |
| 34 | #include "gc/z/zSafeDelete.inline.hpp" |
| 35 | #include "gc/z/zStat.hpp" |
| 36 | #include "gc/z/zTracer.inline.hpp" |
| 37 | #include "runtime/globals.hpp" |
| 38 | #include "runtime/init.hpp" |
| 39 | #include "runtime/java.hpp" |
| 40 | #include "utilities/debug.hpp" |
| 41 | |
| 42 | static const ZStatCounter ZCounterAllocationRate("Memory" , "Allocation Rate" , ZStatUnitBytesPerSecond); |
| 43 | static const ZStatCounter ZCounterPageCacheFlush("Memory" , "Page Cache Flush" , ZStatUnitBytesPerSecond); |
| 44 | static const ZStatCounter ZCounterUncommit("Memory" , "Uncommit" , ZStatUnitBytesPerSecond); |
| 45 | static const ZStatCriticalPhase ZCriticalPhaseAllocationStall("Allocation Stall" ); |
| 46 | |
| 47 | class ZPageAllocRequest : public StackObj { |
| 48 | friend class ZList<ZPageAllocRequest>; |
| 49 | |
| 50 | private: |
| 51 | const uint8_t _type; |
| 52 | const size_t _size; |
| 53 | const ZAllocationFlags _flags; |
| 54 | const unsigned int _total_collections; |
| 55 | ZListNode<ZPageAllocRequest> _node; |
| 56 | ZFuture<ZPage*> _result; |
| 57 | |
| 58 | public: |
| 59 | ZPageAllocRequest(uint8_t type, size_t size, ZAllocationFlags flags, unsigned int total_collections) : |
| 60 | _type(type), |
| 61 | _size(size), |
| 62 | _flags(flags), |
| 63 | _total_collections(total_collections) {} |
| 64 | |
| 65 | uint8_t type() const { |
| 66 | return _type; |
| 67 | } |
| 68 | |
| 69 | size_t size() const { |
| 70 | return _size; |
| 71 | } |
| 72 | |
| 73 | ZAllocationFlags flags() const { |
| 74 | return _flags; |
| 75 | } |
| 76 | |
| 77 | unsigned int total_collections() const { |
| 78 | return _total_collections; |
| 79 | } |
| 80 | |
| 81 | ZPage* wait() { |
| 82 | return _result.get(); |
| 83 | } |
| 84 | |
| 85 | void satisfy(ZPage* page) { |
| 86 | _result.set(page); |
| 87 | } |
| 88 | }; |
| 89 | |
| 90 | ZPage* const ZPageAllocator::gc_marker = (ZPage*)-1; |
| 91 | |
| 92 | ZPageAllocator::ZPageAllocator(size_t min_capacity, |
| 93 | size_t initial_capacity, |
| 94 | size_t max_capacity, |
| 95 | size_t max_reserve) : |
| 96 | _lock(), |
| 97 | _virtual(), |
| 98 | _physical(), |
| 99 | _cache(), |
| 100 | _min_capacity(min_capacity), |
| 101 | _max_capacity(max_capacity), |
| 102 | _max_reserve(max_reserve), |
| 103 | _current_max_capacity(max_capacity), |
| 104 | _capacity(0), |
| 105 | _used_high(0), |
| 106 | _used_low(0), |
| 107 | _used(0), |
| 108 | _allocated(0), |
| 109 | _reclaimed(0), |
| 110 | _queue(), |
| 111 | _safe_delete(), |
| 112 | _uncommit(false), |
| 113 | _initialized(false) { |
| 114 | |
| 115 | if (!_virtual.is_initialized() || !_physical.is_initialized()) { |
| 116 | return; |
| 117 | } |
| 118 | |
| 119 | log_info(gc, init)("Min Capacity: " SIZE_FORMAT "M" , min_capacity / M); |
| 120 | log_info(gc, init)("Initial Capacity: " SIZE_FORMAT "M" , initial_capacity / M); |
| 121 | log_info(gc, init)("Max Capacity: " SIZE_FORMAT "M" , max_capacity / M); |
| 122 | log_info(gc, init)("Max Reserve: " SIZE_FORMAT "M" , max_reserve / M); |
| 123 | log_info(gc, init)("Pre-touch: %s" , AlwaysPreTouch ? "Enabled" : "Disabled" ); |
| 124 | |
| 125 | // Warn if system limits could stop us from reaching max capacity |
| 126 | _physical.warn_commit_limits(max_capacity); |
| 127 | |
| 128 | // Commit initial capacity |
| 129 | _capacity = _physical.commit(initial_capacity); |
| 130 | if (_capacity != initial_capacity) { |
| 131 | log_error(gc)("Failed to allocate initial Java heap (" SIZE_FORMAT "M)" , initial_capacity / M); |
| 132 | return; |
| 133 | } |
| 134 | |
| 135 | // If uncommit is not explicitly disabled, max capacity is greater than |
| 136 | // min capacity, and uncommit is supported by the platform, then we will |
| 137 | // try to uncommit unused memory. |
| 138 | _uncommit = ZUncommit && (max_capacity > min_capacity) && _physical.supports_uncommit(); |
| 139 | if (_uncommit) { |
| 140 | log_info(gc, init)("Uncommit: Enabled, Delay: " UINTX_FORMAT "s" , ZUncommitDelay); |
| 141 | } else { |
| 142 | log_info(gc, init)("Uncommit: Disabled" ); |
| 143 | } |
| 144 | |
| 145 | // Pre-map initial capacity |
| 146 | prime_cache(initial_capacity); |
| 147 | |
| 148 | // Successfully initialized |
| 149 | _initialized = true; |
| 150 | } |
| 151 | |
| 152 | void ZPageAllocator::prime_cache(size_t size) { |
| 153 | // Allocate physical memory |
| 154 | const ZPhysicalMemory pmem = _physical.alloc(size); |
| 155 | guarantee(!pmem.is_null(), "Invalid size" ); |
| 156 | |
| 157 | // Allocate virtual memory |
| 158 | const ZVirtualMemory vmem = _virtual.alloc(size, true /* alloc_from_front */); |
| 159 | guarantee(!vmem.is_null(), "Invalid size" ); |
| 160 | |
| 161 | // Allocate page |
| 162 | ZPage* const page = new ZPage(vmem, pmem); |
| 163 | |
| 164 | // Map page |
| 165 | map_page(page); |
| 166 | page->set_pre_mapped(); |
| 167 | |
| 168 | // Add page to cache |
| 169 | page->set_last_used(); |
| 170 | _cache.free_page(page); |
| 171 | } |
| 172 | |
| 173 | bool ZPageAllocator::is_initialized() const { |
| 174 | return _initialized; |
| 175 | } |
| 176 | |
| 177 | size_t ZPageAllocator::min_capacity() const { |
| 178 | return _min_capacity; |
| 179 | } |
| 180 | |
| 181 | size_t ZPageAllocator::max_capacity() const { |
| 182 | return _max_capacity; |
| 183 | } |
| 184 | |
| 185 | size_t ZPageAllocator::soft_max_capacity() const { |
| 186 | // Note that SoftMaxHeapSize is a manageable flag |
| 187 | return MIN2(SoftMaxHeapSize, _current_max_capacity); |
| 188 | } |
| 189 | |
| 190 | size_t ZPageAllocator::capacity() const { |
| 191 | return _capacity; |
| 192 | } |
| 193 | |
| 194 | size_t ZPageAllocator::max_reserve() const { |
| 195 | return _max_reserve; |
| 196 | } |
| 197 | |
| 198 | size_t ZPageAllocator::used_high() const { |
| 199 | return _used_high; |
| 200 | } |
| 201 | |
| 202 | size_t ZPageAllocator::used_low() const { |
| 203 | return _used_low; |
| 204 | } |
| 205 | |
| 206 | size_t ZPageAllocator::used() const { |
| 207 | return _used; |
| 208 | } |
| 209 | |
| 210 | size_t ZPageAllocator::unused() const { |
| 211 | const ssize_t unused = (ssize_t)_capacity - (ssize_t)_used - (ssize_t)_max_reserve; |
| 212 | return unused > 0 ? (size_t)unused : 0; |
| 213 | } |
| 214 | |
| 215 | size_t ZPageAllocator::allocated() const { |
| 216 | return _allocated; |
| 217 | } |
| 218 | |
| 219 | size_t ZPageAllocator::reclaimed() const { |
| 220 | return _reclaimed > 0 ? (size_t)_reclaimed : 0; |
| 221 | } |
| 222 | |
| 223 | void ZPageAllocator::reset_statistics() { |
| 224 | assert(SafepointSynchronize::is_at_safepoint(), "Should be at safepoint" ); |
| 225 | _allocated = 0; |
| 226 | _reclaimed = 0; |
| 227 | _used_high = _used_low = _used; |
| 228 | } |
| 229 | |
| 230 | void ZPageAllocator::increase_used(size_t size, bool relocation) { |
| 231 | if (relocation) { |
| 232 | // Allocating a page for the purpose of relocation has a |
| 233 | // negative contribution to the number of reclaimed bytes. |
| 234 | _reclaimed -= size; |
| 235 | } |
| 236 | _allocated += size; |
| 237 | _used += size; |
| 238 | if (_used > _used_high) { |
| 239 | _used_high = _used; |
| 240 | } |
| 241 | } |
| 242 | |
| 243 | void ZPageAllocator::decrease_used(size_t size, bool reclaimed) { |
| 244 | if (reclaimed) { |
| 245 | // Only pages explicitly released with the reclaimed flag set |
| 246 | // counts as reclaimed bytes. This flag is typically true when |
| 247 | // a worker releases a page after relocation, and is typically |
| 248 | // false when we release a page to undo an allocation. |
| 249 | _reclaimed += size; |
| 250 | } |
| 251 | _used -= size; |
| 252 | if (_used < _used_low) { |
| 253 | _used_low = _used; |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | ZPage* ZPageAllocator::create_page(uint8_t type, size_t size) { |
| 258 | // Allocate virtual memory |
| 259 | const ZVirtualMemory vmem = _virtual.alloc(size); |
| 260 | if (vmem.is_null()) { |
| 261 | // Out of address space |
| 262 | return NULL; |
| 263 | } |
| 264 | |
| 265 | // Allocate physical memory |
| 266 | const ZPhysicalMemory pmem = _physical.alloc(size); |
| 267 | assert(!pmem.is_null(), "Invalid size" ); |
| 268 | |
| 269 | // Allocate page |
| 270 | return new ZPage(type, vmem, pmem); |
| 271 | } |
| 272 | |
| 273 | void ZPageAllocator::destroy_page(ZPage* page) { |
| 274 | const ZVirtualMemory& vmem = page->virtual_memory(); |
| 275 | const ZPhysicalMemory& pmem = page->physical_memory(); |
| 276 | |
| 277 | // Unmap memory |
| 278 | _physical.unmap(pmem, vmem.start()); |
| 279 | |
| 280 | // Free physical memory |
| 281 | _physical.free(pmem); |
| 282 | |
| 283 | // Free virtual memory |
| 284 | _virtual.free(vmem); |
| 285 | |
| 286 | // Delete page safely |
| 287 | _safe_delete(page); |
| 288 | } |
| 289 | |
| 290 | void ZPageAllocator::map_page(const ZPage* page) const { |
| 291 | // Map physical memory |
| 292 | if (!page->is_mapped()) { |
| 293 | _physical.map(page->physical_memory(), page->start()); |
| 294 | } else if (ZVerifyViews) { |
| 295 | _physical.debug_map(page->physical_memory(), page->start()); |
| 296 | } |
| 297 | } |
| 298 | |
| 299 | size_t ZPageAllocator::max_available(bool no_reserve) const { |
| 300 | size_t available = _current_max_capacity - _used; |
| 301 | |
| 302 | if (no_reserve) { |
| 303 | // The reserve should not be considered available |
| 304 | available -= MIN2(available, _max_reserve); |
| 305 | } |
| 306 | |
| 307 | return available; |
| 308 | } |
| 309 | |
| 310 | bool ZPageAllocator::ensure_available(size_t size, bool no_reserve) { |
| 311 | if (max_available(no_reserve) < size) { |
| 312 | // Not enough free memory |
| 313 | return false; |
| 314 | } |
| 315 | |
| 316 | // We add the max_reserve to the requested size to avoid losing |
| 317 | // the reserve because of failure to increase capacity before |
| 318 | // reaching max capacity. |
| 319 | size += _max_reserve; |
| 320 | |
| 321 | // Don't try to increase capacity if enough unused capacity |
| 322 | // is available or if current max capacity has been reached. |
| 323 | const size_t available = _capacity - _used; |
| 324 | if (available < size && _capacity < _current_max_capacity) { |
| 325 | // Try to increase capacity |
| 326 | const size_t commit = MIN2(size - available, _current_max_capacity - _capacity); |
| 327 | const size_t committed = _physical.commit(commit); |
| 328 | _capacity += committed; |
| 329 | |
| 330 | log_trace(gc, heap)("Make Available: Size: " SIZE_FORMAT "M, NoReserve: %s, " |
| 331 | "Available: " SIZE_FORMAT "M, Commit: " SIZE_FORMAT "M, " |
| 332 | "Committed: " SIZE_FORMAT "M, Capacity: " SIZE_FORMAT "M" , |
| 333 | size / M, no_reserve ? "True" : "False" , available / M, |
| 334 | commit / M, committed / M, _capacity / M); |
| 335 | |
| 336 | if (committed != commit) { |
| 337 | // Failed, or partly failed, to increase capacity. Adjust current |
| 338 | // max capacity to avoid further attempts to increase capacity. |
| 339 | log_error(gc)("Forced to lower max Java heap size from " |
| 340 | SIZE_FORMAT "M(%.0lf%%) to " SIZE_FORMAT "M(%.0lf%%)" , |
| 341 | _current_max_capacity / M, percent_of(_current_max_capacity, _max_capacity), |
| 342 | _capacity / M, percent_of(_capacity, _max_capacity)); |
| 343 | |
| 344 | _current_max_capacity = _capacity; |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | if (!no_reserve) { |
| 349 | size -= _max_reserve; |
| 350 | } |
| 351 | |
| 352 | const size_t new_available = _capacity - _used; |
| 353 | return new_available >= size; |
| 354 | } |
| 355 | |
| 356 | void ZPageAllocator::ensure_uncached_available(size_t size) { |
| 357 | assert(_capacity - _used >= size, "Invalid size" ); |
| 358 | const size_t uncached_available = _capacity - _used - _cache.available(); |
| 359 | if (size > uncached_available) { |
| 360 | flush_cache_for_allocation(size - uncached_available); |
| 361 | } |
| 362 | } |
| 363 | |
| 364 | ZPage* ZPageAllocator::alloc_page_common_inner(uint8_t type, size_t size, bool no_reserve) { |
| 365 | if (!ensure_available(size, no_reserve)) { |
| 366 | // Not enough free memory |
| 367 | return NULL; |
| 368 | } |
| 369 | |
| 370 | // Try allocate page from the cache |
| 371 | ZPage* const page = _cache.alloc_page(type, size); |
| 372 | if (page != NULL) { |
| 373 | return page; |
| 374 | } |
| 375 | |
| 376 | // Try flush pages from the cache |
| 377 | ensure_uncached_available(size); |
| 378 | |
| 379 | // Create new page |
| 380 | return create_page(type, size); |
| 381 | } |
| 382 | |
| 383 | ZPage* ZPageAllocator::alloc_page_common(uint8_t type, size_t size, ZAllocationFlags flags) { |
| 384 | ZPage* const page = alloc_page_common_inner(type, size, flags.no_reserve()); |
| 385 | if (page == NULL) { |
| 386 | // Out of memory |
| 387 | return NULL; |
| 388 | } |
| 389 | |
| 390 | // Update used statistics |
| 391 | increase_used(size, flags.relocation()); |
| 392 | |
| 393 | // Send trace event |
| 394 | ZTracer::tracer()->report_page_alloc(size, _used, max_available(flags.no_reserve()), _cache.available(), flags); |
| 395 | |
| 396 | return page; |
| 397 | } |
| 398 | |
| 399 | void ZPageAllocator::check_out_of_memory_during_initialization() { |
| 400 | if (!is_init_completed()) { |
| 401 | vm_exit_during_initialization("java.lang.OutOfMemoryError" , "Java heap too small" ); |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | ZPage* ZPageAllocator::alloc_page_blocking(uint8_t type, size_t size, ZAllocationFlags flags) { |
| 406 | // Prepare to block |
| 407 | ZPageAllocRequest request(type, size, flags, ZCollectedHeap::heap()->total_collections()); |
| 408 | |
| 409 | _lock.lock(); |
| 410 | |
| 411 | // Try non-blocking allocation |
| 412 | ZPage* page = alloc_page_common(type, size, flags); |
| 413 | if (page == NULL) { |
| 414 | // Allocation failed, enqueue request |
| 415 | _queue.insert_last(&request); |
| 416 | } |
| 417 | |
| 418 | _lock.unlock(); |
| 419 | |
| 420 | if (page == NULL) { |
| 421 | // Allocation failed |
| 422 | ZStatTimer timer(ZCriticalPhaseAllocationStall); |
| 423 | |
| 424 | // We can only block if VM is fully initialized |
| 425 | check_out_of_memory_during_initialization(); |
| 426 | |
| 427 | do { |
| 428 | // Start asynchronous GC |
| 429 | ZCollectedHeap::heap()->collect(GCCause::_z_allocation_stall); |
| 430 | |
| 431 | // Wait for allocation to complete or fail |
| 432 | page = request.wait(); |
| 433 | } while (page == gc_marker); |
| 434 | |
| 435 | { |
| 436 | // Guard deletion of underlying semaphore. This is a workaround for a |
| 437 | // bug in sem_post() in glibc < 2.21, where it's not safe to destroy |
| 438 | // the semaphore immediately after returning from sem_wait(). The |
| 439 | // reason is that sem_post() can touch the semaphore after a waiting |
| 440 | // thread have returned from sem_wait(). To avoid this race we are |
| 441 | // forcing the waiting thread to acquire/release the lock held by the |
| 442 | // posting thread. https://sourceware.org/bugzilla/show_bug.cgi?id=12674 |
| 443 | ZLocker<ZLock> locker(&_lock); |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | return page; |
| 448 | } |
| 449 | |
| 450 | ZPage* ZPageAllocator::alloc_page_nonblocking(uint8_t type, size_t size, ZAllocationFlags flags) { |
| 451 | ZLocker<ZLock> locker(&_lock); |
| 452 | return alloc_page_common(type, size, flags); |
| 453 | } |
| 454 | |
| 455 | ZPage* ZPageAllocator::alloc_page(uint8_t type, size_t size, ZAllocationFlags flags) { |
| 456 | ZPage* const page = flags.non_blocking() |
| 457 | ? alloc_page_nonblocking(type, size, flags) |
| 458 | : alloc_page_blocking(type, size, flags); |
| 459 | if (page == NULL) { |
| 460 | // Out of memory |
| 461 | return NULL; |
| 462 | } |
| 463 | |
| 464 | // Map page if needed |
| 465 | map_page(page); |
| 466 | |
| 467 | // Reset page. This updates the page's sequence number and must |
| 468 | // be done after page allocation, which potentially blocked in |
| 469 | // a safepoint where the global sequence number was updated. |
| 470 | page->reset(); |
| 471 | |
| 472 | // Update allocation statistics. Exclude worker threads to avoid |
| 473 | // artificial inflation of the allocation rate due to relocation. |
| 474 | if (!flags.worker_thread()) { |
| 475 | // Note that there are two allocation rate counters, which have |
| 476 | // different purposes and are sampled at different frequencies. |
| 477 | const size_t bytes = page->size(); |
| 478 | ZStatInc(ZCounterAllocationRate, bytes); |
| 479 | ZStatInc(ZStatAllocRate::counter(), bytes); |
| 480 | } |
| 481 | |
| 482 | return page; |
| 483 | } |
| 484 | |
| 485 | void ZPageAllocator::satisfy_alloc_queue() { |
| 486 | for (;;) { |
| 487 | ZPageAllocRequest* const request = _queue.first(); |
| 488 | if (request == NULL) { |
| 489 | // Allocation queue is empty |
| 490 | return; |
| 491 | } |
| 492 | |
| 493 | ZPage* const page = alloc_page_common(request->type(), request->size(), request->flags()); |
| 494 | if (page == NULL) { |
| 495 | // Allocation could not be satisfied, give up |
| 496 | return; |
| 497 | } |
| 498 | |
| 499 | // Allocation succeeded, dequeue and satisfy request. Note that |
| 500 | // the dequeue operation must happen first, since the request |
| 501 | // will immediately be deallocated once it has been satisfied. |
| 502 | _queue.remove(request); |
| 503 | request->satisfy(page); |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | void ZPageAllocator::free_page(ZPage* page, bool reclaimed) { |
| 508 | ZLocker<ZLock> locker(&_lock); |
| 509 | |
| 510 | // Update used statistics |
| 511 | decrease_used(page->size(), reclaimed); |
| 512 | |
| 513 | // Set time when last used |
| 514 | page->set_last_used(); |
| 515 | |
| 516 | // Cache page |
| 517 | _cache.free_page(page); |
| 518 | |
| 519 | // Try satisfy blocked allocations |
| 520 | satisfy_alloc_queue(); |
| 521 | } |
| 522 | |
| 523 | size_t ZPageAllocator::flush_cache(ZPageCacheFlushClosure* cl) { |
| 524 | ZList<ZPage> list; |
| 525 | |
| 526 | // Flush pages |
| 527 | _cache.flush(cl, &list); |
| 528 | |
| 529 | const size_t overflushed = cl->overflushed(); |
| 530 | if (overflushed > 0) { |
| 531 | // Overflushed, keep part of last page |
| 532 | ZPage* const page = list.last()->split(overflushed); |
| 533 | _cache.free_page(page); |
| 534 | } |
| 535 | |
| 536 | // Destroy pages |
| 537 | size_t flushed = 0; |
| 538 | for (ZPage* page = list.remove_first(); page != NULL; page = list.remove_first()) { |
| 539 | flushed += page->size(); |
| 540 | destroy_page(page); |
| 541 | } |
| 542 | |
| 543 | return flushed; |
| 544 | } |
| 545 | |
| 546 | class ZPageCacheFlushForAllocationClosure : public ZPageCacheFlushClosure { |
| 547 | public: |
| 548 | ZPageCacheFlushForAllocationClosure(size_t requested) : |
| 549 | ZPageCacheFlushClosure(requested) {} |
| 550 | |
| 551 | virtual bool do_page(const ZPage* page) { |
| 552 | if (_flushed < _requested) { |
| 553 | // Flush page |
| 554 | _flushed += page->size(); |
| 555 | return true; |
| 556 | } |
| 557 | |
| 558 | // Don't flush page |
| 559 | return false; |
| 560 | } |
| 561 | }; |
| 562 | |
| 563 | void ZPageAllocator::flush_cache_for_allocation(size_t requested) { |
| 564 | assert(requested <= _cache.available(), "Invalid request" ); |
| 565 | |
| 566 | // Flush pages |
| 567 | ZPageCacheFlushForAllocationClosure cl(requested); |
| 568 | const size_t flushed = flush_cache(&cl); |
| 569 | |
| 570 | assert(requested == flushed, "Failed to flush" ); |
| 571 | |
| 572 | const size_t cached_after = _cache.available(); |
| 573 | const size_t cached_before = cached_after + flushed; |
| 574 | |
| 575 | log_info(gc, heap)("Page Cache: " SIZE_FORMAT "M(%.0lf%%)->" SIZE_FORMAT "M(%.0lf%%), " |
| 576 | "Flushed: " SIZE_FORMAT "M" , |
| 577 | cached_before / M, percent_of(cached_before, max_capacity()), |
| 578 | cached_after / M, percent_of(cached_after, max_capacity()), |
| 579 | flushed / M); |
| 580 | |
| 581 | // Update statistics |
| 582 | ZStatInc(ZCounterPageCacheFlush, flushed); |
| 583 | } |
| 584 | |
| 585 | class ZPageCacheFlushForUncommitClosure : public ZPageCacheFlushClosure { |
| 586 | private: |
| 587 | const uint64_t _now; |
| 588 | const uint64_t _delay; |
| 589 | uint64_t _timeout; |
| 590 | |
| 591 | public: |
| 592 | ZPageCacheFlushForUncommitClosure(size_t requested, uint64_t delay) : |
| 593 | ZPageCacheFlushClosure(requested), |
| 594 | _now(os::elapsedTime()), |
| 595 | _delay(delay), |
| 596 | _timeout(_delay) {} |
| 597 | |
| 598 | virtual bool do_page(const ZPage* page) { |
| 599 | const uint64_t expires = page->last_used() + _delay; |
| 600 | const uint64_t timeout = expires - MIN2(expires, _now); |
| 601 | |
| 602 | if (_flushed < _requested && timeout == 0) { |
| 603 | // Flush page |
| 604 | _flushed += page->size(); |
| 605 | return true; |
| 606 | } |
| 607 | |
| 608 | // Record shortest non-expired timeout |
| 609 | _timeout = MIN2(_timeout, timeout); |
| 610 | |
| 611 | // Don't flush page |
| 612 | return false; |
| 613 | } |
| 614 | |
| 615 | uint64_t timeout() const { |
| 616 | return _timeout; |
| 617 | } |
| 618 | }; |
| 619 | |
| 620 | uint64_t ZPageAllocator::uncommit(uint64_t delay) { |
| 621 | // Set the default timeout, when no pages are found in the |
| 622 | // cache or when uncommit is disabled, equal to the delay. |
| 623 | uint64_t timeout = delay; |
| 624 | |
| 625 | if (!_uncommit) { |
| 626 | // Disabled |
| 627 | return timeout; |
| 628 | } |
| 629 | |
| 630 | size_t capacity_before; |
| 631 | size_t capacity_after; |
| 632 | size_t uncommitted; |
| 633 | |
| 634 | { |
| 635 | SuspendibleThreadSetJoiner joiner; |
| 636 | ZLocker<ZLock> locker(&_lock); |
| 637 | |
| 638 | // Don't flush more than we will uncommit. Never uncommit |
| 639 | // the reserve, and never uncommit below min capacity. |
| 640 | const size_t needed = MIN2(_used + _max_reserve, _current_max_capacity); |
| 641 | const size_t guarded = MAX2(needed, _min_capacity); |
| 642 | const size_t uncommittable = _capacity - guarded; |
| 643 | const size_t uncached_available = _capacity - _used - _cache.available(); |
| 644 | size_t uncommit = MIN2(uncommittable, uncached_available); |
| 645 | const size_t flush = uncommittable - uncommit; |
| 646 | |
| 647 | if (flush > 0) { |
| 648 | // Flush pages to uncommit |
| 649 | ZPageCacheFlushForUncommitClosure cl(flush, delay); |
| 650 | uncommit += flush_cache(&cl); |
| 651 | timeout = cl.timeout(); |
| 652 | } |
| 653 | |
| 654 | // Uncommit |
| 655 | uncommitted = _physical.uncommit(uncommit); |
| 656 | _capacity -= uncommitted; |
| 657 | |
| 658 | capacity_after = _capacity; |
| 659 | capacity_before = capacity_after + uncommitted; |
| 660 | } |
| 661 | |
| 662 | if (uncommitted > 0) { |
| 663 | log_info(gc, heap)("Capacity: " SIZE_FORMAT "M(%.0lf%%)->" SIZE_FORMAT "M(%.0lf%%), " |
| 664 | "Uncommitted: " SIZE_FORMAT "M" , |
| 665 | capacity_before / M, percent_of(capacity_before, max_capacity()), |
| 666 | capacity_after / M, percent_of(capacity_after, max_capacity()), |
| 667 | uncommitted / M); |
| 668 | |
| 669 | // Update statistics |
| 670 | ZStatInc(ZCounterUncommit, uncommitted); |
| 671 | } |
| 672 | |
| 673 | return timeout; |
| 674 | } |
| 675 | |
| 676 | void ZPageAllocator::enable_deferred_delete() const { |
| 677 | _safe_delete.enable_deferred_delete(); |
| 678 | } |
| 679 | |
| 680 | void ZPageAllocator::disable_deferred_delete() const { |
| 681 | _safe_delete.disable_deferred_delete(); |
| 682 | } |
| 683 | |
| 684 | void ZPageAllocator::debug_map_page(const ZPage* page) const { |
| 685 | assert(SafepointSynchronize::is_at_safepoint(), "Should be at safepoint" ); |
| 686 | _physical.debug_map(page->physical_memory(), page->start()); |
| 687 | } |
| 688 | |
| 689 | class ZPageCacheDebugMapClosure : public StackObj { |
| 690 | private: |
| 691 | const ZPageAllocator* const _allocator; |
| 692 | |
| 693 | public: |
| 694 | ZPageCacheDebugMapClosure(const ZPageAllocator* allocator) : |
| 695 | _allocator(allocator) {} |
| 696 | |
| 697 | virtual void do_page(const ZPage* page) { |
| 698 | _allocator->debug_map_page(page); |
| 699 | } |
| 700 | }; |
| 701 | |
| 702 | void ZPageAllocator::debug_map_cached_pages() const { |
| 703 | assert(SafepointSynchronize::is_at_safepoint(), "Should be at safepoint" ); |
| 704 | ZPageCacheDebugMapClosure cl(this); |
| 705 | _cache.pages_do(&cl); |
| 706 | } |
| 707 | |
| 708 | void ZPageAllocator::debug_unmap_all_pages() const { |
| 709 | assert(SafepointSynchronize::is_at_safepoint(), "Should be at safepoint" ); |
| 710 | _physical.debug_unmap(ZPhysicalMemorySegment(0 /* start */, ZAddressOffsetMax), 0 /* offset */); |
| 711 | } |
| 712 | |
| 713 | bool ZPageAllocator::is_alloc_stalled() const { |
| 714 | assert(SafepointSynchronize::is_at_safepoint(), "Should be at safepoint" ); |
| 715 | return !_queue.is_empty(); |
| 716 | } |
| 717 | |
| 718 | void ZPageAllocator::check_out_of_memory() { |
| 719 | ZLocker<ZLock> locker(&_lock); |
| 720 | |
| 721 | // Fail allocation requests that were enqueued before the |
| 722 | // last GC cycle started, otherwise start a new GC cycle. |
| 723 | for (ZPageAllocRequest* request = _queue.first(); request != NULL; request = _queue.first()) { |
| 724 | if (request->total_collections() == ZCollectedHeap::heap()->total_collections()) { |
| 725 | // Start a new GC cycle, keep allocation requests enqueued |
| 726 | request->satisfy(gc_marker); |
| 727 | return; |
| 728 | } |
| 729 | |
| 730 | // Out of memory, fail allocation request |
| 731 | _queue.remove_first(); |
| 732 | request->satisfy(NULL); |
| 733 | } |
| 734 | } |
| 735 | |