1 | /* |
2 | * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "gc/cms/cmsHeap.hpp" |
27 | #include "gc/cms/cmsLockVerifier.hpp" |
28 | #include "gc/cms/compactibleFreeListSpace.hpp" |
29 | #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp" |
30 | #include "gc/cms/concurrentMarkSweepThread.hpp" |
31 | #include "gc/shared/blockOffsetTable.inline.hpp" |
32 | #include "gc/shared/collectedHeap.inline.hpp" |
33 | #include "gc/shared/genOopClosures.inline.hpp" |
34 | #include "gc/shared/space.inline.hpp" |
35 | #include "gc/shared/spaceDecorator.hpp" |
36 | #include "logging/log.hpp" |
37 | #include "logging/logStream.hpp" |
38 | #include "memory/allocation.inline.hpp" |
39 | #include "memory/binaryTreeDictionary.inline.hpp" |
40 | #include "memory/iterator.inline.hpp" |
41 | #include "memory/resourceArea.hpp" |
42 | #include "memory/universe.hpp" |
43 | #include "oops/access.inline.hpp" |
44 | #include "oops/compressedOops.inline.hpp" |
45 | #include "oops/oop.inline.hpp" |
46 | #include "runtime/globals.hpp" |
47 | #include "runtime/handles.inline.hpp" |
48 | #include "runtime/init.hpp" |
49 | #include "runtime/java.hpp" |
50 | #include "runtime/orderAccess.hpp" |
51 | #include "runtime/vmThread.hpp" |
52 | #include "utilities/align.hpp" |
53 | #include "utilities/copy.hpp" |
54 | |
55 | // Specialize for AdaptiveFreeList which tries to avoid |
56 | // splitting a chunk of a size that is under populated in favor of |
57 | // an over populated size. The general get_better_list() just returns |
58 | // the current list. |
59 | template <> |
60 | TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >* |
61 | TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >::get_better_list( |
62 | BinaryTreeDictionary<FreeChunk, ::AdaptiveFreeList<FreeChunk> >* dictionary) { |
63 | // A candidate chunk has been found. If it is already under |
64 | // populated, get a chunk associated with the hint for this |
65 | // chunk. |
66 | |
67 | TreeList<FreeChunk, ::AdaptiveFreeList<FreeChunk> >* curTL = this; |
68 | if (curTL->surplus() <= 0) { |
69 | /* Use the hint to find a size with a surplus, and reset the hint. */ |
70 | TreeList<FreeChunk, ::AdaptiveFreeList<FreeChunk> >* hintTL = this; |
71 | while (hintTL->hint() != 0) { |
72 | assert(hintTL->hint() > hintTL->size(), |
73 | "hint points in the wrong direction" ); |
74 | hintTL = dictionary->find_list(hintTL->hint()); |
75 | assert(curTL != hintTL, "Infinite loop" ); |
76 | if (hintTL == NULL || |
77 | hintTL == curTL /* Should not happen but protect against it */ ) { |
78 | // No useful hint. Set the hint to NULL and go on. |
79 | curTL->set_hint(0); |
80 | break; |
81 | } |
82 | assert(hintTL->size() > curTL->size(), "hint is inconsistent" ); |
83 | if (hintTL->surplus() > 0) { |
84 | // The hint led to a list that has a surplus. Use it. |
85 | // Set the hint for the candidate to an overpopulated |
86 | // size. |
87 | curTL->set_hint(hintTL->size()); |
88 | // Change the candidate. |
89 | curTL = hintTL; |
90 | break; |
91 | } |
92 | } |
93 | } |
94 | return curTL; |
95 | } |
96 | |
97 | void AFLBinaryTreeDictionary::dict_census_update(size_t size, bool split, bool birth) { |
98 | TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >* nd = find_list(size); |
99 | if (nd) { |
100 | if (split) { |
101 | if (birth) { |
102 | nd->increment_split_births(); |
103 | nd->increment_surplus(); |
104 | } else { |
105 | nd->increment_split_deaths(); |
106 | nd->decrement_surplus(); |
107 | } |
108 | } else { |
109 | if (birth) { |
110 | nd->increment_coal_births(); |
111 | nd->increment_surplus(); |
112 | } else { |
113 | nd->increment_coal_deaths(); |
114 | nd->decrement_surplus(); |
115 | } |
116 | } |
117 | } |
118 | // A list for this size may not be found (nd == 0) if |
119 | // This is a death where the appropriate list is now |
120 | // empty and has been removed from the list. |
121 | // This is a birth associated with a LinAB. The chunk |
122 | // for the LinAB is not in the dictionary. |
123 | } |
124 | |
125 | bool AFLBinaryTreeDictionary::coal_dict_over_populated(size_t size) { |
126 | if (FLSAlwaysCoalesceLarge) return true; |
127 | |
128 | TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >* list_of_size = find_list(size); |
129 | // None of requested size implies overpopulated. |
130 | return list_of_size == NULL || list_of_size->coal_desired() <= 0 || |
131 | list_of_size->count() > list_of_size->coal_desired(); |
132 | } |
133 | |
134 | // For each list in the tree, calculate the desired, desired |
135 | // coalesce, count before sweep, and surplus before sweep. |
136 | class BeginSweepClosure : public AscendTreeCensusClosure<FreeChunk, AdaptiveFreeList<FreeChunk> > { |
137 | double _percentage; |
138 | float _inter_sweep_current; |
139 | float _inter_sweep_estimate; |
140 | float _intra_sweep_estimate; |
141 | |
142 | public: |
143 | BeginSweepClosure(double p, float inter_sweep_current, |
144 | float inter_sweep_estimate, |
145 | float intra_sweep_estimate) : |
146 | _percentage(p), |
147 | _inter_sweep_current(inter_sweep_current), |
148 | _inter_sweep_estimate(inter_sweep_estimate), |
149 | _intra_sweep_estimate(intra_sweep_estimate) { } |
150 | |
151 | void do_list(AdaptiveFreeList<FreeChunk>* fl) { |
152 | double coalSurplusPercent = _percentage; |
153 | fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate); |
154 | fl->set_coal_desired((ssize_t)((double)fl->desired() * coalSurplusPercent)); |
155 | fl->set_before_sweep(fl->count()); |
156 | fl->set_bfr_surp(fl->surplus()); |
157 | } |
158 | }; |
159 | |
160 | void AFLBinaryTreeDictionary::begin_sweep_dict_census(double coalSurplusPercent, |
161 | float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) { |
162 | BeginSweepClosure bsc(coalSurplusPercent, inter_sweep_current, |
163 | inter_sweep_estimate, |
164 | intra_sweep_estimate); |
165 | bsc.do_tree(root()); |
166 | } |
167 | |
168 | // Calculate surpluses for the lists in the tree. |
169 | class setTreeSurplusClosure : public AscendTreeCensusClosure<FreeChunk, AdaptiveFreeList<FreeChunk> > { |
170 | double percentage; |
171 | public: |
172 | setTreeSurplusClosure(double v) { percentage = v; } |
173 | |
174 | void do_list(AdaptiveFreeList<FreeChunk>* fl) { |
175 | double splitSurplusPercent = percentage; |
176 | fl->set_surplus(fl->count() - |
177 | (ssize_t)((double)fl->desired() * splitSurplusPercent)); |
178 | } |
179 | }; |
180 | |
181 | void AFLBinaryTreeDictionary::set_tree_surplus(double splitSurplusPercent) { |
182 | setTreeSurplusClosure sts(splitSurplusPercent); |
183 | sts.do_tree(root()); |
184 | } |
185 | |
186 | // Set hints for the lists in the tree. |
187 | class setTreeHintsClosure : public DescendTreeCensusClosure<FreeChunk, AdaptiveFreeList<FreeChunk> > { |
188 | size_t hint; |
189 | public: |
190 | setTreeHintsClosure(size_t v) { hint = v; } |
191 | |
192 | void do_list(AdaptiveFreeList<FreeChunk>* fl) { |
193 | fl->set_hint(hint); |
194 | assert(fl->hint() == 0 || fl->hint() > fl->size(), |
195 | "Current hint is inconsistent" ); |
196 | if (fl->surplus() > 0) { |
197 | hint = fl->size(); |
198 | } |
199 | } |
200 | }; |
201 | |
202 | void AFLBinaryTreeDictionary::set_tree_hints(void) { |
203 | setTreeHintsClosure sth(0); |
204 | sth.do_tree(root()); |
205 | } |
206 | |
207 | // Save count before previous sweep and splits and coalesces. |
208 | class clearTreeCensusClosure : public AscendTreeCensusClosure<FreeChunk, AdaptiveFreeList<FreeChunk> > { |
209 | void do_list(AdaptiveFreeList<FreeChunk>* fl) { |
210 | fl->set_prev_sweep(fl->count()); |
211 | fl->set_coal_births(0); |
212 | fl->set_coal_deaths(0); |
213 | fl->set_split_births(0); |
214 | fl->set_split_deaths(0); |
215 | } |
216 | }; |
217 | |
218 | void AFLBinaryTreeDictionary::clear_tree_census(void) { |
219 | clearTreeCensusClosure ctc; |
220 | ctc.do_tree(root()); |
221 | } |
222 | |
223 | // Do reporting and post sweep clean up. |
224 | void AFLBinaryTreeDictionary::end_sweep_dict_census(double splitSurplusPercent) { |
225 | // Does walking the tree 3 times hurt? |
226 | set_tree_surplus(splitSurplusPercent); |
227 | set_tree_hints(); |
228 | LogTarget(Trace, gc, freelist, stats) log; |
229 | if (log.is_enabled()) { |
230 | LogStream out(log); |
231 | report_statistics(&out); |
232 | } |
233 | clear_tree_census(); |
234 | } |
235 | |
236 | // Print census information - counts, births, deaths, etc. |
237 | // for each list in the tree. Also print some summary |
238 | // information. |
239 | class PrintTreeCensusClosure : public AscendTreeCensusClosure<FreeChunk, AdaptiveFreeList<FreeChunk> > { |
240 | int _print_line; |
241 | size_t _total_free; |
242 | AdaptiveFreeList<FreeChunk> _total; |
243 | |
244 | public: |
245 | PrintTreeCensusClosure() { |
246 | _print_line = 0; |
247 | _total_free = 0; |
248 | } |
249 | AdaptiveFreeList<FreeChunk>* total() { return &_total; } |
250 | size_t total_free() { return _total_free; } |
251 | |
252 | void do_list(AdaptiveFreeList<FreeChunk>* fl) { |
253 | LogStreamHandle(Debug, gc, freelist, census) out; |
254 | |
255 | if (++_print_line >= 40) { |
256 | AdaptiveFreeList<FreeChunk>::print_labels_on(&out, "size" ); |
257 | _print_line = 0; |
258 | } |
259 | fl->print_on(&out); |
260 | _total_free += fl->count() * fl->size() ; |
261 | total()->set_count( total()->count() + fl->count() ); |
262 | total()->set_bfr_surp( total()->bfr_surp() + fl->bfr_surp() ); |
263 | total()->set_surplus( total()->split_deaths() + fl->surplus() ); |
264 | total()->set_desired( total()->desired() + fl->desired() ); |
265 | total()->set_prev_sweep( total()->prev_sweep() + fl->prev_sweep() ); |
266 | total()->set_before_sweep(total()->before_sweep() + fl->before_sweep()); |
267 | total()->set_coal_births( total()->coal_births() + fl->coal_births() ); |
268 | total()->set_coal_deaths( total()->coal_deaths() + fl->coal_deaths() ); |
269 | total()->set_split_births(total()->split_births() + fl->split_births()); |
270 | total()->set_split_deaths(total()->split_deaths() + fl->split_deaths()); |
271 | } |
272 | }; |
273 | |
274 | void AFLBinaryTreeDictionary::print_dict_census(outputStream* st) const { |
275 | |
276 | st->print_cr("BinaryTree" ); |
277 | AdaptiveFreeList<FreeChunk>::print_labels_on(st, "size" ); |
278 | PrintTreeCensusClosure ptc; |
279 | ptc.do_tree(root()); |
280 | |
281 | AdaptiveFreeList<FreeChunk>* total = ptc.total(); |
282 | AdaptiveFreeList<FreeChunk>::print_labels_on(st, " " ); |
283 | total->print_on(st, "TOTAL\t" ); |
284 | st->print_cr("total_free(words): " SIZE_FORMAT_W(16) " growth: %8.5f deficit: %8.5f" , |
285 | ptc.total_free(), |
286 | (double)(total->split_births() + total->coal_births() |
287 | - total->split_deaths() - total->coal_deaths()) |
288 | /(total->prev_sweep() != 0 ? (double)total->prev_sweep() : 1.0), |
289 | (double)(total->desired() - total->count()) |
290 | /(total->desired() != 0 ? (double)total->desired() : 1.0)); |
291 | } |
292 | |
293 | ///////////////////////////////////////////////////////////////////////// |
294 | //// CompactibleFreeListSpace |
295 | ///////////////////////////////////////////////////////////////////////// |
296 | |
297 | // highest ranked free list lock rank |
298 | int CompactibleFreeListSpace::_lockRank = Mutex::leaf + 3; |
299 | |
300 | // Defaults are 0 so things will break badly if incorrectly initialized. |
301 | size_t CompactibleFreeListSpace::IndexSetStart = 0; |
302 | size_t CompactibleFreeListSpace::IndexSetStride = 0; |
303 | size_t CompactibleFreeListSpace::_min_chunk_size_in_bytes = 0; |
304 | |
305 | size_t MinChunkSize = 0; |
306 | |
307 | void CompactibleFreeListSpace::set_cms_values() { |
308 | // Set CMS global values |
309 | assert(MinChunkSize == 0, "already set" ); |
310 | |
311 | // MinChunkSize should be a multiple of MinObjAlignment and be large enough |
312 | // for chunks to contain a FreeChunk. |
313 | _min_chunk_size_in_bytes = align_up(sizeof(FreeChunk), MinObjAlignmentInBytes); |
314 | MinChunkSize = _min_chunk_size_in_bytes / BytesPerWord; |
315 | |
316 | assert(IndexSetStart == 0 && IndexSetStride == 0, "already set" ); |
317 | IndexSetStart = MinChunkSize; |
318 | IndexSetStride = MinObjAlignment; |
319 | } |
320 | |
321 | // Constructor |
322 | CompactibleFreeListSpace::CompactibleFreeListSpace(BlockOffsetSharedArray* bs, MemRegion mr) : |
323 | _rescan_task_size(CardTable::card_size_in_words * BitsPerWord * |
324 | CMSRescanMultiple), |
325 | _marking_task_size(CardTable::card_size_in_words * BitsPerWord * |
326 | CMSConcMarkMultiple), |
327 | _bt(bs, mr), |
328 | _collector(NULL), |
329 | // free list locks are in the range of values taken by _lockRank |
330 | // This range currently is [_leaf+2, _leaf+3] |
331 | // Note: this requires that CFLspace c'tors |
332 | // are called serially in the order in which the locks are |
333 | // are acquired in the program text. This is true today. |
334 | _freelistLock(_lockRank--, "CompactibleFreeListSpace_lock" , true, |
335 | Monitor::_safepoint_check_never), |
336 | _preconsumptionDirtyCardClosure(NULL), |
337 | _parDictionaryAllocLock(Mutex::leaf - 1, // == rank(ExpandHeap_lock) - 1 |
338 | "CompactibleFreeListSpace_dict_par_lock" , true, |
339 | Monitor::_safepoint_check_never) |
340 | { |
341 | assert(sizeof(FreeChunk) / BytesPerWord <= MinChunkSize, |
342 | "FreeChunk is larger than expected" ); |
343 | _bt.set_space(this); |
344 | initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle); |
345 | |
346 | _dictionary = new AFLBinaryTreeDictionary(mr); |
347 | |
348 | assert(_dictionary != NULL, "CMS dictionary initialization" ); |
349 | // The indexed free lists are initially all empty and are lazily |
350 | // filled in on demand. Initialize the array elements to NULL. |
351 | initializeIndexedFreeListArray(); |
352 | |
353 | _smallLinearAllocBlock.set(0, 0, 1024*SmallForLinearAlloc, |
354 | SmallForLinearAlloc); |
355 | |
356 | // CMSIndexedFreeListReplenish should be at least 1 |
357 | CMSIndexedFreeListReplenish = MAX2((uintx)1, CMSIndexedFreeListReplenish); |
358 | _promoInfo.setSpace(this); |
359 | if (UseCMSBestFit) { |
360 | _fitStrategy = FreeBlockBestFitFirst; |
361 | } else { |
362 | _fitStrategy = FreeBlockStrategyNone; |
363 | } |
364 | check_free_list_consistency(); |
365 | |
366 | // Initialize locks for parallel case. |
367 | for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) { |
368 | _indexedFreeListParLocks[i] = new Mutex(Mutex::leaf - 1, // == ExpandHeap_lock - 1 |
369 | "a freelist par lock" , true, Mutex::_safepoint_check_never); |
370 | DEBUG_ONLY( |
371 | _indexedFreeList[i].set_protecting_lock(_indexedFreeListParLocks[i]); |
372 | ) |
373 | } |
374 | _dictionary->set_par_lock(&_parDictionaryAllocLock); |
375 | } |
376 | |
377 | // Like CompactibleSpace forward() but always calls cross_threshold() to |
378 | // update the block offset table. Removed initialize_threshold call because |
379 | // CFLS does not use a block offset array for contiguous spaces. |
380 | HeapWord* CompactibleFreeListSpace::forward(oop q, size_t size, |
381 | CompactPoint* cp, HeapWord* compact_top) { |
382 | // q is alive |
383 | // First check if we should switch compaction space |
384 | assert(this == cp->space, "'this' should be current compaction space." ); |
385 | size_t compaction_max_size = pointer_delta(end(), compact_top); |
386 | assert(adjustObjectSize(size) == cp->space->adjust_object_size_v(size), |
387 | "virtual adjustObjectSize_v() method is not correct" ); |
388 | size_t adjusted_size = adjustObjectSize(size); |
389 | assert(compaction_max_size >= MinChunkSize || compaction_max_size == 0, |
390 | "no small fragments allowed" ); |
391 | assert(minimum_free_block_size() == MinChunkSize, |
392 | "for de-virtualized reference below" ); |
393 | // Can't leave a nonzero size, residual fragment smaller than MinChunkSize |
394 | if (adjusted_size + MinChunkSize > compaction_max_size && |
395 | adjusted_size != compaction_max_size) { |
396 | do { |
397 | // switch to next compaction space |
398 | cp->space->set_compaction_top(compact_top); |
399 | cp->space = cp->space->next_compaction_space(); |
400 | if (cp->space == NULL) { |
401 | cp->gen = CMSHeap::heap()->young_gen(); |
402 | assert(cp->gen != NULL, "compaction must succeed" ); |
403 | cp->space = cp->gen->first_compaction_space(); |
404 | assert(cp->space != NULL, "generation must have a first compaction space" ); |
405 | } |
406 | compact_top = cp->space->bottom(); |
407 | cp->space->set_compaction_top(compact_top); |
408 | // The correct adjusted_size may not be the same as that for this method |
409 | // (i.e., cp->space may no longer be "this" so adjust the size again. |
410 | // Use the virtual method which is not used above to save the virtual |
411 | // dispatch. |
412 | adjusted_size = cp->space->adjust_object_size_v(size); |
413 | compaction_max_size = pointer_delta(cp->space->end(), compact_top); |
414 | assert(cp->space->minimum_free_block_size() == 0, "just checking" ); |
415 | } while (adjusted_size > compaction_max_size); |
416 | } |
417 | |
418 | // store the forwarding pointer into the mark word |
419 | if ((HeapWord*)q != compact_top) { |
420 | q->forward_to(oop(compact_top)); |
421 | assert(q->is_gc_marked(), "encoding the pointer should preserve the mark" ); |
422 | } else { |
423 | // if the object isn't moving we can just set the mark to the default |
424 | // mark and handle it specially later on. |
425 | q->init_mark_raw(); |
426 | assert(q->forwardee() == NULL, "should be forwarded to NULL" ); |
427 | } |
428 | |
429 | compact_top += adjusted_size; |
430 | |
431 | // we need to update the offset table so that the beginnings of objects can be |
432 | // found during scavenge. Note that we are updating the offset table based on |
433 | // where the object will be once the compaction phase finishes. |
434 | |
435 | // Always call cross_threshold(). A contiguous space can only call it when |
436 | // the compaction_top exceeds the current threshold but not for an |
437 | // non-contiguous space. |
438 | cp->threshold = |
439 | cp->space->cross_threshold(compact_top - adjusted_size, compact_top); |
440 | return compact_top; |
441 | } |
442 | |
443 | // A modified copy of OffsetTableContigSpace::cross_threshold() with _offsets -> _bt |
444 | // and use of single_block instead of alloc_block. The name here is not really |
445 | // appropriate - maybe a more general name could be invented for both the |
446 | // contiguous and noncontiguous spaces. |
447 | |
448 | HeapWord* CompactibleFreeListSpace::cross_threshold(HeapWord* start, HeapWord* the_end) { |
449 | _bt.single_block(start, the_end); |
450 | return end(); |
451 | } |
452 | |
453 | // Initialize them to NULL. |
454 | void CompactibleFreeListSpace::initializeIndexedFreeListArray() { |
455 | for (size_t i = 0; i < IndexSetSize; i++) { |
456 | // Note that on platforms where objects are double word aligned, |
457 | // the odd array elements are not used. It is convenient, however, |
458 | // to map directly from the object size to the array element. |
459 | _indexedFreeList[i].reset(IndexSetSize); |
460 | _indexedFreeList[i].set_size(i); |
461 | assert(_indexedFreeList[i].count() == 0, "reset check failed" ); |
462 | assert(_indexedFreeList[i].head() == NULL, "reset check failed" ); |
463 | assert(_indexedFreeList[i].tail() == NULL, "reset check failed" ); |
464 | assert(_indexedFreeList[i].hint() == IndexSetSize, "reset check failed" ); |
465 | } |
466 | } |
467 | |
468 | size_t CompactibleFreeListSpace::obj_size(const HeapWord* addr) const { |
469 | return adjustObjectSize(oop(addr)->size()); |
470 | } |
471 | |
472 | void CompactibleFreeListSpace::resetIndexedFreeListArray() { |
473 | for (size_t i = 1; i < IndexSetSize; i++) { |
474 | assert(_indexedFreeList[i].size() == (size_t) i, |
475 | "Indexed free list sizes are incorrect" ); |
476 | _indexedFreeList[i].reset(IndexSetSize); |
477 | assert(_indexedFreeList[i].count() == 0, "reset check failed" ); |
478 | assert(_indexedFreeList[i].head() == NULL, "reset check failed" ); |
479 | assert(_indexedFreeList[i].tail() == NULL, "reset check failed" ); |
480 | assert(_indexedFreeList[i].hint() == IndexSetSize, "reset check failed" ); |
481 | } |
482 | } |
483 | |
484 | void CompactibleFreeListSpace::reset(MemRegion mr) { |
485 | resetIndexedFreeListArray(); |
486 | dictionary()->reset(); |
487 | if (BlockOffsetArrayUseUnallocatedBlock) { |
488 | assert(end() == mr.end(), "We are compacting to the bottom of CMS gen" ); |
489 | // Everything's allocated until proven otherwise. |
490 | _bt.set_unallocated_block(end()); |
491 | } |
492 | if (!mr.is_empty()) { |
493 | assert(mr.word_size() >= MinChunkSize, "Chunk size is too small" ); |
494 | _bt.single_block(mr.start(), mr.word_size()); |
495 | FreeChunk* fc = (FreeChunk*) mr.start(); |
496 | fc->set_size(mr.word_size()); |
497 | if (mr.word_size() >= IndexSetSize ) { |
498 | returnChunkToDictionary(fc); |
499 | } else { |
500 | _bt.verify_not_unallocated((HeapWord*)fc, fc->size()); |
501 | _indexedFreeList[mr.word_size()].return_chunk_at_head(fc); |
502 | } |
503 | coalBirth(mr.word_size()); |
504 | } |
505 | _promoInfo.reset(); |
506 | _smallLinearAllocBlock._ptr = NULL; |
507 | _smallLinearAllocBlock._word_size = 0; |
508 | } |
509 | |
510 | void CompactibleFreeListSpace::reset_after_compaction() { |
511 | // Reset the space to the new reality - one free chunk. |
512 | MemRegion mr(compaction_top(), end()); |
513 | reset(mr); |
514 | // Now refill the linear allocation block(s) if possible. |
515 | refillLinearAllocBlocksIfNeeded(); |
516 | } |
517 | |
518 | // Walks the entire dictionary, returning a coterminal |
519 | // chunk, if it exists. Use with caution since it involves |
520 | // a potentially complete walk of a potentially large tree. |
521 | FreeChunk* CompactibleFreeListSpace::find_chunk_at_end() { |
522 | |
523 | assert_lock_strong(&_freelistLock); |
524 | |
525 | return dictionary()->find_chunk_ends_at(end()); |
526 | } |
527 | |
528 | |
529 | #ifndef PRODUCT |
530 | void CompactibleFreeListSpace::initializeIndexedFreeListArrayReturnedBytes() { |
531 | for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) { |
532 | _indexedFreeList[i].allocation_stats()->set_returned_bytes(0); |
533 | } |
534 | } |
535 | |
536 | size_t CompactibleFreeListSpace::sumIndexedFreeListArrayReturnedBytes() { |
537 | size_t sum = 0; |
538 | for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) { |
539 | sum += _indexedFreeList[i].allocation_stats()->returned_bytes(); |
540 | } |
541 | return sum; |
542 | } |
543 | |
544 | size_t CompactibleFreeListSpace::totalCountInIndexedFreeLists() const { |
545 | size_t count = 0; |
546 | for (size_t i = IndexSetStart; i < IndexSetSize; i++) { |
547 | debug_only( |
548 | ssize_t total_list_count = 0; |
549 | for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL; |
550 | fc = fc->next()) { |
551 | total_list_count++; |
552 | } |
553 | assert(total_list_count == _indexedFreeList[i].count(), |
554 | "Count in list is incorrect" ); |
555 | ) |
556 | count += _indexedFreeList[i].count(); |
557 | } |
558 | return count; |
559 | } |
560 | |
561 | size_t CompactibleFreeListSpace::totalCount() { |
562 | size_t num = totalCountInIndexedFreeLists(); |
563 | num += dictionary()->total_count(); |
564 | if (_smallLinearAllocBlock._word_size != 0) { |
565 | num++; |
566 | } |
567 | return num; |
568 | } |
569 | #endif |
570 | |
571 | bool CompactibleFreeListSpace::is_free_block(const HeapWord* p) const { |
572 | FreeChunk* fc = (FreeChunk*) p; |
573 | return fc->is_free(); |
574 | } |
575 | |
576 | size_t CompactibleFreeListSpace::used() const { |
577 | return capacity() - free(); |
578 | } |
579 | |
580 | size_t CompactibleFreeListSpace::free() const { |
581 | // "MT-safe, but not MT-precise"(TM), if you will: i.e. |
582 | // if you do this while the structures are in flux you |
583 | // may get an approximate answer only; for instance |
584 | // because there is concurrent allocation either |
585 | // directly by mutators or for promotion during a GC. |
586 | // It's "MT-safe", however, in the sense that you are guaranteed |
587 | // not to crash and burn, for instance, because of walking |
588 | // pointers that could disappear as you were walking them. |
589 | // The approximation is because the various components |
590 | // that are read below are not read atomically (and |
591 | // further the computation of totalSizeInIndexedFreeLists() |
592 | // is itself a non-atomic computation. The normal use of |
593 | // this is during a resize operation at the end of GC |
594 | // and at that time you are guaranteed to get the |
595 | // correct actual value. However, for instance, this is |
596 | // also read completely asynchronously by the "perf-sampler" |
597 | // that supports jvmstat, and you are apt to see the values |
598 | // flicker in such cases. |
599 | assert(_dictionary != NULL, "No _dictionary?" ); |
600 | return (_dictionary->total_chunk_size(DEBUG_ONLY(freelistLock())) + |
601 | totalSizeInIndexedFreeLists() + |
602 | _smallLinearAllocBlock._word_size) * HeapWordSize; |
603 | } |
604 | |
605 | size_t CompactibleFreeListSpace::max_alloc_in_words() const { |
606 | assert(_dictionary != NULL, "No _dictionary?" ); |
607 | assert_locked(); |
608 | size_t res = _dictionary->max_chunk_size(); |
609 | res = MAX2(res, MIN2(_smallLinearAllocBlock._word_size, |
610 | (size_t) SmallForLinearAlloc - 1)); |
611 | // XXX the following could potentially be pretty slow; |
612 | // should one, pessimistically for the rare cases when res |
613 | // calculated above is less than IndexSetSize, |
614 | // just return res calculated above? My reasoning was that |
615 | // those cases will be so rare that the extra time spent doesn't |
616 | // really matter.... |
617 | // Note: do not change the loop test i >= res + IndexSetStride |
618 | // to i > res below, because i is unsigned and res may be zero. |
619 | for (size_t i = IndexSetSize - 1; i >= res + IndexSetStride; |
620 | i -= IndexSetStride) { |
621 | if (_indexedFreeList[i].head() != NULL) { |
622 | assert(_indexedFreeList[i].count() != 0, "Inconsistent FreeList" ); |
623 | return i; |
624 | } |
625 | } |
626 | return res; |
627 | } |
628 | |
629 | void LinearAllocBlock::print_on(outputStream* st) const { |
630 | st->print_cr(" LinearAllocBlock: ptr = " PTR_FORMAT ", word_size = " SIZE_FORMAT |
631 | ", refillsize = " SIZE_FORMAT ", allocation_size_limit = " SIZE_FORMAT, |
632 | p2i(_ptr), _word_size, _refillSize, _allocation_size_limit); |
633 | } |
634 | |
635 | void CompactibleFreeListSpace::print_on(outputStream* st) const { |
636 | st->print_cr("COMPACTIBLE FREELIST SPACE" ); |
637 | st->print_cr(" Space:" ); |
638 | Space::print_on(st); |
639 | |
640 | st->print_cr("promoInfo:" ); |
641 | _promoInfo.print_on(st); |
642 | |
643 | st->print_cr("_smallLinearAllocBlock" ); |
644 | _smallLinearAllocBlock.print_on(st); |
645 | |
646 | // dump_memory_block(_smallLinearAllocBlock->_ptr, 128); |
647 | |
648 | st->print_cr(" _fitStrategy = %s" , BOOL_TO_STR(_fitStrategy)); |
649 | } |
650 | |
651 | void CompactibleFreeListSpace::print_indexed_free_lists(outputStream* st) |
652 | const { |
653 | reportIndexedFreeListStatistics(st); |
654 | st->print_cr("Layout of Indexed Freelists" ); |
655 | st->print_cr("---------------------------" ); |
656 | AdaptiveFreeList<FreeChunk>::print_labels_on(st, "size" ); |
657 | for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) { |
658 | _indexedFreeList[i].print_on(st); |
659 | for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL; fc = fc->next()) { |
660 | st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ") %s" , |
661 | p2i(fc), p2i((HeapWord*)fc + i), |
662 | fc->cantCoalesce() ? "\t CC" : "" ); |
663 | } |
664 | } |
665 | } |
666 | |
667 | void CompactibleFreeListSpace::print_promo_info_blocks(outputStream* st) |
668 | const { |
669 | _promoInfo.print_on(st); |
670 | } |
671 | |
672 | void CompactibleFreeListSpace::print_dictionary_free_lists(outputStream* st) |
673 | const { |
674 | _dictionary->report_statistics(st); |
675 | st->print_cr("Layout of Freelists in Tree" ); |
676 | st->print_cr("---------------------------" ); |
677 | _dictionary->print_free_lists(st); |
678 | } |
679 | |
680 | class BlkPrintingClosure: public BlkClosure { |
681 | const CMSCollector* _collector; |
682 | const CompactibleFreeListSpace* _sp; |
683 | const CMSBitMap* _live_bit_map; |
684 | const bool ; |
685 | outputStream* _st; |
686 | public: |
687 | BlkPrintingClosure(const CMSCollector* collector, |
688 | const CompactibleFreeListSpace* sp, |
689 | const CMSBitMap* live_bit_map, |
690 | outputStream* st): |
691 | _collector(collector), |
692 | _sp(sp), |
693 | _live_bit_map(live_bit_map), |
694 | _post_remark(collector->abstract_state() > CMSCollector::FinalMarking), |
695 | _st(st) { } |
696 | size_t do_blk(HeapWord* addr); |
697 | }; |
698 | |
699 | size_t BlkPrintingClosure::do_blk(HeapWord* addr) { |
700 | size_t sz = _sp->block_size_no_stall(addr, _collector); |
701 | assert(sz != 0, "Should always be able to compute a size" ); |
702 | if (_sp->block_is_obj(addr)) { |
703 | const bool dead = _post_remark && !_live_bit_map->isMarked(addr); |
704 | _st->print_cr(PTR_FORMAT ": %s object of size " SIZE_FORMAT "%s" , |
705 | p2i(addr), |
706 | dead ? "dead" : "live" , |
707 | sz, |
708 | (!dead && CMSPrintObjectsInDump) ? ":" : "." ); |
709 | if (CMSPrintObjectsInDump && !dead) { |
710 | oop(addr)->print_on(_st); |
711 | _st->print_cr("--------------------------------------" ); |
712 | } |
713 | } else { // free block |
714 | _st->print_cr(PTR_FORMAT ": free block of size " SIZE_FORMAT "%s" , |
715 | p2i(addr), sz, CMSPrintChunksInDump ? ":" : "." ); |
716 | if (CMSPrintChunksInDump) { |
717 | ((FreeChunk*)addr)->print_on(_st); |
718 | _st->print_cr("--------------------------------------" ); |
719 | } |
720 | } |
721 | return sz; |
722 | } |
723 | |
724 | void CompactibleFreeListSpace::dump_at_safepoint_with_locks(CMSCollector* c, outputStream* st) { |
725 | st->print_cr("=========================" ); |
726 | st->print_cr("Block layout in CMS Heap:" ); |
727 | st->print_cr("=========================" ); |
728 | BlkPrintingClosure bpcl(c, this, c->markBitMap(), st); |
729 | blk_iterate(&bpcl); |
730 | |
731 | st->print_cr("=======================================" ); |
732 | st->print_cr("Order & Layout of Promotion Info Blocks" ); |
733 | st->print_cr("=======================================" ); |
734 | print_promo_info_blocks(st); |
735 | |
736 | st->print_cr("===========================" ); |
737 | st->print_cr("Order of Indexed Free Lists" ); |
738 | st->print_cr("=========================" ); |
739 | print_indexed_free_lists(st); |
740 | |
741 | st->print_cr("=================================" ); |
742 | st->print_cr("Order of Free Lists in Dictionary" ); |
743 | st->print_cr("=================================" ); |
744 | print_dictionary_free_lists(st); |
745 | } |
746 | |
747 | |
748 | void CompactibleFreeListSpace::reportFreeListStatistics(const char* title) const { |
749 | assert_lock_strong(&_freelistLock); |
750 | Log(gc, freelist, stats) log; |
751 | if (!log.is_debug()) { |
752 | return; |
753 | } |
754 | log.debug("%s" , title); |
755 | |
756 | LogStream out(log.debug()); |
757 | _dictionary->report_statistics(&out); |
758 | |
759 | if (log.is_trace()) { |
760 | LogStream trace_out(log.trace()); |
761 | reportIndexedFreeListStatistics(&trace_out); |
762 | size_t total_size = totalSizeInIndexedFreeLists() + |
763 | _dictionary->total_chunk_size(DEBUG_ONLY(freelistLock())); |
764 | log.trace(" free=" SIZE_FORMAT " frag=%1.4f" , total_size, flsFrag()); |
765 | } |
766 | } |
767 | |
768 | void CompactibleFreeListSpace::reportIndexedFreeListStatistics(outputStream* st) const { |
769 | assert_lock_strong(&_freelistLock); |
770 | st->print_cr("Statistics for IndexedFreeLists:" ); |
771 | st->print_cr("--------------------------------" ); |
772 | size_t total_size = totalSizeInIndexedFreeLists(); |
773 | size_t free_blocks = numFreeBlocksInIndexedFreeLists(); |
774 | st->print_cr("Total Free Space: " SIZE_FORMAT, total_size); |
775 | st->print_cr("Max Chunk Size: " SIZE_FORMAT, maxChunkSizeInIndexedFreeLists()); |
776 | st->print_cr("Number of Blocks: " SIZE_FORMAT, free_blocks); |
777 | if (free_blocks != 0) { |
778 | st->print_cr("Av. Block Size: " SIZE_FORMAT, total_size/free_blocks); |
779 | } |
780 | } |
781 | |
782 | size_t CompactibleFreeListSpace::numFreeBlocksInIndexedFreeLists() const { |
783 | size_t res = 0; |
784 | for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) { |
785 | debug_only( |
786 | ssize_t recount = 0; |
787 | for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL; |
788 | fc = fc->next()) { |
789 | recount += 1; |
790 | } |
791 | assert(recount == _indexedFreeList[i].count(), |
792 | "Incorrect count in list" ); |
793 | ) |
794 | res += _indexedFreeList[i].count(); |
795 | } |
796 | return res; |
797 | } |
798 | |
799 | size_t CompactibleFreeListSpace::maxChunkSizeInIndexedFreeLists() const { |
800 | for (size_t i = IndexSetSize - 1; i != 0; i -= IndexSetStride) { |
801 | if (_indexedFreeList[i].head() != NULL) { |
802 | assert(_indexedFreeList[i].count() != 0, "Inconsistent FreeList" ); |
803 | return (size_t)i; |
804 | } |
805 | } |
806 | return 0; |
807 | } |
808 | |
809 | void CompactibleFreeListSpace::set_end(HeapWord* value) { |
810 | HeapWord* prevEnd = end(); |
811 | assert(prevEnd != value, "unnecessary set_end call" ); |
812 | assert(prevEnd == NULL || !BlockOffsetArrayUseUnallocatedBlock || value >= unallocated_block(), |
813 | "New end is below unallocated block" ); |
814 | _end = value; |
815 | if (prevEnd != NULL) { |
816 | // Resize the underlying block offset table. |
817 | _bt.resize(pointer_delta(value, bottom())); |
818 | if (value <= prevEnd) { |
819 | assert(!BlockOffsetArrayUseUnallocatedBlock || value >= unallocated_block(), |
820 | "New end is below unallocated block" ); |
821 | } else { |
822 | // Now, take this new chunk and add it to the free blocks. |
823 | // Note that the BOT has not yet been updated for this block. |
824 | size_t newFcSize = pointer_delta(value, prevEnd); |
825 | // Add the block to the free lists, if possible coalescing it |
826 | // with the last free block, and update the BOT and census data. |
827 | addChunkToFreeListsAtEndRecordingStats(prevEnd, newFcSize); |
828 | } |
829 | } |
830 | } |
831 | |
832 | class FreeListSpaceDCTOC : public FilteringDCTOC { |
833 | CompactibleFreeListSpace* _cfls; |
834 | CMSCollector* _collector; |
835 | bool _parallel; |
836 | protected: |
837 | // Override. |
838 | #define walk_mem_region_with_cl_DECL(ClosureType) \ |
839 | virtual void walk_mem_region_with_cl(MemRegion mr, \ |
840 | HeapWord* bottom, HeapWord* top, \ |
841 | ClosureType* cl); \ |
842 | void walk_mem_region_with_cl_par(MemRegion mr, \ |
843 | HeapWord* bottom, HeapWord* top, \ |
844 | ClosureType* cl); \ |
845 | void walk_mem_region_with_cl_nopar(MemRegion mr, \ |
846 | HeapWord* bottom, HeapWord* top, \ |
847 | ClosureType* cl) |
848 | walk_mem_region_with_cl_DECL(OopIterateClosure); |
849 | walk_mem_region_with_cl_DECL(FilteringClosure); |
850 | |
851 | public: |
852 | FreeListSpaceDCTOC(CompactibleFreeListSpace* sp, |
853 | CMSCollector* collector, |
854 | OopIterateClosure* cl, |
855 | CardTable::PrecisionStyle precision, |
856 | HeapWord* boundary, |
857 | bool parallel) : |
858 | FilteringDCTOC(sp, cl, precision, boundary), |
859 | _cfls(sp), _collector(collector), _parallel(parallel) {} |
860 | }; |
861 | |
862 | // We de-virtualize the block-related calls below, since we know that our |
863 | // space is a CompactibleFreeListSpace. |
864 | |
865 | #define FreeListSpaceDCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \ |
866 | void FreeListSpaceDCTOC::walk_mem_region_with_cl(MemRegion mr, \ |
867 | HeapWord* bottom, \ |
868 | HeapWord* top, \ |
869 | ClosureType* cl) { \ |
870 | if (_parallel) { \ |
871 | walk_mem_region_with_cl_par(mr, bottom, top, cl); \ |
872 | } else { \ |
873 | walk_mem_region_with_cl_nopar(mr, bottom, top, cl); \ |
874 | } \ |
875 | } \ |
876 | void FreeListSpaceDCTOC::walk_mem_region_with_cl_par(MemRegion mr, \ |
877 | HeapWord* bottom, \ |
878 | HeapWord* top, \ |
879 | ClosureType* cl) { \ |
880 | /* Skip parts that are before "mr", in case "block_start" sent us \ |
881 | back too far. */ \ |
882 | HeapWord* mr_start = mr.start(); \ |
883 | size_t bot_size = _cfls->CompactibleFreeListSpace::block_size(bottom); \ |
884 | HeapWord* next = bottom + bot_size; \ |
885 | while (next < mr_start) { \ |
886 | bottom = next; \ |
887 | bot_size = _cfls->CompactibleFreeListSpace::block_size(bottom); \ |
888 | next = bottom + bot_size; \ |
889 | } \ |
890 | \ |
891 | while (bottom < top) { \ |
892 | if (_cfls->CompactibleFreeListSpace::block_is_obj(bottom) && \ |
893 | !_cfls->CompactibleFreeListSpace::obj_allocated_since_save_marks( \ |
894 | oop(bottom)) && \ |
895 | !_collector->CMSCollector::is_dead_obj(oop(bottom))) { \ |
896 | size_t word_sz = oop(bottom)->oop_iterate_size(cl, mr); \ |
897 | bottom += _cfls->adjustObjectSize(word_sz); \ |
898 | } else { \ |
899 | bottom += _cfls->CompactibleFreeListSpace::block_size(bottom); \ |
900 | } \ |
901 | } \ |
902 | } \ |
903 | void FreeListSpaceDCTOC::walk_mem_region_with_cl_nopar(MemRegion mr, \ |
904 | HeapWord* bottom, \ |
905 | HeapWord* top, \ |
906 | ClosureType* cl) { \ |
907 | /* Skip parts that are before "mr", in case "block_start" sent us \ |
908 | back too far. */ \ |
909 | HeapWord* mr_start = mr.start(); \ |
910 | size_t bot_size = _cfls->CompactibleFreeListSpace::block_size_nopar(bottom); \ |
911 | HeapWord* next = bottom + bot_size; \ |
912 | while (next < mr_start) { \ |
913 | bottom = next; \ |
914 | bot_size = _cfls->CompactibleFreeListSpace::block_size_nopar(bottom); \ |
915 | next = bottom + bot_size; \ |
916 | } \ |
917 | \ |
918 | while (bottom < top) { \ |
919 | if (_cfls->CompactibleFreeListSpace::block_is_obj_nopar(bottom) && \ |
920 | !_cfls->CompactibleFreeListSpace::obj_allocated_since_save_marks( \ |
921 | oop(bottom)) && \ |
922 | !_collector->CMSCollector::is_dead_obj(oop(bottom))) { \ |
923 | size_t word_sz = oop(bottom)->oop_iterate_size(cl, mr); \ |
924 | bottom += _cfls->adjustObjectSize(word_sz); \ |
925 | } else { \ |
926 | bottom += _cfls->CompactibleFreeListSpace::block_size_nopar(bottom); \ |
927 | } \ |
928 | } \ |
929 | } |
930 | |
931 | // (There are only two of these, rather than N, because the split is due |
932 | // only to the introduction of the FilteringClosure, a local part of the |
933 | // impl of this abstraction.) |
934 | FreeListSpaceDCTOC__walk_mem_region_with_cl_DEFN(OopIterateClosure) |
935 | FreeListSpaceDCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure) |
936 | |
937 | DirtyCardToOopClosure* |
938 | CompactibleFreeListSpace::new_dcto_cl(OopIterateClosure* cl, |
939 | CardTable::PrecisionStyle precision, |
940 | HeapWord* boundary, |
941 | bool parallel) { |
942 | return new FreeListSpaceDCTOC(this, _collector, cl, precision, boundary, parallel); |
943 | } |
944 | |
945 | |
946 | // Note on locking for the space iteration functions: |
947 | // since the collector's iteration activities are concurrent with |
948 | // allocation activities by mutators, absent a suitable mutual exclusion |
949 | // mechanism the iterators may go awry. For instance a block being iterated |
950 | // may suddenly be allocated or divided up and part of it allocated and |
951 | // so on. |
952 | |
953 | // Apply the given closure to each block in the space. |
954 | void CompactibleFreeListSpace::blk_iterate_careful(BlkClosureCareful* cl) { |
955 | assert_lock_strong(freelistLock()); |
956 | HeapWord *cur, *limit; |
957 | for (cur = bottom(), limit = end(); cur < limit; |
958 | cur += cl->do_blk_careful(cur)); |
959 | } |
960 | |
961 | // Apply the given closure to each block in the space. |
962 | void CompactibleFreeListSpace::blk_iterate(BlkClosure* cl) { |
963 | assert_lock_strong(freelistLock()); |
964 | HeapWord *cur, *limit; |
965 | for (cur = bottom(), limit = end(); cur < limit; |
966 | cur += cl->do_blk(cur)); |
967 | } |
968 | |
969 | // Apply the given closure to each oop in the space. |
970 | void CompactibleFreeListSpace::oop_iterate(OopIterateClosure* cl) { |
971 | assert_lock_strong(freelistLock()); |
972 | HeapWord *cur, *limit; |
973 | size_t curSize; |
974 | for (cur = bottom(), limit = end(); cur < limit; |
975 | cur += curSize) { |
976 | curSize = block_size(cur); |
977 | if (block_is_obj(cur)) { |
978 | oop(cur)->oop_iterate(cl); |
979 | } |
980 | } |
981 | } |
982 | |
983 | // NOTE: In the following methods, in order to safely be able to |
984 | // apply the closure to an object, we need to be sure that the |
985 | // object has been initialized. We are guaranteed that an object |
986 | // is initialized if we are holding the Heap_lock with the |
987 | // world stopped. |
988 | void CompactibleFreeListSpace::verify_objects_initialized() const { |
989 | if (is_init_completed()) { |
990 | assert_locked_or_safepoint(Heap_lock); |
991 | if (Universe::is_fully_initialized()) { |
992 | guarantee(SafepointSynchronize::is_at_safepoint(), |
993 | "Required for objects to be initialized" ); |
994 | } |
995 | } // else make a concession at vm start-up |
996 | } |
997 | |
998 | // Apply the given closure to each object in the space |
999 | void CompactibleFreeListSpace::object_iterate(ObjectClosure* blk) { |
1000 | assert_lock_strong(freelistLock()); |
1001 | NOT_PRODUCT(verify_objects_initialized()); |
1002 | HeapWord *cur, *limit; |
1003 | size_t curSize; |
1004 | for (cur = bottom(), limit = end(); cur < limit; |
1005 | cur += curSize) { |
1006 | curSize = block_size(cur); |
1007 | if (block_is_obj(cur)) { |
1008 | blk->do_object(oop(cur)); |
1009 | } |
1010 | } |
1011 | } |
1012 | |
1013 | // Apply the given closure to each live object in the space |
1014 | // The usage of CompactibleFreeListSpace |
1015 | // by the ConcurrentMarkSweepGeneration for concurrent GC's allows |
1016 | // objects in the space with references to objects that are no longer |
1017 | // valid. For example, an object may reference another object |
1018 | // that has already been sweep up (collected). This method uses |
1019 | // obj_is_alive() to determine whether it is safe to apply the closure to |
1020 | // an object. See obj_is_alive() for details on how liveness of an |
1021 | // object is decided. |
1022 | |
1023 | void CompactibleFreeListSpace::safe_object_iterate(ObjectClosure* blk) { |
1024 | assert_lock_strong(freelistLock()); |
1025 | NOT_PRODUCT(verify_objects_initialized()); |
1026 | HeapWord *cur, *limit; |
1027 | size_t curSize; |
1028 | for (cur = bottom(), limit = end(); cur < limit; |
1029 | cur += curSize) { |
1030 | curSize = block_size(cur); |
1031 | if (block_is_obj(cur) && obj_is_alive(cur)) { |
1032 | blk->do_object(oop(cur)); |
1033 | } |
1034 | } |
1035 | } |
1036 | |
1037 | void CompactibleFreeListSpace::object_iterate_mem(MemRegion mr, |
1038 | UpwardsObjectClosure* cl) { |
1039 | assert_locked(freelistLock()); |
1040 | NOT_PRODUCT(verify_objects_initialized()); |
1041 | assert(!mr.is_empty(), "Should be non-empty" ); |
1042 | // We use MemRegion(bottom(), end()) rather than used_region() below |
1043 | // because the two are not necessarily equal for some kinds of |
1044 | // spaces, in particular, certain kinds of free list spaces. |
1045 | // We could use the more complicated but more precise: |
1046 | // MemRegion(used_region().start(), align_up(used_region().end(), CardSize)) |
1047 | // but the slight imprecision seems acceptable in the assertion check. |
1048 | assert(MemRegion(bottom(), end()).contains(mr), |
1049 | "Should be within used space" ); |
1050 | HeapWord* prev = cl->previous(); // max address from last time |
1051 | if (prev >= mr.end()) { // nothing to do |
1052 | return; |
1053 | } |
1054 | // This assert will not work when we go from cms space to perm |
1055 | // space, and use same closure. Easy fix deferred for later. XXX YSR |
1056 | // assert(prev == NULL || contains(prev), "Should be within space"); |
1057 | |
1058 | bool last_was_obj_array = false; |
1059 | HeapWord *blk_start_addr, *region_start_addr; |
1060 | if (prev > mr.start()) { |
1061 | region_start_addr = prev; |
1062 | blk_start_addr = prev; |
1063 | // The previous invocation may have pushed "prev" beyond the |
1064 | // last allocated block yet there may be still be blocks |
1065 | // in this region due to a particular coalescing policy. |
1066 | // Relax the assertion so that the case where the unallocated |
1067 | // block is maintained and "prev" is beyond the unallocated |
1068 | // block does not cause the assertion to fire. |
1069 | assert((BlockOffsetArrayUseUnallocatedBlock && |
1070 | (!is_in(prev))) || |
1071 | (blk_start_addr == block_start(region_start_addr)), "invariant" ); |
1072 | } else { |
1073 | region_start_addr = mr.start(); |
1074 | blk_start_addr = block_start(region_start_addr); |
1075 | } |
1076 | HeapWord* region_end_addr = mr.end(); |
1077 | MemRegion derived_mr(region_start_addr, region_end_addr); |
1078 | while (blk_start_addr < region_end_addr) { |
1079 | const size_t size = block_size(blk_start_addr); |
1080 | if (block_is_obj(blk_start_addr)) { |
1081 | last_was_obj_array = cl->do_object_bm(oop(blk_start_addr), derived_mr); |
1082 | } else { |
1083 | last_was_obj_array = false; |
1084 | } |
1085 | blk_start_addr += size; |
1086 | } |
1087 | if (!last_was_obj_array) { |
1088 | assert((bottom() <= blk_start_addr) && (blk_start_addr <= end()), |
1089 | "Should be within (closed) used space" ); |
1090 | assert(blk_start_addr > prev, "Invariant" ); |
1091 | cl->set_previous(blk_start_addr); // min address for next time |
1092 | } |
1093 | } |
1094 | |
1095 | // Callers of this iterator beware: The closure application should |
1096 | // be robust in the face of uninitialized objects and should (always) |
1097 | // return a correct size so that the next addr + size below gives us a |
1098 | // valid block boundary. [See for instance, |
1099 | // ScanMarkedObjectsAgainCarefullyClosure::do_object_careful() |
1100 | // in ConcurrentMarkSweepGeneration.cpp.] |
1101 | HeapWord* |
1102 | CompactibleFreeListSpace::object_iterate_careful_m(MemRegion mr, |
1103 | ObjectClosureCareful* cl) { |
1104 | assert_lock_strong(freelistLock()); |
1105 | // Can't use used_region() below because it may not necessarily |
1106 | // be the same as [bottom(),end()); although we could |
1107 | // use [used_region().start(),align_up(used_region().end(),CardSize)), |
1108 | // that appears too cumbersome, so we just do the simpler check |
1109 | // in the assertion below. |
1110 | assert(!mr.is_empty() && MemRegion(bottom(),end()).contains(mr), |
1111 | "mr should be non-empty and within used space" ); |
1112 | HeapWord *addr, *end; |
1113 | size_t size; |
1114 | for (addr = block_start_careful(mr.start()), end = mr.end(); |
1115 | addr < end; addr += size) { |
1116 | FreeChunk* fc = (FreeChunk*)addr; |
1117 | if (fc->is_free()) { |
1118 | // Since we hold the free list lock, which protects direct |
1119 | // allocation in this generation by mutators, a free object |
1120 | // will remain free throughout this iteration code. |
1121 | size = fc->size(); |
1122 | } else { |
1123 | // Note that the object need not necessarily be initialized, |
1124 | // because (for instance) the free list lock does NOT protect |
1125 | // object initialization. The closure application below must |
1126 | // therefore be correct in the face of uninitialized objects. |
1127 | size = cl->do_object_careful_m(oop(addr), mr); |
1128 | if (size == 0) { |
1129 | // An unparsable object found. Signal early termination. |
1130 | return addr; |
1131 | } |
1132 | } |
1133 | } |
1134 | return NULL; |
1135 | } |
1136 | |
1137 | |
1138 | HeapWord* CompactibleFreeListSpace::block_start_const(const void* p) const { |
1139 | NOT_PRODUCT(verify_objects_initialized()); |
1140 | return _bt.block_start(p); |
1141 | } |
1142 | |
1143 | HeapWord* CompactibleFreeListSpace::block_start_careful(const void* p) const { |
1144 | return _bt.block_start_careful(p); |
1145 | } |
1146 | |
1147 | size_t CompactibleFreeListSpace::block_size(const HeapWord* p) const { |
1148 | NOT_PRODUCT(verify_objects_initialized()); |
1149 | // This must be volatile, or else there is a danger that the compiler |
1150 | // will compile the code below into a sometimes-infinite loop, by keeping |
1151 | // the value read the first time in a register. |
1152 | while (true) { |
1153 | // We must do this until we get a consistent view of the object. |
1154 | if (FreeChunk::indicatesFreeChunk(p)) { |
1155 | volatile FreeChunk* fc = (volatile FreeChunk*)p; |
1156 | size_t res = fc->size(); |
1157 | |
1158 | // Bugfix for systems with weak memory model (PPC64/IA64). The |
1159 | // block's free bit was set and we have read the size of the |
1160 | // block. Acquire and check the free bit again. If the block is |
1161 | // still free, the read size is correct. |
1162 | OrderAccess::acquire(); |
1163 | |
1164 | // If the object is still a free chunk, return the size, else it |
1165 | // has been allocated so try again. |
1166 | if (FreeChunk::indicatesFreeChunk(p)) { |
1167 | assert(res != 0, "Block size should not be 0" ); |
1168 | return res; |
1169 | } |
1170 | } else { |
1171 | // Ensure klass read before size. |
1172 | Klass* k = oop(p)->klass_or_null_acquire(); |
1173 | if (k != NULL) { |
1174 | assert(k->is_klass(), "Should really be klass oop." ); |
1175 | oop o = (oop)p; |
1176 | assert(oopDesc::is_oop(o, true /* ignore mark word */), "Should be an oop." ); |
1177 | |
1178 | size_t res = o->size_given_klass(k); |
1179 | res = adjustObjectSize(res); |
1180 | assert(res != 0, "Block size should not be 0" ); |
1181 | return res; |
1182 | } |
1183 | } |
1184 | } |
1185 | } |
1186 | |
1187 | // TODO: Now that is_parsable is gone, we should combine these two functions. |
1188 | // A variant of the above that uses the Printezis bits for |
1189 | // unparsable but allocated objects. This avoids any possible |
1190 | // stalls waiting for mutators to initialize objects, and is |
1191 | // thus potentially faster than the variant above. However, |
1192 | // this variant may return a zero size for a block that is |
1193 | // under mutation and for which a consistent size cannot be |
1194 | // inferred without stalling; see CMSCollector::block_size_if_printezis_bits(). |
1195 | size_t CompactibleFreeListSpace::block_size_no_stall(HeapWord* p, |
1196 | const CMSCollector* c) |
1197 | const { |
1198 | assert(MemRegion(bottom(), end()).contains(p), "p not in space" ); |
1199 | // This must be volatile, or else there is a danger that the compiler |
1200 | // will compile the code below into a sometimes-infinite loop, by keeping |
1201 | // the value read the first time in a register. |
1202 | DEBUG_ONLY(uint loops = 0;) |
1203 | while (true) { |
1204 | // We must do this until we get a consistent view of the object. |
1205 | if (FreeChunk::indicatesFreeChunk(p)) { |
1206 | volatile FreeChunk* fc = (volatile FreeChunk*)p; |
1207 | size_t res = fc->size(); |
1208 | |
1209 | // Bugfix for systems with weak memory model (PPC64/IA64). The |
1210 | // free bit of the block was set and we have read the size of |
1211 | // the block. Acquire and check the free bit again. If the |
1212 | // block is still free, the read size is correct. |
1213 | OrderAccess::acquire(); |
1214 | |
1215 | if (FreeChunk::indicatesFreeChunk(p)) { |
1216 | assert(res != 0, "Block size should not be 0" ); |
1217 | assert(loops == 0, "Should be 0" ); |
1218 | return res; |
1219 | } |
1220 | } else { |
1221 | // Ensure klass read before size. |
1222 | Klass* k = oop(p)->klass_or_null_acquire(); |
1223 | if (k != NULL) { |
1224 | assert(k->is_klass(), "Should really be klass oop." ); |
1225 | oop o = (oop)p; |
1226 | assert(oopDesc::is_oop(o), "Should be an oop" ); |
1227 | |
1228 | size_t res = o->size_given_klass(k); |
1229 | res = adjustObjectSize(res); |
1230 | assert(res != 0, "Block size should not be 0" ); |
1231 | return res; |
1232 | } else { |
1233 | // May return 0 if P-bits not present. |
1234 | return c->block_size_if_printezis_bits(p); |
1235 | } |
1236 | } |
1237 | assert(loops == 0, "Can loop at most once" ); |
1238 | DEBUG_ONLY(loops++;) |
1239 | } |
1240 | } |
1241 | |
1242 | size_t CompactibleFreeListSpace::block_size_nopar(const HeapWord* p) const { |
1243 | NOT_PRODUCT(verify_objects_initialized()); |
1244 | assert(MemRegion(bottom(), end()).contains(p), "p not in space" ); |
1245 | FreeChunk* fc = (FreeChunk*)p; |
1246 | if (fc->is_free()) { |
1247 | return fc->size(); |
1248 | } else { |
1249 | // Ignore mark word because this may be a recently promoted |
1250 | // object whose mark word is used to chain together grey |
1251 | // objects (the last one would have a null value). |
1252 | assert(oopDesc::is_oop(oop(p), true), "Should be an oop" ); |
1253 | return adjustObjectSize(oop(p)->size()); |
1254 | } |
1255 | } |
1256 | |
1257 | // This implementation assumes that the property of "being an object" is |
1258 | // stable. But being a free chunk may not be (because of parallel |
1259 | // promotion.) |
1260 | bool CompactibleFreeListSpace::block_is_obj(const HeapWord* p) const { |
1261 | FreeChunk* fc = (FreeChunk*)p; |
1262 | assert(is_in_reserved(p), "Should be in space" ); |
1263 | if (FreeChunk::indicatesFreeChunk(p)) return false; |
1264 | Klass* k = oop(p)->klass_or_null_acquire(); |
1265 | if (k != NULL) { |
1266 | // Ignore mark word because it may have been used to |
1267 | // chain together promoted objects (the last one |
1268 | // would have a null value). |
1269 | assert(oopDesc::is_oop(oop(p), true), "Should be an oop" ); |
1270 | return true; |
1271 | } else { |
1272 | return false; // Was not an object at the start of collection. |
1273 | } |
1274 | } |
1275 | |
1276 | // Check if the object is alive. This fact is checked either by consulting |
1277 | // the main marking bitmap in the sweeping phase or, if it's a permanent |
1278 | // generation and we're not in the sweeping phase, by checking the |
1279 | // perm_gen_verify_bit_map where we store the "deadness" information if |
1280 | // we did not sweep the perm gen in the most recent previous GC cycle. |
1281 | bool CompactibleFreeListSpace::obj_is_alive(const HeapWord* p) const { |
1282 | assert(SafepointSynchronize::is_at_safepoint() || !is_init_completed(), |
1283 | "Else races are possible" ); |
1284 | assert(block_is_obj(p), "The address should point to an object" ); |
1285 | |
1286 | // If we're sweeping, we use object liveness information from the main bit map |
1287 | // for both perm gen and old gen. |
1288 | // We don't need to lock the bitmap (live_map or dead_map below), because |
1289 | // EITHER we are in the middle of the sweeping phase, and the |
1290 | // main marking bit map (live_map below) is locked, |
1291 | // OR we're in other phases and perm_gen_verify_bit_map (dead_map below) |
1292 | // is stable, because it's mutated only in the sweeping phase. |
1293 | // NOTE: This method is also used by jmap where, if class unloading is |
1294 | // off, the results can return "false" for legitimate perm objects, |
1295 | // when we are not in the midst of a sweeping phase, which can result |
1296 | // in jmap not reporting certain perm gen objects. This will be moot |
1297 | // if/when the perm gen goes away in the future. |
1298 | if (_collector->abstract_state() == CMSCollector::Sweeping) { |
1299 | CMSBitMap* live_map = _collector->markBitMap(); |
1300 | return live_map->par_isMarked((HeapWord*) p); |
1301 | } |
1302 | return true; |
1303 | } |
1304 | |
1305 | bool CompactibleFreeListSpace::block_is_obj_nopar(const HeapWord* p) const { |
1306 | FreeChunk* fc = (FreeChunk*)p; |
1307 | assert(is_in_reserved(p), "Should be in space" ); |
1308 | assert(_bt.block_start(p) == p, "Should be a block boundary" ); |
1309 | if (!fc->is_free()) { |
1310 | // Ignore mark word because it may have been used to |
1311 | // chain together promoted objects (the last one |
1312 | // would have a null value). |
1313 | assert(oopDesc::is_oop(oop(p), true), "Should be an oop" ); |
1314 | return true; |
1315 | } |
1316 | return false; |
1317 | } |
1318 | |
1319 | // "MT-safe but not guaranteed MT-precise" (TM); you may get an |
1320 | // approximate answer if you don't hold the freelistlock when you call this. |
1321 | size_t CompactibleFreeListSpace::totalSizeInIndexedFreeLists() const { |
1322 | size_t size = 0; |
1323 | for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) { |
1324 | debug_only( |
1325 | // We may be calling here without the lock in which case we |
1326 | // won't do this modest sanity check. |
1327 | if (freelistLock()->owned_by_self()) { |
1328 | size_t total_list_size = 0; |
1329 | for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL; |
1330 | fc = fc->next()) { |
1331 | total_list_size += i; |
1332 | } |
1333 | assert(total_list_size == i * _indexedFreeList[i].count(), |
1334 | "Count in list is incorrect" ); |
1335 | } |
1336 | ) |
1337 | size += i * _indexedFreeList[i].count(); |
1338 | } |
1339 | return size; |
1340 | } |
1341 | |
1342 | HeapWord* CompactibleFreeListSpace::par_allocate(size_t size) { |
1343 | MutexLocker x(freelistLock(), Mutex::_no_safepoint_check_flag); |
1344 | return allocate(size); |
1345 | } |
1346 | |
1347 | HeapWord* |
1348 | CompactibleFreeListSpace::getChunkFromSmallLinearAllocBlockRemainder(size_t size) { |
1349 | return getChunkFromLinearAllocBlockRemainder(&_smallLinearAllocBlock, size); |
1350 | } |
1351 | |
1352 | HeapWord* CompactibleFreeListSpace::allocate(size_t size) { |
1353 | assert_lock_strong(freelistLock()); |
1354 | HeapWord* res = NULL; |
1355 | assert(size == adjustObjectSize(size), |
1356 | "use adjustObjectSize() before calling into allocate()" ); |
1357 | |
1358 | res = allocate_adaptive_freelists(size); |
1359 | |
1360 | if (res != NULL) { |
1361 | // check that res does lie in this space! |
1362 | assert(is_in_reserved(res), "Not in this space!" ); |
1363 | assert(is_aligned((void*)res), "alignment check" ); |
1364 | |
1365 | FreeChunk* fc = (FreeChunk*)res; |
1366 | fc->markNotFree(); |
1367 | assert(!fc->is_free(), "shouldn't be marked free" ); |
1368 | assert(oop(fc)->klass_or_null() == NULL, "should look uninitialized" ); |
1369 | // Verify that the block offset table shows this to |
1370 | // be a single block, but not one which is unallocated. |
1371 | _bt.verify_single_block(res, size); |
1372 | _bt.verify_not_unallocated(res, size); |
1373 | // mangle a just allocated object with a distinct pattern. |
1374 | debug_only(fc->mangleAllocated(size)); |
1375 | } |
1376 | |
1377 | return res; |
1378 | } |
1379 | |
1380 | HeapWord* CompactibleFreeListSpace::allocate_adaptive_freelists(size_t size) { |
1381 | assert_lock_strong(freelistLock()); |
1382 | HeapWord* res = NULL; |
1383 | assert(size == adjustObjectSize(size), |
1384 | "use adjustObjectSize() before calling into allocate()" ); |
1385 | |
1386 | // Strategy |
1387 | // if small |
1388 | // exact size from small object indexed list if small |
1389 | // small or large linear allocation block (linAB) as appropriate |
1390 | // take from lists of greater sized chunks |
1391 | // else |
1392 | // dictionary |
1393 | // small or large linear allocation block if it has the space |
1394 | // Try allocating exact size from indexTable first |
1395 | if (size < IndexSetSize) { |
1396 | res = (HeapWord*) getChunkFromIndexedFreeList(size); |
1397 | if(res != NULL) { |
1398 | assert(res != (HeapWord*)_indexedFreeList[size].head(), |
1399 | "Not removed from free list" ); |
1400 | // no block offset table adjustment is necessary on blocks in |
1401 | // the indexed lists. |
1402 | |
1403 | // Try allocating from the small LinAB |
1404 | } else if (size < _smallLinearAllocBlock._allocation_size_limit && |
1405 | (res = getChunkFromSmallLinearAllocBlock(size)) != NULL) { |
1406 | // if successful, the above also adjusts block offset table |
1407 | // Note that this call will refill the LinAB to |
1408 | // satisfy the request. This is different that |
1409 | // evm. |
1410 | // Don't record chunk off a LinAB? smallSplitBirth(size); |
1411 | } else { |
1412 | // Raid the exact free lists larger than size, even if they are not |
1413 | // overpopulated. |
1414 | res = (HeapWord*) getChunkFromGreater(size); |
1415 | } |
1416 | } else { |
1417 | // Big objects get allocated directly from the dictionary. |
1418 | res = (HeapWord*) getChunkFromDictionaryExact(size); |
1419 | if (res == NULL) { |
1420 | // Try hard not to fail since an allocation failure will likely |
1421 | // trigger a synchronous GC. Try to get the space from the |
1422 | // allocation blocks. |
1423 | res = getChunkFromSmallLinearAllocBlockRemainder(size); |
1424 | } |
1425 | } |
1426 | |
1427 | return res; |
1428 | } |
1429 | |
1430 | // A worst-case estimate of the space required (in HeapWords) to expand the heap |
1431 | // when promoting obj. |
1432 | size_t CompactibleFreeListSpace::expansionSpaceRequired(size_t obj_size) const { |
1433 | // Depending on the object size, expansion may require refilling either a |
1434 | // bigLAB or a smallLAB plus refilling a PromotionInfo object. MinChunkSize |
1435 | // is added because the dictionary may over-allocate to avoid fragmentation. |
1436 | size_t space = obj_size; |
1437 | space += _promoInfo.refillSize() + 2 * MinChunkSize; |
1438 | return space; |
1439 | } |
1440 | |
1441 | FreeChunk* CompactibleFreeListSpace::getChunkFromGreater(size_t numWords) { |
1442 | FreeChunk* ret; |
1443 | |
1444 | assert(numWords >= MinChunkSize, "Size is less than minimum" ); |
1445 | assert(linearAllocationWouldFail() || bestFitFirst(), |
1446 | "Should not be here" ); |
1447 | |
1448 | size_t i; |
1449 | size_t currSize = numWords + MinChunkSize; |
1450 | assert(is_object_aligned(currSize), "currSize should be aligned" ); |
1451 | for (i = currSize; i < IndexSetSize; i += IndexSetStride) { |
1452 | AdaptiveFreeList<FreeChunk>* fl = &_indexedFreeList[i]; |
1453 | if (fl->head()) { |
1454 | ret = getFromListGreater(fl, numWords); |
1455 | assert(ret == NULL || ret->is_free(), "Should be returning a free chunk" ); |
1456 | return ret; |
1457 | } |
1458 | } |
1459 | |
1460 | currSize = MAX2((size_t)SmallForDictionary, |
1461 | (size_t)(numWords + MinChunkSize)); |
1462 | |
1463 | /* Try to get a chunk that satisfies request, while avoiding |
1464 | fragmentation that can't be handled. */ |
1465 | { |
1466 | ret = dictionary()->get_chunk(currSize); |
1467 | if (ret != NULL) { |
1468 | assert(ret->size() - numWords >= MinChunkSize, |
1469 | "Chunk is too small" ); |
1470 | _bt.allocated((HeapWord*)ret, ret->size()); |
1471 | /* Carve returned chunk. */ |
1472 | (void) splitChunkAndReturnRemainder(ret, numWords); |
1473 | /* Label this as no longer a free chunk. */ |
1474 | assert(ret->is_free(), "This chunk should be free" ); |
1475 | ret->link_prev(NULL); |
1476 | } |
1477 | assert(ret == NULL || ret->is_free(), "Should be returning a free chunk" ); |
1478 | return ret; |
1479 | } |
1480 | ShouldNotReachHere(); |
1481 | } |
1482 | |
1483 | bool CompactibleFreeListSpace::verifyChunkInIndexedFreeLists(FreeChunk* fc) const { |
1484 | assert(fc->size() < IndexSetSize, "Size of chunk is too large" ); |
1485 | return _indexedFreeList[fc->size()].verify_chunk_in_free_list(fc); |
1486 | } |
1487 | |
1488 | bool CompactibleFreeListSpace::verify_chunk_is_linear_alloc_block(FreeChunk* fc) const { |
1489 | assert((_smallLinearAllocBlock._ptr != (HeapWord*)fc) || |
1490 | (_smallLinearAllocBlock._word_size == fc->size()), |
1491 | "Linear allocation block shows incorrect size" ); |
1492 | return ((_smallLinearAllocBlock._ptr == (HeapWord*)fc) && |
1493 | (_smallLinearAllocBlock._word_size == fc->size())); |
1494 | } |
1495 | |
1496 | // Check if the purported free chunk is present either as a linear |
1497 | // allocation block, the size-indexed table of (smaller) free blocks, |
1498 | // or the larger free blocks kept in the binary tree dictionary. |
1499 | bool CompactibleFreeListSpace::verify_chunk_in_free_list(FreeChunk* fc) const { |
1500 | if (verify_chunk_is_linear_alloc_block(fc)) { |
1501 | return true; |
1502 | } else if (fc->size() < IndexSetSize) { |
1503 | return verifyChunkInIndexedFreeLists(fc); |
1504 | } else { |
1505 | return dictionary()->verify_chunk_in_free_list(fc); |
1506 | } |
1507 | } |
1508 | |
1509 | #ifndef PRODUCT |
1510 | void CompactibleFreeListSpace::assert_locked() const { |
1511 | CMSLockVerifier::assert_locked(freelistLock(), parDictionaryAllocLock()); |
1512 | } |
1513 | |
1514 | void CompactibleFreeListSpace::assert_locked(const Mutex* lock) const { |
1515 | CMSLockVerifier::assert_locked(lock); |
1516 | } |
1517 | #endif |
1518 | |
1519 | FreeChunk* CompactibleFreeListSpace::allocateScratch(size_t size) { |
1520 | // In the parallel case, the main thread holds the free list lock |
1521 | // on behalf the parallel threads. |
1522 | FreeChunk* fc; |
1523 | { |
1524 | // If GC is parallel, this might be called by several threads. |
1525 | // This should be rare enough that the locking overhead won't affect |
1526 | // the sequential code. |
1527 | MutexLocker x(parDictionaryAllocLock(), |
1528 | Mutex::_no_safepoint_check_flag); |
1529 | fc = getChunkFromDictionary(size); |
1530 | } |
1531 | if (fc != NULL) { |
1532 | fc->dontCoalesce(); |
1533 | assert(fc->is_free(), "Should be free, but not coalescable" ); |
1534 | // Verify that the block offset table shows this to |
1535 | // be a single block, but not one which is unallocated. |
1536 | _bt.verify_single_block((HeapWord*)fc, fc->size()); |
1537 | _bt.verify_not_unallocated((HeapWord*)fc, fc->size()); |
1538 | } |
1539 | return fc; |
1540 | } |
1541 | |
1542 | oop CompactibleFreeListSpace::promote(oop obj, size_t obj_size) { |
1543 | assert(obj_size == (size_t)obj->size(), "bad obj_size passed in" ); |
1544 | assert_locked(); |
1545 | |
1546 | // if we are tracking promotions, then first ensure space for |
1547 | // promotion (including spooling space for saving header if necessary). |
1548 | // then allocate and copy, then track promoted info if needed. |
1549 | // When tracking (see PromotionInfo::track()), the mark word may |
1550 | // be displaced and in this case restoration of the mark word |
1551 | // occurs in the (oop_since_save_marks_)iterate phase. |
1552 | if (_promoInfo.tracking() && !_promoInfo.ensure_spooling_space()) { |
1553 | return NULL; |
1554 | } |
1555 | // Call the allocate(size_t, bool) form directly to avoid the |
1556 | // additional call through the allocate(size_t) form. Having |
1557 | // the compile inline the call is problematic because allocate(size_t) |
1558 | // is a virtual method. |
1559 | HeapWord* res = allocate(adjustObjectSize(obj_size)); |
1560 | if (res != NULL) { |
1561 | Copy::aligned_disjoint_words((HeapWord*)obj, res, obj_size); |
1562 | // if we should be tracking promotions, do so. |
1563 | if (_promoInfo.tracking()) { |
1564 | _promoInfo.track((PromotedObject*)res); |
1565 | } |
1566 | } |
1567 | return oop(res); |
1568 | } |
1569 | |
1570 | HeapWord* |
1571 | CompactibleFreeListSpace::getChunkFromSmallLinearAllocBlock(size_t size) { |
1572 | assert_locked(); |
1573 | assert(size >= MinChunkSize, "minimum chunk size" ); |
1574 | assert(size < _smallLinearAllocBlock._allocation_size_limit, |
1575 | "maximum from smallLinearAllocBlock" ); |
1576 | return getChunkFromLinearAllocBlock(&_smallLinearAllocBlock, size); |
1577 | } |
1578 | |
1579 | HeapWord* |
1580 | CompactibleFreeListSpace::getChunkFromLinearAllocBlock(LinearAllocBlock *blk, |
1581 | size_t size) { |
1582 | assert_locked(); |
1583 | assert(size >= MinChunkSize, "too small" ); |
1584 | HeapWord* res = NULL; |
1585 | // Try to do linear allocation from blk, making sure that |
1586 | if (blk->_word_size == 0) { |
1587 | // We have probably been unable to fill this either in the prologue or |
1588 | // when it was exhausted at the last linear allocation. Bail out until |
1589 | // next time. |
1590 | assert(blk->_ptr == NULL, "consistency check" ); |
1591 | return NULL; |
1592 | } |
1593 | assert(blk->_word_size != 0 && blk->_ptr != NULL, "consistency check" ); |
1594 | res = getChunkFromLinearAllocBlockRemainder(blk, size); |
1595 | if (res != NULL) return res; |
1596 | |
1597 | // about to exhaust this linear allocation block |
1598 | if (blk->_word_size == size) { // exactly satisfied |
1599 | res = blk->_ptr; |
1600 | _bt.allocated(res, blk->_word_size); |
1601 | } else if (size + MinChunkSize <= blk->_refillSize) { |
1602 | size_t sz = blk->_word_size; |
1603 | // Update _unallocated_block if the size is such that chunk would be |
1604 | // returned to the indexed free list. All other chunks in the indexed |
1605 | // free lists are allocated from the dictionary so that _unallocated_block |
1606 | // has already been adjusted for them. Do it here so that the cost |
1607 | // for all chunks added back to the indexed free lists. |
1608 | if (sz < SmallForDictionary) { |
1609 | _bt.allocated(blk->_ptr, sz); |
1610 | } |
1611 | // Return the chunk that isn't big enough, and then refill below. |
1612 | addChunkToFreeLists(blk->_ptr, sz); |
1613 | split_birth(sz); |
1614 | // Don't keep statistics on adding back chunk from a LinAB. |
1615 | } else { |
1616 | // A refilled block would not satisfy the request. |
1617 | return NULL; |
1618 | } |
1619 | |
1620 | blk->_ptr = NULL; blk->_word_size = 0; |
1621 | refillLinearAllocBlock(blk); |
1622 | assert(blk->_ptr == NULL || blk->_word_size >= size + MinChunkSize, |
1623 | "block was replenished" ); |
1624 | if (res != NULL) { |
1625 | split_birth(size); |
1626 | repairLinearAllocBlock(blk); |
1627 | } else if (blk->_ptr != NULL) { |
1628 | res = blk->_ptr; |
1629 | size_t blk_size = blk->_word_size; |
1630 | blk->_word_size -= size; |
1631 | blk->_ptr += size; |
1632 | split_birth(size); |
1633 | repairLinearAllocBlock(blk); |
1634 | // Update BOT last so that other (parallel) GC threads see a consistent |
1635 | // view of the BOT and free blocks. |
1636 | // Above must occur before BOT is updated below. |
1637 | OrderAccess::storestore(); |
1638 | _bt.split_block(res, blk_size, size); // adjust block offset table |
1639 | } |
1640 | return res; |
1641 | } |
1642 | |
1643 | HeapWord* CompactibleFreeListSpace::getChunkFromLinearAllocBlockRemainder( |
1644 | LinearAllocBlock* blk, |
1645 | size_t size) { |
1646 | assert_locked(); |
1647 | assert(size >= MinChunkSize, "too small" ); |
1648 | |
1649 | HeapWord* res = NULL; |
1650 | // This is the common case. Keep it simple. |
1651 | if (blk->_word_size >= size + MinChunkSize) { |
1652 | assert(blk->_ptr != NULL, "consistency check" ); |
1653 | res = blk->_ptr; |
1654 | // Note that the BOT is up-to-date for the linAB before allocation. It |
1655 | // indicates the start of the linAB. The split_block() updates the |
1656 | // BOT for the linAB after the allocation (indicates the start of the |
1657 | // next chunk to be allocated). |
1658 | size_t blk_size = blk->_word_size; |
1659 | blk->_word_size -= size; |
1660 | blk->_ptr += size; |
1661 | split_birth(size); |
1662 | repairLinearAllocBlock(blk); |
1663 | // Update BOT last so that other (parallel) GC threads see a consistent |
1664 | // view of the BOT and free blocks. |
1665 | // Above must occur before BOT is updated below. |
1666 | OrderAccess::storestore(); |
1667 | _bt.split_block(res, blk_size, size); // adjust block offset table |
1668 | _bt.allocated(res, size); |
1669 | } |
1670 | return res; |
1671 | } |
1672 | |
1673 | FreeChunk* |
1674 | CompactibleFreeListSpace::getChunkFromIndexedFreeList(size_t size) { |
1675 | assert_locked(); |
1676 | assert(size < SmallForDictionary, "just checking" ); |
1677 | FreeChunk* res; |
1678 | res = _indexedFreeList[size].get_chunk_at_head(); |
1679 | if (res == NULL) { |
1680 | res = getChunkFromIndexedFreeListHelper(size); |
1681 | } |
1682 | _bt.verify_not_unallocated((HeapWord*) res, size); |
1683 | assert(res == NULL || res->size() == size, "Incorrect block size" ); |
1684 | return res; |
1685 | } |
1686 | |
1687 | FreeChunk* |
1688 | CompactibleFreeListSpace::getChunkFromIndexedFreeListHelper(size_t size, |
1689 | bool replenish) { |
1690 | assert_locked(); |
1691 | FreeChunk* fc = NULL; |
1692 | if (size < SmallForDictionary) { |
1693 | assert(_indexedFreeList[size].head() == NULL || |
1694 | _indexedFreeList[size].surplus() <= 0, |
1695 | "List for this size should be empty or under populated" ); |
1696 | // Try best fit in exact lists before replenishing the list |
1697 | if (!bestFitFirst() || (fc = bestFitSmall(size)) == NULL) { |
1698 | // Replenish list. |
1699 | // |
1700 | // Things tried that failed. |
1701 | // Tried allocating out of the two LinAB's first before |
1702 | // replenishing lists. |
1703 | // Tried small linAB of size 256 (size in indexed list) |
1704 | // and replenishing indexed lists from the small linAB. |
1705 | // |
1706 | FreeChunk* newFc = NULL; |
1707 | const size_t replenish_size = CMSIndexedFreeListReplenish * size; |
1708 | if (replenish_size < SmallForDictionary) { |
1709 | // Do not replenish from an underpopulated size. |
1710 | if (_indexedFreeList[replenish_size].surplus() > 0 && |
1711 | _indexedFreeList[replenish_size].head() != NULL) { |
1712 | newFc = _indexedFreeList[replenish_size].get_chunk_at_head(); |
1713 | } else if (bestFitFirst()) { |
1714 | newFc = bestFitSmall(replenish_size); |
1715 | } |
1716 | } |
1717 | if (newFc == NULL && replenish_size > size) { |
1718 | assert(CMSIndexedFreeListReplenish > 1, "ctl pt invariant" ); |
1719 | newFc = getChunkFromIndexedFreeListHelper(replenish_size, false); |
1720 | } |
1721 | // Note: The stats update re split-death of block obtained above |
1722 | // will be recorded below precisely when we know we are going to |
1723 | // be actually splitting it into more than one pieces below. |
1724 | if (newFc != NULL) { |
1725 | if (replenish || CMSReplenishIntermediate) { |
1726 | // Replenish this list and return one block to caller. |
1727 | size_t i; |
1728 | FreeChunk *curFc, *nextFc; |
1729 | size_t num_blk = newFc->size() / size; |
1730 | assert(num_blk >= 1, "Smaller than requested?" ); |
1731 | assert(newFc->size() % size == 0, "Should be integral multiple of request" ); |
1732 | if (num_blk > 1) { |
1733 | // we are sure we will be splitting the block just obtained |
1734 | // into multiple pieces; record the split-death of the original |
1735 | splitDeath(replenish_size); |
1736 | } |
1737 | // carve up and link blocks 0, ..., num_blk - 2 |
1738 | // The last chunk is not added to the lists but is returned as the |
1739 | // free chunk. |
1740 | for (curFc = newFc, nextFc = (FreeChunk*)((HeapWord*)curFc + size), |
1741 | i = 0; |
1742 | i < (num_blk - 1); |
1743 | curFc = nextFc, nextFc = (FreeChunk*)((HeapWord*)nextFc + size), |
1744 | i++) { |
1745 | curFc->set_size(size); |
1746 | // Don't record this as a return in order to try and |
1747 | // determine the "returns" from a GC. |
1748 | _bt.verify_not_unallocated((HeapWord*) fc, size); |
1749 | _indexedFreeList[size].return_chunk_at_tail(curFc, false); |
1750 | _bt.mark_block((HeapWord*)curFc, size); |
1751 | split_birth(size); |
1752 | // Don't record the initial population of the indexed list |
1753 | // as a split birth. |
1754 | } |
1755 | |
1756 | // check that the arithmetic was OK above |
1757 | assert((HeapWord*)nextFc == (HeapWord*)newFc + num_blk*size, |
1758 | "inconsistency in carving newFc" ); |
1759 | curFc->set_size(size); |
1760 | _bt.mark_block((HeapWord*)curFc, size); |
1761 | split_birth(size); |
1762 | fc = curFc; |
1763 | } else { |
1764 | // Return entire block to caller |
1765 | fc = newFc; |
1766 | } |
1767 | } |
1768 | } |
1769 | } else { |
1770 | // Get a free chunk from the free chunk dictionary to be returned to |
1771 | // replenish the indexed free list. |
1772 | fc = getChunkFromDictionaryExact(size); |
1773 | } |
1774 | // assert(fc == NULL || fc->is_free(), "Should be returning a free chunk"); |
1775 | return fc; |
1776 | } |
1777 | |
1778 | FreeChunk* |
1779 | CompactibleFreeListSpace::getChunkFromDictionary(size_t size) { |
1780 | assert_locked(); |
1781 | FreeChunk* fc = _dictionary->get_chunk(size); |
1782 | if (fc == NULL) { |
1783 | return NULL; |
1784 | } |
1785 | _bt.allocated((HeapWord*)fc, fc->size()); |
1786 | if (fc->size() >= size + MinChunkSize) { |
1787 | fc = splitChunkAndReturnRemainder(fc, size); |
1788 | } |
1789 | assert(fc->size() >= size, "chunk too small" ); |
1790 | assert(fc->size() < size + MinChunkSize, "chunk too big" ); |
1791 | _bt.verify_single_block((HeapWord*)fc, fc->size()); |
1792 | return fc; |
1793 | } |
1794 | |
1795 | FreeChunk* |
1796 | CompactibleFreeListSpace::getChunkFromDictionaryExact(size_t size) { |
1797 | assert_locked(); |
1798 | FreeChunk* fc = _dictionary->get_chunk(size); |
1799 | if (fc == NULL) { |
1800 | return fc; |
1801 | } |
1802 | _bt.allocated((HeapWord*)fc, fc->size()); |
1803 | if (fc->size() == size) { |
1804 | _bt.verify_single_block((HeapWord*)fc, size); |
1805 | return fc; |
1806 | } |
1807 | assert(fc->size() > size, "get_chunk() guarantee" ); |
1808 | if (fc->size() < size + MinChunkSize) { |
1809 | // Return the chunk to the dictionary and go get a bigger one. |
1810 | returnChunkToDictionary(fc); |
1811 | fc = _dictionary->get_chunk(size + MinChunkSize); |
1812 | if (fc == NULL) { |
1813 | return NULL; |
1814 | } |
1815 | _bt.allocated((HeapWord*)fc, fc->size()); |
1816 | } |
1817 | assert(fc->size() >= size + MinChunkSize, "tautology" ); |
1818 | fc = splitChunkAndReturnRemainder(fc, size); |
1819 | assert(fc->size() == size, "chunk is wrong size" ); |
1820 | _bt.verify_single_block((HeapWord*)fc, size); |
1821 | return fc; |
1822 | } |
1823 | |
1824 | void |
1825 | CompactibleFreeListSpace::returnChunkToDictionary(FreeChunk* chunk) { |
1826 | assert_locked(); |
1827 | |
1828 | size_t size = chunk->size(); |
1829 | _bt.verify_single_block((HeapWord*)chunk, size); |
1830 | // adjust _unallocated_block downward, as necessary |
1831 | _bt.freed((HeapWord*)chunk, size); |
1832 | _dictionary->return_chunk(chunk); |
1833 | #ifndef PRODUCT |
1834 | if (CMSCollector::abstract_state() != CMSCollector::Sweeping) { |
1835 | TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >* tc = TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >::as_TreeChunk(chunk); |
1836 | TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >* tl = tc->list(); |
1837 | tl->verify_stats(); |
1838 | } |
1839 | #endif // PRODUCT |
1840 | } |
1841 | |
1842 | void |
1843 | CompactibleFreeListSpace::returnChunkToFreeList(FreeChunk* fc) { |
1844 | assert_locked(); |
1845 | size_t size = fc->size(); |
1846 | _bt.verify_single_block((HeapWord*) fc, size); |
1847 | _bt.verify_not_unallocated((HeapWord*) fc, size); |
1848 | _indexedFreeList[size].return_chunk_at_tail(fc); |
1849 | #ifndef PRODUCT |
1850 | if (CMSCollector::abstract_state() != CMSCollector::Sweeping) { |
1851 | _indexedFreeList[size].verify_stats(); |
1852 | } |
1853 | #endif // PRODUCT |
1854 | } |
1855 | |
1856 | // Add chunk to end of last block -- if it's the largest |
1857 | // block -- and update BOT and census data. We would |
1858 | // of course have preferred to coalesce it with the |
1859 | // last block, but it's currently less expensive to find the |
1860 | // largest block than it is to find the last. |
1861 | void |
1862 | CompactibleFreeListSpace::addChunkToFreeListsAtEndRecordingStats( |
1863 | HeapWord* chunk, size_t size) { |
1864 | // check that the chunk does lie in this space! |
1865 | assert(chunk != NULL && is_in_reserved(chunk), "Not in this space!" ); |
1866 | // One of the parallel gc task threads may be here |
1867 | // whilst others are allocating. |
1868 | Mutex* lock = &_parDictionaryAllocLock; |
1869 | FreeChunk* ec; |
1870 | { |
1871 | MutexLocker x(lock, Mutex::_no_safepoint_check_flag); |
1872 | ec = dictionary()->find_largest_dict(); // get largest block |
1873 | if (ec != NULL && ec->end() == (uintptr_t*) chunk) { |
1874 | // It's a coterminal block - we can coalesce. |
1875 | size_t old_size = ec->size(); |
1876 | coalDeath(old_size); |
1877 | removeChunkFromDictionary(ec); |
1878 | size += old_size; |
1879 | } else { |
1880 | ec = (FreeChunk*)chunk; |
1881 | } |
1882 | } |
1883 | ec->set_size(size); |
1884 | debug_only(ec->mangleFreed(size)); |
1885 | if (size < SmallForDictionary) { |
1886 | lock = _indexedFreeListParLocks[size]; |
1887 | } |
1888 | MutexLocker x(lock, Mutex::_no_safepoint_check_flag); |
1889 | addChunkAndRepairOffsetTable((HeapWord*)ec, size, true); |
1890 | // record the birth under the lock since the recording involves |
1891 | // manipulation of the list on which the chunk lives and |
1892 | // if the chunk is allocated and is the last on the list, |
1893 | // the list can go away. |
1894 | coalBirth(size); |
1895 | } |
1896 | |
1897 | void |
1898 | CompactibleFreeListSpace::addChunkToFreeLists(HeapWord* chunk, |
1899 | size_t size) { |
1900 | // check that the chunk does lie in this space! |
1901 | assert(chunk != NULL && is_in_reserved(chunk), "Not in this space!" ); |
1902 | assert_locked(); |
1903 | _bt.verify_single_block(chunk, size); |
1904 | |
1905 | FreeChunk* fc = (FreeChunk*) chunk; |
1906 | fc->set_size(size); |
1907 | debug_only(fc->mangleFreed(size)); |
1908 | if (size < SmallForDictionary) { |
1909 | returnChunkToFreeList(fc); |
1910 | } else { |
1911 | returnChunkToDictionary(fc); |
1912 | } |
1913 | } |
1914 | |
1915 | void |
1916 | CompactibleFreeListSpace::addChunkAndRepairOffsetTable(HeapWord* chunk, |
1917 | size_t size, bool coalesced) { |
1918 | assert_locked(); |
1919 | assert(chunk != NULL, "null chunk" ); |
1920 | if (coalesced) { |
1921 | // repair BOT |
1922 | _bt.single_block(chunk, size); |
1923 | } |
1924 | addChunkToFreeLists(chunk, size); |
1925 | } |
1926 | |
1927 | // We _must_ find the purported chunk on our free lists; |
1928 | // we assert if we don't. |
1929 | void |
1930 | CompactibleFreeListSpace::removeFreeChunkFromFreeLists(FreeChunk* fc) { |
1931 | size_t size = fc->size(); |
1932 | assert_locked(); |
1933 | debug_only(verifyFreeLists()); |
1934 | if (size < SmallForDictionary) { |
1935 | removeChunkFromIndexedFreeList(fc); |
1936 | } else { |
1937 | removeChunkFromDictionary(fc); |
1938 | } |
1939 | _bt.verify_single_block((HeapWord*)fc, size); |
1940 | debug_only(verifyFreeLists()); |
1941 | } |
1942 | |
1943 | void |
1944 | CompactibleFreeListSpace::removeChunkFromDictionary(FreeChunk* fc) { |
1945 | size_t size = fc->size(); |
1946 | assert_locked(); |
1947 | assert(fc != NULL, "null chunk" ); |
1948 | _bt.verify_single_block((HeapWord*)fc, size); |
1949 | _dictionary->remove_chunk(fc); |
1950 | // adjust _unallocated_block upward, as necessary |
1951 | _bt.allocated((HeapWord*)fc, size); |
1952 | } |
1953 | |
1954 | void |
1955 | CompactibleFreeListSpace::removeChunkFromIndexedFreeList(FreeChunk* fc) { |
1956 | assert_locked(); |
1957 | size_t size = fc->size(); |
1958 | _bt.verify_single_block((HeapWord*)fc, size); |
1959 | NOT_PRODUCT( |
1960 | if (FLSVerifyIndexTable) { |
1961 | verifyIndexedFreeList(size); |
1962 | } |
1963 | ) |
1964 | _indexedFreeList[size].remove_chunk(fc); |
1965 | NOT_PRODUCT( |
1966 | if (FLSVerifyIndexTable) { |
1967 | verifyIndexedFreeList(size); |
1968 | } |
1969 | ) |
1970 | } |
1971 | |
1972 | FreeChunk* CompactibleFreeListSpace::bestFitSmall(size_t numWords) { |
1973 | /* A hint is the next larger size that has a surplus. |
1974 | Start search at a size large enough to guarantee that |
1975 | the excess is >= MIN_CHUNK. */ |
1976 | size_t start = align_object_size(numWords + MinChunkSize); |
1977 | if (start < IndexSetSize) { |
1978 | AdaptiveFreeList<FreeChunk>* it = _indexedFreeList; |
1979 | size_t hint = _indexedFreeList[start].hint(); |
1980 | while (hint < IndexSetSize) { |
1981 | assert(is_object_aligned(hint), "hint should be aligned" ); |
1982 | AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[hint]; |
1983 | if (fl->surplus() > 0 && fl->head() != NULL) { |
1984 | // Found a list with surplus, reset original hint |
1985 | // and split out a free chunk which is returned. |
1986 | _indexedFreeList[start].set_hint(hint); |
1987 | FreeChunk* res = getFromListGreater(fl, numWords); |
1988 | assert(res == NULL || res->is_free(), |
1989 | "Should be returning a free chunk" ); |
1990 | return res; |
1991 | } |
1992 | hint = fl->hint(); /* keep looking */ |
1993 | } |
1994 | /* None found. */ |
1995 | it[start].set_hint(IndexSetSize); |
1996 | } |
1997 | return NULL; |
1998 | } |
1999 | |
2000 | /* Requires fl->size >= numWords + MinChunkSize */ |
2001 | FreeChunk* CompactibleFreeListSpace::getFromListGreater(AdaptiveFreeList<FreeChunk>* fl, |
2002 | size_t numWords) { |
2003 | FreeChunk *curr = fl->head(); |
2004 | size_t oldNumWords = curr->size(); |
2005 | assert(numWords >= MinChunkSize, "Word size is too small" ); |
2006 | assert(curr != NULL, "List is empty" ); |
2007 | assert(oldNumWords >= numWords + MinChunkSize, |
2008 | "Size of chunks in the list is too small" ); |
2009 | |
2010 | fl->remove_chunk(curr); |
2011 | // recorded indirectly by splitChunkAndReturnRemainder - |
2012 | // smallSplit(oldNumWords, numWords); |
2013 | FreeChunk* new_chunk = splitChunkAndReturnRemainder(curr, numWords); |
2014 | // Does anything have to be done for the remainder in terms of |
2015 | // fixing the card table? |
2016 | assert(new_chunk == NULL || new_chunk->is_free(), |
2017 | "Should be returning a free chunk" ); |
2018 | return new_chunk; |
2019 | } |
2020 | |
2021 | FreeChunk* |
2022 | CompactibleFreeListSpace::splitChunkAndReturnRemainder(FreeChunk* chunk, |
2023 | size_t new_size) { |
2024 | assert_locked(); |
2025 | size_t size = chunk->size(); |
2026 | assert(size > new_size, "Split from a smaller block?" ); |
2027 | assert(is_aligned(chunk), "alignment problem" ); |
2028 | assert(size == adjustObjectSize(size), "alignment problem" ); |
2029 | size_t rem_sz = size - new_size; |
2030 | assert(rem_sz == adjustObjectSize(rem_sz), "alignment problem" ); |
2031 | assert(rem_sz >= MinChunkSize, "Free chunk smaller than minimum" ); |
2032 | FreeChunk* ffc = (FreeChunk*)((HeapWord*)chunk + new_size); |
2033 | assert(is_aligned(ffc), "alignment problem" ); |
2034 | ffc->set_size(rem_sz); |
2035 | ffc->link_next(NULL); |
2036 | ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads. |
2037 | // Above must occur before BOT is updated below. |
2038 | // adjust block offset table |
2039 | OrderAccess::storestore(); |
2040 | assert(chunk->is_free() && ffc->is_free(), "Error" ); |
2041 | _bt.split_block((HeapWord*)chunk, chunk->size(), new_size); |
2042 | if (rem_sz < SmallForDictionary) { |
2043 | // The freeList lock is held, but multiple GC task threads might be executing in parallel. |
2044 | bool is_par = Thread::current()->is_GC_task_thread(); |
2045 | if (is_par) _indexedFreeListParLocks[rem_sz]->lock_without_safepoint_check(); |
2046 | returnChunkToFreeList(ffc); |
2047 | split(size, rem_sz); |
2048 | if (is_par) _indexedFreeListParLocks[rem_sz]->unlock(); |
2049 | } else { |
2050 | returnChunkToDictionary(ffc); |
2051 | split(size, rem_sz); |
2052 | } |
2053 | chunk->set_size(new_size); |
2054 | return chunk; |
2055 | } |
2056 | |
2057 | void |
2058 | CompactibleFreeListSpace::sweep_completed() { |
2059 | // Now that space is probably plentiful, refill linear |
2060 | // allocation blocks as needed. |
2061 | refillLinearAllocBlocksIfNeeded(); |
2062 | } |
2063 | |
2064 | void |
2065 | CompactibleFreeListSpace::gc_prologue() { |
2066 | assert_locked(); |
2067 | reportFreeListStatistics("Before GC:" ); |
2068 | refillLinearAllocBlocksIfNeeded(); |
2069 | } |
2070 | |
2071 | void |
2072 | CompactibleFreeListSpace::gc_epilogue() { |
2073 | assert_locked(); |
2074 | assert(_promoInfo.noPromotions(), "_promoInfo inconsistency" ); |
2075 | _promoInfo.stopTrackingPromotions(); |
2076 | repairLinearAllocationBlocks(); |
2077 | reportFreeListStatistics("After GC:" ); |
2078 | } |
2079 | |
2080 | // Iteration support, mostly delegated from a CMS generation |
2081 | |
2082 | void CompactibleFreeListSpace::save_marks() { |
2083 | assert(Thread::current()->is_VM_thread(), |
2084 | "Global variable should only be set when single-threaded" ); |
2085 | // Mark the "end" of the used space at the time of this call; |
2086 | // note, however, that promoted objects from this point |
2087 | // on are tracked in the _promoInfo below. |
2088 | set_saved_mark_word(unallocated_block()); |
2089 | #ifdef ASSERT |
2090 | // Check the sanity of save_marks() etc. |
2091 | MemRegion ur = used_region(); |
2092 | MemRegion urasm = used_region_at_save_marks(); |
2093 | assert(ur.contains(urasm), |
2094 | " Error at save_marks(): [" PTR_FORMAT "," PTR_FORMAT ")" |
2095 | " should contain [" PTR_FORMAT "," PTR_FORMAT ")" , |
2096 | p2i(ur.start()), p2i(ur.end()), p2i(urasm.start()), p2i(urasm.end())); |
2097 | #endif |
2098 | // inform allocator that promotions should be tracked. |
2099 | assert(_promoInfo.noPromotions(), "_promoInfo inconsistency" ); |
2100 | _promoInfo.startTrackingPromotions(); |
2101 | } |
2102 | |
2103 | bool CompactibleFreeListSpace::no_allocs_since_save_marks() { |
2104 | assert(_promoInfo.tracking(), "No preceding save_marks?" ); |
2105 | return _promoInfo.noPromotions(); |
2106 | } |
2107 | |
2108 | bool CompactibleFreeListSpace::linearAllocationWouldFail() const { |
2109 | return _smallLinearAllocBlock._word_size == 0; |
2110 | } |
2111 | |
2112 | void CompactibleFreeListSpace::repairLinearAllocationBlocks() { |
2113 | // Fix up linear allocation blocks to look like free blocks |
2114 | repairLinearAllocBlock(&_smallLinearAllocBlock); |
2115 | } |
2116 | |
2117 | void CompactibleFreeListSpace::repairLinearAllocBlock(LinearAllocBlock* blk) { |
2118 | assert_locked(); |
2119 | if (blk->_ptr != NULL) { |
2120 | assert(blk->_word_size != 0 && blk->_word_size >= MinChunkSize, |
2121 | "Minimum block size requirement" ); |
2122 | FreeChunk* fc = (FreeChunk*)(blk->_ptr); |
2123 | fc->set_size(blk->_word_size); |
2124 | fc->link_prev(NULL); // mark as free |
2125 | fc->dontCoalesce(); |
2126 | assert(fc->is_free(), "just marked it free" ); |
2127 | assert(fc->cantCoalesce(), "just marked it uncoalescable" ); |
2128 | } |
2129 | } |
2130 | |
2131 | void CompactibleFreeListSpace::refillLinearAllocBlocksIfNeeded() { |
2132 | assert_locked(); |
2133 | if (_smallLinearAllocBlock._ptr == NULL) { |
2134 | assert(_smallLinearAllocBlock._word_size == 0, |
2135 | "Size of linAB should be zero if the ptr is NULL" ); |
2136 | // Reset the linAB refill and allocation size limit. |
2137 | _smallLinearAllocBlock.set(0, 0, 1024*SmallForLinearAlloc, SmallForLinearAlloc); |
2138 | } |
2139 | refillLinearAllocBlockIfNeeded(&_smallLinearAllocBlock); |
2140 | } |
2141 | |
2142 | void |
2143 | CompactibleFreeListSpace::refillLinearAllocBlockIfNeeded(LinearAllocBlock* blk) { |
2144 | assert_locked(); |
2145 | assert((blk->_ptr == NULL && blk->_word_size == 0) || |
2146 | (blk->_ptr != NULL && blk->_word_size >= MinChunkSize), |
2147 | "blk invariant" ); |
2148 | if (blk->_ptr == NULL) { |
2149 | refillLinearAllocBlock(blk); |
2150 | } |
2151 | } |
2152 | |
2153 | void |
2154 | CompactibleFreeListSpace::refillLinearAllocBlock(LinearAllocBlock* blk) { |
2155 | assert_locked(); |
2156 | assert(blk->_word_size == 0 && blk->_ptr == NULL, |
2157 | "linear allocation block should be empty" ); |
2158 | FreeChunk* fc; |
2159 | if (blk->_refillSize < SmallForDictionary && |
2160 | (fc = getChunkFromIndexedFreeList(blk->_refillSize)) != NULL) { |
2161 | // A linAB's strategy might be to use small sizes to reduce |
2162 | // fragmentation but still get the benefits of allocation from a |
2163 | // linAB. |
2164 | } else { |
2165 | fc = getChunkFromDictionary(blk->_refillSize); |
2166 | } |
2167 | if (fc != NULL) { |
2168 | blk->_ptr = (HeapWord*)fc; |
2169 | blk->_word_size = fc->size(); |
2170 | fc->dontCoalesce(); // to prevent sweeper from sweeping us up |
2171 | } |
2172 | } |
2173 | |
2174 | // Support for compaction |
2175 | void CompactibleFreeListSpace::prepare_for_compaction(CompactPoint* cp) { |
2176 | scan_and_forward(this, cp); |
2177 | // Prepare_for_compaction() uses the space between live objects |
2178 | // so that later phase can skip dead space quickly. So verification |
2179 | // of the free lists doesn't work after. |
2180 | } |
2181 | |
2182 | void CompactibleFreeListSpace::adjust_pointers() { |
2183 | // In other versions of adjust_pointers(), a bail out |
2184 | // based on the amount of live data in the generation |
2185 | // (i.e., if 0, bail out) may be used. |
2186 | // Cannot test used() == 0 here because the free lists have already |
2187 | // been mangled by the compaction. |
2188 | |
2189 | scan_and_adjust_pointers(this); |
2190 | // See note about verification in prepare_for_compaction(). |
2191 | } |
2192 | |
2193 | void CompactibleFreeListSpace::compact() { |
2194 | scan_and_compact(this); |
2195 | } |
2196 | |
2197 | // Fragmentation metric = 1 - [sum of (fbs**2) / (sum of fbs)**2] |
2198 | // where fbs is free block sizes |
2199 | double CompactibleFreeListSpace::flsFrag() const { |
2200 | size_t itabFree = totalSizeInIndexedFreeLists(); |
2201 | double frag = 0.0; |
2202 | size_t i; |
2203 | |
2204 | for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) { |
2205 | double sz = i; |
2206 | frag += _indexedFreeList[i].count() * (sz * sz); |
2207 | } |
2208 | |
2209 | double totFree = itabFree + |
2210 | _dictionary->total_chunk_size(DEBUG_ONLY(freelistLock())); |
2211 | if (totFree > 0) { |
2212 | frag = ((frag + _dictionary->sum_of_squared_block_sizes()) / |
2213 | (totFree * totFree)); |
2214 | frag = (double)1.0 - frag; |
2215 | } else { |
2216 | assert(frag == 0.0, "Follows from totFree == 0" ); |
2217 | } |
2218 | return frag; |
2219 | } |
2220 | |
2221 | void CompactibleFreeListSpace::beginSweepFLCensus( |
2222 | float inter_sweep_current, |
2223 | float inter_sweep_estimate, |
2224 | float intra_sweep_estimate) { |
2225 | assert_locked(); |
2226 | size_t i; |
2227 | for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) { |
2228 | AdaptiveFreeList<FreeChunk>* fl = &_indexedFreeList[i]; |
2229 | log_trace(gc, freelist)("size[" SIZE_FORMAT "] : " , i); |
2230 | fl->compute_desired(inter_sweep_current, inter_sweep_estimate, intra_sweep_estimate); |
2231 | fl->set_coal_desired((ssize_t)((double)fl->desired() * CMSSmallCoalSurplusPercent)); |
2232 | fl->set_before_sweep(fl->count()); |
2233 | fl->set_bfr_surp(fl->surplus()); |
2234 | } |
2235 | _dictionary->begin_sweep_dict_census(CMSLargeCoalSurplusPercent, |
2236 | inter_sweep_current, |
2237 | inter_sweep_estimate, |
2238 | intra_sweep_estimate); |
2239 | } |
2240 | |
2241 | void CompactibleFreeListSpace::setFLSurplus() { |
2242 | assert_locked(); |
2243 | size_t i; |
2244 | for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) { |
2245 | AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[i]; |
2246 | fl->set_surplus(fl->count() - |
2247 | (ssize_t)((double)fl->desired() * CMSSmallSplitSurplusPercent)); |
2248 | } |
2249 | } |
2250 | |
2251 | void CompactibleFreeListSpace::setFLHints() { |
2252 | assert_locked(); |
2253 | size_t i; |
2254 | size_t h = IndexSetSize; |
2255 | for (i = IndexSetSize - 1; i != 0; i -= IndexSetStride) { |
2256 | AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[i]; |
2257 | fl->set_hint(h); |
2258 | if (fl->surplus() > 0) { |
2259 | h = i; |
2260 | } |
2261 | } |
2262 | } |
2263 | |
2264 | void CompactibleFreeListSpace::clearFLCensus() { |
2265 | assert_locked(); |
2266 | size_t i; |
2267 | for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) { |
2268 | AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[i]; |
2269 | fl->set_prev_sweep(fl->count()); |
2270 | fl->set_coal_births(0); |
2271 | fl->set_coal_deaths(0); |
2272 | fl->set_split_births(0); |
2273 | fl->set_split_deaths(0); |
2274 | } |
2275 | } |
2276 | |
2277 | void CompactibleFreeListSpace::endSweepFLCensus(size_t sweep_count) { |
2278 | log_debug(gc, freelist)("CMS: Large block " PTR_FORMAT, p2i(dictionary()->find_largest_dict())); |
2279 | setFLSurplus(); |
2280 | setFLHints(); |
2281 | printFLCensus(sweep_count); |
2282 | clearFLCensus(); |
2283 | assert_locked(); |
2284 | _dictionary->end_sweep_dict_census(CMSLargeSplitSurplusPercent); |
2285 | } |
2286 | |
2287 | bool CompactibleFreeListSpace::coalOverPopulated(size_t size) { |
2288 | if (size < SmallForDictionary) { |
2289 | AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size]; |
2290 | return (fl->coal_desired() < 0) || |
2291 | ((int)fl->count() > fl->coal_desired()); |
2292 | } else { |
2293 | return dictionary()->coal_dict_over_populated(size); |
2294 | } |
2295 | } |
2296 | |
2297 | void CompactibleFreeListSpace::smallCoalBirth(size_t size) { |
2298 | assert(size < SmallForDictionary, "Size too large for indexed list" ); |
2299 | AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size]; |
2300 | fl->increment_coal_births(); |
2301 | fl->increment_surplus(); |
2302 | } |
2303 | |
2304 | void CompactibleFreeListSpace::smallCoalDeath(size_t size) { |
2305 | assert(size < SmallForDictionary, "Size too large for indexed list" ); |
2306 | AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size]; |
2307 | fl->increment_coal_deaths(); |
2308 | fl->decrement_surplus(); |
2309 | } |
2310 | |
2311 | void CompactibleFreeListSpace::coalBirth(size_t size) { |
2312 | if (size < SmallForDictionary) { |
2313 | smallCoalBirth(size); |
2314 | } else { |
2315 | dictionary()->dict_census_update(size, |
2316 | false /* split */, |
2317 | true /* birth */); |
2318 | } |
2319 | } |
2320 | |
2321 | void CompactibleFreeListSpace::coalDeath(size_t size) { |
2322 | if(size < SmallForDictionary) { |
2323 | smallCoalDeath(size); |
2324 | } else { |
2325 | dictionary()->dict_census_update(size, |
2326 | false /* split */, |
2327 | false /* birth */); |
2328 | } |
2329 | } |
2330 | |
2331 | void CompactibleFreeListSpace::smallSplitBirth(size_t size) { |
2332 | assert(size < SmallForDictionary, "Size too large for indexed list" ); |
2333 | AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size]; |
2334 | fl->increment_split_births(); |
2335 | fl->increment_surplus(); |
2336 | } |
2337 | |
2338 | void CompactibleFreeListSpace::smallSplitDeath(size_t size) { |
2339 | assert(size < SmallForDictionary, "Size too large for indexed list" ); |
2340 | AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size]; |
2341 | fl->increment_split_deaths(); |
2342 | fl->decrement_surplus(); |
2343 | } |
2344 | |
2345 | void CompactibleFreeListSpace::split_birth(size_t size) { |
2346 | if (size < SmallForDictionary) { |
2347 | smallSplitBirth(size); |
2348 | } else { |
2349 | dictionary()->dict_census_update(size, |
2350 | true /* split */, |
2351 | true /* birth */); |
2352 | } |
2353 | } |
2354 | |
2355 | void CompactibleFreeListSpace::splitDeath(size_t size) { |
2356 | if (size < SmallForDictionary) { |
2357 | smallSplitDeath(size); |
2358 | } else { |
2359 | dictionary()->dict_census_update(size, |
2360 | true /* split */, |
2361 | false /* birth */); |
2362 | } |
2363 | } |
2364 | |
2365 | void CompactibleFreeListSpace::split(size_t from, size_t to1) { |
2366 | size_t to2 = from - to1; |
2367 | splitDeath(from); |
2368 | split_birth(to1); |
2369 | split_birth(to2); |
2370 | } |
2371 | |
2372 | void CompactibleFreeListSpace::print() const { |
2373 | print_on(tty); |
2374 | } |
2375 | |
2376 | void CompactibleFreeListSpace::prepare_for_verify() { |
2377 | assert_locked(); |
2378 | repairLinearAllocationBlocks(); |
2379 | // Verify that the SpoolBlocks look like free blocks of |
2380 | // appropriate sizes... To be done ... |
2381 | } |
2382 | |
2383 | class VerifyAllBlksClosure: public BlkClosure { |
2384 | private: |
2385 | const CompactibleFreeListSpace* _sp; |
2386 | const MemRegion _span; |
2387 | HeapWord* _last_addr; |
2388 | size_t _last_size; |
2389 | bool _last_was_obj; |
2390 | bool _last_was_live; |
2391 | |
2392 | public: |
2393 | VerifyAllBlksClosure(const CompactibleFreeListSpace* sp, |
2394 | MemRegion span) : _sp(sp), _span(span), |
2395 | _last_addr(NULL), _last_size(0), |
2396 | _last_was_obj(false), _last_was_live(false) { } |
2397 | |
2398 | virtual size_t do_blk(HeapWord* addr) { |
2399 | size_t res; |
2400 | bool was_obj = false; |
2401 | bool was_live = false; |
2402 | if (_sp->block_is_obj(addr)) { |
2403 | was_obj = true; |
2404 | oop p = oop(addr); |
2405 | guarantee(oopDesc::is_oop(p), "Should be an oop" ); |
2406 | res = _sp->adjustObjectSize(p->size()); |
2407 | if (_sp->obj_is_alive(addr)) { |
2408 | was_live = true; |
2409 | oopDesc::verify(p); |
2410 | } |
2411 | } else { |
2412 | FreeChunk* fc = (FreeChunk*)addr; |
2413 | res = fc->size(); |
2414 | if (FLSVerifyLists && !fc->cantCoalesce()) { |
2415 | guarantee(_sp->verify_chunk_in_free_list(fc), |
2416 | "Chunk should be on a free list" ); |
2417 | } |
2418 | } |
2419 | if (res == 0) { |
2420 | Log(gc, verify) log; |
2421 | log.error("Livelock: no rank reduction!" ); |
2422 | log.error(" Current: addr = " PTR_FORMAT ", size = " SIZE_FORMAT ", obj = %s, live = %s \n" |
2423 | " Previous: addr = " PTR_FORMAT ", size = " SIZE_FORMAT ", obj = %s, live = %s \n" , |
2424 | p2i(addr), res, was_obj ?"true" :"false" , was_live ?"true" :"false" , |
2425 | p2i(_last_addr), _last_size, _last_was_obj?"true" :"false" , _last_was_live?"true" :"false" ); |
2426 | LogStream ls(log.error()); |
2427 | _sp->print_on(&ls); |
2428 | guarantee(false, "Verification failed." ); |
2429 | } |
2430 | _last_addr = addr; |
2431 | _last_size = res; |
2432 | _last_was_obj = was_obj; |
2433 | _last_was_live = was_live; |
2434 | return res; |
2435 | } |
2436 | }; |
2437 | |
2438 | class VerifyAllOopsClosure: public BasicOopIterateClosure { |
2439 | private: |
2440 | const CMSCollector* _collector; |
2441 | const CompactibleFreeListSpace* _sp; |
2442 | const MemRegion _span; |
2443 | const bool ; |
2444 | const CMSBitMap* _bit_map; |
2445 | |
2446 | protected: |
2447 | void do_oop(void* p, oop obj) { |
2448 | if (_span.contains(obj)) { // the interior oop points into CMS heap |
2449 | if (!_span.contains(p)) { // reference from outside CMS heap |
2450 | // Should be a valid object; the first disjunct below allows |
2451 | // us to sidestep an assertion in block_is_obj() that insists |
2452 | // that p be in _sp. Note that several generations (and spaces) |
2453 | // are spanned by _span (CMS heap) above. |
2454 | guarantee(!_sp->is_in_reserved(obj) || |
2455 | _sp->block_is_obj((HeapWord*)obj), |
2456 | "Should be an object" ); |
2457 | guarantee(oopDesc::is_oop(obj), "Should be an oop" ); |
2458 | oopDesc::verify(obj); |
2459 | if (_past_remark) { |
2460 | // Remark has been completed, the object should be marked |
2461 | _bit_map->isMarked((HeapWord*)obj); |
2462 | } |
2463 | } else { // reference within CMS heap |
2464 | if (_past_remark) { |
2465 | // Remark has been completed -- so the referent should have |
2466 | // been marked, if referring object is. |
2467 | if (_bit_map->isMarked(_collector->block_start(p))) { |
2468 | guarantee(_bit_map->isMarked((HeapWord*)obj), "Marking error?" ); |
2469 | } |
2470 | } |
2471 | } |
2472 | } else if (_sp->is_in_reserved(p)) { |
2473 | // the reference is from FLS, and points out of FLS |
2474 | guarantee(oopDesc::is_oop(obj), "Should be an oop" ); |
2475 | oopDesc::verify(obj); |
2476 | } |
2477 | } |
2478 | |
2479 | template <class T> void do_oop_work(T* p) { |
2480 | T heap_oop = RawAccess<>::oop_load(p); |
2481 | if (!CompressedOops::is_null(heap_oop)) { |
2482 | oop obj = CompressedOops::decode_not_null(heap_oop); |
2483 | do_oop(p, obj); |
2484 | } |
2485 | } |
2486 | |
2487 | public: |
2488 | VerifyAllOopsClosure(const CMSCollector* collector, |
2489 | const CompactibleFreeListSpace* sp, MemRegion span, |
2490 | bool , CMSBitMap* bit_map) : |
2491 | _collector(collector), _sp(sp), _span(span), |
2492 | _past_remark(past_remark), _bit_map(bit_map) { } |
2493 | |
2494 | virtual void do_oop(oop* p) { VerifyAllOopsClosure::do_oop_work(p); } |
2495 | virtual void do_oop(narrowOop* p) { VerifyAllOopsClosure::do_oop_work(p); } |
2496 | }; |
2497 | |
2498 | void CompactibleFreeListSpace::verify() const { |
2499 | assert_lock_strong(&_freelistLock); |
2500 | verify_objects_initialized(); |
2501 | MemRegion span = _collector->_span; |
2502 | bool = (_collector->abstract_state() == |
2503 | CMSCollector::Sweeping); |
2504 | |
2505 | ResourceMark rm; |
2506 | HandleMark hm; |
2507 | |
2508 | // Check integrity of CFL data structures |
2509 | _promoInfo.verify(); |
2510 | _dictionary->verify(); |
2511 | if (FLSVerifyIndexTable) { |
2512 | verifyIndexedFreeLists(); |
2513 | } |
2514 | // Check integrity of all objects and free blocks in space |
2515 | { |
2516 | VerifyAllBlksClosure cl(this, span); |
2517 | ((CompactibleFreeListSpace*)this)->blk_iterate(&cl); // cast off const |
2518 | } |
2519 | // Check that all references in the heap to FLS |
2520 | // are to valid objects in FLS or that references in |
2521 | // FLS are to valid objects elsewhere in the heap |
2522 | if (FLSVerifyAllHeapReferences) |
2523 | { |
2524 | VerifyAllOopsClosure cl(_collector, this, span, past_remark, |
2525 | _collector->markBitMap()); |
2526 | |
2527 | // Iterate over all oops in the heap. |
2528 | CMSHeap::heap()->oop_iterate(&cl); |
2529 | } |
2530 | |
2531 | if (VerifyObjectStartArray) { |
2532 | // Verify the block offset table |
2533 | _bt.verify(); |
2534 | } |
2535 | } |
2536 | |
2537 | #ifndef PRODUCT |
2538 | void CompactibleFreeListSpace::verifyFreeLists() const { |
2539 | if (FLSVerifyLists) { |
2540 | _dictionary->verify(); |
2541 | verifyIndexedFreeLists(); |
2542 | } else { |
2543 | if (FLSVerifyDictionary) { |
2544 | _dictionary->verify(); |
2545 | } |
2546 | if (FLSVerifyIndexTable) { |
2547 | verifyIndexedFreeLists(); |
2548 | } |
2549 | } |
2550 | } |
2551 | #endif |
2552 | |
2553 | void CompactibleFreeListSpace::verifyIndexedFreeLists() const { |
2554 | size_t i = 0; |
2555 | for (; i < IndexSetStart; i++) { |
2556 | guarantee(_indexedFreeList[i].head() == NULL, "should be NULL" ); |
2557 | } |
2558 | for (; i < IndexSetSize; i++) { |
2559 | verifyIndexedFreeList(i); |
2560 | } |
2561 | } |
2562 | |
2563 | void CompactibleFreeListSpace::verifyIndexedFreeList(size_t size) const { |
2564 | FreeChunk* fc = _indexedFreeList[size].head(); |
2565 | FreeChunk* tail = _indexedFreeList[size].tail(); |
2566 | size_t num = _indexedFreeList[size].count(); |
2567 | size_t n = 0; |
2568 | guarantee(((size >= IndexSetStart) && (size % IndexSetStride == 0)) || fc == NULL, |
2569 | "Slot should have been empty" ); |
2570 | for (; fc != NULL; fc = fc->next(), n++) { |
2571 | guarantee(fc->size() == size, "Size inconsistency" ); |
2572 | guarantee(fc->is_free(), "!free?" ); |
2573 | guarantee(fc->next() == NULL || fc->next()->prev() == fc, "Broken list" ); |
2574 | guarantee((fc->next() == NULL) == (fc == tail), "Incorrect tail" ); |
2575 | } |
2576 | guarantee(n == num, "Incorrect count" ); |
2577 | } |
2578 | |
2579 | #ifndef PRODUCT |
2580 | void CompactibleFreeListSpace::check_free_list_consistency() const { |
2581 | assert((TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >::min_size() <= IndexSetSize), |
2582 | "Some sizes can't be allocated without recourse to" |
2583 | " linear allocation buffers" ); |
2584 | assert((TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >::min_size()*HeapWordSize == sizeof(TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >)), |
2585 | "else MIN_TREE_CHUNK_SIZE is wrong" ); |
2586 | assert(IndexSetStart != 0, "IndexSetStart not initialized" ); |
2587 | assert(IndexSetStride != 0, "IndexSetStride not initialized" ); |
2588 | } |
2589 | #endif |
2590 | |
2591 | void CompactibleFreeListSpace::printFLCensus(size_t sweep_count) const { |
2592 | assert_lock_strong(&_freelistLock); |
2593 | LogTarget(Debug, gc, freelist, census) log; |
2594 | if (!log.is_enabled()) { |
2595 | return; |
2596 | } |
2597 | AdaptiveFreeList<FreeChunk> total; |
2598 | log.print("end sweep# " SIZE_FORMAT, sweep_count); |
2599 | ResourceMark rm; |
2600 | LogStream ls(log); |
2601 | outputStream* out = &ls; |
2602 | AdaptiveFreeList<FreeChunk>::print_labels_on(out, "size" ); |
2603 | size_t total_free = 0; |
2604 | for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) { |
2605 | const AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[i]; |
2606 | total_free += fl->count() * fl->size(); |
2607 | if (i % (40*IndexSetStride) == 0) { |
2608 | AdaptiveFreeList<FreeChunk>::print_labels_on(out, "size" ); |
2609 | } |
2610 | fl->print_on(out); |
2611 | total.set_bfr_surp( total.bfr_surp() + fl->bfr_surp() ); |
2612 | total.set_surplus( total.surplus() + fl->surplus() ); |
2613 | total.set_desired( total.desired() + fl->desired() ); |
2614 | total.set_prev_sweep( total.prev_sweep() + fl->prev_sweep() ); |
2615 | total.set_before_sweep(total.before_sweep() + fl->before_sweep()); |
2616 | total.set_count( total.count() + fl->count() ); |
2617 | total.set_coal_births( total.coal_births() + fl->coal_births() ); |
2618 | total.set_coal_deaths( total.coal_deaths() + fl->coal_deaths() ); |
2619 | total.set_split_births(total.split_births() + fl->split_births()); |
2620 | total.set_split_deaths(total.split_deaths() + fl->split_deaths()); |
2621 | } |
2622 | total.print_on(out, "TOTAL" ); |
2623 | log.print("Total free in indexed lists " SIZE_FORMAT " words" , total_free); |
2624 | log.print("growth: %8.5f deficit: %8.5f" , |
2625 | (double)(total.split_births()+total.coal_births()-total.split_deaths()-total.coal_deaths())/ |
2626 | (total.prev_sweep() != 0 ? (double)total.prev_sweep() : 1.0), |
2627 | (double)(total.desired() - total.count())/(total.desired() != 0 ? (double)total.desired() : 1.0)); |
2628 | _dictionary->print_dict_census(out); |
2629 | } |
2630 | |
2631 | /////////////////////////////////////////////////////////////////////////// |
2632 | // CompactibleFreeListSpaceLAB |
2633 | /////////////////////////////////////////////////////////////////////////// |
2634 | |
2635 | #define VECTOR_257(x) \ |
2636 | /* 1 2 3 4 5 6 7 8 9 1x 11 12 13 14 15 16 17 18 19 2x 21 22 23 24 25 26 27 28 29 3x 31 32 */ \ |
2637 | { x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \ |
2638 | x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \ |
2639 | x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \ |
2640 | x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \ |
2641 | x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \ |
2642 | x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \ |
2643 | x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \ |
2644 | x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \ |
2645 | x } |
2646 | |
2647 | // Initialize with default setting for CMS, _not_ |
2648 | // generic OldPLABSize, whose static default is different; if overridden at the |
2649 | // command-line, this will get reinitialized via a call to |
2650 | // modify_initialization() below. |
2651 | AdaptiveWeightedAverage CompactibleFreeListSpaceLAB::_blocks_to_claim[] = |
2652 | VECTOR_257(AdaptiveWeightedAverage(OldPLABWeight, (float)CompactibleFreeListSpaceLAB::_default_dynamic_old_plab_size)); |
2653 | size_t CompactibleFreeListSpaceLAB::_global_num_blocks[] = VECTOR_257(0); |
2654 | uint CompactibleFreeListSpaceLAB::_global_num_workers[] = VECTOR_257(0); |
2655 | |
2656 | CompactibleFreeListSpaceLAB::CompactibleFreeListSpaceLAB(CompactibleFreeListSpace* cfls) : |
2657 | _cfls(cfls) |
2658 | { |
2659 | assert(CompactibleFreeListSpace::IndexSetSize == 257, "Modify VECTOR_257() macro above" ); |
2660 | for (size_t i = CompactibleFreeListSpace::IndexSetStart; |
2661 | i < CompactibleFreeListSpace::IndexSetSize; |
2662 | i += CompactibleFreeListSpace::IndexSetStride) { |
2663 | _indexedFreeList[i].set_size(i); |
2664 | _num_blocks[i] = 0; |
2665 | } |
2666 | } |
2667 | |
2668 | static bool _CFLS_LAB_modified = false; |
2669 | |
2670 | void CompactibleFreeListSpaceLAB::modify_initialization(size_t n, unsigned wt) { |
2671 | assert(!_CFLS_LAB_modified, "Call only once" ); |
2672 | _CFLS_LAB_modified = true; |
2673 | for (size_t i = CompactibleFreeListSpace::IndexSetStart; |
2674 | i < CompactibleFreeListSpace::IndexSetSize; |
2675 | i += CompactibleFreeListSpace::IndexSetStride) { |
2676 | _blocks_to_claim[i].modify(n, wt, true /* force */); |
2677 | } |
2678 | } |
2679 | |
2680 | HeapWord* CompactibleFreeListSpaceLAB::alloc(size_t word_sz) { |
2681 | FreeChunk* res; |
2682 | assert(word_sz == _cfls->adjustObjectSize(word_sz), "Error" ); |
2683 | if (word_sz >= CompactibleFreeListSpace::IndexSetSize) { |
2684 | // This locking manages sync with other large object allocations. |
2685 | MutexLocker x(_cfls->parDictionaryAllocLock(), |
2686 | Mutex::_no_safepoint_check_flag); |
2687 | res = _cfls->getChunkFromDictionaryExact(word_sz); |
2688 | if (res == NULL) return NULL; |
2689 | } else { |
2690 | AdaptiveFreeList<FreeChunk>* fl = &_indexedFreeList[word_sz]; |
2691 | if (fl->count() == 0) { |
2692 | // Attempt to refill this local free list. |
2693 | get_from_global_pool(word_sz, fl); |
2694 | // If it didn't work, give up. |
2695 | if (fl->count() == 0) return NULL; |
2696 | } |
2697 | res = fl->get_chunk_at_head(); |
2698 | assert(res != NULL, "Why was count non-zero?" ); |
2699 | } |
2700 | res->markNotFree(); |
2701 | assert(!res->is_free(), "shouldn't be marked free" ); |
2702 | assert(oop(res)->klass_or_null() == NULL, "should look uninitialized" ); |
2703 | // mangle a just allocated object with a distinct pattern. |
2704 | debug_only(res->mangleAllocated(word_sz)); |
2705 | return (HeapWord*)res; |
2706 | } |
2707 | |
2708 | // Get a chunk of blocks of the right size and update related |
2709 | // book-keeping stats |
2710 | void CompactibleFreeListSpaceLAB::get_from_global_pool(size_t word_sz, AdaptiveFreeList<FreeChunk>* fl) { |
2711 | // Get the #blocks we want to claim |
2712 | size_t n_blks = (size_t)_blocks_to_claim[word_sz].average(); |
2713 | assert(n_blks > 0, "Error" ); |
2714 | assert(ResizeOldPLAB || n_blks == OldPLABSize, "Error" ); |
2715 | // In some cases, when the application has a phase change, |
2716 | // there may be a sudden and sharp shift in the object survival |
2717 | // profile, and updating the counts at the end of a scavenge |
2718 | // may not be quick enough, giving rise to large scavenge pauses |
2719 | // during these phase changes. It is beneficial to detect such |
2720 | // changes on-the-fly during a scavenge and avoid such a phase-change |
2721 | // pothole. The following code is a heuristic attempt to do that. |
2722 | // It is protected by a product flag until we have gained |
2723 | // enough experience with this heuristic and fine-tuned its behavior. |
2724 | // WARNING: This might increase fragmentation if we overreact to |
2725 | // small spikes, so some kind of historical smoothing based on |
2726 | // previous experience with the greater reactivity might be useful. |
2727 | // Lacking sufficient experience, CMSOldPLABResizeQuicker is disabled by |
2728 | // default. |
2729 | if (ResizeOldPLAB && CMSOldPLABResizeQuicker) { |
2730 | // |
2731 | // On a 32-bit VM, the denominator can become zero because of integer overflow, |
2732 | // which is why there is a cast to double. |
2733 | // |
2734 | size_t multiple = (size_t) (_num_blocks[word_sz]/(((double)CMSOldPLABToleranceFactor)*CMSOldPLABNumRefills*n_blks)); |
2735 | n_blks += CMSOldPLABReactivityFactor*multiple*n_blks; |
2736 | n_blks = MIN2(n_blks, CMSOldPLABMax); |
2737 | } |
2738 | assert(n_blks > 0, "Error" ); |
2739 | _cfls->par_get_chunk_of_blocks(word_sz, n_blks, fl); |
2740 | // Update stats table entry for this block size |
2741 | _num_blocks[word_sz] += fl->count(); |
2742 | } |
2743 | |
2744 | void CompactibleFreeListSpaceLAB::compute_desired_plab_size() { |
2745 | for (size_t i = CompactibleFreeListSpace::IndexSetStart; |
2746 | i < CompactibleFreeListSpace::IndexSetSize; |
2747 | i += CompactibleFreeListSpace::IndexSetStride) { |
2748 | assert((_global_num_workers[i] == 0) == (_global_num_blocks[i] == 0), |
2749 | "Counter inconsistency" ); |
2750 | if (_global_num_workers[i] > 0) { |
2751 | // Need to smooth wrt historical average |
2752 | if (ResizeOldPLAB) { |
2753 | _blocks_to_claim[i].sample( |
2754 | MAX2(CMSOldPLABMin, |
2755 | MIN2(CMSOldPLABMax, |
2756 | _global_num_blocks[i]/_global_num_workers[i]/CMSOldPLABNumRefills))); |
2757 | } |
2758 | // Reset counters for next round |
2759 | _global_num_workers[i] = 0; |
2760 | _global_num_blocks[i] = 0; |
2761 | log_trace(gc, plab)("[" SIZE_FORMAT "]: " SIZE_FORMAT, i, (size_t)_blocks_to_claim[i].average()); |
2762 | } |
2763 | } |
2764 | } |
2765 | |
2766 | // If this is changed in the future to allow parallel |
2767 | // access, one would need to take the FL locks and, |
2768 | // depending on how it is used, stagger access from |
2769 | // parallel threads to reduce contention. |
2770 | void CompactibleFreeListSpaceLAB::retire(int tid) { |
2771 | // We run this single threaded with the world stopped; |
2772 | // so no need for locks and such. |
2773 | NOT_PRODUCT(Thread* t = Thread::current();) |
2774 | assert(Thread::current()->is_VM_thread(), "Error" ); |
2775 | for (size_t i = CompactibleFreeListSpace::IndexSetStart; |
2776 | i < CompactibleFreeListSpace::IndexSetSize; |
2777 | i += CompactibleFreeListSpace::IndexSetStride) { |
2778 | assert(_num_blocks[i] >= (size_t)_indexedFreeList[i].count(), |
2779 | "Can't retire more than what we obtained" ); |
2780 | if (_num_blocks[i] > 0) { |
2781 | size_t num_retire = _indexedFreeList[i].count(); |
2782 | assert(_num_blocks[i] > num_retire, "Should have used at least one" ); |
2783 | { |
2784 | // MutexLocker x(_cfls->_indexedFreeListParLocks[i], |
2785 | // Mutex::_no_safepoint_check_flag); |
2786 | |
2787 | // Update globals stats for num_blocks used |
2788 | _global_num_blocks[i] += (_num_blocks[i] - num_retire); |
2789 | _global_num_workers[i]++; |
2790 | assert(_global_num_workers[i] <= ParallelGCThreads, "Too big" ); |
2791 | if (num_retire > 0) { |
2792 | _cfls->_indexedFreeList[i].prepend(&_indexedFreeList[i]); |
2793 | // Reset this list. |
2794 | _indexedFreeList[i] = AdaptiveFreeList<FreeChunk>(); |
2795 | _indexedFreeList[i].set_size(i); |
2796 | } |
2797 | } |
2798 | log_trace(gc, plab)("%d[" SIZE_FORMAT "]: " SIZE_FORMAT "/" SIZE_FORMAT "/" SIZE_FORMAT, |
2799 | tid, i, num_retire, _num_blocks[i], (size_t)_blocks_to_claim[i].average()); |
2800 | // Reset stats for next round |
2801 | _num_blocks[i] = 0; |
2802 | } |
2803 | } |
2804 | } |
2805 | |
2806 | // Used by par_get_chunk_of_blocks() for the chunks from the |
2807 | // indexed_free_lists. Looks for a chunk with size that is a multiple |
2808 | // of "word_sz" and if found, splits it into "word_sz" chunks and add |
2809 | // to the free list "fl". "n" is the maximum number of chunks to |
2810 | // be added to "fl". |
2811 | bool CompactibleFreeListSpace:: par_get_chunk_of_blocks_IFL(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl) { |
2812 | |
2813 | // We'll try all multiples of word_sz in the indexed set, starting with |
2814 | // word_sz itself and, if CMSSplitIndexedFreeListBlocks, try larger multiples, |
2815 | // then try getting a big chunk and splitting it. |
2816 | { |
2817 | bool found; |
2818 | int k; |
2819 | size_t cur_sz; |
2820 | for (k = 1, cur_sz = k * word_sz, found = false; |
2821 | (cur_sz < CompactibleFreeListSpace::IndexSetSize) && |
2822 | (CMSSplitIndexedFreeListBlocks || k <= 1); |
2823 | k++, cur_sz = k * word_sz) { |
2824 | AdaptiveFreeList<FreeChunk> fl_for_cur_sz; // Empty. |
2825 | fl_for_cur_sz.set_size(cur_sz); |
2826 | { |
2827 | MutexLocker x(_indexedFreeListParLocks[cur_sz], |
2828 | Mutex::_no_safepoint_check_flag); |
2829 | AdaptiveFreeList<FreeChunk>* gfl = &_indexedFreeList[cur_sz]; |
2830 | if (gfl->count() != 0) { |
2831 | // nn is the number of chunks of size cur_sz that |
2832 | // we'd need to split k-ways each, in order to create |
2833 | // "n" chunks of size word_sz each. |
2834 | const size_t nn = MAX2(n/k, (size_t)1); |
2835 | gfl->getFirstNChunksFromList(nn, &fl_for_cur_sz); |
2836 | found = true; |
2837 | if (k > 1) { |
2838 | // Update split death stats for the cur_sz-size blocks list: |
2839 | // we increment the split death count by the number of blocks |
2840 | // we just took from the cur_sz-size blocks list and which |
2841 | // we will be splitting below. |
2842 | ssize_t deaths = gfl->split_deaths() + |
2843 | fl_for_cur_sz.count(); |
2844 | gfl->set_split_deaths(deaths); |
2845 | } |
2846 | } |
2847 | } |
2848 | // Now transfer fl_for_cur_sz to fl. Common case, we hope, is k = 1. |
2849 | if (found) { |
2850 | if (k == 1) { |
2851 | fl->prepend(&fl_for_cur_sz); |
2852 | } else { |
2853 | // Divide each block on fl_for_cur_sz up k ways. |
2854 | FreeChunk* fc; |
2855 | while ((fc = fl_for_cur_sz.get_chunk_at_head()) != NULL) { |
2856 | // Must do this in reverse order, so that anybody attempting to |
2857 | // access the main chunk sees it as a single free block until we |
2858 | // change it. |
2859 | size_t fc_size = fc->size(); |
2860 | assert(fc->is_free(), "Error" ); |
2861 | for (int i = k-1; i >= 0; i--) { |
2862 | FreeChunk* ffc = (FreeChunk*)((HeapWord*)fc + i * word_sz); |
2863 | assert((i != 0) || |
2864 | ((fc == ffc) && ffc->is_free() && |
2865 | (ffc->size() == k*word_sz) && (fc_size == word_sz)), |
2866 | "Counting error" ); |
2867 | ffc->set_size(word_sz); |
2868 | ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads. |
2869 | ffc->link_next(NULL); |
2870 | // Above must occur before BOT is updated below. |
2871 | OrderAccess::storestore(); |
2872 | // splitting from the right, fc_size == i * word_sz |
2873 | _bt.mark_block((HeapWord*)ffc, word_sz, true /* reducing */); |
2874 | fc_size -= word_sz; |
2875 | assert(fc_size == i*word_sz, "Error" ); |
2876 | _bt.verify_not_unallocated((HeapWord*)ffc, word_sz); |
2877 | _bt.verify_single_block((HeapWord*)fc, fc_size); |
2878 | _bt.verify_single_block((HeapWord*)ffc, word_sz); |
2879 | // Push this on "fl". |
2880 | fl->return_chunk_at_head(ffc); |
2881 | } |
2882 | // TRAP |
2883 | assert(fl->tail()->next() == NULL, "List invariant." ); |
2884 | } |
2885 | } |
2886 | // Update birth stats for this block size. |
2887 | size_t num = fl->count(); |
2888 | MutexLocker x(_indexedFreeListParLocks[word_sz], |
2889 | Mutex::_no_safepoint_check_flag); |
2890 | ssize_t births = _indexedFreeList[word_sz].split_births() + num; |
2891 | _indexedFreeList[word_sz].set_split_births(births); |
2892 | return true; |
2893 | } |
2894 | } |
2895 | return found; |
2896 | } |
2897 | } |
2898 | |
2899 | FreeChunk* CompactibleFreeListSpace::get_n_way_chunk_to_split(size_t word_sz, size_t n) { |
2900 | |
2901 | FreeChunk* fc = NULL; |
2902 | FreeChunk* rem_fc = NULL; |
2903 | size_t rem; |
2904 | { |
2905 | MutexLocker x(parDictionaryAllocLock(), |
2906 | Mutex::_no_safepoint_check_flag); |
2907 | while (n > 0) { |
2908 | fc = dictionary()->get_chunk(MAX2(n * word_sz, _dictionary->min_size())); |
2909 | if (fc != NULL) { |
2910 | break; |
2911 | } else { |
2912 | n--; |
2913 | } |
2914 | } |
2915 | if (fc == NULL) return NULL; |
2916 | // Otherwise, split up that block. |
2917 | assert((ssize_t)n >= 1, "Control point invariant" ); |
2918 | assert(fc->is_free(), "Error: should be a free block" ); |
2919 | _bt.verify_single_block((HeapWord*)fc, fc->size()); |
2920 | const size_t nn = fc->size() / word_sz; |
2921 | n = MIN2(nn, n); |
2922 | assert((ssize_t)n >= 1, "Control point invariant" ); |
2923 | rem = fc->size() - n * word_sz; |
2924 | // If there is a remainder, and it's too small, allocate one fewer. |
2925 | if (rem > 0 && rem < MinChunkSize) { |
2926 | n--; rem += word_sz; |
2927 | } |
2928 | // Note that at this point we may have n == 0. |
2929 | assert((ssize_t)n >= 0, "Control point invariant" ); |
2930 | |
2931 | // If n is 0, the chunk fc that was found is not large |
2932 | // enough to leave a viable remainder. We are unable to |
2933 | // allocate even one block. Return fc to the |
2934 | // dictionary and return, leaving "fl" empty. |
2935 | if (n == 0) { |
2936 | returnChunkToDictionary(fc); |
2937 | return NULL; |
2938 | } |
2939 | |
2940 | _bt.allocated((HeapWord*)fc, fc->size(), true /* reducing */); // update _unallocated_blk |
2941 | dictionary()->dict_census_update(fc->size(), |
2942 | true /*split*/, |
2943 | false /*birth*/); |
2944 | |
2945 | // First return the remainder, if any. |
2946 | // Note that we hold the lock until we decide if we're going to give |
2947 | // back the remainder to the dictionary, since a concurrent allocation |
2948 | // may otherwise see the heap as empty. (We're willing to take that |
2949 | // hit if the block is a small block.) |
2950 | if (rem > 0) { |
2951 | size_t prefix_size = n * word_sz; |
2952 | rem_fc = (FreeChunk*)((HeapWord*)fc + prefix_size); |
2953 | rem_fc->set_size(rem); |
2954 | rem_fc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads. |
2955 | rem_fc->link_next(NULL); |
2956 | // Above must occur before BOT is updated below. |
2957 | assert((ssize_t)n > 0 && prefix_size > 0 && rem_fc > fc, "Error" ); |
2958 | OrderAccess::storestore(); |
2959 | _bt.split_block((HeapWord*)fc, fc->size(), prefix_size); |
2960 | assert(fc->is_free(), "Error" ); |
2961 | fc->set_size(prefix_size); |
2962 | if (rem >= IndexSetSize) { |
2963 | returnChunkToDictionary(rem_fc); |
2964 | dictionary()->dict_census_update(rem, true /*split*/, true /*birth*/); |
2965 | rem_fc = NULL; |
2966 | } |
2967 | // Otherwise, return it to the small list below. |
2968 | } |
2969 | } |
2970 | if (rem_fc != NULL) { |
2971 | MutexLocker x(_indexedFreeListParLocks[rem], |
2972 | Mutex::_no_safepoint_check_flag); |
2973 | _bt.verify_not_unallocated((HeapWord*)rem_fc, rem_fc->size()); |
2974 | _indexedFreeList[rem].return_chunk_at_head(rem_fc); |
2975 | smallSplitBirth(rem); |
2976 | } |
2977 | assert(n * word_sz == fc->size(), |
2978 | "Chunk size " SIZE_FORMAT " is not exactly splittable by " |
2979 | SIZE_FORMAT " sized chunks of size " SIZE_FORMAT, |
2980 | fc->size(), n, word_sz); |
2981 | return fc; |
2982 | } |
2983 | |
2984 | void CompactibleFreeListSpace:: par_get_chunk_of_blocks_dictionary(size_t word_sz, size_t targetted_number_of_chunks, AdaptiveFreeList<FreeChunk>* fl) { |
2985 | |
2986 | FreeChunk* fc = get_n_way_chunk_to_split(word_sz, targetted_number_of_chunks); |
2987 | |
2988 | if (fc == NULL) { |
2989 | return; |
2990 | } |
2991 | |
2992 | size_t n = fc->size() / word_sz; |
2993 | |
2994 | assert((ssize_t)n > 0, "Consistency" ); |
2995 | // Now do the splitting up. |
2996 | // Must do this in reverse order, so that anybody attempting to |
2997 | // access the main chunk sees it as a single free block until we |
2998 | // change it. |
2999 | size_t fc_size = n * word_sz; |
3000 | // All but first chunk in this loop |
3001 | for (ssize_t i = n-1; i > 0; i--) { |
3002 | FreeChunk* ffc = (FreeChunk*)((HeapWord*)fc + i * word_sz); |
3003 | ffc->set_size(word_sz); |
3004 | ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads. |
3005 | ffc->link_next(NULL); |
3006 | // Above must occur before BOT is updated below. |
3007 | OrderAccess::storestore(); |
3008 | // splitting from the right, fc_size == (n - i + 1) * wordsize |
3009 | _bt.mark_block((HeapWord*)ffc, word_sz, true /* reducing */); |
3010 | fc_size -= word_sz; |
3011 | _bt.verify_not_unallocated((HeapWord*)ffc, ffc->size()); |
3012 | _bt.verify_single_block((HeapWord*)ffc, ffc->size()); |
3013 | _bt.verify_single_block((HeapWord*)fc, fc_size); |
3014 | // Push this on "fl". |
3015 | fl->return_chunk_at_head(ffc); |
3016 | } |
3017 | // First chunk |
3018 | assert(fc->is_free() && fc->size() == n*word_sz, "Error: should still be a free block" ); |
3019 | // The blocks above should show their new sizes before the first block below |
3020 | fc->set_size(word_sz); |
3021 | fc->link_prev(NULL); // idempotent wrt free-ness, see assert above |
3022 | fc->link_next(NULL); |
3023 | _bt.verify_not_unallocated((HeapWord*)fc, fc->size()); |
3024 | _bt.verify_single_block((HeapWord*)fc, fc->size()); |
3025 | fl->return_chunk_at_head(fc); |
3026 | |
3027 | assert((ssize_t)n > 0 && (ssize_t)n == fl->count(), "Incorrect number of blocks" ); |
3028 | { |
3029 | // Update the stats for this block size. |
3030 | MutexLocker x(_indexedFreeListParLocks[word_sz], |
3031 | Mutex::_no_safepoint_check_flag); |
3032 | const ssize_t births = _indexedFreeList[word_sz].split_births() + n; |
3033 | _indexedFreeList[word_sz].set_split_births(births); |
3034 | // ssize_t new_surplus = _indexedFreeList[word_sz].surplus() + n; |
3035 | // _indexedFreeList[word_sz].set_surplus(new_surplus); |
3036 | } |
3037 | |
3038 | // TRAP |
3039 | assert(fl->tail()->next() == NULL, "List invariant." ); |
3040 | } |
3041 | |
3042 | void CompactibleFreeListSpace:: par_get_chunk_of_blocks(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl) { |
3043 | assert(fl->count() == 0, "Precondition." ); |
3044 | assert(word_sz < CompactibleFreeListSpace::IndexSetSize, |
3045 | "Precondition" ); |
3046 | |
3047 | if (par_get_chunk_of_blocks_IFL(word_sz, n, fl)) { |
3048 | // Got it |
3049 | return; |
3050 | } |
3051 | |
3052 | // Otherwise, we'll split a block from the dictionary. |
3053 | par_get_chunk_of_blocks_dictionary(word_sz, n, fl); |
3054 | } |
3055 | |
3056 | const size_t CompactibleFreeListSpace::max_flag_size_for_task_size() const { |
3057 | const size_t ergo_max = _old_gen->reserved().word_size() / (CardTable::card_size_in_words * BitsPerWord); |
3058 | return ergo_max; |
3059 | } |
3060 | |
3061 | // Set up the space's par_seq_tasks structure for work claiming |
3062 | // for parallel rescan. See CMSParRemarkTask where this is currently used. |
3063 | // XXX Need to suitably abstract and generalize this and the next |
3064 | // method into one. |
3065 | void |
3066 | CompactibleFreeListSpace:: |
3067 | initialize_sequential_subtasks_for_rescan(int n_threads) { |
3068 | // The "size" of each task is fixed according to rescan_task_size. |
3069 | assert(n_threads > 0, "Unexpected n_threads argument" ); |
3070 | const size_t task_size = rescan_task_size(); |
3071 | size_t n_tasks = (used_region().word_size() + task_size - 1)/task_size; |
3072 | assert((n_tasks == 0) == used_region().is_empty(), "n_tasks incorrect" ); |
3073 | assert(n_tasks == 0 || |
3074 | ((used_region().start() + (n_tasks - 1)*task_size < used_region().end()) && |
3075 | (used_region().start() + n_tasks*task_size >= used_region().end())), |
3076 | "n_tasks calculation incorrect" ); |
3077 | SequentialSubTasksDone* pst = conc_par_seq_tasks(); |
3078 | assert(!pst->valid(), "Clobbering existing data?" ); |
3079 | // Sets the condition for completion of the subtask (how many threads |
3080 | // need to finish in order to be done). |
3081 | pst->set_n_threads(n_threads); |
3082 | pst->set_n_tasks((int)n_tasks); |
3083 | } |
3084 | |
3085 | // Set up the space's par_seq_tasks structure for work claiming |
3086 | // for parallel concurrent marking. See CMSConcMarkTask where this is currently used. |
3087 | void |
3088 | CompactibleFreeListSpace:: |
3089 | initialize_sequential_subtasks_for_marking(int n_threads, |
3090 | HeapWord* low) { |
3091 | // The "size" of each task is fixed according to rescan_task_size. |
3092 | assert(n_threads > 0, "Unexpected n_threads argument" ); |
3093 | const size_t task_size = marking_task_size(); |
3094 | assert(task_size > CardTable::card_size_in_words && |
3095 | (task_size % CardTable::card_size_in_words == 0), |
3096 | "Otherwise arithmetic below would be incorrect" ); |
3097 | MemRegion span = _old_gen->reserved(); |
3098 | if (low != NULL) { |
3099 | if (span.contains(low)) { |
3100 | // Align low down to a card boundary so that |
3101 | // we can use block_offset_careful() on span boundaries. |
3102 | HeapWord* aligned_low = align_down(low, CardTable::card_size); |
3103 | // Clip span prefix at aligned_low |
3104 | span = span.intersection(MemRegion(aligned_low, span.end())); |
3105 | } else if (low > span.end()) { |
3106 | span = MemRegion(low, low); // Null region |
3107 | } // else use entire span |
3108 | } |
3109 | assert(span.is_empty() || |
3110 | ((uintptr_t)span.start() % CardTable::card_size == 0), |
3111 | "span should start at a card boundary" ); |
3112 | size_t n_tasks = (span.word_size() + task_size - 1)/task_size; |
3113 | assert((n_tasks == 0) == span.is_empty(), "Inconsistency" ); |
3114 | assert(n_tasks == 0 || |
3115 | ((span.start() + (n_tasks - 1)*task_size < span.end()) && |
3116 | (span.start() + n_tasks*task_size >= span.end())), |
3117 | "n_tasks calculation incorrect" ); |
3118 | SequentialSubTasksDone* pst = conc_par_seq_tasks(); |
3119 | assert(!pst->valid(), "Clobbering existing data?" ); |
3120 | // Sets the condition for completion of the subtask (how many threads |
3121 | // need to finish in order to be done). |
3122 | pst->set_n_threads(n_threads); |
3123 | pst->set_n_tasks((int)n_tasks); |
3124 | } |
3125 | |