1/*
2 * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_MEMORY_BINARYTREEDICTIONARY_INLINE_HPP
26#define SHARE_MEMORY_BINARYTREEDICTIONARY_INLINE_HPP
27
28#include "gc/shared/spaceDecorator.hpp"
29#include "logging/log.hpp"
30#include "logging/logStream.hpp"
31#include "memory/binaryTreeDictionary.hpp"
32#include "memory/freeList.inline.hpp"
33#include "memory/resourceArea.hpp"
34#include "runtime/mutex.hpp"
35#include "runtime/globals.hpp"
36#include "utilities/macros.hpp"
37#include "utilities/ostream.hpp"
38
39////////////////////////////////////////////////////////////////////////////////
40// A binary tree based search structure for free blocks.
41// This is currently used in the Concurrent Mark&Sweep implementation.
42////////////////////////////////////////////////////////////////////////////////
43
44template <class Chunk_t, class FreeList_t>
45TreeChunk<Chunk_t, FreeList_t>* TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(Chunk_t* fc) {
46 // Do some assertion checking here.
47 return (TreeChunk<Chunk_t, FreeList_t>*) fc;
48}
49
50template <class Chunk_t, class FreeList_t>
51void TreeChunk<Chunk_t, FreeList_t>::verify_tree_chunk_list() const {
52 TreeChunk<Chunk_t, FreeList_t>* nextTC = (TreeChunk<Chunk_t, FreeList_t>*)next();
53 if (prev() != NULL) { // interior list node shouldn't have tree fields
54 guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
55 embedded_list()->right() == NULL, "should be clear");
56 }
57 if (nextTC != NULL) {
58 guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
59 guarantee(nextTC->size() == size(), "wrong size");
60 nextTC->verify_tree_chunk_list();
61 }
62}
63
64template <class Chunk_t, class FreeList_t>
65TreeList<Chunk_t, FreeList_t>::TreeList() : _parent(NULL),
66 _left(NULL), _right(NULL) {}
67
68template <class Chunk_t, class FreeList_t>
69TreeList<Chunk_t, FreeList_t>*
70TreeList<Chunk_t, FreeList_t>::as_TreeList(TreeChunk<Chunk_t,FreeList_t>* tc) {
71 // This first free chunk in the list will be the tree list.
72 assert((tc->size() >= (TreeChunk<Chunk_t, FreeList_t>::min_size())),
73 "Chunk is too small for a TreeChunk");
74 TreeList<Chunk_t, FreeList_t>* tl = tc->embedded_list();
75 tl->initialize();
76 tc->set_list(tl);
77 tl->set_size(tc->size());
78 tl->link_head(tc);
79 tl->link_tail(tc);
80 tl->set_count(1);
81 assert(tl->parent() == NULL, "Should be clear");
82 return tl;
83}
84
85template <class Chunk_t, class FreeList_t>
86TreeList<Chunk_t, FreeList_t>*
87TreeList<Chunk_t, FreeList_t>::as_TreeList(HeapWord* addr, size_t size) {
88 TreeChunk<Chunk_t, FreeList_t>* tc = (TreeChunk<Chunk_t, FreeList_t>*) addr;
89 assert((size >= TreeChunk<Chunk_t, FreeList_t>::min_size()),
90 "Chunk is too small for a TreeChunk");
91 // The space will have been mangled initially but
92 // is not remangled when a Chunk_t is returned to the free list
93 // (since it is used to maintain the chunk on the free list).
94 tc->assert_is_mangled();
95 tc->set_size(size);
96 tc->link_prev(NULL);
97 tc->link_next(NULL);
98 TreeList<Chunk_t, FreeList_t>* tl = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
99 return tl;
100}
101
102
103template <class Chunk_t, class FreeList_t>
104TreeList<Chunk_t, FreeList_t>*
105TreeList<Chunk_t, FreeList_t>::get_better_list(
106 BinaryTreeDictionary<Chunk_t, FreeList_t>* dictionary) {
107 return this;
108}
109
110template <class Chunk_t, class FreeList_t>
111TreeList<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::remove_chunk_replace_if_needed(TreeChunk<Chunk_t, FreeList_t>* tc) {
112
113 TreeList<Chunk_t, FreeList_t>* retTL = this;
114 Chunk_t* list = head();
115 assert(!list || list != list->next(), "Chunk on list twice");
116 assert(tc != NULL, "Chunk being removed is NULL");
117 assert(parent() == NULL || this == parent()->left() ||
118 this == parent()->right(), "list is inconsistent");
119 assert(tc->is_free(), "Header is not marked correctly");
120 assert(head() == NULL || head()->prev() == NULL, "list invariant");
121 assert(tail() == NULL || tail()->next() == NULL, "list invariant");
122
123 Chunk_t* prevFC = tc->prev();
124 TreeChunk<Chunk_t, FreeList_t>* nextTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(tc->next());
125 assert(list != NULL, "should have at least the target chunk");
126
127 // Is this the first item on the list?
128 if (tc == list) {
129 // The "getChunk..." functions for a TreeList<Chunk_t, FreeList_t> will not return the
130 // first chunk in the list unless it is the last chunk in the list
131 // because the first chunk is also acting as the tree node.
132 // When coalescing happens, however, the first chunk in the a tree
133 // list can be the start of a free range. Free ranges are removed
134 // from the free lists so that they are not available to be
135 // allocated when the sweeper yields (giving up the free list lock)
136 // to allow mutator activity. If this chunk is the first in the
137 // list and is not the last in the list, do the work to copy the
138 // TreeList<Chunk_t, FreeList_t> from the first chunk to the next chunk and update all
139 // the TreeList<Chunk_t, FreeList_t> pointers in the chunks in the list.
140 if (nextTC == NULL) {
141 assert(prevFC == NULL, "Not last chunk in the list");
142 set_tail(NULL);
143 set_head(NULL);
144 } else {
145 // copy embedded list.
146 nextTC->set_embedded_list(tc->embedded_list());
147 retTL = nextTC->embedded_list();
148 // Fix the pointer to the list in each chunk in the list.
149 // This can be slow for a long list. Consider having
150 // an option that does not allow the first chunk on the
151 // list to be coalesced.
152 for (TreeChunk<Chunk_t, FreeList_t>* curTC = nextTC; curTC != NULL;
153 curTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(curTC->next())) {
154 curTC->set_list(retTL);
155 }
156 // Fix the parent to point to the new TreeList<Chunk_t, FreeList_t>.
157 if (retTL->parent() != NULL) {
158 if (this == retTL->parent()->left()) {
159 retTL->parent()->set_left(retTL);
160 } else {
161 assert(this == retTL->parent()->right(), "Parent is incorrect");
162 retTL->parent()->set_right(retTL);
163 }
164 }
165 // Fix the children's parent pointers to point to the
166 // new list.
167 assert(right() == retTL->right(), "Should have been copied");
168 if (retTL->right() != NULL) {
169 retTL->right()->set_parent(retTL);
170 }
171 assert(left() == retTL->left(), "Should have been copied");
172 if (retTL->left() != NULL) {
173 retTL->left()->set_parent(retTL);
174 }
175 retTL->link_head(nextTC);
176 assert(nextTC->is_free(), "Should be a free chunk");
177 }
178 } else {
179 if (nextTC == NULL) {
180 // Removing chunk at tail of list
181 this->link_tail(prevFC);
182 }
183 // Chunk is interior to the list
184 prevFC->link_after(nextTC);
185 }
186
187 // Below this point the embedded TreeList<Chunk_t, FreeList_t> being used for the
188 // tree node may have changed. Don't use "this"
189 // TreeList<Chunk_t, FreeList_t>*.
190 // chunk should still be a free chunk (bit set in _prev)
191 assert(!retTL->head() || retTL->size() == retTL->head()->size(),
192 "Wrong sized chunk in list");
193 debug_only(
194 tc->link_prev(NULL);
195 tc->link_next(NULL);
196 tc->set_list(NULL);
197 bool prev_found = false;
198 bool next_found = false;
199 for (Chunk_t* curFC = retTL->head();
200 curFC != NULL; curFC = curFC->next()) {
201 assert(curFC != tc, "Chunk is still in list");
202 if (curFC == prevFC) {
203 prev_found = true;
204 }
205 if (curFC == nextTC) {
206 next_found = true;
207 }
208 }
209 assert(prevFC == NULL || prev_found, "Chunk was lost from list");
210 assert(nextTC == NULL || next_found, "Chunk was lost from list");
211 assert(retTL->parent() == NULL ||
212 retTL == retTL->parent()->left() ||
213 retTL == retTL->parent()->right(),
214 "list is inconsistent");
215 )
216 retTL->decrement_count();
217
218 assert(tc->is_free(), "Should still be a free chunk");
219 assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
220 "list invariant");
221 assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
222 "list invariant");
223 return retTL;
224}
225
226template <class Chunk_t, class FreeList_t>
227void TreeList<Chunk_t, FreeList_t>::return_chunk_at_tail(TreeChunk<Chunk_t, FreeList_t>* chunk) {
228 assert(chunk != NULL, "returning NULL chunk");
229 assert(chunk->list() == this, "list should be set for chunk");
230 assert(tail() != NULL, "The tree list is embedded in the first chunk");
231 // which means that the list can never be empty.
232 // This is expensive for metaspace
233 assert(!FLSVerifyDictionary || !this->verify_chunk_in_free_list(chunk), "Double entry");
234 assert(head() == NULL || head()->prev() == NULL, "list invariant");
235 assert(tail() == NULL || tail()->next() == NULL, "list invariant");
236
237 Chunk_t* fc = tail();
238 fc->link_after(chunk);
239 this->link_tail(chunk);
240
241 assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
242 FreeList_t::increment_count();
243 debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
244 assert(head() == NULL || head()->prev() == NULL, "list invariant");
245 assert(tail() == NULL || tail()->next() == NULL, "list invariant");
246}
247
248template <class Chunk_t, class FreeList_t>
249void TreeChunk<Chunk_t, FreeList_t>::assert_is_mangled() const {
250 assert((ZapUnusedHeapArea &&
251 SpaceMangler::is_mangled((HeapWord*) Chunk_t::size_addr()) &&
252 SpaceMangler::is_mangled((HeapWord*) Chunk_t::prev_addr()) &&
253 SpaceMangler::is_mangled((HeapWord*) Chunk_t::next_addr())) ||
254 (size() == 0 && prev() == NULL && next() == NULL),
255 "Space should be clear or mangled");
256}
257
258template <class Chunk_t, class FreeList_t>
259TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::head_as_TreeChunk() {
260 assert(head() == NULL || (TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head())->list() == this),
261 "Wrong type of chunk?");
262 return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head());
263}
264
265template <class Chunk_t, class FreeList_t>
266TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::first_available() {
267 assert(head() != NULL, "The head of the list cannot be NULL");
268 Chunk_t* fc = head()->next();
269 TreeChunk<Chunk_t, FreeList_t>* retTC;
270 if (fc == NULL) {
271 retTC = head_as_TreeChunk();
272 } else {
273 retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
274 }
275 assert(retTC->list() == this, "Wrong type of chunk.");
276 return retTC;
277}
278
279// Returns the block with the largest heap address amongst
280// those in the list for this size; potentially slow and expensive,
281// use with caution!
282template <class Chunk_t, class FreeList_t>
283TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::largest_address() {
284 assert(head() != NULL, "The head of the list cannot be NULL");
285 Chunk_t* fc = head()->next();
286 TreeChunk<Chunk_t, FreeList_t>* retTC;
287 if (fc == NULL) {
288 retTC = head_as_TreeChunk();
289 } else {
290 // walk down the list and return the one with the highest
291 // heap address among chunks of this size.
292 Chunk_t* last = fc;
293 while (fc->next() != NULL) {
294 if ((HeapWord*)last < (HeapWord*)fc) {
295 last = fc;
296 }
297 fc = fc->next();
298 }
299 retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(last);
300 }
301 assert(retTC->list() == this, "Wrong type of chunk.");
302 return retTC;
303}
304
305template <class Chunk_t, class FreeList_t>
306BinaryTreeDictionary<Chunk_t, FreeList_t>::BinaryTreeDictionary(MemRegion mr) {
307 assert((mr.byte_size() > min_size()), "minimum chunk size");
308
309 reset(mr);
310 assert(root()->left() == NULL, "reset check failed");
311 assert(root()->right() == NULL, "reset check failed");
312 assert(root()->head()->next() == NULL, "reset check failed");
313 assert(root()->head()->prev() == NULL, "reset check failed");
314 assert(total_size() == root()->size(), "reset check failed");
315 assert(total_free_blocks() == 1, "reset check failed");
316}
317
318template <class Chunk_t, class FreeList_t>
319void BinaryTreeDictionary<Chunk_t, FreeList_t>::inc_total_size(size_t inc) {
320 _total_size = _total_size + inc;
321}
322
323template <class Chunk_t, class FreeList_t>
324void BinaryTreeDictionary<Chunk_t, FreeList_t>::dec_total_size(size_t dec) {
325 _total_size = _total_size - dec;
326}
327
328template <class Chunk_t, class FreeList_t>
329void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(MemRegion mr) {
330 assert((mr.byte_size() > min_size()), "minimum chunk size");
331 set_root(TreeList<Chunk_t, FreeList_t>::as_TreeList(mr.start(), mr.word_size()));
332 set_total_size(mr.word_size());
333 set_total_free_blocks(1);
334}
335
336template <class Chunk_t, class FreeList_t>
337void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(HeapWord* addr, size_t byte_size) {
338 MemRegion mr(addr, heap_word_size(byte_size));
339 reset(mr);
340}
341
342template <class Chunk_t, class FreeList_t>
343void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset() {
344 set_root(NULL);
345 set_total_size(0);
346 set_total_free_blocks(0);
347}
348
349// Get a free block of size at least size from tree, or NULL.
350template <class Chunk_t, class FreeList_t>
351TreeChunk<Chunk_t, FreeList_t>*
352BinaryTreeDictionary<Chunk_t, FreeList_t>::get_chunk_from_tree(size_t size)
353{
354 TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
355 TreeChunk<Chunk_t, FreeList_t>* retTC = NULL;
356
357 assert((size >= min_size()), "minimum chunk size");
358 if (FLSVerifyDictionary) {
359 verify_tree();
360 }
361 // starting at the root, work downwards trying to find match.
362 // Remember the last node of size too great or too small.
363 for (prevTL = curTL = root(); curTL != NULL;) {
364 if (curTL->size() == size) { // exact match
365 break;
366 }
367 prevTL = curTL;
368 if (curTL->size() < size) { // proceed to right sub-tree
369 curTL = curTL->right();
370 } else { // proceed to left sub-tree
371 assert(curTL->size() > size, "size inconsistency");
372 curTL = curTL->left();
373 }
374 }
375 if (curTL == NULL) { // couldn't find exact match
376
377 // try and find the next larger size by walking back up the search path
378 for (curTL = prevTL; curTL != NULL;) {
379 if (curTL->size() >= size) break;
380 else curTL = curTL->parent();
381 }
382 assert(curTL == NULL || curTL->count() > 0,
383 "An empty list should not be in the tree");
384 }
385 if (curTL != NULL) {
386 assert(curTL->size() >= size, "size inconsistency");
387
388 curTL = curTL->get_better_list(this);
389
390 retTC = curTL->first_available();
391 assert((retTC != NULL) && (curTL->count() > 0),
392 "A list in the binary tree should not be NULL");
393 assert(retTC->size() >= size,
394 "A chunk of the wrong size was found");
395 remove_chunk_from_tree(retTC);
396 assert(retTC->is_free(), "Header is not marked correctly");
397 }
398
399 if (FLSVerifyDictionary) {
400 verify();
401 }
402 return retTC;
403}
404
405template <class Chunk_t, class FreeList_t>
406TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_list(size_t size) const {
407 TreeList<Chunk_t, FreeList_t>* curTL;
408 for (curTL = root(); curTL != NULL;) {
409 if (curTL->size() == size) { // exact match
410 break;
411 }
412
413 if (curTL->size() < size) { // proceed to right sub-tree
414 curTL = curTL->right();
415 } else { // proceed to left sub-tree
416 assert(curTL->size() > size, "size inconsistency");
417 curTL = curTL->left();
418 }
419 }
420 return curTL;
421}
422
423
424template <class Chunk_t, class FreeList_t>
425bool BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_chunk_in_free_list(Chunk_t* tc) const {
426 size_t size = tc->size();
427 TreeList<Chunk_t, FreeList_t>* tl = find_list(size);
428 if (tl == NULL) {
429 return false;
430 } else {
431 return tl->verify_chunk_in_free_list(tc);
432 }
433}
434
435template <class Chunk_t, class FreeList_t>
436Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_largest_dict() const {
437 TreeList<Chunk_t, FreeList_t> *curTL = root();
438 if (curTL != NULL) {
439 while(curTL->right() != NULL) curTL = curTL->right();
440 return curTL->largest_address();
441 } else {
442 return NULL;
443 }
444}
445
446// Remove the current chunk from the tree. If it is not the last
447// chunk in a list on a tree node, just unlink it.
448// If it is the last chunk in the list (the next link is NULL),
449// remove the node and repair the tree.
450template <class Chunk_t, class FreeList_t>
451TreeChunk<Chunk_t, FreeList_t>*
452BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_chunk_from_tree(TreeChunk<Chunk_t, FreeList_t>* tc) {
453 assert(tc != NULL, "Should not call with a NULL chunk");
454 assert(tc->is_free(), "Header is not marked correctly");
455
456 TreeList<Chunk_t, FreeList_t> *newTL, *parentTL;
457 TreeChunk<Chunk_t, FreeList_t>* retTC;
458 TreeList<Chunk_t, FreeList_t>* tl = tc->list();
459 debug_only(
460 bool removing_only_chunk = false;
461 if (tl == _root) {
462 if ((_root->left() == NULL) && (_root->right() == NULL)) {
463 if (_root->count() == 1) {
464 assert(_root->head() == tc, "Should only be this one chunk");
465 removing_only_chunk = true;
466 }
467 }
468 }
469 )
470 assert(tl != NULL, "List should be set");
471 assert(tl->parent() == NULL || tl == tl->parent()->left() ||
472 tl == tl->parent()->right(), "list is inconsistent");
473
474 bool complicated_splice = false;
475
476 retTC = tc;
477 // Removing this chunk can have the side effect of changing the node
478 // (TreeList<Chunk_t, FreeList_t>*) in the tree. If the node is the root, update it.
479 TreeList<Chunk_t, FreeList_t>* replacementTL = tl->remove_chunk_replace_if_needed(tc);
480 assert(tc->is_free(), "Chunk should still be free");
481 assert(replacementTL->parent() == NULL ||
482 replacementTL == replacementTL->parent()->left() ||
483 replacementTL == replacementTL->parent()->right(),
484 "list is inconsistent");
485 if (tl == root()) {
486 assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
487 set_root(replacementTL);
488 }
489#ifdef ASSERT
490 if (tl != replacementTL) {
491 assert(replacementTL->head() != NULL,
492 "If the tree list was replaced, it should not be a NULL list");
493 TreeList<Chunk_t, FreeList_t>* rhl = replacementTL->head_as_TreeChunk()->list();
494 TreeList<Chunk_t, FreeList_t>* rtl =
495 TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(replacementTL->tail())->list();
496 assert(rhl == replacementTL, "Broken head");
497 assert(rtl == replacementTL, "Broken tail");
498 assert(replacementTL->size() == tc->size(), "Broken size");
499 }
500#endif
501
502 // Does the tree need to be repaired?
503 if (replacementTL->count() == 0) {
504 assert(replacementTL->head() == NULL &&
505 replacementTL->tail() == NULL, "list count is incorrect");
506 // Find the replacement node for the (soon to be empty) node being removed.
507 // if we have a single (or no) child, splice child in our stead
508 if (replacementTL->left() == NULL) {
509 // left is NULL so pick right. right may also be NULL.
510 newTL = replacementTL->right();
511 debug_only(replacementTL->clear_right();)
512 } else if (replacementTL->right() == NULL) {
513 // right is NULL
514 newTL = replacementTL->left();
515 debug_only(replacementTL->clear_left();)
516 } else { // we have both children, so, by patriarchal convention,
517 // my replacement is least node in right sub-tree
518 complicated_splice = true;
519 newTL = remove_tree_minimum(replacementTL->right());
520 assert(newTL != NULL && newTL->left() == NULL &&
521 newTL->right() == NULL, "sub-tree minimum exists");
522 }
523 // newTL is the replacement for the (soon to be empty) node.
524 // newTL may be NULL.
525 // should verify; we just cleanly excised our replacement
526 if (FLSVerifyDictionary) {
527 verify_tree();
528 }
529 // first make newTL my parent's child
530 if ((parentTL = replacementTL->parent()) == NULL) {
531 // newTL should be root
532 assert(tl == root(), "Incorrectly replacing root");
533 set_root(newTL);
534 if (newTL != NULL) {
535 newTL->clear_parent();
536 }
537 } else if (parentTL->right() == replacementTL) {
538 // replacementTL is a right child
539 parentTL->set_right(newTL);
540 } else { // replacementTL is a left child
541 assert(parentTL->left() == replacementTL, "should be left child");
542 parentTL->set_left(newTL);
543 }
544 debug_only(replacementTL->clear_parent();)
545 if (complicated_splice) { // we need newTL to get replacementTL's
546 // two children
547 assert(newTL != NULL &&
548 newTL->left() == NULL && newTL->right() == NULL,
549 "newTL should not have encumbrances from the past");
550 // we'd like to assert as below:
551 // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
552 // "else !complicated_splice");
553 // ... however, the above assertion is too strong because we aren't
554 // guaranteed that replacementTL->right() is still NULL.
555 // Recall that we removed
556 // the right sub-tree minimum from replacementTL.
557 // That may well have been its right
558 // child! So we'll just assert half of the above:
559 assert(replacementTL->left() != NULL, "else !complicated_splice");
560 newTL->set_left(replacementTL->left());
561 newTL->set_right(replacementTL->right());
562 debug_only(
563 replacementTL->clear_right();
564 replacementTL->clear_left();
565 )
566 }
567 assert(replacementTL->right() == NULL &&
568 replacementTL->left() == NULL &&
569 replacementTL->parent() == NULL,
570 "delete without encumbrances");
571 }
572
573 assert(total_size() >= retTC->size(), "Incorrect total size");
574 dec_total_size(retTC->size()); // size book-keeping
575 assert(total_free_blocks() > 0, "Incorrect total count");
576 set_total_free_blocks(total_free_blocks() - 1);
577
578 assert(retTC != NULL, "null chunk?");
579 assert(retTC->prev() == NULL && retTC->next() == NULL,
580 "should return without encumbrances");
581 if (FLSVerifyDictionary) {
582 verify_tree();
583 }
584 assert(!removing_only_chunk || _root == NULL, "root should be NULL");
585 return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(retTC);
586}
587
588// Remove the leftmost node (lm) in the tree and return it.
589// If lm has a right child, link it to the left node of
590// the parent of lm.
591template <class Chunk_t, class FreeList_t>
592TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_tree_minimum(TreeList<Chunk_t, FreeList_t>* tl) {
593 assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
594 // locate the subtree minimum by walking down left branches
595 TreeList<Chunk_t, FreeList_t>* curTL = tl;
596 for (; curTL->left() != NULL; curTL = curTL->left());
597 // obviously curTL now has at most one child, a right child
598 if (curTL != root()) { // Should this test just be removed?
599 TreeList<Chunk_t, FreeList_t>* parentTL = curTL->parent();
600 if (parentTL->left() == curTL) { // curTL is a left child
601 parentTL->set_left(curTL->right());
602 } else {
603 // If the list tl has no left child, then curTL may be
604 // the right child of parentTL.
605 assert(parentTL->right() == curTL, "should be a right child");
606 parentTL->set_right(curTL->right());
607 }
608 } else {
609 // The only use of this method would not pass the root of the
610 // tree (as indicated by the assertion above that the tree list
611 // has a parent) but the specification does not explicitly exclude the
612 // passing of the root so accommodate it.
613 set_root(NULL);
614 }
615 debug_only(
616 curTL->clear_parent(); // Test if this needs to be cleared
617 curTL->clear_right(); // recall, above, left child is already null
618 )
619 // we just excised a (non-root) node, we should still verify all tree invariants
620 if (FLSVerifyDictionary) {
621 verify_tree();
622 }
623 return curTL;
624}
625
626template <class Chunk_t, class FreeList_t>
627void BinaryTreeDictionary<Chunk_t, FreeList_t>::insert_chunk_in_tree(Chunk_t* fc) {
628 TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
629 size_t size = fc->size();
630
631 assert((size >= min_size()),
632 SIZE_FORMAT " is too small to be a TreeChunk<Chunk_t, FreeList_t> " SIZE_FORMAT,
633 size, min_size());
634 if (FLSVerifyDictionary) {
635 verify_tree();
636 }
637
638 fc->clear_next();
639 fc->link_prev(NULL);
640
641 // work down from the _root, looking for insertion point
642 for (prevTL = curTL = root(); curTL != NULL;) {
643 if (curTL->size() == size) // exact match
644 break;
645 prevTL = curTL;
646 if (curTL->size() > size) { // follow left branch
647 curTL = curTL->left();
648 } else { // follow right branch
649 assert(curTL->size() < size, "size inconsistency");
650 curTL = curTL->right();
651 }
652 }
653 TreeChunk<Chunk_t, FreeList_t>* tc = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
654 // This chunk is being returned to the binary tree. Its embedded
655 // TreeList<Chunk_t, FreeList_t> should be unused at this point.
656 tc->initialize();
657 if (curTL != NULL) { // exact match
658 tc->set_list(curTL);
659 curTL->return_chunk_at_tail(tc);
660 } else { // need a new node in tree
661 tc->clear_next();
662 tc->link_prev(NULL);
663 TreeList<Chunk_t, FreeList_t>* newTL = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
664 assert(((TreeChunk<Chunk_t, FreeList_t>*)tc)->list() == newTL,
665 "List was not initialized correctly");
666 if (prevTL == NULL) { // we are the only tree node
667 assert(root() == NULL, "control point invariant");
668 set_root(newTL);
669 } else { // insert under prevTL ...
670 if (prevTL->size() < size) { // am right child
671 assert(prevTL->right() == NULL, "control point invariant");
672 prevTL->set_right(newTL);
673 } else { // am left child
674 assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
675 prevTL->set_left(newTL);
676 }
677 }
678 }
679 assert(tc->list() != NULL, "Tree list should be set");
680
681 inc_total_size(size);
682 // Method 'total_size_in_tree' walks through the every block in the
683 // tree, so it can cause significant performance loss if there are
684 // many blocks in the tree
685 assert(!FLSVerifyDictionary || total_size_in_tree(root()) == total_size(), "_total_size inconsistency");
686 set_total_free_blocks(total_free_blocks() + 1);
687 if (FLSVerifyDictionary) {
688 verify_tree();
689 }
690}
691
692template <class Chunk_t, class FreeList_t>
693size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::max_chunk_size() const {
694 verify_par_locked();
695 TreeList<Chunk_t, FreeList_t>* tc = root();
696 if (tc == NULL) return 0;
697 for (; tc->right() != NULL; tc = tc->right());
698 return tc->size();
699}
700
701template <class Chunk_t, class FreeList_t>
702size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_list_length(TreeList<Chunk_t, FreeList_t>* tl) const {
703 size_t res;
704 res = tl->count();
705#ifdef ASSERT
706 size_t cnt;
707 Chunk_t* tc = tl->head();
708 for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
709 assert(res == cnt, "The count is not being maintained correctly");
710#endif
711 return res;
712}
713
714template <class Chunk_t, class FreeList_t>
715size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_size_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
716 if (tl == NULL)
717 return 0;
718 return (tl->size() * total_list_length(tl)) +
719 total_size_in_tree(tl->left()) +
720 total_size_in_tree(tl->right());
721}
722
723template <class Chunk_t, class FreeList_t>
724double BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_of_squared_block_sizes(TreeList<Chunk_t, FreeList_t>* const tl) const {
725 if (tl == NULL) {
726 return 0.0;
727 }
728 double size = (double)(tl->size());
729 double curr = size * size * total_list_length(tl);
730 curr += sum_of_squared_block_sizes(tl->left());
731 curr += sum_of_squared_block_sizes(tl->right());
732 return curr;
733}
734
735template <class Chunk_t, class FreeList_t>
736size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_free_blocks_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
737 if (tl == NULL)
738 return 0;
739 return total_list_length(tl) +
740 total_free_blocks_in_tree(tl->left()) +
741 total_free_blocks_in_tree(tl->right());
742}
743
744template <class Chunk_t, class FreeList_t>
745size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::num_free_blocks() const {
746 assert(total_free_blocks_in_tree(root()) == total_free_blocks(),
747 "_total_free_blocks inconsistency");
748 return total_free_blocks();
749}
750
751template <class Chunk_t, class FreeList_t>
752size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
753 if (tl == NULL)
754 return 0;
755 return 1 + MAX2(tree_height_helper(tl->left()),
756 tree_height_helper(tl->right()));
757}
758
759template <class Chunk_t, class FreeList_t>
760size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height() const {
761 return tree_height_helper(root());
762}
763
764template <class Chunk_t, class FreeList_t>
765size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
766 if (tl == NULL) {
767 return 0;
768 }
769 return 1 + total_nodes_helper(tl->left()) +
770 total_nodes_helper(tl->right());
771}
772
773// Searches the tree for a chunk that ends at the
774// specified address.
775template <class Chunk_t, class FreeList_t>
776class EndTreeSearchClosure : public DescendTreeSearchClosure<Chunk_t, FreeList_t> {
777 HeapWord* _target;
778 Chunk_t* _found;
779
780 public:
781 EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
782 bool do_list(FreeList_t* fl) {
783 Chunk_t* item = fl->head();
784 while (item != NULL) {
785 if (item->end() == (uintptr_t*) _target) {
786 _found = item;
787 return true;
788 }
789 item = item->next();
790 }
791 return false;
792 }
793 Chunk_t* found() { return _found; }
794};
795
796template <class Chunk_t, class FreeList_t>
797Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_chunk_ends_at(HeapWord* target) const {
798 EndTreeSearchClosure<Chunk_t, FreeList_t> etsc(target);
799 bool found_target = etsc.do_tree(root());
800 assert(found_target || etsc.found() == NULL, "Consistency check");
801 assert(!found_target || etsc.found() != NULL, "Consistency check");
802 return etsc.found();
803}
804
805// Closures and methods for calculating total bytes returned to the
806// free lists in the tree.
807#ifndef PRODUCT
808template <class Chunk_t, class FreeList_t>
809class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
810 public:
811 void do_list(FreeList_t* fl) {
812 fl->set_returned_bytes(0);
813 }
814};
815
816template <class Chunk_t, class FreeList_t>
817void BinaryTreeDictionary<Chunk_t, FreeList_t>::initialize_dict_returned_bytes() {
818 InitializeDictReturnedBytesClosure<Chunk_t, FreeList_t> idrb;
819 idrb.do_tree(root());
820}
821
822template <class Chunk_t, class FreeList_t>
823class ReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
824 size_t _dict_returned_bytes;
825 public:
826 ReturnedBytesClosure() { _dict_returned_bytes = 0; }
827 void do_list(FreeList_t* fl) {
828 _dict_returned_bytes += fl->returned_bytes();
829 }
830 size_t dict_returned_bytes() { return _dict_returned_bytes; }
831};
832
833template <class Chunk_t, class FreeList_t>
834size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_dict_returned_bytes() {
835 ReturnedBytesClosure<Chunk_t, FreeList_t> rbc;
836 rbc.do_tree(root());
837
838 return rbc.dict_returned_bytes();
839}
840
841// Count the number of entries in the tree.
842template <class Chunk_t, class FreeList_t>
843class treeCountClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
844 public:
845 uint count;
846 treeCountClosure(uint c) { count = c; }
847 void do_list(FreeList_t* fl) {
848 count++;
849 }
850};
851
852template <class Chunk_t, class FreeList_t>
853size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_count() {
854 treeCountClosure<Chunk_t, FreeList_t> ctc(0);
855 ctc.do_tree(root());
856 return ctc.count;
857}
858
859template <class Chunk_t, class FreeList_t>
860Mutex* BinaryTreeDictionary<Chunk_t, FreeList_t>::par_lock() const {
861 return _lock;
862}
863
864template <class Chunk_t, class FreeList_t>
865void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_par_lock(Mutex* lock) {
866 _lock = lock;
867}
868
869template <class Chunk_t, class FreeList_t>
870void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_par_locked() const {
871#ifdef ASSERT
872 Thread* my_thread = Thread::current();
873 if (my_thread->is_GC_task_thread()) {
874 assert(par_lock() != NULL, "Should be using locking?");
875 assert_lock_strong(par_lock());
876 }
877#endif // ASSERT
878}
879#endif // PRODUCT
880
881// Print summary statistics
882template <class Chunk_t, class FreeList_t>
883void BinaryTreeDictionary<Chunk_t, FreeList_t>::report_statistics(outputStream* st) const {
884 verify_par_locked();
885 st->print_cr("Statistics for BinaryTreeDictionary:");
886 st->print_cr("------------------------------------");
887 size_t total_size = total_chunk_size(debug_only(NULL));
888 size_t free_blocks = num_free_blocks();
889 st->print_cr("Total Free Space: " SIZE_FORMAT, total_size);
890 st->print_cr("Max Chunk Size: " SIZE_FORMAT, max_chunk_size());
891 st->print_cr("Number of Blocks: " SIZE_FORMAT, free_blocks);
892 if (free_blocks > 0) {
893 st->print_cr("Av. Block Size: " SIZE_FORMAT, total_size/free_blocks);
894 }
895 st->print_cr("Tree Height: " SIZE_FORMAT, tree_height());
896}
897
898template <class Chunk_t, class FreeList_t>
899class PrintFreeListsClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
900 outputStream* _st;
901 int _print_line;
902
903 public:
904 PrintFreeListsClosure(outputStream* st) {
905 _st = st;
906 _print_line = 0;
907 }
908 void do_list(FreeList_t* fl) {
909 if (++_print_line >= 40) {
910 FreeList_t::print_labels_on(_st, "size");
911 _print_line = 0;
912 }
913 fl->print_on(_st);
914 size_t sz = fl->size();
915 for (Chunk_t* fc = fl->head(); fc != NULL;
916 fc = fc->next()) {
917 _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ") %s",
918 p2i(fc), p2i((HeapWord*)fc + sz),
919 fc->cantCoalesce() ? "\t CC" : "");
920 }
921 }
922};
923
924template <class Chunk_t, class FreeList_t>
925void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_free_lists(outputStream* st) const {
926
927 FreeList_t::print_labels_on(st, "size");
928 PrintFreeListsClosure<Chunk_t, FreeList_t> pflc(st);
929 pflc.do_tree(root());
930}
931
932// Verify the following tree invariants:
933// . _root has no parent
934// . parent and child point to each other
935// . each node's key correctly related to that of its child(ren)
936template <class Chunk_t, class FreeList_t>
937void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree() const {
938 guarantee(root() == NULL || total_free_blocks() == 0 ||
939 total_size() != 0, "_total_size shouldn't be 0?");
940 guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
941 verify_tree_helper(root());
942}
943
944template <class Chunk_t, class FreeList_t>
945size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_prev_free_ptrs(TreeList<Chunk_t, FreeList_t>* tl) {
946 size_t ct = 0;
947 for (Chunk_t* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
948 ct++;
949 assert(curFC->prev() == NULL || curFC->prev()->is_free(),
950 "Chunk should be free");
951 }
952 return ct;
953}
954
955// Note: this helper is recursive rather than iterative, so use with
956// caution on very deep trees; and watch out for stack overflow errors;
957// In general, to be used only for debugging.
958template <class Chunk_t, class FreeList_t>
959void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
960 if (tl == NULL)
961 return;
962 guarantee(tl->size() != 0, "A list must has a size");
963 guarantee(tl->left() == NULL || tl->left()->parent() == tl,
964 "parent<-/->left");
965 guarantee(tl->right() == NULL || tl->right()->parent() == tl,
966 "parent<-/->right");;
967 guarantee(tl->left() == NULL || tl->left()->size() < tl->size(),
968 "parent !> left");
969 guarantee(tl->right() == NULL || tl->right()->size() > tl->size(),
970 "parent !< left");
971 guarantee(tl->head() == NULL || tl->head()->is_free(), "!Free");
972 guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
973 "list inconsistency");
974 guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
975 "list count is inconsistent");
976 guarantee(tl->count() > 1 || tl->head() == tl->tail(),
977 "list is incorrectly constructed");
978 size_t count = verify_prev_free_ptrs(tl);
979 guarantee(count == (size_t)tl->count(), "Node count is incorrect");
980 if (tl->head() != NULL) {
981 tl->head_as_TreeChunk()->verify_tree_chunk_list();
982 }
983 verify_tree_helper(tl->left());
984 verify_tree_helper(tl->right());
985}
986
987template <class Chunk_t, class FreeList_t>
988void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify() const {
989 verify_tree();
990 guarantee(total_size() == total_size_in_tree(root()), "Total Size inconsistency");
991}
992
993template <class Chunk_t, class FreeList_t>
994size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_chunk_size(debug_only(const Mutex* lock)) const {
995 debug_only(
996 if (lock != NULL && lock->owned_by_self()) {
997 assert(total_size_in_tree(root()) == total_size(),
998 "_total_size inconsistency");
999 }
1000 )
1001 return total_size();
1002}
1003
1004#endif // SHARE_MEMORY_BINARYTREEDICTIONARY_INLINE_HPP
1005