1 | /* |
2 | * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #ifndef SHARE_MEMORY_BINARYTREEDICTIONARY_INLINE_HPP |
26 | #define SHARE_MEMORY_BINARYTREEDICTIONARY_INLINE_HPP |
27 | |
28 | #include "gc/shared/spaceDecorator.hpp" |
29 | #include "logging/log.hpp" |
30 | #include "logging/logStream.hpp" |
31 | #include "memory/binaryTreeDictionary.hpp" |
32 | #include "memory/freeList.inline.hpp" |
33 | #include "memory/resourceArea.hpp" |
34 | #include "runtime/mutex.hpp" |
35 | #include "runtime/globals.hpp" |
36 | #include "utilities/macros.hpp" |
37 | #include "utilities/ostream.hpp" |
38 | |
39 | //////////////////////////////////////////////////////////////////////////////// |
40 | // A binary tree based search structure for free blocks. |
41 | // This is currently used in the Concurrent Mark&Sweep implementation. |
42 | //////////////////////////////////////////////////////////////////////////////// |
43 | |
44 | template <class Chunk_t, class FreeList_t> |
45 | TreeChunk<Chunk_t, FreeList_t>* TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(Chunk_t* fc) { |
46 | // Do some assertion checking here. |
47 | return (TreeChunk<Chunk_t, FreeList_t>*) fc; |
48 | } |
49 | |
50 | template <class Chunk_t, class FreeList_t> |
51 | void TreeChunk<Chunk_t, FreeList_t>::verify_tree_chunk_list() const { |
52 | TreeChunk<Chunk_t, FreeList_t>* nextTC = (TreeChunk<Chunk_t, FreeList_t>*)next(); |
53 | if (prev() != NULL) { // interior list node shouldn't have tree fields |
54 | guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL && |
55 | embedded_list()->right() == NULL, "should be clear" ); |
56 | } |
57 | if (nextTC != NULL) { |
58 | guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain" ); |
59 | guarantee(nextTC->size() == size(), "wrong size" ); |
60 | nextTC->verify_tree_chunk_list(); |
61 | } |
62 | } |
63 | |
64 | template <class Chunk_t, class FreeList_t> |
65 | TreeList<Chunk_t, FreeList_t>::TreeList() : _parent(NULL), |
66 | _left(NULL), _right(NULL) {} |
67 | |
68 | template <class Chunk_t, class FreeList_t> |
69 | TreeList<Chunk_t, FreeList_t>* |
70 | TreeList<Chunk_t, FreeList_t>::as_TreeList(TreeChunk<Chunk_t,FreeList_t>* tc) { |
71 | // This first free chunk in the list will be the tree list. |
72 | assert((tc->size() >= (TreeChunk<Chunk_t, FreeList_t>::min_size())), |
73 | "Chunk is too small for a TreeChunk" ); |
74 | TreeList<Chunk_t, FreeList_t>* tl = tc->embedded_list(); |
75 | tl->initialize(); |
76 | tc->set_list(tl); |
77 | tl->set_size(tc->size()); |
78 | tl->link_head(tc); |
79 | tl->link_tail(tc); |
80 | tl->set_count(1); |
81 | assert(tl->parent() == NULL, "Should be clear" ); |
82 | return tl; |
83 | } |
84 | |
85 | template <class Chunk_t, class FreeList_t> |
86 | TreeList<Chunk_t, FreeList_t>* |
87 | TreeList<Chunk_t, FreeList_t>::as_TreeList(HeapWord* addr, size_t size) { |
88 | TreeChunk<Chunk_t, FreeList_t>* tc = (TreeChunk<Chunk_t, FreeList_t>*) addr; |
89 | assert((size >= TreeChunk<Chunk_t, FreeList_t>::min_size()), |
90 | "Chunk is too small for a TreeChunk" ); |
91 | // The space will have been mangled initially but |
92 | // is not remangled when a Chunk_t is returned to the free list |
93 | // (since it is used to maintain the chunk on the free list). |
94 | tc->assert_is_mangled(); |
95 | tc->set_size(size); |
96 | tc->link_prev(NULL); |
97 | tc->link_next(NULL); |
98 | TreeList<Chunk_t, FreeList_t>* tl = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc); |
99 | return tl; |
100 | } |
101 | |
102 | |
103 | template <class Chunk_t, class FreeList_t> |
104 | TreeList<Chunk_t, FreeList_t>* |
105 | TreeList<Chunk_t, FreeList_t>::get_better_list( |
106 | BinaryTreeDictionary<Chunk_t, FreeList_t>* dictionary) { |
107 | return this; |
108 | } |
109 | |
110 | template <class Chunk_t, class FreeList_t> |
111 | TreeList<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::remove_chunk_replace_if_needed(TreeChunk<Chunk_t, FreeList_t>* tc) { |
112 | |
113 | TreeList<Chunk_t, FreeList_t>* retTL = this; |
114 | Chunk_t* list = head(); |
115 | assert(!list || list != list->next(), "Chunk on list twice" ); |
116 | assert(tc != NULL, "Chunk being removed is NULL" ); |
117 | assert(parent() == NULL || this == parent()->left() || |
118 | this == parent()->right(), "list is inconsistent" ); |
119 | assert(tc->is_free(), "Header is not marked correctly" ); |
120 | assert(head() == NULL || head()->prev() == NULL, "list invariant" ); |
121 | assert(tail() == NULL || tail()->next() == NULL, "list invariant" ); |
122 | |
123 | Chunk_t* prevFC = tc->prev(); |
124 | TreeChunk<Chunk_t, FreeList_t>* nextTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(tc->next()); |
125 | assert(list != NULL, "should have at least the target chunk" ); |
126 | |
127 | // Is this the first item on the list? |
128 | if (tc == list) { |
129 | // The "getChunk..." functions for a TreeList<Chunk_t, FreeList_t> will not return the |
130 | // first chunk in the list unless it is the last chunk in the list |
131 | // because the first chunk is also acting as the tree node. |
132 | // When coalescing happens, however, the first chunk in the a tree |
133 | // list can be the start of a free range. Free ranges are removed |
134 | // from the free lists so that they are not available to be |
135 | // allocated when the sweeper yields (giving up the free list lock) |
136 | // to allow mutator activity. If this chunk is the first in the |
137 | // list and is not the last in the list, do the work to copy the |
138 | // TreeList<Chunk_t, FreeList_t> from the first chunk to the next chunk and update all |
139 | // the TreeList<Chunk_t, FreeList_t> pointers in the chunks in the list. |
140 | if (nextTC == NULL) { |
141 | assert(prevFC == NULL, "Not last chunk in the list" ); |
142 | set_tail(NULL); |
143 | set_head(NULL); |
144 | } else { |
145 | // copy embedded list. |
146 | nextTC->set_embedded_list(tc->embedded_list()); |
147 | retTL = nextTC->embedded_list(); |
148 | // Fix the pointer to the list in each chunk in the list. |
149 | // This can be slow for a long list. Consider having |
150 | // an option that does not allow the first chunk on the |
151 | // list to be coalesced. |
152 | for (TreeChunk<Chunk_t, FreeList_t>* curTC = nextTC; curTC != NULL; |
153 | curTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(curTC->next())) { |
154 | curTC->set_list(retTL); |
155 | } |
156 | // Fix the parent to point to the new TreeList<Chunk_t, FreeList_t>. |
157 | if (retTL->parent() != NULL) { |
158 | if (this == retTL->parent()->left()) { |
159 | retTL->parent()->set_left(retTL); |
160 | } else { |
161 | assert(this == retTL->parent()->right(), "Parent is incorrect" ); |
162 | retTL->parent()->set_right(retTL); |
163 | } |
164 | } |
165 | // Fix the children's parent pointers to point to the |
166 | // new list. |
167 | assert(right() == retTL->right(), "Should have been copied" ); |
168 | if (retTL->right() != NULL) { |
169 | retTL->right()->set_parent(retTL); |
170 | } |
171 | assert(left() == retTL->left(), "Should have been copied" ); |
172 | if (retTL->left() != NULL) { |
173 | retTL->left()->set_parent(retTL); |
174 | } |
175 | retTL->link_head(nextTC); |
176 | assert(nextTC->is_free(), "Should be a free chunk" ); |
177 | } |
178 | } else { |
179 | if (nextTC == NULL) { |
180 | // Removing chunk at tail of list |
181 | this->link_tail(prevFC); |
182 | } |
183 | // Chunk is interior to the list |
184 | prevFC->link_after(nextTC); |
185 | } |
186 | |
187 | // Below this point the embedded TreeList<Chunk_t, FreeList_t> being used for the |
188 | // tree node may have changed. Don't use "this" |
189 | // TreeList<Chunk_t, FreeList_t>*. |
190 | // chunk should still be a free chunk (bit set in _prev) |
191 | assert(!retTL->head() || retTL->size() == retTL->head()->size(), |
192 | "Wrong sized chunk in list" ); |
193 | debug_only( |
194 | tc->link_prev(NULL); |
195 | tc->link_next(NULL); |
196 | tc->set_list(NULL); |
197 | bool prev_found = false; |
198 | bool next_found = false; |
199 | for (Chunk_t* curFC = retTL->head(); |
200 | curFC != NULL; curFC = curFC->next()) { |
201 | assert(curFC != tc, "Chunk is still in list" ); |
202 | if (curFC == prevFC) { |
203 | prev_found = true; |
204 | } |
205 | if (curFC == nextTC) { |
206 | next_found = true; |
207 | } |
208 | } |
209 | assert(prevFC == NULL || prev_found, "Chunk was lost from list" ); |
210 | assert(nextTC == NULL || next_found, "Chunk was lost from list" ); |
211 | assert(retTL->parent() == NULL || |
212 | retTL == retTL->parent()->left() || |
213 | retTL == retTL->parent()->right(), |
214 | "list is inconsistent" ); |
215 | ) |
216 | retTL->decrement_count(); |
217 | |
218 | assert(tc->is_free(), "Should still be a free chunk" ); |
219 | assert(retTL->head() == NULL || retTL->head()->prev() == NULL, |
220 | "list invariant" ); |
221 | assert(retTL->tail() == NULL || retTL->tail()->next() == NULL, |
222 | "list invariant" ); |
223 | return retTL; |
224 | } |
225 | |
226 | template <class Chunk_t, class FreeList_t> |
227 | void TreeList<Chunk_t, FreeList_t>::return_chunk_at_tail(TreeChunk<Chunk_t, FreeList_t>* chunk) { |
228 | assert(chunk != NULL, "returning NULL chunk" ); |
229 | assert(chunk->list() == this, "list should be set for chunk" ); |
230 | assert(tail() != NULL, "The tree list is embedded in the first chunk" ); |
231 | // which means that the list can never be empty. |
232 | // This is expensive for metaspace |
233 | assert(!FLSVerifyDictionary || !this->verify_chunk_in_free_list(chunk), "Double entry" ); |
234 | assert(head() == NULL || head()->prev() == NULL, "list invariant" ); |
235 | assert(tail() == NULL || tail()->next() == NULL, "list invariant" ); |
236 | |
237 | Chunk_t* fc = tail(); |
238 | fc->link_after(chunk); |
239 | this->link_tail(chunk); |
240 | |
241 | assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list" ); |
242 | FreeList_t::increment_count(); |
243 | debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));) |
244 | assert(head() == NULL || head()->prev() == NULL, "list invariant" ); |
245 | assert(tail() == NULL || tail()->next() == NULL, "list invariant" ); |
246 | } |
247 | |
248 | template <class Chunk_t, class FreeList_t> |
249 | void TreeChunk<Chunk_t, FreeList_t>::assert_is_mangled() const { |
250 | assert((ZapUnusedHeapArea && |
251 | SpaceMangler::is_mangled((HeapWord*) Chunk_t::size_addr()) && |
252 | SpaceMangler::is_mangled((HeapWord*) Chunk_t::prev_addr()) && |
253 | SpaceMangler::is_mangled((HeapWord*) Chunk_t::next_addr())) || |
254 | (size() == 0 && prev() == NULL && next() == NULL), |
255 | "Space should be clear or mangled" ); |
256 | } |
257 | |
258 | template <class Chunk_t, class FreeList_t> |
259 | TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::head_as_TreeChunk() { |
260 | assert(head() == NULL || (TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head())->list() == this), |
261 | "Wrong type of chunk?" ); |
262 | return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head()); |
263 | } |
264 | |
265 | template <class Chunk_t, class FreeList_t> |
266 | TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::first_available() { |
267 | assert(head() != NULL, "The head of the list cannot be NULL" ); |
268 | Chunk_t* fc = head()->next(); |
269 | TreeChunk<Chunk_t, FreeList_t>* retTC; |
270 | if (fc == NULL) { |
271 | retTC = head_as_TreeChunk(); |
272 | } else { |
273 | retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc); |
274 | } |
275 | assert(retTC->list() == this, "Wrong type of chunk." ); |
276 | return retTC; |
277 | } |
278 | |
279 | // Returns the block with the largest heap address amongst |
280 | // those in the list for this size; potentially slow and expensive, |
281 | // use with caution! |
282 | template <class Chunk_t, class FreeList_t> |
283 | TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::largest_address() { |
284 | assert(head() != NULL, "The head of the list cannot be NULL" ); |
285 | Chunk_t* fc = head()->next(); |
286 | TreeChunk<Chunk_t, FreeList_t>* retTC; |
287 | if (fc == NULL) { |
288 | retTC = head_as_TreeChunk(); |
289 | } else { |
290 | // walk down the list and return the one with the highest |
291 | // heap address among chunks of this size. |
292 | Chunk_t* last = fc; |
293 | while (fc->next() != NULL) { |
294 | if ((HeapWord*)last < (HeapWord*)fc) { |
295 | last = fc; |
296 | } |
297 | fc = fc->next(); |
298 | } |
299 | retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(last); |
300 | } |
301 | assert(retTC->list() == this, "Wrong type of chunk." ); |
302 | return retTC; |
303 | } |
304 | |
305 | template <class Chunk_t, class FreeList_t> |
306 | BinaryTreeDictionary<Chunk_t, FreeList_t>::BinaryTreeDictionary(MemRegion mr) { |
307 | assert((mr.byte_size() > min_size()), "minimum chunk size" ); |
308 | |
309 | reset(mr); |
310 | assert(root()->left() == NULL, "reset check failed" ); |
311 | assert(root()->right() == NULL, "reset check failed" ); |
312 | assert(root()->head()->next() == NULL, "reset check failed" ); |
313 | assert(root()->head()->prev() == NULL, "reset check failed" ); |
314 | assert(total_size() == root()->size(), "reset check failed" ); |
315 | assert(total_free_blocks() == 1, "reset check failed" ); |
316 | } |
317 | |
318 | template <class Chunk_t, class FreeList_t> |
319 | void BinaryTreeDictionary<Chunk_t, FreeList_t>::inc_total_size(size_t inc) { |
320 | _total_size = _total_size + inc; |
321 | } |
322 | |
323 | template <class Chunk_t, class FreeList_t> |
324 | void BinaryTreeDictionary<Chunk_t, FreeList_t>::dec_total_size(size_t dec) { |
325 | _total_size = _total_size - dec; |
326 | } |
327 | |
328 | template <class Chunk_t, class FreeList_t> |
329 | void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(MemRegion mr) { |
330 | assert((mr.byte_size() > min_size()), "minimum chunk size" ); |
331 | set_root(TreeList<Chunk_t, FreeList_t>::as_TreeList(mr.start(), mr.word_size())); |
332 | set_total_size(mr.word_size()); |
333 | set_total_free_blocks(1); |
334 | } |
335 | |
336 | template <class Chunk_t, class FreeList_t> |
337 | void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(HeapWord* addr, size_t byte_size) { |
338 | MemRegion mr(addr, heap_word_size(byte_size)); |
339 | reset(mr); |
340 | } |
341 | |
342 | template <class Chunk_t, class FreeList_t> |
343 | void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset() { |
344 | set_root(NULL); |
345 | set_total_size(0); |
346 | set_total_free_blocks(0); |
347 | } |
348 | |
349 | // Get a free block of size at least size from tree, or NULL. |
350 | template <class Chunk_t, class FreeList_t> |
351 | TreeChunk<Chunk_t, FreeList_t>* |
352 | BinaryTreeDictionary<Chunk_t, FreeList_t>::get_chunk_from_tree(size_t size) |
353 | { |
354 | TreeList<Chunk_t, FreeList_t> *curTL, *prevTL; |
355 | TreeChunk<Chunk_t, FreeList_t>* retTC = NULL; |
356 | |
357 | assert((size >= min_size()), "minimum chunk size" ); |
358 | if (FLSVerifyDictionary) { |
359 | verify_tree(); |
360 | } |
361 | // starting at the root, work downwards trying to find match. |
362 | // Remember the last node of size too great or too small. |
363 | for (prevTL = curTL = root(); curTL != NULL;) { |
364 | if (curTL->size() == size) { // exact match |
365 | break; |
366 | } |
367 | prevTL = curTL; |
368 | if (curTL->size() < size) { // proceed to right sub-tree |
369 | curTL = curTL->right(); |
370 | } else { // proceed to left sub-tree |
371 | assert(curTL->size() > size, "size inconsistency" ); |
372 | curTL = curTL->left(); |
373 | } |
374 | } |
375 | if (curTL == NULL) { // couldn't find exact match |
376 | |
377 | // try and find the next larger size by walking back up the search path |
378 | for (curTL = prevTL; curTL != NULL;) { |
379 | if (curTL->size() >= size) break; |
380 | else curTL = curTL->parent(); |
381 | } |
382 | assert(curTL == NULL || curTL->count() > 0, |
383 | "An empty list should not be in the tree" ); |
384 | } |
385 | if (curTL != NULL) { |
386 | assert(curTL->size() >= size, "size inconsistency" ); |
387 | |
388 | curTL = curTL->get_better_list(this); |
389 | |
390 | retTC = curTL->first_available(); |
391 | assert((retTC != NULL) && (curTL->count() > 0), |
392 | "A list in the binary tree should not be NULL" ); |
393 | assert(retTC->size() >= size, |
394 | "A chunk of the wrong size was found" ); |
395 | remove_chunk_from_tree(retTC); |
396 | assert(retTC->is_free(), "Header is not marked correctly" ); |
397 | } |
398 | |
399 | if (FLSVerifyDictionary) { |
400 | verify(); |
401 | } |
402 | return retTC; |
403 | } |
404 | |
405 | template <class Chunk_t, class FreeList_t> |
406 | TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_list(size_t size) const { |
407 | TreeList<Chunk_t, FreeList_t>* curTL; |
408 | for (curTL = root(); curTL != NULL;) { |
409 | if (curTL->size() == size) { // exact match |
410 | break; |
411 | } |
412 | |
413 | if (curTL->size() < size) { // proceed to right sub-tree |
414 | curTL = curTL->right(); |
415 | } else { // proceed to left sub-tree |
416 | assert(curTL->size() > size, "size inconsistency" ); |
417 | curTL = curTL->left(); |
418 | } |
419 | } |
420 | return curTL; |
421 | } |
422 | |
423 | |
424 | template <class Chunk_t, class FreeList_t> |
425 | bool BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_chunk_in_free_list(Chunk_t* tc) const { |
426 | size_t size = tc->size(); |
427 | TreeList<Chunk_t, FreeList_t>* tl = find_list(size); |
428 | if (tl == NULL) { |
429 | return false; |
430 | } else { |
431 | return tl->verify_chunk_in_free_list(tc); |
432 | } |
433 | } |
434 | |
435 | template <class Chunk_t, class FreeList_t> |
436 | Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_largest_dict() const { |
437 | TreeList<Chunk_t, FreeList_t> *curTL = root(); |
438 | if (curTL != NULL) { |
439 | while(curTL->right() != NULL) curTL = curTL->right(); |
440 | return curTL->largest_address(); |
441 | } else { |
442 | return NULL; |
443 | } |
444 | } |
445 | |
446 | // Remove the current chunk from the tree. If it is not the last |
447 | // chunk in a list on a tree node, just unlink it. |
448 | // If it is the last chunk in the list (the next link is NULL), |
449 | // remove the node and repair the tree. |
450 | template <class Chunk_t, class FreeList_t> |
451 | TreeChunk<Chunk_t, FreeList_t>* |
452 | BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_chunk_from_tree(TreeChunk<Chunk_t, FreeList_t>* tc) { |
453 | assert(tc != NULL, "Should not call with a NULL chunk" ); |
454 | assert(tc->is_free(), "Header is not marked correctly" ); |
455 | |
456 | TreeList<Chunk_t, FreeList_t> *newTL, *parentTL; |
457 | TreeChunk<Chunk_t, FreeList_t>* retTC; |
458 | TreeList<Chunk_t, FreeList_t>* tl = tc->list(); |
459 | debug_only( |
460 | bool removing_only_chunk = false; |
461 | if (tl == _root) { |
462 | if ((_root->left() == NULL) && (_root->right() == NULL)) { |
463 | if (_root->count() == 1) { |
464 | assert(_root->head() == tc, "Should only be this one chunk" ); |
465 | removing_only_chunk = true; |
466 | } |
467 | } |
468 | } |
469 | ) |
470 | assert(tl != NULL, "List should be set" ); |
471 | assert(tl->parent() == NULL || tl == tl->parent()->left() || |
472 | tl == tl->parent()->right(), "list is inconsistent" ); |
473 | |
474 | bool complicated_splice = false; |
475 | |
476 | retTC = tc; |
477 | // Removing this chunk can have the side effect of changing the node |
478 | // (TreeList<Chunk_t, FreeList_t>*) in the tree. If the node is the root, update it. |
479 | TreeList<Chunk_t, FreeList_t>* replacementTL = tl->remove_chunk_replace_if_needed(tc); |
480 | assert(tc->is_free(), "Chunk should still be free" ); |
481 | assert(replacementTL->parent() == NULL || |
482 | replacementTL == replacementTL->parent()->left() || |
483 | replacementTL == replacementTL->parent()->right(), |
484 | "list is inconsistent" ); |
485 | if (tl == root()) { |
486 | assert(replacementTL->parent() == NULL, "Incorrectly replacing root" ); |
487 | set_root(replacementTL); |
488 | } |
489 | #ifdef ASSERT |
490 | if (tl != replacementTL) { |
491 | assert(replacementTL->head() != NULL, |
492 | "If the tree list was replaced, it should not be a NULL list" ); |
493 | TreeList<Chunk_t, FreeList_t>* rhl = replacementTL->head_as_TreeChunk()->list(); |
494 | TreeList<Chunk_t, FreeList_t>* rtl = |
495 | TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(replacementTL->tail())->list(); |
496 | assert(rhl == replacementTL, "Broken head" ); |
497 | assert(rtl == replacementTL, "Broken tail" ); |
498 | assert(replacementTL->size() == tc->size(), "Broken size" ); |
499 | } |
500 | #endif |
501 | |
502 | // Does the tree need to be repaired? |
503 | if (replacementTL->count() == 0) { |
504 | assert(replacementTL->head() == NULL && |
505 | replacementTL->tail() == NULL, "list count is incorrect" ); |
506 | // Find the replacement node for the (soon to be empty) node being removed. |
507 | // if we have a single (or no) child, splice child in our stead |
508 | if (replacementTL->left() == NULL) { |
509 | // left is NULL so pick right. right may also be NULL. |
510 | newTL = replacementTL->right(); |
511 | debug_only(replacementTL->clear_right();) |
512 | } else if (replacementTL->right() == NULL) { |
513 | // right is NULL |
514 | newTL = replacementTL->left(); |
515 | debug_only(replacementTL->clear_left();) |
516 | } else { // we have both children, so, by patriarchal convention, |
517 | // my replacement is least node in right sub-tree |
518 | complicated_splice = true; |
519 | newTL = remove_tree_minimum(replacementTL->right()); |
520 | assert(newTL != NULL && newTL->left() == NULL && |
521 | newTL->right() == NULL, "sub-tree minimum exists" ); |
522 | } |
523 | // newTL is the replacement for the (soon to be empty) node. |
524 | // newTL may be NULL. |
525 | // should verify; we just cleanly excised our replacement |
526 | if (FLSVerifyDictionary) { |
527 | verify_tree(); |
528 | } |
529 | // first make newTL my parent's child |
530 | if ((parentTL = replacementTL->parent()) == NULL) { |
531 | // newTL should be root |
532 | assert(tl == root(), "Incorrectly replacing root" ); |
533 | set_root(newTL); |
534 | if (newTL != NULL) { |
535 | newTL->clear_parent(); |
536 | } |
537 | } else if (parentTL->right() == replacementTL) { |
538 | // replacementTL is a right child |
539 | parentTL->set_right(newTL); |
540 | } else { // replacementTL is a left child |
541 | assert(parentTL->left() == replacementTL, "should be left child" ); |
542 | parentTL->set_left(newTL); |
543 | } |
544 | debug_only(replacementTL->clear_parent();) |
545 | if (complicated_splice) { // we need newTL to get replacementTL's |
546 | // two children |
547 | assert(newTL != NULL && |
548 | newTL->left() == NULL && newTL->right() == NULL, |
549 | "newTL should not have encumbrances from the past" ); |
550 | // we'd like to assert as below: |
551 | // assert(replacementTL->left() != NULL && replacementTL->right() != NULL, |
552 | // "else !complicated_splice"); |
553 | // ... however, the above assertion is too strong because we aren't |
554 | // guaranteed that replacementTL->right() is still NULL. |
555 | // Recall that we removed |
556 | // the right sub-tree minimum from replacementTL. |
557 | // That may well have been its right |
558 | // child! So we'll just assert half of the above: |
559 | assert(replacementTL->left() != NULL, "else !complicated_splice" ); |
560 | newTL->set_left(replacementTL->left()); |
561 | newTL->set_right(replacementTL->right()); |
562 | debug_only( |
563 | replacementTL->clear_right(); |
564 | replacementTL->clear_left(); |
565 | ) |
566 | } |
567 | assert(replacementTL->right() == NULL && |
568 | replacementTL->left() == NULL && |
569 | replacementTL->parent() == NULL, |
570 | "delete without encumbrances" ); |
571 | } |
572 | |
573 | assert(total_size() >= retTC->size(), "Incorrect total size" ); |
574 | dec_total_size(retTC->size()); // size book-keeping |
575 | assert(total_free_blocks() > 0, "Incorrect total count" ); |
576 | set_total_free_blocks(total_free_blocks() - 1); |
577 | |
578 | assert(retTC != NULL, "null chunk?" ); |
579 | assert(retTC->prev() == NULL && retTC->next() == NULL, |
580 | "should return without encumbrances" ); |
581 | if (FLSVerifyDictionary) { |
582 | verify_tree(); |
583 | } |
584 | assert(!removing_only_chunk || _root == NULL, "root should be NULL" ); |
585 | return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(retTC); |
586 | } |
587 | |
588 | // Remove the leftmost node (lm) in the tree and return it. |
589 | // If lm has a right child, link it to the left node of |
590 | // the parent of lm. |
591 | template <class Chunk_t, class FreeList_t> |
592 | TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_tree_minimum(TreeList<Chunk_t, FreeList_t>* tl) { |
593 | assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree" ); |
594 | // locate the subtree minimum by walking down left branches |
595 | TreeList<Chunk_t, FreeList_t>* curTL = tl; |
596 | for (; curTL->left() != NULL; curTL = curTL->left()); |
597 | // obviously curTL now has at most one child, a right child |
598 | if (curTL != root()) { // Should this test just be removed? |
599 | TreeList<Chunk_t, FreeList_t>* parentTL = curTL->parent(); |
600 | if (parentTL->left() == curTL) { // curTL is a left child |
601 | parentTL->set_left(curTL->right()); |
602 | } else { |
603 | // If the list tl has no left child, then curTL may be |
604 | // the right child of parentTL. |
605 | assert(parentTL->right() == curTL, "should be a right child" ); |
606 | parentTL->set_right(curTL->right()); |
607 | } |
608 | } else { |
609 | // The only use of this method would not pass the root of the |
610 | // tree (as indicated by the assertion above that the tree list |
611 | // has a parent) but the specification does not explicitly exclude the |
612 | // passing of the root so accommodate it. |
613 | set_root(NULL); |
614 | } |
615 | debug_only( |
616 | curTL->clear_parent(); // Test if this needs to be cleared |
617 | curTL->clear_right(); // recall, above, left child is already null |
618 | ) |
619 | // we just excised a (non-root) node, we should still verify all tree invariants |
620 | if (FLSVerifyDictionary) { |
621 | verify_tree(); |
622 | } |
623 | return curTL; |
624 | } |
625 | |
626 | template <class Chunk_t, class FreeList_t> |
627 | void BinaryTreeDictionary<Chunk_t, FreeList_t>::insert_chunk_in_tree(Chunk_t* fc) { |
628 | TreeList<Chunk_t, FreeList_t> *curTL, *prevTL; |
629 | size_t size = fc->size(); |
630 | |
631 | assert((size >= min_size()), |
632 | SIZE_FORMAT " is too small to be a TreeChunk<Chunk_t, FreeList_t> " SIZE_FORMAT, |
633 | size, min_size()); |
634 | if (FLSVerifyDictionary) { |
635 | verify_tree(); |
636 | } |
637 | |
638 | fc->clear_next(); |
639 | fc->link_prev(NULL); |
640 | |
641 | // work down from the _root, looking for insertion point |
642 | for (prevTL = curTL = root(); curTL != NULL;) { |
643 | if (curTL->size() == size) // exact match |
644 | break; |
645 | prevTL = curTL; |
646 | if (curTL->size() > size) { // follow left branch |
647 | curTL = curTL->left(); |
648 | } else { // follow right branch |
649 | assert(curTL->size() < size, "size inconsistency" ); |
650 | curTL = curTL->right(); |
651 | } |
652 | } |
653 | TreeChunk<Chunk_t, FreeList_t>* tc = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc); |
654 | // This chunk is being returned to the binary tree. Its embedded |
655 | // TreeList<Chunk_t, FreeList_t> should be unused at this point. |
656 | tc->initialize(); |
657 | if (curTL != NULL) { // exact match |
658 | tc->set_list(curTL); |
659 | curTL->return_chunk_at_tail(tc); |
660 | } else { // need a new node in tree |
661 | tc->clear_next(); |
662 | tc->link_prev(NULL); |
663 | TreeList<Chunk_t, FreeList_t>* newTL = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc); |
664 | assert(((TreeChunk<Chunk_t, FreeList_t>*)tc)->list() == newTL, |
665 | "List was not initialized correctly" ); |
666 | if (prevTL == NULL) { // we are the only tree node |
667 | assert(root() == NULL, "control point invariant" ); |
668 | set_root(newTL); |
669 | } else { // insert under prevTL ... |
670 | if (prevTL->size() < size) { // am right child |
671 | assert(prevTL->right() == NULL, "control point invariant" ); |
672 | prevTL->set_right(newTL); |
673 | } else { // am left child |
674 | assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv" ); |
675 | prevTL->set_left(newTL); |
676 | } |
677 | } |
678 | } |
679 | assert(tc->list() != NULL, "Tree list should be set" ); |
680 | |
681 | inc_total_size(size); |
682 | // Method 'total_size_in_tree' walks through the every block in the |
683 | // tree, so it can cause significant performance loss if there are |
684 | // many blocks in the tree |
685 | assert(!FLSVerifyDictionary || total_size_in_tree(root()) == total_size(), "_total_size inconsistency" ); |
686 | set_total_free_blocks(total_free_blocks() + 1); |
687 | if (FLSVerifyDictionary) { |
688 | verify_tree(); |
689 | } |
690 | } |
691 | |
692 | template <class Chunk_t, class FreeList_t> |
693 | size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::max_chunk_size() const { |
694 | verify_par_locked(); |
695 | TreeList<Chunk_t, FreeList_t>* tc = root(); |
696 | if (tc == NULL) return 0; |
697 | for (; tc->right() != NULL; tc = tc->right()); |
698 | return tc->size(); |
699 | } |
700 | |
701 | template <class Chunk_t, class FreeList_t> |
702 | size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_list_length(TreeList<Chunk_t, FreeList_t>* tl) const { |
703 | size_t res; |
704 | res = tl->count(); |
705 | #ifdef ASSERT |
706 | size_t cnt; |
707 | Chunk_t* tc = tl->head(); |
708 | for (cnt = 0; tc != NULL; tc = tc->next(), cnt++); |
709 | assert(res == cnt, "The count is not being maintained correctly" ); |
710 | #endif |
711 | return res; |
712 | } |
713 | |
714 | template <class Chunk_t, class FreeList_t> |
715 | size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_size_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const { |
716 | if (tl == NULL) |
717 | return 0; |
718 | return (tl->size() * total_list_length(tl)) + |
719 | total_size_in_tree(tl->left()) + |
720 | total_size_in_tree(tl->right()); |
721 | } |
722 | |
723 | template <class Chunk_t, class FreeList_t> |
724 | double BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_of_squared_block_sizes(TreeList<Chunk_t, FreeList_t>* const tl) const { |
725 | if (tl == NULL) { |
726 | return 0.0; |
727 | } |
728 | double size = (double)(tl->size()); |
729 | double curr = size * size * total_list_length(tl); |
730 | curr += sum_of_squared_block_sizes(tl->left()); |
731 | curr += sum_of_squared_block_sizes(tl->right()); |
732 | return curr; |
733 | } |
734 | |
735 | template <class Chunk_t, class FreeList_t> |
736 | size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_free_blocks_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const { |
737 | if (tl == NULL) |
738 | return 0; |
739 | return total_list_length(tl) + |
740 | total_free_blocks_in_tree(tl->left()) + |
741 | total_free_blocks_in_tree(tl->right()); |
742 | } |
743 | |
744 | template <class Chunk_t, class FreeList_t> |
745 | size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::num_free_blocks() const { |
746 | assert(total_free_blocks_in_tree(root()) == total_free_blocks(), |
747 | "_total_free_blocks inconsistency" ); |
748 | return total_free_blocks(); |
749 | } |
750 | |
751 | template <class Chunk_t, class FreeList_t> |
752 | size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height_helper(TreeList<Chunk_t, FreeList_t>* tl) const { |
753 | if (tl == NULL) |
754 | return 0; |
755 | return 1 + MAX2(tree_height_helper(tl->left()), |
756 | tree_height_helper(tl->right())); |
757 | } |
758 | |
759 | template <class Chunk_t, class FreeList_t> |
760 | size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height() const { |
761 | return tree_height_helper(root()); |
762 | } |
763 | |
764 | template <class Chunk_t, class FreeList_t> |
765 | size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_helper(TreeList<Chunk_t, FreeList_t>* tl) const { |
766 | if (tl == NULL) { |
767 | return 0; |
768 | } |
769 | return 1 + total_nodes_helper(tl->left()) + |
770 | total_nodes_helper(tl->right()); |
771 | } |
772 | |
773 | // Searches the tree for a chunk that ends at the |
774 | // specified address. |
775 | template <class Chunk_t, class FreeList_t> |
776 | class EndTreeSearchClosure : public DescendTreeSearchClosure<Chunk_t, FreeList_t> { |
777 | HeapWord* _target; |
778 | Chunk_t* _found; |
779 | |
780 | public: |
781 | EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {} |
782 | bool do_list(FreeList_t* fl) { |
783 | Chunk_t* item = fl->head(); |
784 | while (item != NULL) { |
785 | if (item->end() == (uintptr_t*) _target) { |
786 | _found = item; |
787 | return true; |
788 | } |
789 | item = item->next(); |
790 | } |
791 | return false; |
792 | } |
793 | Chunk_t* found() { return _found; } |
794 | }; |
795 | |
796 | template <class Chunk_t, class FreeList_t> |
797 | Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_chunk_ends_at(HeapWord* target) const { |
798 | EndTreeSearchClosure<Chunk_t, FreeList_t> etsc(target); |
799 | bool found_target = etsc.do_tree(root()); |
800 | assert(found_target || etsc.found() == NULL, "Consistency check" ); |
801 | assert(!found_target || etsc.found() != NULL, "Consistency check" ); |
802 | return etsc.found(); |
803 | } |
804 | |
805 | // Closures and methods for calculating total bytes returned to the |
806 | // free lists in the tree. |
807 | #ifndef PRODUCT |
808 | template <class Chunk_t, class FreeList_t> |
809 | class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> { |
810 | public: |
811 | void do_list(FreeList_t* fl) { |
812 | fl->set_returned_bytes(0); |
813 | } |
814 | }; |
815 | |
816 | template <class Chunk_t, class FreeList_t> |
817 | void BinaryTreeDictionary<Chunk_t, FreeList_t>::initialize_dict_returned_bytes() { |
818 | InitializeDictReturnedBytesClosure<Chunk_t, FreeList_t> idrb; |
819 | idrb.do_tree(root()); |
820 | } |
821 | |
822 | template <class Chunk_t, class FreeList_t> |
823 | class ReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> { |
824 | size_t _dict_returned_bytes; |
825 | public: |
826 | ReturnedBytesClosure() { _dict_returned_bytes = 0; } |
827 | void do_list(FreeList_t* fl) { |
828 | _dict_returned_bytes += fl->returned_bytes(); |
829 | } |
830 | size_t dict_returned_bytes() { return _dict_returned_bytes; } |
831 | }; |
832 | |
833 | template <class Chunk_t, class FreeList_t> |
834 | size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_dict_returned_bytes() { |
835 | ReturnedBytesClosure<Chunk_t, FreeList_t> rbc; |
836 | rbc.do_tree(root()); |
837 | |
838 | return rbc.dict_returned_bytes(); |
839 | } |
840 | |
841 | // Count the number of entries in the tree. |
842 | template <class Chunk_t, class FreeList_t> |
843 | class treeCountClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> { |
844 | public: |
845 | uint count; |
846 | treeCountClosure(uint c) { count = c; } |
847 | void do_list(FreeList_t* fl) { |
848 | count++; |
849 | } |
850 | }; |
851 | |
852 | template <class Chunk_t, class FreeList_t> |
853 | size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_count() { |
854 | treeCountClosure<Chunk_t, FreeList_t> ctc(0); |
855 | ctc.do_tree(root()); |
856 | return ctc.count; |
857 | } |
858 | |
859 | template <class Chunk_t, class FreeList_t> |
860 | Mutex* BinaryTreeDictionary<Chunk_t, FreeList_t>::par_lock() const { |
861 | return _lock; |
862 | } |
863 | |
864 | template <class Chunk_t, class FreeList_t> |
865 | void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_par_lock(Mutex* lock) { |
866 | _lock = lock; |
867 | } |
868 | |
869 | template <class Chunk_t, class FreeList_t> |
870 | void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_par_locked() const { |
871 | #ifdef ASSERT |
872 | Thread* my_thread = Thread::current(); |
873 | if (my_thread->is_GC_task_thread()) { |
874 | assert(par_lock() != NULL, "Should be using locking?" ); |
875 | assert_lock_strong(par_lock()); |
876 | } |
877 | #endif // ASSERT |
878 | } |
879 | #endif // PRODUCT |
880 | |
881 | // Print summary statistics |
882 | template <class Chunk_t, class FreeList_t> |
883 | void BinaryTreeDictionary<Chunk_t, FreeList_t>::report_statistics(outputStream* st) const { |
884 | verify_par_locked(); |
885 | st->print_cr("Statistics for BinaryTreeDictionary:" ); |
886 | st->print_cr("------------------------------------" ); |
887 | size_t total_size = total_chunk_size(debug_only(NULL)); |
888 | size_t free_blocks = num_free_blocks(); |
889 | st->print_cr("Total Free Space: " SIZE_FORMAT, total_size); |
890 | st->print_cr("Max Chunk Size: " SIZE_FORMAT, max_chunk_size()); |
891 | st->print_cr("Number of Blocks: " SIZE_FORMAT, free_blocks); |
892 | if (free_blocks > 0) { |
893 | st->print_cr("Av. Block Size: " SIZE_FORMAT, total_size/free_blocks); |
894 | } |
895 | st->print_cr("Tree Height: " SIZE_FORMAT, tree_height()); |
896 | } |
897 | |
898 | template <class Chunk_t, class FreeList_t> |
899 | class PrintFreeListsClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> { |
900 | outputStream* _st; |
901 | int _print_line; |
902 | |
903 | public: |
904 | PrintFreeListsClosure(outputStream* st) { |
905 | _st = st; |
906 | _print_line = 0; |
907 | } |
908 | void do_list(FreeList_t* fl) { |
909 | if (++_print_line >= 40) { |
910 | FreeList_t::print_labels_on(_st, "size" ); |
911 | _print_line = 0; |
912 | } |
913 | fl->print_on(_st); |
914 | size_t sz = fl->size(); |
915 | for (Chunk_t* fc = fl->head(); fc != NULL; |
916 | fc = fc->next()) { |
917 | _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ") %s" , |
918 | p2i(fc), p2i((HeapWord*)fc + sz), |
919 | fc->cantCoalesce() ? "\t CC" : "" ); |
920 | } |
921 | } |
922 | }; |
923 | |
924 | template <class Chunk_t, class FreeList_t> |
925 | void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_free_lists(outputStream* st) const { |
926 | |
927 | FreeList_t::print_labels_on(st, "size" ); |
928 | PrintFreeListsClosure<Chunk_t, FreeList_t> pflc(st); |
929 | pflc.do_tree(root()); |
930 | } |
931 | |
932 | // Verify the following tree invariants: |
933 | // . _root has no parent |
934 | // . parent and child point to each other |
935 | // . each node's key correctly related to that of its child(ren) |
936 | template <class Chunk_t, class FreeList_t> |
937 | void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree() const { |
938 | guarantee(root() == NULL || total_free_blocks() == 0 || |
939 | total_size() != 0, "_total_size shouldn't be 0?" ); |
940 | guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent" ); |
941 | verify_tree_helper(root()); |
942 | } |
943 | |
944 | template <class Chunk_t, class FreeList_t> |
945 | size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_prev_free_ptrs(TreeList<Chunk_t, FreeList_t>* tl) { |
946 | size_t ct = 0; |
947 | for (Chunk_t* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) { |
948 | ct++; |
949 | assert(curFC->prev() == NULL || curFC->prev()->is_free(), |
950 | "Chunk should be free" ); |
951 | } |
952 | return ct; |
953 | } |
954 | |
955 | // Note: this helper is recursive rather than iterative, so use with |
956 | // caution on very deep trees; and watch out for stack overflow errors; |
957 | // In general, to be used only for debugging. |
958 | template <class Chunk_t, class FreeList_t> |
959 | void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree_helper(TreeList<Chunk_t, FreeList_t>* tl) const { |
960 | if (tl == NULL) |
961 | return; |
962 | guarantee(tl->size() != 0, "A list must has a size" ); |
963 | guarantee(tl->left() == NULL || tl->left()->parent() == tl, |
964 | "parent<-/->left" ); |
965 | guarantee(tl->right() == NULL || tl->right()->parent() == tl, |
966 | "parent<-/->right" );; |
967 | guarantee(tl->left() == NULL || tl->left()->size() < tl->size(), |
968 | "parent !> left" ); |
969 | guarantee(tl->right() == NULL || tl->right()->size() > tl->size(), |
970 | "parent !< left" ); |
971 | guarantee(tl->head() == NULL || tl->head()->is_free(), "!Free" ); |
972 | guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl, |
973 | "list inconsistency" ); |
974 | guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL), |
975 | "list count is inconsistent" ); |
976 | guarantee(tl->count() > 1 || tl->head() == tl->tail(), |
977 | "list is incorrectly constructed" ); |
978 | size_t count = verify_prev_free_ptrs(tl); |
979 | guarantee(count == (size_t)tl->count(), "Node count is incorrect" ); |
980 | if (tl->head() != NULL) { |
981 | tl->head_as_TreeChunk()->verify_tree_chunk_list(); |
982 | } |
983 | verify_tree_helper(tl->left()); |
984 | verify_tree_helper(tl->right()); |
985 | } |
986 | |
987 | template <class Chunk_t, class FreeList_t> |
988 | void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify() const { |
989 | verify_tree(); |
990 | guarantee(total_size() == total_size_in_tree(root()), "Total Size inconsistency" ); |
991 | } |
992 | |
993 | template <class Chunk_t, class FreeList_t> |
994 | size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_chunk_size(debug_only(const Mutex* lock)) const { |
995 | debug_only( |
996 | if (lock != NULL && lock->owned_by_self()) { |
997 | assert(total_size_in_tree(root()) == total_size(), |
998 | "_total_size inconsistency" ); |
999 | } |
1000 | ) |
1001 | return total_size(); |
1002 | } |
1003 | |
1004 | #endif // SHARE_MEMORY_BINARYTREEDICTIONARY_INLINE_HPP |
1005 | |