| 1 | /* |
| 2 | * Copyright (c) 2010, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "compiler/compileBroker.hpp" |
| 27 | #include "compiler/compilerOracle.hpp" |
| 28 | #include "memory/resourceArea.hpp" |
| 29 | #include "runtime/arguments.hpp" |
| 30 | #include "runtime/handles.inline.hpp" |
| 31 | #include "runtime/safepoint.hpp" |
| 32 | #include "runtime/safepointVerifiers.hpp" |
| 33 | #include "runtime/tieredThresholdPolicy.hpp" |
| 34 | #include "code/scopeDesc.hpp" |
| 35 | #include "oops/method.inline.hpp" |
| 36 | #if INCLUDE_JVMCI |
| 37 | #include "jvmci/jvmci.hpp" |
| 38 | #endif |
| 39 | |
| 40 | #ifdef TIERED |
| 41 | |
| 42 | #include "c1/c1_Compiler.hpp" |
| 43 | #include "opto/c2compiler.hpp" |
| 44 | |
| 45 | template<CompLevel level> |
| 46 | bool TieredThresholdPolicy::call_predicate_helper(int i, int b, double scale, Method* method) { |
| 47 | double threshold_scaling; |
| 48 | if (CompilerOracle::has_option_value(method, "CompileThresholdScaling" , threshold_scaling)) { |
| 49 | scale *= threshold_scaling; |
| 50 | } |
| 51 | switch(level) { |
| 52 | case CompLevel_aot: |
| 53 | return (i >= Tier3AOTInvocationThreshold * scale) || |
| 54 | (i >= Tier3AOTMinInvocationThreshold * scale && i + b >= Tier3AOTCompileThreshold * scale); |
| 55 | case CompLevel_none: |
| 56 | case CompLevel_limited_profile: |
| 57 | return (i >= Tier3InvocationThreshold * scale) || |
| 58 | (i >= Tier3MinInvocationThreshold * scale && i + b >= Tier3CompileThreshold * scale); |
| 59 | case CompLevel_full_profile: |
| 60 | return (i >= Tier4InvocationThreshold * scale) || |
| 61 | (i >= Tier4MinInvocationThreshold * scale && i + b >= Tier4CompileThreshold * scale); |
| 62 | } |
| 63 | return true; |
| 64 | } |
| 65 | |
| 66 | template<CompLevel level> |
| 67 | bool TieredThresholdPolicy::loop_predicate_helper(int i, int b, double scale, Method* method) { |
| 68 | double threshold_scaling; |
| 69 | if (CompilerOracle::has_option_value(method, "CompileThresholdScaling" , threshold_scaling)) { |
| 70 | scale *= threshold_scaling; |
| 71 | } |
| 72 | switch(level) { |
| 73 | case CompLevel_aot: |
| 74 | return b >= Tier3AOTBackEdgeThreshold * scale; |
| 75 | case CompLevel_none: |
| 76 | case CompLevel_limited_profile: |
| 77 | return b >= Tier3BackEdgeThreshold * scale; |
| 78 | case CompLevel_full_profile: |
| 79 | return b >= Tier4BackEdgeThreshold * scale; |
| 80 | } |
| 81 | return true; |
| 82 | } |
| 83 | |
| 84 | // Simple methods are as good being compiled with C1 as C2. |
| 85 | // Determine if a given method is such a case. |
| 86 | bool TieredThresholdPolicy::is_trivial(Method* method) { |
| 87 | if (method->is_accessor() || |
| 88 | method->is_constant_getter()) { |
| 89 | return true; |
| 90 | } |
| 91 | return false; |
| 92 | } |
| 93 | |
| 94 | bool TieredThresholdPolicy::should_compile_at_level_simple(Method* method) { |
| 95 | if (TieredThresholdPolicy::is_trivial(method)) { |
| 96 | return true; |
| 97 | } |
| 98 | #if INCLUDE_JVMCI |
| 99 | if (UseJVMCICompiler) { |
| 100 | AbstractCompiler* comp = CompileBroker::compiler(CompLevel_full_optimization); |
| 101 | if (comp != NULL && comp->is_jvmci() && ((JVMCICompiler*) comp)->force_comp_at_level_simple(method)) { |
| 102 | return true; |
| 103 | } |
| 104 | } |
| 105 | #endif |
| 106 | return false; |
| 107 | } |
| 108 | |
| 109 | CompLevel TieredThresholdPolicy::comp_level(Method* method) { |
| 110 | CompiledMethod *nm = method->code(); |
| 111 | if (nm != NULL && nm->is_in_use()) { |
| 112 | return (CompLevel)nm->comp_level(); |
| 113 | } |
| 114 | return CompLevel_none; |
| 115 | } |
| 116 | |
| 117 | void TieredThresholdPolicy::print_counters(const char* prefix, const methodHandle& mh) { |
| 118 | int invocation_count = mh->invocation_count(); |
| 119 | int backedge_count = mh->backedge_count(); |
| 120 | MethodData* mdh = mh->method_data(); |
| 121 | int mdo_invocations = 0, mdo_backedges = 0; |
| 122 | int mdo_invocations_start = 0, mdo_backedges_start = 0; |
| 123 | if (mdh != NULL) { |
| 124 | mdo_invocations = mdh->invocation_count(); |
| 125 | mdo_backedges = mdh->backedge_count(); |
| 126 | mdo_invocations_start = mdh->invocation_count_start(); |
| 127 | mdo_backedges_start = mdh->backedge_count_start(); |
| 128 | } |
| 129 | tty->print(" %stotal=%d,%d %smdo=%d(%d),%d(%d)" , prefix, |
| 130 | invocation_count, backedge_count, prefix, |
| 131 | mdo_invocations, mdo_invocations_start, |
| 132 | mdo_backedges, mdo_backedges_start); |
| 133 | tty->print(" %smax levels=%d,%d" , prefix, |
| 134 | mh->highest_comp_level(), mh->highest_osr_comp_level()); |
| 135 | } |
| 136 | |
| 137 | // Print an event. |
| 138 | void TieredThresholdPolicy::print_event(EventType type, const methodHandle& mh, const methodHandle& imh, |
| 139 | int bci, CompLevel level) { |
| 140 | bool inlinee_event = mh() != imh(); |
| 141 | |
| 142 | ttyLocker tty_lock; |
| 143 | tty->print("%lf: [" , os::elapsedTime()); |
| 144 | |
| 145 | switch(type) { |
| 146 | case CALL: |
| 147 | tty->print("call" ); |
| 148 | break; |
| 149 | case LOOP: |
| 150 | tty->print("loop" ); |
| 151 | break; |
| 152 | case COMPILE: |
| 153 | tty->print("compile" ); |
| 154 | break; |
| 155 | case REMOVE_FROM_QUEUE: |
| 156 | tty->print("remove-from-queue" ); |
| 157 | break; |
| 158 | case UPDATE_IN_QUEUE: |
| 159 | tty->print("update-in-queue" ); |
| 160 | break; |
| 161 | case REPROFILE: |
| 162 | tty->print("reprofile" ); |
| 163 | break; |
| 164 | case MAKE_NOT_ENTRANT: |
| 165 | tty->print("make-not-entrant" ); |
| 166 | break; |
| 167 | default: |
| 168 | tty->print("unknown" ); |
| 169 | } |
| 170 | |
| 171 | tty->print(" level=%d " , level); |
| 172 | |
| 173 | ResourceMark rm; |
| 174 | char *method_name = mh->name_and_sig_as_C_string(); |
| 175 | tty->print("[%s" , method_name); |
| 176 | if (inlinee_event) { |
| 177 | char *inlinee_name = imh->name_and_sig_as_C_string(); |
| 178 | tty->print(" [%s]] " , inlinee_name); |
| 179 | } |
| 180 | else tty->print("] " ); |
| 181 | tty->print("@%d queues=%d,%d" , bci, CompileBroker::queue_size(CompLevel_full_profile), |
| 182 | CompileBroker::queue_size(CompLevel_full_optimization)); |
| 183 | |
| 184 | print_specific(type, mh, imh, bci, level); |
| 185 | |
| 186 | if (type != COMPILE) { |
| 187 | print_counters("" , mh); |
| 188 | if (inlinee_event) { |
| 189 | print_counters("inlinee " , imh); |
| 190 | } |
| 191 | tty->print(" compilable=" ); |
| 192 | bool need_comma = false; |
| 193 | if (!mh->is_not_compilable(CompLevel_full_profile)) { |
| 194 | tty->print("c1" ); |
| 195 | need_comma = true; |
| 196 | } |
| 197 | if (!mh->is_not_osr_compilable(CompLevel_full_profile)) { |
| 198 | if (need_comma) tty->print("," ); |
| 199 | tty->print("c1-osr" ); |
| 200 | need_comma = true; |
| 201 | } |
| 202 | if (!mh->is_not_compilable(CompLevel_full_optimization)) { |
| 203 | if (need_comma) tty->print("," ); |
| 204 | tty->print("c2" ); |
| 205 | need_comma = true; |
| 206 | } |
| 207 | if (!mh->is_not_osr_compilable(CompLevel_full_optimization)) { |
| 208 | if (need_comma) tty->print("," ); |
| 209 | tty->print("c2-osr" ); |
| 210 | } |
| 211 | tty->print(" status=" ); |
| 212 | if (mh->queued_for_compilation()) { |
| 213 | tty->print("in-queue" ); |
| 214 | } else tty->print("idle" ); |
| 215 | } |
| 216 | tty->print_cr("]" ); |
| 217 | } |
| 218 | |
| 219 | void TieredThresholdPolicy::initialize() { |
| 220 | int count = CICompilerCount; |
| 221 | bool c1_only = TieredStopAtLevel < CompLevel_full_optimization; |
| 222 | #ifdef _LP64 |
| 223 | // Turn on ergonomic compiler count selection |
| 224 | if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) { |
| 225 | FLAG_SET_DEFAULT(CICompilerCountPerCPU, true); |
| 226 | } |
| 227 | if (CICompilerCountPerCPU) { |
| 228 | // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n |
| 229 | int log_cpu = log2_int(os::active_processor_count()); |
| 230 | int loglog_cpu = log2_int(MAX2(log_cpu, 1)); |
| 231 | count = MAX2(log_cpu * loglog_cpu * 3 / 2, 2); |
| 232 | // Make sure there is enough space in the code cache to hold all the compiler buffers |
| 233 | size_t c1_size = Compiler::code_buffer_size(); |
| 234 | size_t c2_size = C2Compiler::initial_code_buffer_size(); |
| 235 | size_t buffer_size = c1_only ? c1_size : (c1_size/3 + 2*c2_size/3); |
| 236 | int max_count = (ReservedCodeCacheSize - (CodeCacheMinimumUseSpace DEBUG_ONLY(* 3))) / (int)buffer_size; |
| 237 | if (count > max_count) { |
| 238 | // Lower the compiler count such that all buffers fit into the code cache |
| 239 | count = MAX2(max_count, c1_only ? 1 : 2); |
| 240 | } |
| 241 | FLAG_SET_ERGO(CICompilerCount, count); |
| 242 | } |
| 243 | #else |
| 244 | // On 32-bit systems, the number of compiler threads is limited to 3. |
| 245 | // On these systems, the virtual address space available to the JVM |
| 246 | // is usually limited to 2-4 GB (the exact value depends on the platform). |
| 247 | // As the compilers (especially C2) can consume a large amount of |
| 248 | // memory, scaling the number of compiler threads with the number of |
| 249 | // available cores can result in the exhaustion of the address space |
| 250 | /// available to the VM and thus cause the VM to crash. |
| 251 | if (FLAG_IS_DEFAULT(CICompilerCount)) { |
| 252 | count = 3; |
| 253 | FLAG_SET_ERGO(CICompilerCount, count); |
| 254 | } |
| 255 | #endif |
| 256 | |
| 257 | if (c1_only) { |
| 258 | // No C2 compiler thread required |
| 259 | set_c1_count(count); |
| 260 | } else { |
| 261 | set_c1_count(MAX2(count / 3, 1)); |
| 262 | set_c2_count(MAX2(count - c1_count(), 1)); |
| 263 | } |
| 264 | assert(count == c1_count() + c2_count(), "inconsistent compiler thread count" ); |
| 265 | |
| 266 | // Some inlining tuning |
| 267 | #ifdef X86 |
| 268 | if (FLAG_IS_DEFAULT(InlineSmallCode)) { |
| 269 | FLAG_SET_DEFAULT(InlineSmallCode, 2000); |
| 270 | } |
| 271 | #endif |
| 272 | |
| 273 | #if defined SPARC || defined AARCH64 |
| 274 | if (FLAG_IS_DEFAULT(InlineSmallCode)) { |
| 275 | FLAG_SET_DEFAULT(InlineSmallCode, 2500); |
| 276 | } |
| 277 | #endif |
| 278 | |
| 279 | set_increase_threshold_at_ratio(); |
| 280 | set_start_time(os::javaTimeMillis()); |
| 281 | } |
| 282 | |
| 283 | void TieredThresholdPolicy::set_carry_if_necessary(InvocationCounter *counter) { |
| 284 | if (!counter->carry() && counter->count() > InvocationCounter::count_limit / 2) { |
| 285 | counter->set_carry_flag(); |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | // Set carry flags on the counters if necessary |
| 290 | void TieredThresholdPolicy::handle_counter_overflow(Method* method) { |
| 291 | MethodCounters *mcs = method->method_counters(); |
| 292 | if (mcs != NULL) { |
| 293 | set_carry_if_necessary(mcs->invocation_counter()); |
| 294 | set_carry_if_necessary(mcs->backedge_counter()); |
| 295 | } |
| 296 | MethodData* mdo = method->method_data(); |
| 297 | if (mdo != NULL) { |
| 298 | set_carry_if_necessary(mdo->invocation_counter()); |
| 299 | set_carry_if_necessary(mdo->backedge_counter()); |
| 300 | } |
| 301 | } |
| 302 | |
| 303 | // Called with the queue locked and with at least one element |
| 304 | CompileTask* TieredThresholdPolicy::select_task(CompileQueue* compile_queue) { |
| 305 | CompileTask *max_blocking_task = NULL; |
| 306 | CompileTask *max_task = NULL; |
| 307 | Method* max_method = NULL; |
| 308 | jlong t = os::javaTimeMillis(); |
| 309 | // Iterate through the queue and find a method with a maximum rate. |
| 310 | for (CompileTask* task = compile_queue->first(); task != NULL;) { |
| 311 | CompileTask* next_task = task->next(); |
| 312 | Method* method = task->method(); |
| 313 | // If a method was unloaded or has been stale for some time, remove it from the queue. |
| 314 | // Blocking tasks and tasks submitted from whitebox API don't become stale |
| 315 | if (task->is_unloaded() || (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method))) { |
| 316 | if (!task->is_unloaded()) { |
| 317 | if (PrintTieredEvents) { |
| 318 | print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel) task->comp_level()); |
| 319 | } |
| 320 | method->clear_queued_for_compilation(); |
| 321 | } |
| 322 | compile_queue->remove_and_mark_stale(task); |
| 323 | task = next_task; |
| 324 | continue; |
| 325 | } |
| 326 | update_rate(t, method); |
| 327 | if (max_task == NULL || compare_methods(method, max_method)) { |
| 328 | // Select a method with the highest rate |
| 329 | max_task = task; |
| 330 | max_method = method; |
| 331 | } |
| 332 | |
| 333 | if (task->is_blocking()) { |
| 334 | if (max_blocking_task == NULL || compare_methods(method, max_blocking_task->method())) { |
| 335 | max_blocking_task = task; |
| 336 | } |
| 337 | } |
| 338 | |
| 339 | task = next_task; |
| 340 | } |
| 341 | |
| 342 | if (max_blocking_task != NULL) { |
| 343 | // In blocking compilation mode, the CompileBroker will make |
| 344 | // compilations submitted by a JVMCI compiler thread non-blocking. These |
| 345 | // compilations should be scheduled after all blocking compilations |
| 346 | // to service non-compiler related compilations sooner and reduce the |
| 347 | // chance of such compilations timing out. |
| 348 | max_task = max_blocking_task; |
| 349 | max_method = max_task->method(); |
| 350 | } |
| 351 | |
| 352 | if (max_task != NULL && max_task->comp_level() == CompLevel_full_profile && |
| 353 | TieredStopAtLevel > CompLevel_full_profile && |
| 354 | max_method != NULL && is_method_profiled(max_method)) { |
| 355 | max_task->set_comp_level(CompLevel_limited_profile); |
| 356 | |
| 357 | if (CompileBroker::compilation_is_complete(max_method, max_task->osr_bci(), CompLevel_limited_profile)) { |
| 358 | if (PrintTieredEvents) { |
| 359 | print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level()); |
| 360 | } |
| 361 | compile_queue->remove_and_mark_stale(max_task); |
| 362 | max_method->clear_queued_for_compilation(); |
| 363 | return NULL; |
| 364 | } |
| 365 | |
| 366 | if (PrintTieredEvents) { |
| 367 | print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level()); |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | return max_task; |
| 372 | } |
| 373 | |
| 374 | void TieredThresholdPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) { |
| 375 | for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) { |
| 376 | if (PrintTieredEvents) { |
| 377 | methodHandle mh(sd->method()); |
| 378 | print_event(REPROFILE, mh, mh, InvocationEntryBci, CompLevel_none); |
| 379 | } |
| 380 | MethodData* mdo = sd->method()->method_data(); |
| 381 | if (mdo != NULL) { |
| 382 | mdo->reset_start_counters(); |
| 383 | } |
| 384 | if (sd->is_top()) break; |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | nmethod* TieredThresholdPolicy::event(const methodHandle& method, const methodHandle& inlinee, |
| 389 | int branch_bci, int bci, CompLevel comp_level, CompiledMethod* nm, JavaThread* thread) { |
| 390 | if (comp_level == CompLevel_none && |
| 391 | JvmtiExport::can_post_interpreter_events() && |
| 392 | thread->is_interp_only_mode()) { |
| 393 | return NULL; |
| 394 | } |
| 395 | if (ReplayCompiles) { |
| 396 | // Don't trigger other compiles in testing mode |
| 397 | return NULL; |
| 398 | } |
| 399 | |
| 400 | handle_counter_overflow(method()); |
| 401 | if (method() != inlinee()) { |
| 402 | handle_counter_overflow(inlinee()); |
| 403 | } |
| 404 | |
| 405 | if (PrintTieredEvents) { |
| 406 | print_event(bci == InvocationEntryBci ? CALL : LOOP, method, inlinee, bci, comp_level); |
| 407 | } |
| 408 | |
| 409 | if (bci == InvocationEntryBci) { |
| 410 | method_invocation_event(method, inlinee, comp_level, nm, thread); |
| 411 | } else { |
| 412 | // method == inlinee if the event originated in the main method |
| 413 | method_back_branch_event(method, inlinee, bci, comp_level, nm, thread); |
| 414 | // Check if event led to a higher level OSR compilation |
| 415 | CompLevel expected_comp_level = comp_level; |
| 416 | if (inlinee->is_not_osr_compilable(expected_comp_level)) { |
| 417 | // It's not possble to reach the expected level so fall back to simple. |
| 418 | expected_comp_level = CompLevel_simple; |
| 419 | } |
| 420 | nmethod* osr_nm = inlinee->lookup_osr_nmethod_for(bci, expected_comp_level, false); |
| 421 | assert(osr_nm == NULL || osr_nm->comp_level() >= expected_comp_level, "lookup_osr_nmethod_for is broken" ); |
| 422 | if (osr_nm != NULL) { |
| 423 | // Perform OSR with new nmethod |
| 424 | return osr_nm; |
| 425 | } |
| 426 | } |
| 427 | return NULL; |
| 428 | } |
| 429 | |
| 430 | // Check if the method can be compiled, change level if necessary |
| 431 | void TieredThresholdPolicy::compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) { |
| 432 | assert(level <= TieredStopAtLevel, "Invalid compilation level" ); |
| 433 | if (level == CompLevel_none) { |
| 434 | return; |
| 435 | } |
| 436 | if (level == CompLevel_aot) { |
| 437 | if (mh->has_aot_code()) { |
| 438 | if (PrintTieredEvents) { |
| 439 | print_event(COMPILE, mh, mh, bci, level); |
| 440 | } |
| 441 | MutexLocker ml(Compile_lock); |
| 442 | NoSafepointVerifier nsv; |
| 443 | if (mh->has_aot_code() && mh->code() != mh->aot_code()) { |
| 444 | mh->aot_code()->make_entrant(); |
| 445 | if (mh->has_compiled_code()) { |
| 446 | mh->code()->make_not_entrant(); |
| 447 | } |
| 448 | Method::set_code(mh, mh->aot_code()); |
| 449 | } |
| 450 | } |
| 451 | return; |
| 452 | } |
| 453 | |
| 454 | // Check if the method can be compiled. If it cannot be compiled with C1, continue profiling |
| 455 | // in the interpreter and then compile with C2 (the transition function will request that, |
| 456 | // see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with |
| 457 | // pure C1. |
| 458 | if ((bci == InvocationEntryBci && !can_be_compiled(mh, level))) { |
| 459 | if (level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) { |
| 460 | compile(mh, bci, CompLevel_simple, thread); |
| 461 | } |
| 462 | return; |
| 463 | } |
| 464 | if ((bci != InvocationEntryBci && !can_be_osr_compiled(mh, level))) { |
| 465 | if (level == CompLevel_full_optimization && can_be_osr_compiled(mh, CompLevel_simple)) { |
| 466 | nmethod* osr_nm = mh->lookup_osr_nmethod_for(bci, CompLevel_simple, false); |
| 467 | if (osr_nm != NULL && osr_nm->comp_level() > CompLevel_simple) { |
| 468 | // Invalidate the existing OSR nmethod so that a compile at CompLevel_simple is permitted. |
| 469 | osr_nm->make_not_entrant(); |
| 470 | } |
| 471 | compile(mh, bci, CompLevel_simple, thread); |
| 472 | } |
| 473 | return; |
| 474 | } |
| 475 | if (bci != InvocationEntryBci && mh->is_not_osr_compilable(level)) { |
| 476 | return; |
| 477 | } |
| 478 | if (!CompileBroker::compilation_is_in_queue(mh)) { |
| 479 | if (PrintTieredEvents) { |
| 480 | print_event(COMPILE, mh, mh, bci, level); |
| 481 | } |
| 482 | submit_compile(mh, bci, level, thread); |
| 483 | } |
| 484 | } |
| 485 | |
| 486 | // Update the rate and submit compile |
| 487 | void TieredThresholdPolicy::submit_compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) { |
| 488 | int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count(); |
| 489 | update_rate(os::javaTimeMillis(), mh()); |
| 490 | CompileBroker::compile_method(mh, bci, level, mh, hot_count, CompileTask::Reason_Tiered, thread); |
| 491 | } |
| 492 | |
| 493 | // Print an event. |
| 494 | void TieredThresholdPolicy::print_specific(EventType type, const methodHandle& mh, const methodHandle& imh, |
| 495 | int bci, CompLevel level) { |
| 496 | tty->print(" rate=" ); |
| 497 | if (mh->prev_time() == 0) tty->print("n/a" ); |
| 498 | else tty->print("%f" , mh->rate()); |
| 499 | |
| 500 | tty->print(" k=%.2lf,%.2lf" , threshold_scale(CompLevel_full_profile, Tier3LoadFeedback), |
| 501 | threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback)); |
| 502 | |
| 503 | } |
| 504 | |
| 505 | // update_rate() is called from select_task() while holding a compile queue lock. |
| 506 | void TieredThresholdPolicy::update_rate(jlong t, Method* m) { |
| 507 | // Skip update if counters are absent. |
| 508 | // Can't allocate them since we are holding compile queue lock. |
| 509 | if (m->method_counters() == NULL) return; |
| 510 | |
| 511 | if (is_old(m)) { |
| 512 | // We don't remove old methods from the queue, |
| 513 | // so we can just zero the rate. |
| 514 | m->set_rate(0); |
| 515 | return; |
| 516 | } |
| 517 | |
| 518 | // We don't update the rate if we've just came out of a safepoint. |
| 519 | // delta_s is the time since last safepoint in milliseconds. |
| 520 | jlong delta_s = t - SafepointTracing::end_of_last_safepoint_epoch_ms(); |
| 521 | jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement |
| 522 | // How many events were there since the last time? |
| 523 | int event_count = m->invocation_count() + m->backedge_count(); |
| 524 | int delta_e = event_count - m->prev_event_count(); |
| 525 | |
| 526 | // We should be running for at least 1ms. |
| 527 | if (delta_s >= TieredRateUpdateMinTime) { |
| 528 | // And we must've taken the previous point at least 1ms before. |
| 529 | if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) { |
| 530 | m->set_prev_time(t); |
| 531 | m->set_prev_event_count(event_count); |
| 532 | m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond |
| 533 | } else { |
| 534 | if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) { |
| 535 | // If nothing happened for 25ms, zero the rate. Don't modify prev values. |
| 536 | m->set_rate(0); |
| 537 | } |
| 538 | } |
| 539 | } |
| 540 | } |
| 541 | |
| 542 | // Check if this method has been stale for a given number of milliseconds. |
| 543 | // See select_task(). |
| 544 | bool TieredThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) { |
| 545 | jlong delta_s = t - SafepointTracing::end_of_last_safepoint_epoch_ms(); |
| 546 | jlong delta_t = t - m->prev_time(); |
| 547 | if (delta_t > timeout && delta_s > timeout) { |
| 548 | int event_count = m->invocation_count() + m->backedge_count(); |
| 549 | int delta_e = event_count - m->prev_event_count(); |
| 550 | // Return true if there were no events. |
| 551 | return delta_e == 0; |
| 552 | } |
| 553 | return false; |
| 554 | } |
| 555 | |
| 556 | // We don't remove old methods from the compile queue even if they have |
| 557 | // very low activity. See select_task(). |
| 558 | bool TieredThresholdPolicy::is_old(Method* method) { |
| 559 | return method->invocation_count() > 50000 || method->backedge_count() > 500000; |
| 560 | } |
| 561 | |
| 562 | double TieredThresholdPolicy::weight(Method* method) { |
| 563 | return (double)(method->rate() + 1) * |
| 564 | (method->invocation_count() + 1) * (method->backedge_count() + 1); |
| 565 | } |
| 566 | |
| 567 | // Apply heuristics and return true if x should be compiled before y |
| 568 | bool TieredThresholdPolicy::compare_methods(Method* x, Method* y) { |
| 569 | if (x->highest_comp_level() > y->highest_comp_level()) { |
| 570 | // recompilation after deopt |
| 571 | return true; |
| 572 | } else |
| 573 | if (x->highest_comp_level() == y->highest_comp_level()) { |
| 574 | if (weight(x) > weight(y)) { |
| 575 | return true; |
| 576 | } |
| 577 | } |
| 578 | return false; |
| 579 | } |
| 580 | |
| 581 | // Is method profiled enough? |
| 582 | bool TieredThresholdPolicy::is_method_profiled(Method* method) { |
| 583 | MethodData* mdo = method->method_data(); |
| 584 | if (mdo != NULL) { |
| 585 | int i = mdo->invocation_count_delta(); |
| 586 | int b = mdo->backedge_count_delta(); |
| 587 | return call_predicate_helper<CompLevel_full_profile>(i, b, 1, method); |
| 588 | } |
| 589 | return false; |
| 590 | } |
| 591 | |
| 592 | double TieredThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) { |
| 593 | double queue_size = CompileBroker::queue_size(level); |
| 594 | int comp_count = compiler_count(level); |
| 595 | double k = queue_size / (feedback_k * comp_count) + 1; |
| 596 | |
| 597 | // Increase C1 compile threshold when the code cache is filled more |
| 598 | // than specified by IncreaseFirstTierCompileThresholdAt percentage. |
| 599 | // The main intention is to keep enough free space for C2 compiled code |
| 600 | // to achieve peak performance if the code cache is under stress. |
| 601 | if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization)) { |
| 602 | double current_reverse_free_ratio = CodeCache::reverse_free_ratio(CodeCache::get_code_blob_type(level)); |
| 603 | if (current_reverse_free_ratio > _increase_threshold_at_ratio) { |
| 604 | k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio); |
| 605 | } |
| 606 | } |
| 607 | return k; |
| 608 | } |
| 609 | |
| 610 | // Call and loop predicates determine whether a transition to a higher |
| 611 | // compilation level should be performed (pointers to predicate functions |
| 612 | // are passed to common()). |
| 613 | // Tier?LoadFeedback is basically a coefficient that determines of |
| 614 | // how many methods per compiler thread can be in the queue before |
| 615 | // the threshold values double. |
| 616 | bool TieredThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level, Method* method) { |
| 617 | switch(cur_level) { |
| 618 | case CompLevel_aot: { |
| 619 | double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback); |
| 620 | return loop_predicate_helper<CompLevel_aot>(i, b, k, method); |
| 621 | } |
| 622 | case CompLevel_none: |
| 623 | case CompLevel_limited_profile: { |
| 624 | double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback); |
| 625 | return loop_predicate_helper<CompLevel_none>(i, b, k, method); |
| 626 | } |
| 627 | case CompLevel_full_profile: { |
| 628 | double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback); |
| 629 | return loop_predicate_helper<CompLevel_full_profile>(i, b, k, method); |
| 630 | } |
| 631 | default: |
| 632 | return true; |
| 633 | } |
| 634 | } |
| 635 | |
| 636 | bool TieredThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level, Method* method) { |
| 637 | switch(cur_level) { |
| 638 | case CompLevel_aot: { |
| 639 | double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback); |
| 640 | return call_predicate_helper<CompLevel_aot>(i, b, k, method); |
| 641 | } |
| 642 | case CompLevel_none: |
| 643 | case CompLevel_limited_profile: { |
| 644 | double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback); |
| 645 | return call_predicate_helper<CompLevel_none>(i, b, k, method); |
| 646 | } |
| 647 | case CompLevel_full_profile: { |
| 648 | double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback); |
| 649 | return call_predicate_helper<CompLevel_full_profile>(i, b, k, method); |
| 650 | } |
| 651 | default: |
| 652 | return true; |
| 653 | } |
| 654 | } |
| 655 | |
| 656 | // Determine is a method is mature. |
| 657 | bool TieredThresholdPolicy::is_mature(Method* method) { |
| 658 | if (should_compile_at_level_simple(method)) return true; |
| 659 | MethodData* mdo = method->method_data(); |
| 660 | if (mdo != NULL) { |
| 661 | int i = mdo->invocation_count(); |
| 662 | int b = mdo->backedge_count(); |
| 663 | double k = ProfileMaturityPercentage / 100.0; |
| 664 | return call_predicate_helper<CompLevel_full_profile>(i, b, k, method) || |
| 665 | loop_predicate_helper<CompLevel_full_profile>(i, b, k, method); |
| 666 | } |
| 667 | return false; |
| 668 | } |
| 669 | |
| 670 | // If a method is old enough and is still in the interpreter we would want to |
| 671 | // start profiling without waiting for the compiled method to arrive. |
| 672 | // We also take the load on compilers into the account. |
| 673 | bool TieredThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) { |
| 674 | if (cur_level == CompLevel_none && |
| 675 | CompileBroker::queue_size(CompLevel_full_optimization) <= |
| 676 | Tier3DelayOn * compiler_count(CompLevel_full_optimization)) { |
| 677 | int i = method->invocation_count(); |
| 678 | int b = method->backedge_count(); |
| 679 | double k = Tier0ProfilingStartPercentage / 100.0; |
| 680 | return call_predicate_helper<CompLevel_none>(i, b, k, method) || loop_predicate_helper<CompLevel_none>(i, b, k, method); |
| 681 | } |
| 682 | return false; |
| 683 | } |
| 684 | |
| 685 | // Inlining control: if we're compiling a profiled method with C1 and the callee |
| 686 | // is known to have OSRed in a C2 version, don't inline it. |
| 687 | bool TieredThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) { |
| 688 | CompLevel comp_level = (CompLevel)env->comp_level(); |
| 689 | if (comp_level == CompLevel_full_profile || |
| 690 | comp_level == CompLevel_limited_profile) { |
| 691 | return callee->highest_osr_comp_level() == CompLevel_full_optimization; |
| 692 | } |
| 693 | return false; |
| 694 | } |
| 695 | |
| 696 | // Create MDO if necessary. |
| 697 | void TieredThresholdPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) { |
| 698 | if (mh->is_native() || |
| 699 | mh->is_abstract() || |
| 700 | mh->is_accessor() || |
| 701 | mh->is_constant_getter()) { |
| 702 | return; |
| 703 | } |
| 704 | if (mh->method_data() == NULL) { |
| 705 | Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR); |
| 706 | } |
| 707 | } |
| 708 | |
| 709 | |
| 710 | /* |
| 711 | * Method states: |
| 712 | * 0 - interpreter (CompLevel_none) |
| 713 | * 1 - pure C1 (CompLevel_simple) |
| 714 | * 2 - C1 with invocation and backedge counting (CompLevel_limited_profile) |
| 715 | * 3 - C1 with full profiling (CompLevel_full_profile) |
| 716 | * 4 - C2 (CompLevel_full_optimization) |
| 717 | * |
| 718 | * Common state transition patterns: |
| 719 | * a. 0 -> 3 -> 4. |
| 720 | * The most common path. But note that even in this straightforward case |
| 721 | * profiling can start at level 0 and finish at level 3. |
| 722 | * |
| 723 | * b. 0 -> 2 -> 3 -> 4. |
| 724 | * This case occurs when the load on C2 is deemed too high. So, instead of transitioning |
| 725 | * into state 3 directly and over-profiling while a method is in the C2 queue we transition to |
| 726 | * level 2 and wait until the load on C2 decreases. This path is disabled for OSRs. |
| 727 | * |
| 728 | * c. 0 -> (3->2) -> 4. |
| 729 | * In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough |
| 730 | * to enable the profiling to fully occur at level 0. In this case we change the compilation level |
| 731 | * of the method to 2 while the request is still in-queue, because it'll allow it to run much faster |
| 732 | * without full profiling while c2 is compiling. |
| 733 | * |
| 734 | * d. 0 -> 3 -> 1 or 0 -> 2 -> 1. |
| 735 | * After a method was once compiled with C1 it can be identified as trivial and be compiled to |
| 736 | * level 1. These transition can also occur if a method can't be compiled with C2 but can with C1. |
| 737 | * |
| 738 | * e. 0 -> 4. |
| 739 | * This can happen if a method fails C1 compilation (it will still be profiled in the interpreter) |
| 740 | * or because of a deopt that didn't require reprofiling (compilation won't happen in this case because |
| 741 | * the compiled version already exists). |
| 742 | * |
| 743 | * Note that since state 0 can be reached from any other state via deoptimization different loops |
| 744 | * are possible. |
| 745 | * |
| 746 | */ |
| 747 | |
| 748 | // Common transition function. Given a predicate determines if a method should transition to another level. |
| 749 | CompLevel TieredThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) { |
| 750 | CompLevel next_level = cur_level; |
| 751 | int i = method->invocation_count(); |
| 752 | int b = method->backedge_count(); |
| 753 | |
| 754 | if (should_compile_at_level_simple(method)) { |
| 755 | next_level = CompLevel_simple; |
| 756 | } else { |
| 757 | switch(cur_level) { |
| 758 | default: break; |
| 759 | case CompLevel_aot: { |
| 760 | // If we were at full profile level, would we switch to full opt? |
| 761 | if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) { |
| 762 | next_level = CompLevel_full_optimization; |
| 763 | } else if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <= |
| 764 | Tier3DelayOff * compiler_count(CompLevel_full_optimization) && |
| 765 | (this->*p)(i, b, cur_level, method))) { |
| 766 | next_level = CompLevel_full_profile; |
| 767 | } |
| 768 | } |
| 769 | break; |
| 770 | case CompLevel_none: |
| 771 | // If we were at full profile level, would we switch to full opt? |
| 772 | if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) { |
| 773 | next_level = CompLevel_full_optimization; |
| 774 | } else if ((this->*p)(i, b, cur_level, method)) { |
| 775 | #if INCLUDE_JVMCI |
| 776 | if (EnableJVMCI && UseJVMCICompiler) { |
| 777 | // Since JVMCI takes a while to warm up, its queue inevitably backs up during |
| 778 | // early VM execution. As of 2014-06-13, JVMCI's inliner assumes that the root |
| 779 | // compilation method and all potential inlinees have mature profiles (which |
| 780 | // includes type profiling). If it sees immature profiles, JVMCI's inliner |
| 781 | // can perform pathologically bad (e.g., causing OutOfMemoryErrors due to |
| 782 | // exploring/inlining too many graphs). Since a rewrite of the inliner is |
| 783 | // in progress, we simply disable the dialing back heuristic for now and will |
| 784 | // revisit this decision once the new inliner is completed. |
| 785 | next_level = CompLevel_full_profile; |
| 786 | } else |
| 787 | #endif |
| 788 | { |
| 789 | // C1-generated fully profiled code is about 30% slower than the limited profile |
| 790 | // code that has only invocation and backedge counters. The observation is that |
| 791 | // if C2 queue is large enough we can spend too much time in the fully profiled code |
| 792 | // while waiting for C2 to pick the method from the queue. To alleviate this problem |
| 793 | // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long |
| 794 | // we choose to compile a limited profiled version and then recompile with full profiling |
| 795 | // when the load on C2 goes down. |
| 796 | if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) > |
| 797 | Tier3DelayOn * compiler_count(CompLevel_full_optimization)) { |
| 798 | next_level = CompLevel_limited_profile; |
| 799 | } else { |
| 800 | next_level = CompLevel_full_profile; |
| 801 | } |
| 802 | } |
| 803 | } |
| 804 | break; |
| 805 | case CompLevel_limited_profile: |
| 806 | if (is_method_profiled(method)) { |
| 807 | // Special case: we got here because this method was fully profiled in the interpreter. |
| 808 | next_level = CompLevel_full_optimization; |
| 809 | } else { |
| 810 | MethodData* mdo = method->method_data(); |
| 811 | if (mdo != NULL) { |
| 812 | if (mdo->would_profile()) { |
| 813 | if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <= |
| 814 | Tier3DelayOff * compiler_count(CompLevel_full_optimization) && |
| 815 | (this->*p)(i, b, cur_level, method))) { |
| 816 | next_level = CompLevel_full_profile; |
| 817 | } |
| 818 | } else { |
| 819 | next_level = CompLevel_full_optimization; |
| 820 | } |
| 821 | } else { |
| 822 | // If there is no MDO we need to profile |
| 823 | if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <= |
| 824 | Tier3DelayOff * compiler_count(CompLevel_full_optimization) && |
| 825 | (this->*p)(i, b, cur_level, method))) { |
| 826 | next_level = CompLevel_full_profile; |
| 827 | } |
| 828 | } |
| 829 | } |
| 830 | break; |
| 831 | case CompLevel_full_profile: |
| 832 | { |
| 833 | MethodData* mdo = method->method_data(); |
| 834 | if (mdo != NULL) { |
| 835 | if (mdo->would_profile()) { |
| 836 | int mdo_i = mdo->invocation_count_delta(); |
| 837 | int mdo_b = mdo->backedge_count_delta(); |
| 838 | if ((this->*p)(mdo_i, mdo_b, cur_level, method)) { |
| 839 | next_level = CompLevel_full_optimization; |
| 840 | } |
| 841 | } else { |
| 842 | next_level = CompLevel_full_optimization; |
| 843 | } |
| 844 | } |
| 845 | } |
| 846 | break; |
| 847 | } |
| 848 | } |
| 849 | return MIN2(next_level, (CompLevel)TieredStopAtLevel); |
| 850 | } |
| 851 | |
| 852 | // Determine if a method should be compiled with a normal entry point at a different level. |
| 853 | CompLevel TieredThresholdPolicy::call_event(Method* method, CompLevel cur_level, JavaThread * thread) { |
| 854 | CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(), |
| 855 | common(&TieredThresholdPolicy::loop_predicate, method, cur_level, true)); |
| 856 | CompLevel next_level = common(&TieredThresholdPolicy::call_predicate, method, cur_level); |
| 857 | |
| 858 | // If OSR method level is greater than the regular method level, the levels should be |
| 859 | // equalized by raising the regular method level in order to avoid OSRs during each |
| 860 | // invocation of the method. |
| 861 | if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) { |
| 862 | MethodData* mdo = method->method_data(); |
| 863 | guarantee(mdo != NULL, "MDO should not be NULL" ); |
| 864 | if (mdo->invocation_count() >= 1) { |
| 865 | next_level = CompLevel_full_optimization; |
| 866 | } |
| 867 | } else { |
| 868 | next_level = MAX2(osr_level, next_level); |
| 869 | } |
| 870 | return next_level; |
| 871 | } |
| 872 | |
| 873 | // Determine if we should do an OSR compilation of a given method. |
| 874 | CompLevel TieredThresholdPolicy::loop_event(Method* method, CompLevel cur_level, JavaThread* thread) { |
| 875 | CompLevel next_level = common(&TieredThresholdPolicy::loop_predicate, method, cur_level, true); |
| 876 | if (cur_level == CompLevel_none) { |
| 877 | // If there is a live OSR method that means that we deopted to the interpreter |
| 878 | // for the transition. |
| 879 | CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level); |
| 880 | if (osr_level > CompLevel_none) { |
| 881 | return osr_level; |
| 882 | } |
| 883 | } |
| 884 | return next_level; |
| 885 | } |
| 886 | |
| 887 | bool TieredThresholdPolicy::maybe_switch_to_aot(const methodHandle& mh, CompLevel cur_level, CompLevel next_level, JavaThread* thread) { |
| 888 | if (UseAOT) { |
| 889 | if (cur_level == CompLevel_full_profile || cur_level == CompLevel_none) { |
| 890 | // If the current level is full profile or interpreter and we're switching to any other level, |
| 891 | // activate the AOT code back first so that we won't waste time overprofiling. |
| 892 | compile(mh, InvocationEntryBci, CompLevel_aot, thread); |
| 893 | // Fall through for JIT compilation. |
| 894 | } |
| 895 | if (next_level == CompLevel_limited_profile && cur_level != CompLevel_aot && mh->has_aot_code()) { |
| 896 | // If the next level is limited profile, use the aot code (if there is any), |
| 897 | // since it's essentially the same thing. |
| 898 | compile(mh, InvocationEntryBci, CompLevel_aot, thread); |
| 899 | // Not need to JIT, we're done. |
| 900 | return true; |
| 901 | } |
| 902 | } |
| 903 | return false; |
| 904 | } |
| 905 | |
| 906 | |
| 907 | // Handle the invocation event. |
| 908 | void TieredThresholdPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh, |
| 909 | CompLevel level, CompiledMethod* nm, JavaThread* thread) { |
| 910 | if (should_create_mdo(mh(), level)) { |
| 911 | create_mdo(mh, thread); |
| 912 | } |
| 913 | CompLevel next_level = call_event(mh(), level, thread); |
| 914 | if (next_level != level) { |
| 915 | if (maybe_switch_to_aot(mh, level, next_level, thread)) { |
| 916 | // No JITting necessary |
| 917 | return; |
| 918 | } |
| 919 | if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) { |
| 920 | compile(mh, InvocationEntryBci, next_level, thread); |
| 921 | } |
| 922 | } |
| 923 | } |
| 924 | |
| 925 | // Handle the back branch event. Notice that we can compile the method |
| 926 | // with a regular entry from here. |
| 927 | void TieredThresholdPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh, |
| 928 | int bci, CompLevel level, CompiledMethod* nm, JavaThread* thread) { |
| 929 | if (should_create_mdo(mh(), level)) { |
| 930 | create_mdo(mh, thread); |
| 931 | } |
| 932 | // Check if MDO should be created for the inlined method |
| 933 | if (should_create_mdo(imh(), level)) { |
| 934 | create_mdo(imh, thread); |
| 935 | } |
| 936 | |
| 937 | if (is_compilation_enabled()) { |
| 938 | CompLevel next_osr_level = loop_event(imh(), level, thread); |
| 939 | CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level(); |
| 940 | // At the very least compile the OSR version |
| 941 | if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) { |
| 942 | compile(imh, bci, next_osr_level, thread); |
| 943 | } |
| 944 | |
| 945 | // Use loop event as an opportunity to also check if there's been |
| 946 | // enough calls. |
| 947 | CompLevel cur_level, next_level; |
| 948 | if (mh() != imh()) { // If there is an enclosing method |
| 949 | if (level == CompLevel_aot) { |
| 950 | // Recompile the enclosing method to prevent infinite OSRs. Stay at AOT level while it's compiling. |
| 951 | if (max_osr_level != CompLevel_none && !CompileBroker::compilation_is_in_queue(mh)) { |
| 952 | compile(mh, InvocationEntryBci, MIN2((CompLevel)TieredStopAtLevel, CompLevel_full_profile), thread); |
| 953 | } |
| 954 | } else { |
| 955 | // Current loop event level is not AOT |
| 956 | guarantee(nm != NULL, "Should have nmethod here" ); |
| 957 | cur_level = comp_level(mh()); |
| 958 | next_level = call_event(mh(), cur_level, thread); |
| 959 | |
| 960 | if (max_osr_level == CompLevel_full_optimization) { |
| 961 | // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts |
| 962 | bool make_not_entrant = false; |
| 963 | if (nm->is_osr_method()) { |
| 964 | // This is an osr method, just make it not entrant and recompile later if needed |
| 965 | make_not_entrant = true; |
| 966 | } else { |
| 967 | if (next_level != CompLevel_full_optimization) { |
| 968 | // next_level is not full opt, so we need to recompile the |
| 969 | // enclosing method without the inlinee |
| 970 | cur_level = CompLevel_none; |
| 971 | make_not_entrant = true; |
| 972 | } |
| 973 | } |
| 974 | if (make_not_entrant) { |
| 975 | if (PrintTieredEvents) { |
| 976 | int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci; |
| 977 | print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level); |
| 978 | } |
| 979 | nm->make_not_entrant(); |
| 980 | } |
| 981 | } |
| 982 | // Fix up next_level if necessary to avoid deopts |
| 983 | if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) { |
| 984 | next_level = CompLevel_full_profile; |
| 985 | } |
| 986 | if (cur_level != next_level) { |
| 987 | if (!maybe_switch_to_aot(mh, cur_level, next_level, thread) && !CompileBroker::compilation_is_in_queue(mh)) { |
| 988 | compile(mh, InvocationEntryBci, next_level, thread); |
| 989 | } |
| 990 | } |
| 991 | } |
| 992 | } else { |
| 993 | cur_level = comp_level(mh()); |
| 994 | next_level = call_event(mh(), cur_level, thread); |
| 995 | if (next_level != cur_level) { |
| 996 | if (!maybe_switch_to_aot(mh, cur_level, next_level, thread) && !CompileBroker::compilation_is_in_queue(mh)) { |
| 997 | compile(mh, InvocationEntryBci, next_level, thread); |
| 998 | } |
| 999 | } |
| 1000 | } |
| 1001 | } |
| 1002 | } |
| 1003 | |
| 1004 | #endif |
| 1005 | |